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ABSTRACT

Diffusion model (DM) based adversarial purification (AP) has proven to be a
powerful defense method that can remove adversarial perturbations and generate
a purified example without threats. In principle, the pre-trained DMs can only
ensure that purified examples conform to the same distribution of the training data,
but it may inadvertently compromise the semantic information of input examples,
leading to misclassification of purified examples. Recent advancements introduce
guided diffusion techniques to preserve semantic information while removing the
perturbations. However, these guidances often rely on distance measures between
purified examples and diffused examples, which can also preserve perturbations
in purified examples. To further unleash the robustness power of DM-based
AP, we propose an adversarial guided diffusion model (AGDM) by introducing
a novel adversarial guidance that contains sufficient semantic information but
does not explicitly involve adversarial perturbations. The guidance is modeled
by an auxiliary neural network obtained with adversarial training, considering
the distance in the latent representations rather than at the pixel-level values.
Extensive experiments are conducted on CIFAR-10, CIFAR-100 and ImageNet to
demonstrate that our method is effective for simultaneously maintaining semantic
information and removing the adversarial perturbations. In addition, comprehensive
comparisons show that our method significantly enhances the robustness of existing
DM-based AP, with an average robust accuracy improved by up to 7.30% on
CIFAR-10. The code will be available upon acceptance.

1 INTRODUCTION

Deep neural networks (DNNs) have been shown to be vulnerable to adversarial examples (Szegedy
et al., 2014), leading to disastrous implications. Since then, numerous methods have been proposed
to defend against adversarial examples. Notably, adversarial training (AT, Goodfellow et al., 2015;
Madry et al., 2018a) typically aims to retrain DNNs by using adversarial examples, achieving
robustness over seen types of adversarial attacks. However, the model trained by AT is almost
incapable of defending unseen types of adversarial attacks (Laidlaw et al., 2021; Dolatabadi et al.,
2022). Another class of defense methods is adversarial purification (AP, Yoon et al., 2021) typically
based on pre-trained generative models, aiming to eliminate potential adversarial perturbations for
both clean or adversarial examples before feeding them into the classifier. Unlike AT technique, AP
operates as a pre-processing step that can effectively defend against unseen types of attacks and does
not require retraining classifiers. Hence, AP has emerged as a promising defense method and proven
to be a powerful alternative to AT (Shi et al., 2021; Nie et al., 2022).

Recently, diffusion models (DMs, Ho et al., 2020; Song et al., 2020) have gained significant attention
for their ability to generate high-quality images through diffusing images with Gaussian noises in
a forward process and then denoise images in a reverse process. Motivated by the great success of
DMs, Yoon et al. (2021); Nie et al. (2022) has shown that the pre-trained DM can be leveraged for
adversarial purification as well as the theoretical analysis (Xiao et al., 2023; Carlini et al., 2023;
Bai et al., 2024), which tries to purify either clean examples or adversarial examples by firstly
adding Gaussian noises through the forward process with a number of timestep and then removing
noises including adversarial perturbations to restore purified examples. Although DM-based AP can
achieve remarkable robust performance and generalization ability to unseen attacks, some studies
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Figure 1: The scheme of diffusion-based purification. The clean examples (CEs) or adversarial
examples (AEs) are firstly diffused with Gaussian noises and then removed the noise step by step.
To make a clearer comparison, we set the step to 400. Unlike previous methods, our method can
generate purified examples without changing its semantic information as well as groundtruth label.

(Wu et al., 2022; Wang et al., 2022) have shown that pre-trained DMs can restore the clean examples
by removing adversarial perturbations, but they fail to ensure purified examples retain the same
semantic information as original images. The reason is that adversarial perturbations can be gradually
destroyed by Gaussian noises, but there is a risk that the semantic information of image might also be
lost under too many timesteps in the forward process, leading to the purified examples being totally
different from the expected clean examples. In principle, these DMs can only ensure that purified
examples conform to the same distribution of the training data, but it may inadvertently compromise
the semantic information of input examples, leading to misclassification of purified examples.

To address the above issue, one solution is to fine-tune the DMs using adversarial examples and
their groundtruth labels by AToP (Lin et al., 2024), but this is computationally expensive. Another
solution is to directly impose a guidance in the reverse process without fine-tuning the DMs. For
instance, several guided diffusion techniques Wu et al. (2022); Wang et al. (2022); Bai et al. (2024)
are introduced to preserve semantic information while removing the perturbations. The idea is to
leverage the guidance to control the distribution of purified examples towards the distribution of
input examples. However, these works often utilize the specific distance measures between purified
examples and diffused examples as their guidance, yet the diffused examples inherently contain
adversarial perturbation information. As a result, the adversarial perturbations cannot be removed
completely, i.e., the perturbations are also preserved in the purified example, and thus the robustness
performance is still unsatisfied (Kang et al., 2023; Chen et al., 2024). Consequently, the existing
DM-based AP methods are still confronted with the formidable challenge of the trade-off between
preserving semantic information and removing perturbations. This raises a critical question: how
to advance the robustness of DM-based AP against adversarial attacks while effectively removing
perturbations and preserving semantic information?

To further unleash the robustness power of DM-based AP, we propose an adversarial guided diffusion
model (AGDM) by introducing a novel adversarial guidance during the reverse process, as illustrated
in Figure 1. Unlike other guided diffusion models, we train an auxiliary neural network by adversarial
training to model the probabilities of adversarial guidance that contains sufficient semantic information
but does not explicitly involve adversarial perturbations. Furthermore, unlike AT optimizing the
classifier and AToP optimizing the purifier, AGDM optimizes the guidance to better guide the
diffusion-based purifier for adversarial purification, avoiding the huge computational burden issue of
AToP. Finally, we heuristically create a conceptual diagram to review the whole process of DM-based
AP and explain why AGDM can effectively remove the perturbations without sacrificing the semantic
information, as shown in Figure 2. To demonstrate the effectiveness of our method, we empirically
evaluate the performance by comparing with the latest AT and AP methods across various attacks,
including AutoAttack (Croce & Hein, 2020), StAdv (Xiao et al., 2018), PGD (Madry et al., 2018b;
Lee & Kim, 2023) and EOT (Athalye et al., 2018), on CIFAR-10, CIFAR-100 and ImageNet datasets
under multiple classifier models. The results show that our method is effective for simultaneously
maintaining semantic information and removing the adversarial perturbations, and exhibits robust
generalization against unseen attacks. Specifically, on CIFAR-10, our method improves robust
accuracy against AutoAttack by up to 8.26% compared to vanilla DMs. Furthermore, our results on
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the robust evaluation of diffusion-based purification (Lee & Kim, 2023) manifest the necessity of
adversarial guidance in diffusion models for AP, which improves robust accuracy by up to 9.53%
compared to existing DM-based AP. Our contributions are summarized as follows.

• To further unleash the robustness power of DM-based AP, we propose an adversarial guided
diffusion model (AGDM) by introducing adversarial guidance during the reverse process.

• The adversarial guidance is introduced and modeled by the probability of semantic represen-
tation, which can be learned by adversarial training an auxiliary neural network.

• We conduct extensive experiments to empirically evaluate our methods, which have demon-
strated that the proposed method significantly improves the robustness power of DM-based
AP, especially under the robust evaluation scheme.

2 PRELIMINARY

This section briefly reviews the adversarial training, adversarial purification, and diffusion models.

2.1 ADVERSARIAL TRAINING AND ADVERSARIAL PURIFICATION

Given a classifier fγ with input x and output y, the adversarial attacks aim to find the adversarial
examples x′ that can fool the classifier model fγ . The adversarial examples can be obtained by

x′ = x+ δ, δ = argmax
∥δ∥≤ε

L(fγ(x+ δ), y),

where δ is an imperceptible adversarial perturbation and ε is the maximum scale of perturbation. To
defend against adversarial attacks, the most popular technique is adversarial training (AT, Goodfellow
et al., 2015; Madry et al., 2018a), which requires the classifier fγ trained with adversarial examples
by solving the min-max optimization problem, i.e., minγ Epdata(x,y)[max∥δ∥≤ε L(fγ(x+ δ), y)].

Another technique is adversarial purification (AP, Yang et al., 2019), which aims to utilize a model gθ
that can purify adversarial examples before feeding them into the classifier fγ , resulting in the same
classification output with the clean example x, i.e., fγ(gθ(x+ δ)) = fγ(x). It should be noted that
the purifier model gθ is not necessary to satisfy gθ(x + δ) = x. As a plug-and-play module, gθ is
thus often achieved by a pre-trained generative model and can be integrated with any classifiers.

2.2 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2020) have proven to be a potent class of generative
model capable of generating high-quality images through two distinct processes: a forward process
transforming an image entirely into noise by gradually adding Gaussian noise, and a reverse process
transforming noise into the generated image by gradually denoising image.

As described in DDPM (Ho et al., 2020), given a data distribution x0 ∼ q(x0), the forward pro-
cess involves T steps and any step t can be rewritten as one direct sample from q(xt | x0) =

N (xt;
√
ᾱtx0, (1 − ᾱt)I) where ᾱt :=

∏t
s=1 αs and αs is a hyperparameter. The reverse process

aims to restore the distribution x0 from the Gaussian noise xT ∼ N (0, I) step by step using a
U-Net ϵθ trained by optimizing the loss function

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2],

where ϵ ∼ N (0, I) is an arbitrary Gaussian noise. Unlike the forward process that can be sampled
directly in closed form, the reverse process requires T steps to obtain x0 from xT . Therefore, as
compared to other generative models, diffusion models are much slower in general.

3 METHODS

In this section, we first discuss the rationale for the necessity of adversarial guidance. Then, we
propose a novel adversarial guided diffusion model, which can effectively remove adversarial
perturbations without sacrificing semantic information and thus defend against various attacks.
Finally, we provide our algorithm of the whole AP process for generating purified examples.
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Forward Process: 

Attack:

Reverse Process: 

𝑥𝑡−1:           𝑥𝑡: 

w/o guidance or

w/ incorrect guidance

Figure 2: Overview of the forward process and reverse process. Different colored dots represent the
data distributions of various categories. In the presence of attacks, without guidance or with improper
guidance, the red star may move to the wrong category, thereby reducing robust accuracy.

3.1 MOTIVATION TO INTRODUCE ADVERSARIAL GUIDANCE

Based on Wang et al. (2022), we heuristically create a conceptual diagram as shown in Figure 2. The
movement of the red star throughout the diagram illustrates the whole process. Initially, adversarial
attacks shift (=⇒) the red star to a different data distribution, causing misclassification. Then, the data
distribution is diffused (−→) with the continuous addition of Gaussian noise. Finally, both Gaussian
noise and adversarial perturbations are removed step by step during the reverse process, allowing the
red star to gradually move back (L99) to the clean data distribution. We heuristically argue that the
limitations of existing DM-based AP methods stem from the lack of guidance or improper guidance,
which may lead the red star into the clean data distribution but with the wrong category.

In Wang et al. (2022), a guidance of minimizing the distance (mean squared error) between adversarial
examples and purified examples was introduced under the assumption that the distributions of
adversarial examples and clean examples are close. This guidance can effectively prevent DM from
generating a totally different image when diffused step T is larger. However, it is also possible that
purified examples will be too close to adversarial examples such that even adversarial perturbation is
preserved. In Bai et al. (2024), an improved guidance was introduced, which uses contrastive loss
for encouraging purified examples xt−1 to be similar to xt. However, this guidance also considered
the distance between purified examples and diffused adversarial examples in terms of pixel values,
thus the perturbations can be partially preserved. Our conjecture is that the distribution of purified
examples should not be similar to that of adversarial examples, and the guidance should not use
adversarial perturbations explicitly. To this end, we consider that the guidance can be designed over
robust representations of purified examples and adversarial examples. Even if the distribution of their
representation is similar, the purified examples can be ensured not to contain adversarial perturbations
explicitly while also keeping the semantic information similar.

3.2 ADVERSARIAL GUIDED DIFFUSION MODEL

Unlike the previous guided diffusion models (Wu et al., 2022; Wang et al., 2022; Zhang et al., 2024;
Bai et al., 2024), we are the first to introduce an adversarial guidance to the reverse process. Based
on Dhariwal & Nichol (2021), a conditional distribution of purified example xt can be adopted as the
reverse process, which is

pθ,ϕ(xt−1 | xt, y, x
′) ∝ pθ(xt−1 | xt)pϕ(x

′ | xt)pϕ(y | xt). (1)

Note that our guidance not only contains adversarial examples x′ but also the predictive class proba-
bilities y to preserve semantic information. Based on the assumption that y and x′ are conditionally
independent given xt, this conditional distribution can be factorized into the right terms in Eq. (1).
Among them, pθ(xt−1 | xt) is the unconditional DDPM obtained by the pre-trained diffusion model.
pϕ(x

′ | xt) can be interpreted as the probability that xt will be eventually purified to a clean example
having similar semantic information with x′, and pϕ(y | xt) can be interpreted as the probability
that xt will be purified to a clean example with predictive class probabilities close to y. Since we
expect that the similarity of semantic information can be easily measured but without explicitly
involving adversarial perturbations, an auxiliary neural network cϕ is introduced to map data into
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latent representations that are convenient for classification. Therefore, to push the purified example
xt close to x′ in terms of high-level representations rather than their pixel values, we adopt a heuristic
probability approximation,

pϕ(x
′ | xt) ∝ exp(−D(cϕ(x′), cϕ(xt))), (2)

where D(·, ·) is the distance metric for measuring the similarity of the representations inferred by cϕ
between x′ and xt. In the reverse process, the purified example xt is encouraged to increase pϕ(x

′ |
xt), i.e., to decrease D(cϕ(x′), cϕ(xt)). This is the key technique which can avoid introducing the
adversarial perturbations into the purified example due to the transformation by cϕ and the similarity of
(cϕ(x

′), cϕ(xt)) does not necessarily lead to the similarity of (x′, xt) in the pixel values. Due to that
the label information is unavailable in the purification, we cannot compute pϕ(y | xt) directly. Since
we expect to encourage the class information of xt−1 will not be changed dramatically by a reverse
step, thus the predictive class probabilities can be approximated by pϕ(y | xt) = softmax(cϕ(xt)).

Next, we further derive and explain how the above guidance can be leveraged in the reverse process
of DM. For the first term in Eq. (1), we have

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I)

log pθ(xt−1 | xt) = −
1

2
(xt − µ)⊺Σ−1(xt − µ) + C1, (3)

where µ := µθ(xt, t) and Σ := σ2
t I are obtained by the pre-trained diffusion model and C1 is a

constant w.r.t. xt. We omit the inputs of the functions µ,Σ for clarity, consistent with notations in
Dhariwal & Nichol (2021). The second term in Eq. (1) can be approximated as

log pϕ(x
′ | xt) ≈ log pϕ(x

′ | xt) |xt=µ +(xt − µ)⊺▽xt
log pϕ(x

′ | xt) |xt=µ

=(xt − µ)⊺▽xtD(cϕ(x′), cϕ(xt)) + C2, (4)

where C2 is a constant w.r.t. xt. Finally, for the last term in Eq. (1), we have

log pϕ(y | xt) ≈ log pϕ(y | xt) |xt=µ +(xt − µ)⊺▽xt
log pϕ(y | xt) |xt=µ

=(xt − µ)⊺g + C3, (5)

where g = ▽xt log pϕ(y | xt) = ▽xtcϕ(xt) and C3 is a constant w.r.t. xt. By plugging Eqs. (3) to (5)
into Eq. (1), we obtain the adjusted function with adversarial guidance,

log pθ,ϕ(xt−1 | xt, y, x
′) = log p(z) + C4, (6)

where C4 is a constant and z follows

z ∼ N (z;µ+Σg − Σ▽xtD(cϕ(x′), cϕ(xt)),Σ). (7)

The full derivation is shown in Appendix A.1. The above derivation of guided sampling is valid for
DDPM. It can also be extended to continuous-time diffusion models with details in Appendix A.2.

3.3 AGDM-BASED ADVERSARIAL PURIFICATION

Algorithm 1 AGDM-based AP, given diffusion
model (µθ(xt, t), σ

2
t I), auxiliary NN cϕ, scale s.

Input: Adversarial example x′ and timestep t∗.
1: xt∗ ← sample from Eq. (8)
2: for t from t∗ to 1 do
3: µ,Σ← µθ(xt, t), σ

2
t I

4: # Vanilla xt−1 ← sample from N (µ,Σ)
5: xt−1 ← sample from

N (µ+sΣg−sΣ▽xt
D(cϕ(x′), cϕ(xt)),Σ)

6: end for
7: return Purified example x0

Given an adversarial example x′, we first diffuse
it by Gaussian noise with t∗ steps,

xt∗ =
√
ᾱt∗x

′ +
√
1− ᾱt∗ϵ, ϵ ∼ N (0, I).

(8)
Then, in our robust reverse process, we can ob-
tain the purified example x0 by sampling xt−1

from Eq. (7) with t∗ steps. Note that we add
a scale s to adjust the guidance, which can be
regarded as a temperature (Kingma & Dhariwal,
2018) in the distribution, i.e., pϕ(x′ | xt)

spϕ(y |
xt)

s. However, training this noise-conditioned
guidance is challenging. For practical usage, we
adopt the approximation pϕ(x

′ | x)spϕ(y | x)s,
where the guidance is trained on clean example x, as we will describe in the following paragraph.
While this approximation works well in our experimental settings, an interesting future direction
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would be theoretical justification of this approximated guidance as in Chung et al. (2022). Finally,
the whole process of AGDM-based adversarial purification is presented in Algorithm 1.

To train the auxiliary neural network cϕ, we utilize TRADES technique, which incorporates classifi-
cation loss and discrepancy loss, i.e., minϕ Epdata(x,y)[L(cϕ(x), y) + λmax∥δ∥≤εD(cϕ(x), cϕ(x′))]
(Zhang et al., 2019), where x, y are clean example and its groundtruth label, and λ is a weighting
hyperparameter. The discrepancy loss D(cϕ(x), cϕ(x′)) is introduced to avoid the recovery of pertur-
bation information while the classification loss L(cϕ(x), y) is introduced to better preserve semantic
information. Note that cϕ does not require to be a robust classifier, but having robust representations
when facing adversarial perturbations.

4 RELATED WORKS

Adversarial robustness: To defend against adversarial attacks, researchers have developed various
techniques aimed at enhancing the robustness of DNNs. Specifically, Zhang et al. (2019) propose
TRADES that incorporates classification loss and discrepancy loss into adversarial training to enhance
the robustness of classifiers. Lin et al. (2024) propose AToP that fine-tunes the generator-based purifier
with adversarial training and makes it more suitable for robust classification tasks. Unlike Zhang
et al. (2019) optimizing the classifier and Lin et al. (2024) optimizing the purifier, our method utilizes
TRADES loss to train an auxiliary neural network to better guide diffusion model for adversarial
purification, avoiding the substantial computational cost of adversarial training on DMs and effectively
defending against unseen attacks.

Diffusion model based adversarial purification: Motivated by the great success of DMs, Yoon et al.
(2021); Nie et al. (2022) utilize a pre-trained DM for adversarial purification and achieve remarkable
performance in robust classification. In subsequent research, Wu et al. (2022); Wang et al. (2022) aim
to further preserve semantic information by minimizing the distance between adversarial examples
and purified examples. Bai et al. (2024) propose an improved guidance, which uses contrastive loss
to encourage the purified examples from adjacent steps to be similar. However, both guidances utilize
the distance measures in terms of pixel values, thus the perturbations can be partially preserved.
Distinguishing with these methods, we leverage distance measures within latent representations from
an auxiliary neural network rather than relying on pixel-level differences, avoiding the recovery
of perturbation information. Additionally, Zhang et al. (2024) propose classifier guidance, which
preserves semantic information by directly using the confidence score from the downstream classifier
trained on clean examples. However, if attackers gain access to the classifier information used in
the guidance, it may lead to incorrect confidence under adversarial attacks. In contrast, we train the
auxiliary neural network using adversarial training to provide more robust guidance.

5 EXPERIMENTS

In this section, we conduct extensive experiments on CIFAR-10, CIFAR-100 and ImageNet across
various classifier models on attack benchmarks. Compared with the AT and AP methods, our
method achieves state-of-the-art robustness and exhibits generalization ability against unseen attacks.
Furthermore, we undertake a more comprehensive evaluation against more powerful attacks. The
results show that our method can significantly improve the performance of the DM-based AP.

5.1 EXPERIMENTAL SETUP

Datasets and classifiers: We conduct extensive experiments on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009) to empirically validate the effectiveness of the proposed
methods against adversarial attacks. For the classifier models, we utilize the pre-trained ResNet (He
et al., 2016) and WideResNet (Zagoruyko & Komodakis, 2016).

Adversarial attacks: We evaluate our method against AutoAttack (Croce & Hein, 2020) as one
benchmark, which is a common attack that combines both white-box and black-box attacks. To
consider unseen attacks without lp-norm, we utilize spatially transformed adversarial examples
(StAdv, Xiao et al., 2018) for evaluation. Additionally, following the guidance of Lee & Kim (2023),
we utilize projected gradient descent (PGD, Madry et al., 2018b) with expectation over time (EOT,
Athalye et al., 2018) for a more comprehensive evaluation of the diffusion-based purification.
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Evaluation metrics: We evaluate the performance of defense methods using two metrics: standard
accuracy and robust accuracy, obtained by testing on clean examples and adversarial examples,
respectively. Due to the high computational cost of testing models with multiple attacks, following
guidance by Nie et al. (2022), we randomly select 512 images from the test set for robust evaluation.

Training details: According to Zhang et al. (2019); Dhariwal & Nichol (2021) and experiments,
we set the diffusion timestep t∗ = 70, the scale s = 1.0 and the weighting scale λ = 6.0. Unless
otherwise specified, all experiments presented in the paper are conducted under these hyperparameters
and done using the NVIDIA RTX A5000 with 24GB GPU memory and CUDA v11.7 in PyTorch
v1.13.1 (Paszke et al., 2019).

5.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

We evaluate our method of defending against AutoAttack l∞ and l2 threat models (Croce & Hein,
2020) and compare with the state-of-the-art methods as listed in RobustBench (Croce et al., 2021).

Table 1: Standard and robust accuracy against
AutoAttack l∞ threat (ϵ = 8/255) on CIFAR-10.
(†the methods use additional synthetic images.)

Defense method Extra Standard Robust
data Acc. Acc.

Zhang et al. (2020) ✓ 85.36 59.96
Gowal et al. (2020) ✓ 89.48 62.70

Bai et al. (2023) ✓† 95.23 68.06

Gowal et al. (2021) ×† 88.74 66.11
Wang et al. (2023) ×† 93.25 70.69
Peng et al. (2023) ×† 93.27 71.07

Rebuffi et al. (2021) × 87.33 61.72
Wang et al. (2022) × 84.85 71.18
Lin et al. (2024) × 90.62 72.85

Ours × 90.82 78.12

Table 4: Robust accuracy against AutoAttack l∞
threat (ϵ = 8/255) and l2 threat (ϵ = 0.5). (1the
method without guidance, 2the method with guid-
ance, 3the method with adversarial guidance.)

Defense method CIFAR CIFAR CIFAR
10, l∞ 10, l2 100, l∞

Nie et al. (2022) 1 70.64 78.58 42.19
Zhang et al. (2024) 2 73.05 83.13 40.62

Ours 3 78.12 86.84 46.09

Table 2: Standard and robust accuracy against
AutoAttack l2 threat (ϵ = 0.5) on CIFAR-10.

Defense method Extra Standard Robust
data Acc. Acc.

Augustin et al. (2020) ✓ 92.23 77.93
Gowal et al. (2020) ✓ 94.74 80.53

Wang et al. (2023) ×† 95.16 83.68
Ding et al. (2019) × 88.02 67.77

Rebuffi et al. (2021) × 91.79 78.32
Zhang et al. (2024) × 92.58 83.13

Bai et al. (2024) × 93.75 84.38
Ours × 90.82 86.84

Table 3: Standard and robust accuracy against
AutoAttack l∞ (ϵ = 8/255) on CIFAR-100.

Defense method Extra Standard Robust
data Acc. Acc.

Hendrycks et al. (2019) ✓ 59.23 28.42
Debenedetti et al. (2023) ✓ 70.76 35.08

Cui et al. (2023) ×† 73.85 39.18
Wang et al. (2023) ×† 75.22 42.67
Pang et al. (2022) × 63.66 31.08
Jia et al. (2022) × 67.31 31.91
Cui et al. (2023) × 65.93 32.52

Ours × 69.73 46.09

Result analysis on AutoAttack: Tables 1 to 3 show the performance of various defense methods
against AutoAttack l∞ (ϵ = 8/255) and l2 (ϵ = 0.5) threats on CIFAR-10 and CIFAR-100 datasets
using WideResNet-28-10. Our method outperforms all other methods without extra data (the dataset
introduced by Carmon et al. (2019)) and additional synthetic data in terms of both standard accuracy
and robust accuracy against l∞ threat. Specifically, as compared to the second-best method, our
method improves the robust accuracy by 5.27% on CIFAR-10 and by 13.57% on CIFAR-100. Under
the l2 threat on CIFAR-10, our method outperforms all methods in terms of robust accuracy with an
improvement of 2.46% over the second-best guided DM-based AP method Bai et al. (2024). These
results are consistent across datasets and threats, confirming the effectiveness of our method for
adversarial purification and its potential as a powerful defense technique.

Comparison analysis on guidance: Table 4 shows the comparative robust accuracy of three different
pipelines, including the method without guidance (Nie et al., 2022), the method with guidance (Zhang
et al., 2024), and our method with adversarial guidance. We can see that within the existing guidance,
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Table 5: Standard accuracy and robust accuracy against AutoAttack l∞ (ϵ = 8/255), l2 (ϵ = 1) and
StAdv non-lp (ϵ = 0.05) threat models on CIFAR-10 with ResNet-50 model. We keep the same
settings with Nie et al. (2022), where the diffusion timestep t∗ = 125.

Defense method Standard Acc. AA l∞ AA l2 StAdv
Standard Training 94.8 0.0 0.0 0.0

Adv. Training with l∞ (Laidlaw et al., 2021) 86.8 49.0 19.2 4.8
Adv. Training with l2 (Laidlaw et al., 2021) 85.0 39.5 47.8 7.8

Adv. Training with StAdv (Laidlaw et al., 2021) 86.2 0.1 0.2 53.9
Adv. Training with all (Laidlaw et al., 2021) 84.0 25.7 30.5 40.0

PAT-self (Laidlaw et al., 2021) 82.4 30.2 34.9 46.4
Adv. CRAIG (Dolatabadi et al., 2022) 83.2 40.0 33.9 49.6

DiffPure (Nie et al., 2022) 88.2 70.0 70.9 55.0
AToP (Lin et al., 2024) 89.1 71.2 73.4 56.4

AGDM (Ours) 89.3 78.1 79.6 59.4

DM-based AP has better robustness on CIFAR-10, but on more complex tasks, the robustness on
CIFAR-100 actually decreases slightly. In contrast, our method consistently outperforms under all
situations. Specifically, our method improves the robust accuracy by 5.07% against AutoAttack
l∞, and by 3.71% against AutoAttack l2 on CIFAR-10, respectively. Furthermore, it shows an
improvement of 3.90% on CIFAR-100. This substantial improvement can be attributed to the targeted
refinement that introduces adversarial guidance during the reverse process, effectively removing the
perturbations without sacrificing the semantic information of purified examples. Unlike existing
guided DM-based AP that may preserve a portion of perturbations, our AGDM-based AP prioritizes
modifications that are beneficial for robust classification. This is also validated in Table 6.

5.3 DEFEND AGAINST UNSEEN ATTACKS

As previously mentioned, unlike AT, AP can defend against unseen attacks, which is an important
metric for evaluating AP. To demonstrate the generalization ability of AGDM, we conduct experiments
under several attacks with varying constraints (AutoAttack l∞, l2 and StAdv non-lp threat models) on
CIFAR-10 with ResNet-50. Table 5 shows that AT methods (PAT, CRAIG) are limited in defending

Table 6: Standard and robust accuracy against PGD+EOT (left: l∞, ϵ = 8/255; right: l2, ϵ = 0.5)
on CIFAR-10. We keep the same settings with Lee & Kim (2023), the diffusion timestep t∗ = 100.
(1the method without guidance, 2the method with guidance, 3the method with adversarial guidance.)

Type Defense method Standard Robust
Acc. Acc.

WideRestNet-28-10

AT
Pang et al. (2022) 88.62 64.95

Gowal et al. (2020) 88.54 65.93
Gowal et al. (2021) 87.51 66.01

AP

Wang et al. (2022) 2 93.50 24.06
Yoon et al. (2021) 85.66 33.48
Nie et al. (2022) 1 91.41 46.84
Lee & Kim (2023) 90.16 55.82

Ours 3 90.42 64.06

WideRestNet-70-16

AT
Gowal et al. (2020) 91.10 68.66
Gowal et al. (2021) 88.75 69.03
Rebuffi et al. (2021) 92.22 69.97

AP
Yoon et al. (2021) 86.76 37.11
Nie et al. (2022) 92.15 51.13

Lee & Kim (2023) 90.53 56.88
Ours 90.43 66.41

Type Defense method Standard Robust
Acc. Acc.

WideRestNet-28-10

AT
Sehwag et al. (2021) 90.93 83.75
Rebuffi et al. (2021) 91.79 85.05

Augustin et al. (2020) 93.96 86.14

AP

Wang et al. (2022) 2 93.50 -
Yoon et al. (2021) 85.66 73.32
Nie et al. (2022) 1 91.41 79.45
Lee & Kim (2023) 90.16 83.59

Ours 3 90.42 85.55

WideRestNet-70-16

AT
Rebuffi et al. (2021) 92.41 86.24
Gowal et al. (2020) 94.74 88.18
Rebuffi et al. (2021) 95.74 89.62

AP
Yoon et al. (2021) 86.76 75.66
Nie et al. (2022) 92.15 82.97

Lee & Kim (2023) 90.53 83.75
Ours 90.43 85.94

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0                          6                         12             𝝀

AT methods

AP methods

Ours

AT methods

AP methods

Ours
(a)                                                                      (b)                                                 (c)

Figure 3: Comparison of robust accuracy against PGD+EOT and AutoAttack with (a) l∞ (ϵ = 8/255)
threat model and (b) l2 (ϵ = 0.5) threat model on CIFAR-10 with WideResNet-28-10. The line in
the middle of the box represents the average robust accuracy of two attacks. (c) Accurcy-robustness
trade-off against l2 (ϵ = 0.5) threat model discussed in Appendix B.

against unseen attacks and can only defend against known attacks (as indicated by the accuracy with
an underscore) that they are trained with. In contrast, AP methods (DiffPure, AToP, AGDM) exhibit
great generalization, defending against unseen attacks without significantly decreasing the standard
accuracy, which is also validated in Table 8 in the Appendix. Specifically, compared to the best AT
method, AGDM improved standard accuracy by 6.1%, and compared to the second-best AP method,
it improved average robust accuracy by 5.4%.

5.4 ROBUST EVALUATION OF DIFFUSION-BASED PURIFICATION

Recently, Lee & Kim (2023); Chen et al. (2024) conducted a thorough investigation into the evaluation
of DM-based AP, proposing a robust evaluation guideline using PGD+EOT. To undertake a more
comprehensive evaluation, we further evaluate our method following the guidelines in this subsection.

Table 7: Standard accuracy and robust accuracy
against PGD+EOT l∞ (ϵ = 4/255) on ImageNet
with ResNet-50. The diffusion timestep t∗ = 75.

Type Defense method Standard Robust
Acc. Acc.

AT
Wong et al. (2019) 53.83 28.04

Engstrom et al. (2019) 62.42 33.20
Salman et al. (2020) 63.86 39.11

AP
Nie et al. (2022) 71.48 38.71

Lee & Kim (2023) 70.74 42.15
Ours 68.75 45.90

Result analysis on PGD+EOT: Initially, due to
the substantial memory requirements needed to
compute the direct gradient of the full defense
process, most previous DM-based AP methods
have not yet been evaluated using PGD+EOT.
Recent works optimize the attack process and
evaluate DM-based AP methods more com-
prehensively, revealing their vulnerability to
PGD+EOT. As shown in Table 6, DiffPure (Nie
et al., 2022) shows robust accuracy of 46.84%,
significantly lower than the reported robust ac-
curacy of 70.64% with AutoAttack. This large
discrepancy again raises doubts about the robust-
ness of DM-based AP methods. In contrast, our

method achieves robust accuracy of 64.06% against l∞ and 85.55% against l2, as compared to the
second-best method, our method improves the robust accuracy by 8.24% and by 1.96%, respectively.
Table 7 shows the results on ImageNet, and the observations are basically consistent with CIFAR-10,
supporting our method as a powerful defense technique and more effective than previous DM-based
AP methods. Furthermore, Table 6 also presents the comparative results of three guidance pipelines
of diffusion model, where our method improves the average of standard accuracy and robust accuracy
by 8.12% and 18.46% compared to the other two guidance pipelines, respectively.

Comparison analysis between PGD+EOT and AutoAttack: Figure 3a and 3b show the comparison
between PGD+EOT and AutoAttack on l∞ and l2 threat models. Under different attacks, AT methods
(Gowal et al., 2020; 2021; Pang et al., 2022) and AP methods (Yoon et al., 2021; Nie et al., 2022; Lee
& Kim, 2023) exhibit significant differences in robust accuracy. AT performs better under PGD+EOT,
while AP shows superior performance under AutoAttack. Typically, robustness evaluation is based
on the worst-case results of the robust accuracy. Under this criterion, our method still outperforms
all AT and AP methods. Furthermore, as compared to the second-best method on both attacks, our
method improves the average robust accuracy by 6.39% against l∞ and 1.16% against l2, respectively.
Such a significant margin from different attacks highlights the robustness of our method, particularly
in worst-case results of the robust accuracy across PGD+EOT and AutoAttack.
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6 CONCLUSION

In this paper, we propose an adversarial guided diffusion model (AGDM) for adversarial purification,
which can enhance the robustness power of DM-based AP by introducing adversarial guidance during
the reverse process. We conduct extensive experiments to empirically demonstrate that AGDM
is effective for simultaneously maintaining semantic information and removing the adversarial
perturbations, and exhibits robust generalization against unseen attacks.

Limitations and discussion: Similar to previous studies (Nie et al., 2022; Wang et al., 2022; Zhang
et al., 2024; Bai et al., 2024), our proposed AGDM also features a time-consuming reverse process.
Additionally, this paper adopts a heuristic perspective, we aim to use theoretical analysis in the future
to more comprehensively demonstrate the effectiveness of AGDM. In summary, we leave the study
of utilizing our adversarial guidance in more reliable and fast sampling strategies for future research.
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A PROOFS OF ADVERSARIAL GUIDED DIFFUSION MODEL (AGDM)

A.1 ROBUST REVERSE PROCESS FOR DDPM

In the reverse process with adversarial guidance, similar to Dhariwal & Nichol (2021), we start by
defining a conditional Markovian noising process q̂ similar to q, and assume that q̂(y, x′|x0) is an
available label distribution and adversarial example (AE) for each image.

q̂(x0) := q(x0)

q̂(y, x′|x0) := Label and AE per image

q̂(xt+1|xt, y, x
′) := q(xt+1|xt)

q̂(x1:T |x0, y, x
′) :=

T∏
t=1

q̂(xt|xt−1, y, x
′).

(9)

When q̂ is not conditioned on {y, x′}, q̂ behaves exactly like q,

q̂(xt+1|xt) =

∫
y,x′

q̂(xt+1, y, x
′|xt) dydx

′

=

∫
y,x′

q̂(xt+1|xt, y, x
′)q̂(y, x′|xt) dydx

′

=

∫
y,x′

q(xt+1|xt)q̂(y, x
′|xt) dydx

′

= q(xt+1|xt)

∫
y,x′

q̂(y, x′|xt) dydx
′

= q(xt+1|xt)

= q̂(xt+1|xt, y, x
′).

(10)

Following similar logic, we have: q̂(x1:T |x0) = q(x1:T |x0) and q̂(xt) = q(xt). From the above
derivation, it is evident that the conditioned forward process is identical to unconditioned forward
process. According to Bayes rule, the reverse process q̂ satisfies q̂(xt|xt+1) = q(xt|xt+1).

q̂(y, x′|xt, xt+1) =
q̂(xt+1|xt, y, x

′)q̂(y, x′|xt)

q̂(xt+1|xt)

= q̂(y, x′|xt).

(11)

For conditional reverse process q̂(xt|xt+1, y, x
′),

q̂(xt|xt+1, y, x
′) =

q̂(xt, xt+1, y, x
′)

q̂(xt+1, y, x′)

=
q̂(xt, xt+1, y, x

′)

q̂(y, x′|xt+1)q̂(xt+1)

=
q̂(xt|xt+1)q̂(y, x

′|xt, xt+1)q̂(xt+1)

q̂(y, x′|xt+1)q̂(xt+1)

=
q̂(xt|xt+1)q̂(y, x

′|xt, xt+1)

q̂(y, x′|xt+1)

=
q̂(xt|xt+1)q̂(y, x

′|xt)

q̂(y, x′|xt+1)

=
q(xt|xt+1)q̂(y, x

′|xt)

q̂(y, x′|xt+1)
.

(12)

Here q̂(y, x′|xt+1) does not depend on xt. Then, by assuming the label y and adversarial example
x′ are conditionally independent given xt, we can set t = t+ 1 and rewrite the above equation as
q̂(xt−1|xt, y, x

′) = Z · q(xt−1|xt)q̂(x
′|xt)q̂(y|xt) where Z is a constant.

14
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A.2 ROBUST REVERSE PROCESS FOR CONTINUOUS-TIME DIFFUSION MODELS

In the main text, we only showcased the preliminaries and the corresponding robust reverse process
related to DDPM, but our method can also be extended to continuous-time diffusion models (Song
et al., 2020). The continuous-time DMs build on the idea of DDPM, employ stochastic differential
equations (SDE) to describe the diffusion process as follows,

dx = F (x, t)dt+G(t)dw, (13)

where w represents a standard Brownian motion, F (x, t) represents the drift of xt and G(t) represents
the diffusion coefficient.

By starting from sample of Eq. 13 and revesing the process, Song et al. (2020) run backward in time
and given by the reverse-time SDE,

dx = [F (x, t)−G(t)2∇x log pt(x)]dt+G(t)dw̄, (14)

where w̄ represents a standard reverse-time Brownian motion and dt represents the infinitesimal time
step. Similar to DDPM, the continuous-time diffusion model also requires training a network to
estimate the time-dependent function∇x log pt(x). One common approach is to use a score-based
model sθ(x, t) (Song et al., 2020; Kingma et al., 2021). Subsequently, the reverse-time SDE can be
solved by minimizing the score matching loss (Song & Ermon, 2019),

Lθ =

∫ T

0

λ(t)E[∥sθ(xt, t)−∇xt log p0t(xt|x0)∥2]dt, (15)

where λ(t) is a weighting function, and p0t is the transition probability from x0 to xt, where
x0 ∼ p0(x) and xt ∼ p0t(xt|x0).

In the robust reverse process of continuous-time DMs, similar to Song et al. (2020), we suppose the
initial state distribution is p0(x(0) | y, x′) based on Eq. 14. Subsequently, using Anderson (1982) for
the reverse process, we have

dx =
{
F (x, t)−∇ ·

[
G(t)G(t)T

]
−G(t)G(t)T∇x log pt(x|y, x′)

}
dt+G(t)dw̄. (16)

Given a diffusion process xt with SDE and score-based model sθ∗(x, t), we firest observe that

∇x log pt(xt|y, x′) = ∇x log

∫
pt(xt|yt, y, x′)p(yt|y, x′)dyt, (17)

where yt is defined via xt and the forward process p(yt | xt). Following the two assumptions by
Song et al. (2020): p(yt | y, x′) is tractable; pt(xt|yt, y, x′) ≈ pt(xt|yt), we have

∇x log pt(xt|y, x′) ≈ ∇x log

∫
pt(xt|yt)p(yt|y, x′) dydx′

≈ ∇x log pt(xt|ŷt)
= ∇x log pt(xt) +∇x log pt(ŷt|xt)

≈ sθ∗(xt, t) +∇x log pt(ŷt|xt),

(18)

where ŷt is a sample from p(yt|y, x′). Then, by assuming the label y and adversarial example x′ are
conditionally independent given xt, we can update Eq. 14 with above formula, and obtain a new
denoising model ϵ̄ with the guidance of label y and adversarial example x′,

dxt =
[
F (x, t)−G2(t)(∇x log pt(x) +∇x log pt(y|x) +∇x log pt(x

′|x))(x, t)
]
dt+G(t) dw̄.

(19)

B COMPARISON WITH AT, ATOP AND AGDM

To Enhance the existing pre-trained generator-based purification architecture to further improve
robust accuracy against attacks. Lin et al. (2024) propose adversarial training on purification (AToP).
Based on pre-trained model, they redesign the loss function to fine-tune the purifier model using
adversarial loss.

15
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Pre-training stage:
Lθg = Lg(x, θg). (20)

Fine-tuning stage:

Lθg = Lg(x
′, θg) + s · Lcls(x

′, y, θg, θf ) = Lg(x
′, θg) + s ·max

δ
CE {y, f(g(x′, θg))} , (21)

where Lg represents the original generative loss function of the generator model, which trained on
clean examples and generates images similar to clean examples. During fine-tuning, AToP input the
adversarial examples x′ to optimize generator with generative loss, and further optimize the generator
model with the adversarial loss Lcls, which is the cross-entropy loss between the output of x′ and the
ground truth y. However, training the generator with adversarial examples can lead to a decline in the
performance on clean examples, thereby reducing standard accuracy. To address this issue, we utilize
adversarial training (TRADES, Zhang et al., 2019) to train the neural network cϕ for adversarial
guidance with classification loss on clean examples x and discrepancy loss on adversarial examples
x′ and clean examples x.

min
ϕ

Epdata(x,y)[L(cϕ(x), y)︸ ︷︷ ︸
for accuracy

+λmax
δ≤ε
D(cϕ(x), cϕ(x′))︸ ︷︷ ︸

for robustness

], (22)

where λ is a weighting scale to balance the accuracy-robustness trade-off. To facilitate clearer
comparison, we have used the same notation as AToP to represent the TRADES loss function, which
differs from the actual loss function.

Lθg = Lg(x, θg) + s1 · Lcls(x, y, θg, θf ) + s2 · Ldis(x, x
′, θg, θf )

= Lg(x, θg) + s1 · CE {y, f(g(x, θg))}+ s2 ·KL {f(g(x, θg)), f(g(x′, θg))} .
(23)

Distinct from Eq. 21, in Eq. 23 we revert the input of the first two terms back to the clean examples
x. By increasing the weight of s1, we can improve the standard accuracy on clean examples.
Additionally, the new constraint term Ldis is the KL divergence between the feature map from the
clean example x and the adversarial example x′. By increasing the weight of s2, we can improve the
robust accuracy on adversarial examples.

Accuracy-robustness trade-off: Figure 3c shows the performance against AutoAttack l2 (ϵ = 0.5)
threat models on CIFAR-10 with different weighting scales λ. We observe that as the weighting scale
λ increasing, the robust accuracy increases while the standard accuracy decreases, which verifies
Eq. (22) on the trade-off between robustness and accuracy. To our best knowledge, this is the first to
discuss the accuracy-robustness trade-off challenge in pre-trained generator-based purification, which
might be a significant contribution to advance the development of this field.

In summary, we follow AT and AToP, but the proposed AGDM is completely different from them.
Fundamentally, AT optimizes the classifier, AToP optimizes the purifier, while AGDM optimizes a
guidance to better guide the diffusion model in adversarial purification.

C ADDITIONAL EXPERIMENTS AND VISUALIZATION

Table 8: Standard accuracy and robust accuracy against PGD+EOT l∞ (ϵ = 8/255), l2 (ϵ = 0.5)
threat models on CIFAR-10.

Method Classifier Standard Acc. l∞ l2 Avg.
Yoon et al. (2021) WideRestNet-28-10 85.66 33.48 73.32 64.15
Yoon et al. (2021) WideRestNet-70-16 86.76 37.11 75.66 66.51
Nie et al. (2022) WideRestNet-28-10 91.41 46.84 79.45 72.57
Nie et al. (2022) WideRestNet-70-16 92.15 51.13 82.97 75.42

Lee & Kim (2023) WideRestNet-28-10 90.16 55.82 83.59 76.52
Lee & Kim (2023) WideRestNet-70-16 90.53 56.88 83.75 77.05

AGDM (Ours) WideRestNet-28-10 90.42 64.06 85.55 80.01
AGDM (Ours) WideRestNet-70-16 90.43 66.41 85.94 80.93

To undertake a more comprehensive evaluation as shown in Table 8, we further evaluate our method
against PGD+EOT to show the robustness generalization of AGDM. Compared to the second-best
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method, AGDM improves the average robust accuracy by 5.10% and 5.86% on WideRestNet-28-10
and WideRestNet-70-16, respectively. Although AGDM has a slightly lower standard accuracy
compared to DiffPure, it achieves the best average accuracy including standard accuracy and robust
accuracy, supporting our discussion in the main text that AGDM exhibits great generalization,
defending against unseen attacks without significantly decreasing the standard accuracy

Clean examples

Adversarial examples

Purified examples

Figure 4: Clean examples (Top), adversarial examples (Middle) and purified examples (Bottom) of
CIFAR-10.
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Clean examples

Adversarial examples

Purified examples

Figure 5: Clean examples (Top), adversarial examples (Middle) and purified examples (Bottom) of
ImageNet.
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