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Abstract

In this work, we build upon the offline reinforcement learning algorithm, TD3+BC
[9], and propose a model-free actor-critic algorithm with an adjustable behavior
cloning (BC) term. We employ an ensemble of networks to quantify the uncer-
tainty of the estimated value function, thus addressing the issue of overestimation.
Moreover, we introduce a method that is both convenient and intuitively simple
for controlling the degree of BC, through a Bernoulli random variable based on
the user-specified confidence level for different offline datasets. Our proposed
algorithm, named Ensemble-based actor critic with Adaptive Behavior Cloning
(EABC), is straightforward to implement, exhibits low variance, and achieves
strong performance across all D4RL MuJoCo benchmarks.

1 Introduction

Offline RL, which relies exclusively on pre-collected offline data, has gained popularity in recent years.
Similar to traditional supervised learning methods, offline RL does not require online interaction
with the environment. Instead, agents learn from a static, pre-collected offline dataset throughout the
entire learning process.

However, the lack of interaction with the environment in offline RL can pose challenges. Given a
fixed dataset, the agent lacks the means to balance exploration and exploitation, a problem that is
widely studied in online RL. As a result, the value functions of actions of inferior quality may be
overestimated, leading to unpredictable behavior in the learned policy. Furthermore, when aiming to
improve upon the policy that generates the static dataset, referred to as the “behavior policy” and
denoted as πβ , one may encounter the dilemma of determining whether actions unseen in offline
dataset are better or worse. This problem is typically addressed by online interaction. Another issue
hindering offline RL algorithms is their high variance and instability compared to online RL [9],
which hampers the generalization of offline RL to real-world environments.

People address these obstacles in offline RL using approaches including importance sampling, explicit
policy constraints, and implicit policy constraints [20, 28, 18, 5, 7, 1]. However, many of the existing
state-of-the-art offline RL algorithms exhibit long training times, and require sophisticated parameter
tuning. Recognizing these challenges, TD3+BC [9] proposes a minimalist approach that makes minor
modifications to the established off-policy TD3 algorithm [10], which utilizes twin Q-networks and
delayed policy updates to mitigate overestimation bias in off-policy RL settings. TD3+BC achieves
state-of-the-art performance when it was proposed, with minimalist modifications from TD3 while
maintaining a short running time. However, a major concern with the TD3+BC algorithm is its
poor performance on random datasets, as illustrated in Figure 1. This issue stems from a lack of
exploration power due to the fixed BC term in TD3+BC, which constrains the learned policy to
remain too close to πβ , and thus poses a problem when πβ is inferior.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Keeping the spirit of algorithmic simplicity in mind, we build our algorithm EABC upon TD3+BC.
We aim to balance pessimism and optimism in the offline learning process. First, we employ a
pessimistic ensemble of Q value estimates. Second, we leverage a weight function with user specified
confidence level p to adjust the extent of behavior cloning (BC), taken into account the quality of the
underlying dataset. Despite its simplicity, EABC delivers strong and stable performance across all
D4RL MuJoCo tasks, while maintaining a short runtime. 1

2 Related Work

Here, we focus primarily on model-free RL algorithms [25], which are most closely related to our
work. Another major area of research is model-based offline RL [31, 13, 21].

Ensemble-based Pessimistic Value Estimation. Employing ensemble techniques in offline RL
is a widely observed practice [2, 30, 19, 24]. In Algorithm thm as Ensemble-Diversified Actor
Critic (EDAC, [2]), the authors enhance the Soft Actor-Critic (SAC, [12]) algorithm by utilizing
disagreement among Q ensembles measured by cosine similarity to learn a pessimistic Q function.
In contrast, while part of our work also focuses on uncertainty quantification, we simply using
the standard deviation to quantify uncertainty, without imposing additional assumptions on the Q
networks, such as normality. Moreover, our work EABC requires only about 10 Q-Networks to
achieve superior performance, in contrast to a larger number of ensemble networks required by other
approaches (e.g., EDAC requires around 50 Q-Networks). Authors of [3] suggest distinguishing
between out-of-distribution and in-distribution actions, and design their algorithm around SAC. In
[11], authors argue that ensemble-based methods should train on independent targets. However, we
found that training with a shared target yields superior performance in our settings.

Controlling BC. The work most closely related to ours is weighted Policy Constraints (wPC, [23]),
which involves learning a separate state value function on top of TD3+BC, and determining the
quality of an action based on the advantage function. However, we observe that the results are chaotic
and exhibit high variance across most offline RL tasks (see Table 1 and Figure 1). [4] also proposes to
adjust the BC term in TD3+BC, a method they refer to as offline refinement with online fine-tuning.
However, their approach requires extensive manual parameter adjustment. A recent work [26] adopts
a model-based framework, and control the behavior cloning term with a random variable sampled
from a Beta distribution, allowing the user to control its parameters. However, it is limited to handling
discrete action spaces, while also involves training and post-training processes.

3 Background

In standard online RL setting, agent observes a state (s) from the environment, executes an action
(a) following some policy π(a|s), and then observes a reward (r), as well as the next state (s′). This
sequential decision making process is modeled by a Markov Decision Process (MDP), defined by
(S,A, R, P, ρ0, γ). Here, S andA are state and action spaces; R : (s, a)→ R is the reward function;
P : (s, a)→ ∆(S) is the transition dynamic; ρ0 : ∆(S) is the initial state distribution; and γ ∈ [0, 1]
is a discount factor for the rewards. Following a given policy π, the expected return is denoted as
J(π) = E[

∑∞
t=0 γ

tR(st, at)], where the expectation is taken over the full trajectory distribution
involving ρ0, P, and π. The agent’s objective is to find an optimal policy, such that it maximizes the
expected return: π∗ = argmax

π
J(π).

The state-action value function is defined as the expected return following a policy π, given the starting
state and action (s, a): Qπ(s, a) = E [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a]. We denote Qθ(s, a) as
the estimated Q function with modeling parameters θ. Similarly, we denote the learned policy as
πϕ, with parameters ϕ. Their corresponding target networks are denoted as Qθ̃ and πϕ̃, respectively.
In algorithm TD3, given a replay buffer B with tuples of (s, a, r, s′), the learning process involves

1The code implementation of EABC is available at https://github.com/Penguin0007/EABC.
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minimizing the following two loss functions for critic and actor, respectively,

Lc(θi) = EB

[(
Qθi(s, a)− [r + γ min

i=1,2
Qθ̃i

(s′, πϕ̃(s
′))]

)2]
, (1)

La(ϕ) = EB

[
−Qθ1(s, πϕ(s))

]
. (2)

Expectations are taken with respect to the replay buffer B. In the context of offline RL, TD3+BC
introduces a modification to the actor loss function by adding a behavior cloning (BC) term. This
ensures that the learned policies πϕ do not deviate significantly from the actions observed in the
offline dataset D for a given state. Specifically, the loss function of TD3+BC is defined as:

La(ϕ) = ED

[
− λQθ1(s, πϕ(s)) + (πϕ(s)− a)2

]
, (3)

where λ is the normalization factor that balances the RL term and BC term, and the expectation is
taken with respect to the offline dataset D. Intuitively, however, based on the underlying quality of
the behavior policy πβ , we probably want to avoid keeping too close to the underlying πβ . Instead,
we want the learned policy to keep exploring more of other actions given an inferior πβ .

4 Ensemble-based Offline RL Algorithm

Uncertainty Penalized Value Estimate. Denote the true underlying Q value of a policy πt learned
at time step t as Qπt , and its estimators as {Qθi}Ki=1, parameterized by θi, where K represents the
number of estimators, e.g., the number of Neural Networks. Assume that each Qθi is identically
distributed, we model the distribution of the Q ensemble using its mean and standard deviation,
defined as Qθ := E [Qθi ] and σ := σ(Qθi). Without explicitly assuming the distribution that Qθi
follows (e.g., Gaussian), we consider the Q-ensemble as potentially following any distribution,
a more realistic situation in practice. We approximate Qθ and σ by Q̄θ := 1

K

(∑K
i=1 Qθi

)
and

σ̂ :=
√

1
K−1

∑K
i=1(Qθi − Q̄θ)2. Due to the presence of the overestimation bias, Qθ (and its

approximation Q̄θ) still tends to overestimate Qπt . Common practices of obtaining a pessimistic
estimator from ensemble include: 1) min

i
(Qθi), 2) min

Sample 2∈{i}
(Qθi), or 3) Q̄θ − βσ̂. Where β

represents a pre-specified real number. We choose

pess (Qθ(s, a)) = Q̄θ(s, a)− σ̂, (4)

as the target for EABC. This penalization approach effectively penalizes the Q values without the
risk of over-penalization that might occur when subtracting 2 or 3 times σ. We also evaluate the
performance of other choices of 1) and 2) in Section 5.2, and found that these alternatives do not
perform as well as Q̄θ − σ̂.

Adaptive Behavior Cloning. The BC term in the actor loss 3 implies ϕ̂ = argmin
∑

D(πϕ(s)− a)2,
which is minimized when π̂ϕ(s) = ED(a|s), therefore maintaining a safe policy update without
deviating excessively from πβ . However, πβ might not always be optimal.

To efficiently adjust the strength of behavior cloning, we propose to multiply the BC term by a weight
function w(s, a), while keeping λ unchanged from the TD3+BC. Given a user specified confidence
level p ∈ [0, 1], we adjust the extent of BC through a Bernoulli random variable. Letting the weight
w(s, a) take values fromW = {0, 1}, we determine w(s, a) by randomly sampling:

w(s, a) =

{
1 with probability p

0 with probability 1− p.
(5)

Through this straightforward random sampling approach, we can effectively control the extent of BC
based on different quality of offline datasets. By adjusting the p value, we can decide the percentage
of the offline dataset that contributes to the behavior cloning term, thereby controlling the degree to
which we want to mimic the behavior policy πβ that was used to collect the offline dataset. When
p = 0, the algorithm becomes an ensemble version of TD3, whereas p = 1 results in an ensemble
version of TD3+BC. Following convention in offline RL, we use d = 1 to denote the completion of
an offline trajectory collection, while d = 0 indicates otherwise. The EABC algorithm is summarized
in Algorithm 1, with main differences from TD3+BC highlighted in red.
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Algorithm 1 Ensemble-based Actor Critic with Adaptive Behavior Cloning (EABC)
Input: offline dataset D, number of Q-ensembles K, confidence level p ∈ [0, 1]. Initialize critic
network ensemble Qθi for i = 1, ...K, and actor network πϕ, with random parameters θi’s, ϕ.
Initialize target networks θ̃i ← θi; ϕ̃← ϕ.
for i = 1 to T do

Sample batch of N transitions {(s, a, r, s′, d)} from D.
ã′ ← πϕ̃(s

′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c).
Compute pess(Qθ̃(s

′, ã′)) based on 4.
y = r + γ(1− d)pess(Qθ̃(s

′, ã′)).
Update critics: θi ← argmin

θi

N−1
∑

(Qθi(s, a)− y)2.

if t% policy update frequency == 0 then
ã← πϕ(s).
Compute pess(Qθ(s, ã)) based on 4.
λ = α

N−1
∑

|pess(Qθ(s,ã))| .
Sample w(s, a) ∼ Bernoulli(p).
Update actor: ϕ← argmin

ϕ
N−1

∑[
− λpess(Qθ(s, ã)) + w(s, a)(πϕ(s)− a)2

]
.

Update target networks: θ̃i ← τθi + (1− τ)θ̃i; ϕ̃← τϕ+ (1− τ)ϕ̃.
end if

end for

5 Experiment Results

In this section we demonstrate experimental efficacy of EABC on the D4RL MuJoCo benchmarks
[8], and briefly summarize our results from ablation study.

5.1 D4RL MuJoCo Benchmark

The performance of EABC is reported in Table 1. We compare it with several algorithms similar to
ours [27, 10, 9, 23], as well as some other representative model-free offline RL algorithms [17, 15].
For algorithms run locally, we train the algorithm for 1 million time steps using 5 seeds, and evaluate
the learned policy through online interaction for 10 episodes, in every 5000 steps. In Section A.5, we
further compare EABC with more recent state-of-the-art offline RL algorithms, including several
model-based algorithms.

As highlighted in Table 1, EABC consistently exhibits low variance across all tasks, achieving
remarkable stability with an average standard deviation of 1.4. A clear convergence pattern is also
shown in Figure 1, showing reduced variance and improved performance across almost all tasks
compared to its predecessors. Besides, EABC exhibits a comparatively shorter runtime (Appendix
A.7), yet still achieves results comparable to the state-of-the-art algorithms.

5.2 Ablation Study

Effect of K. We experimented with K values taken among K ∈ {3, 5, 7, 10, 20, 30}. The full results
are presented in Figure 2. We found that overall, a value of K ≥ 10 gives the algorithm a stable
performance, which is a relatively small number among the ensemble-based offline RL algorithms.

Other Choices of Pessimistic Targets. As mentioned in Section 4, there are 3 commonly used
options for pessimistically estimating the target Q with ensemble networks, when we use 1), we
denote the algorithm as EABC_min; when we use 2), we denote it as EABC_min(2). Overall, we
observe superior and more stable performance across all tasks when using Equation 4 (Figure 4).

Choosing Appropriate p. To effectively analyze the effect of p, we select p values from
{0.0, 0.05, 0.25, 0.5, 0.75, 0.95, 1.0}, which covers representative quantile numbers of p ∼ U(0, 1),
where U represents a continuous uniform distribution. The optimal p values for each offline dataset
are summarized in Table 3, and full learning curves are shown in Figure 3. We find that in general,
except for the task where EABC completely failed to learn (“Walker2d-Random”), higher-quality
offline datasets require higher p values.
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Table 1: Average D4RL normalized score over the final 10 evaluations on 5 seeds, ± standard
deviation over seeds. TD3 and wPC are based on our own implementation, where experiments are
run on D4RL MuJoCo environment “v2”. Results for BC, TD3+BC, CQL, and IQL are based on
their original paper, or re-implementations following author’s recommended parameter settings. We
highlight the best average, and those close to the best average with comparably smaller variance.

Task Name BC TD3 TD3+BC CQL IQL wPC EABC
(ours)

halfcheetah-r 2.2±0.0 32.0±2.2 11.0±1.1 17.5±1.5 13.1±1.3 19.7±0.8 32.4±0.7
hopper-r 3.7±0.6 26.8±5.1 8.5±0.6 7.9±0.4 7.9±0.2 20.9±9.4 31.5±0.4
walker2d-r 1.3±0.1 -0.1±0.2 1.6±1.7 5.1±1.3 5.4±1.2 1.3±2.3 1.7±1.7

halfcheetah-m 43.2±0.6 33.8±11.8 48.3±0.3 47.0±0.5 47.4±0.2 53.2±0.3 67.3±0.9
hopper-m 54.1±3.8 0.7±0.0 59.3±4.2 53.0±28.5 66.2±5.7 79.4±2.0 92.4±3.9
walker2d-m 70.9±11.0 0.6±1.0 83.7±2.1 73.3±17.7 78.3±8.7 71.0±31.6 89.0±0.6

halfcheetah-m-r 37.6±2.1 42.3±7.8 44.6±0.5 45.5±0.7 44.2±1.2 48.1±0.4 61.4±1.6
hopper-m-r 16.6±4.8 44.4±23.8 60.9±18.8 88.7±12.9 94.7±8.6 94.5±3.8 102.6±1.4
walker2d-m-r 20.3±9.8 31.0±14.2 81.8±5.5 81.8±2.7 73.8±7.1 84.0±11.0 93.2±2.9

halfcheetah-m-e 44.0±1.6 6.2±7.1 90.7±4.3 75.6±25.7 86.7±5.3 63.7±10.8 92.9±1.9
hopper-m-e 53.9±4.7 0.7±0.1 98.0±9.4 105.6±12.9 91.5±14.3 64.7±29.1 104.0±3.6
walker2d-m-e 90.1±13.2 0.7±1.1 110.1±0.5 107.9±1.6 109.6±1.0 91.4±39.1 112.0±0.3

halfcheetah-e 91.8±1.5 -2.7±0.3 96.7±1.1 96.3±1.3 95.0±0.5 64.9±13.0 97.6±0.2
hopper-e 107.7±0.7 1.3±0.5 107.8±7 96.5±28.0 109.4±0.5 44.4±49.2 111.2±0.3
walker2d-e 106.7±0.2 1.8±0.3 110.2±0.3 108.5±0.5 109.9±1.2 68.1±53.9 110.8±0.1

Average 49.6±3.6 14.6±5.0 67.5±3.8 67.3±9.1 68.9±3.8 58.0±17.1 80.0±1.4

Since p is a continuous variable, it is, in many respects, robust to perturbations. This is in particular
evident from Figure 3, where a broad range of p values often yield comparable performances. A
general guideline is to use p ≤ 0.25 for offline data collected with inferior policies, and p ≥ 0.5 for
more sophisticated policies. The complete results of ablation study are presented in Appendix A.6.

6 Conclusion

In this work, building upon TD3+BC, we introduce an ensemble-based actor-critic algorithm with
an adjustable behavior cloning term. By employing Q ensembles, we construct a pessimistic Q
estimate. More importantly, we provide a convenient and intuitively interpretable way to control
the level of behavior cloning, by introducing randomness through a Bernoulli random variable with
a user-specified confidence level p. Meanwhile, the proposed algorithm is simple to implement,
adding around 10 lines of code to the base algorithm TD3+BC. Despite its simplicity and reduced
computational time compared to many state-of-the-art offline RL algorithms, EABC demonstrates
surprisingly strong experimental performance, comparable to the best on D4RL MuJoCo benchmarks.
It also exhibits low episodic variance during evaluations, benefiting from the power of ensemble.

A major limitation of EABC is the requirement to preset p. A user-determined p might not always
capture the full potential of EABC. However, we note that this is essentially a hyperparameter
fine-tuning issue, a common challenge in almost all algorithms. With limited hyperparameters to
tune, and a set of five numbers covering representative scenarios of p, our method remains appealing.
One potential extension of this work could involve expanding the weights to a multi-armed bandit
approach, or automating the determination of p.

The essence of EABC bears similarities to supervised learning, notably, the utilization of pre-
known expert information can be immensely valuable. By leveraging such supervised information
(confidence level p regarding the offline dataset), it is feasible to circumvent extensive parameter fine-
tuning and complex training strategies. We aspire for our approach to encourage further development
of algorithms that maintain a simple structure, employing straightforward statistical methods, and
leveraging the pre-existing knowledge of offline datasets. This work can possibly spark increased
interest in simpler algorithm designs that place greater emphasis on the pre-known characteristics of
the offline dataset.
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A Appendix

A.1 Broader Impact

Our algorithm is under the broader category of offline RL algorithms. These algorithms have natural
advantage in application scenarios where ample offline data are available, such as in robotics and
autonomous driving; or in situations where collecting data online using a learned policy during the
training process may be dangerous or unethical, as in medical care and, once again, autonomous
driving. Our proposed algorithm, EABC exhibits simplicity and efficiency, offering lower runtime
compared to most current state-of-the-art algorithms, while still delivering stable and cutting-edge
learning outcomes. We anticipate that our work will have a broader impact of inspiring research
interest towards simpler modifications of existing algorithms, and a minimalistic approach to hyper-
parameter tuning. However, it is important to note that our work does not fundamentally change the
potential scope or breadth of applications for offline RL algorithms.

A.2 Experimental Details

Software

We use the following software versions: Python 3.9; Pytorch 2.1.1 [22]; Gym 0.23.1 [6]; MuJoCo
3.0.1; mujoco-py; D4RL [8]. For all D4RL datasets, we use the “v2” version, where a normalized
D4RL score is provided. Formally,

D4RL Score = 100× score− random score
expert score− random score

.

The code for our algorithm implementation is in https://github.com/Penguin0007/EABC. Due
to limited resources of hardware, our experiments are run on Two AMD Epyc 7763 “Milan” CPUs @
2.2GHz, without GPU. Average wall clock run time of EABC for each MuJoCo experiment is around
12.5 hours, while TD3+BC takes around 4 hours.

Hyperparameters

Table 2: EABC hyperparameters. The hyperparameters of TD3 and TD3+BC are kept the same from
official implementation.

Hyperparameter Value

TD3 Hyperparameters

Optimizer Adam [14]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

TD3+BC Hyperparameters α 2.5

EABC Hyperparameters K 10
p See Table 3
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Table 3: Best confidence level p for different D4RL MuJoCo datasets.

p Halfcheetah Hopper Walker2d

Expert 0.5 1.0 0.5
Medium-Expert 1.0 0.5 0.25
Medium 0.0 0.25 0.25
Medium-Replay 0.0 0.0 0.0
Random 0.0 0.0 0.95

Neural Network Architecture

Table 4: Neural network architectures for EABC (same as TD3+BC).

Critic hidden dim 256
Critic hidden layers 2

Critic activation function ReLU
Actor hidden dim 256

Actor hidden layers 2
Actor activation function ReLU

A.3 Learning Curves
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Figure 1: Learning curves of EABC, compared with TD3+BC and wPC. Curves are averaged over 5
seeds, where the shaded areas represent ± one standard deviation across seeds.

A.4 Other offline datasets

For AntMaze datasets, we find adaptively adjusting BC doesn’t help in performance (Table A.4).
The task that EABC significantly outperforms TD3+BC is AntMaze-Umaze, where the increase
of performance all credits from ensemble. This is potentially due to the nature of the games, that
AntMaze is designed to evaluate navigation and goal-reaching capabilities, whereas MuJoCo is aimed
to achieve forward locomotion while maintaining balance and avoiding falling over, making adjusted
BC more suitable for dataset collected with different πβ for MuJoCo tasks.

9



Table 5: Average D4RL normalized score over the final 10 evaluations on 5 seeds, ± standard
deviation over seeds. TD3+BC is based on our own implementation with author’s original code. All
experiments are run on D4RL Antmaze environments “v2”. We highlight the best average.

Task Name TD3+BC EABC Best p for EABC

AntMaze-Umaze 59.2±45.1 89.2±1.6 1.0
AntMaze-Umaze-Diverse 53.8±39.0 32.3±32.3 0.5
AntMaze-Medium-Diverse 1.6±2.3 0.2±0.4 0.75
AntMaze-Medium-Play 2.0±2.1 0.0±0.0 1.0
AntMaze-Large-Diverse 0.0±0.0 0.0±0.0 1.0
AntMaze-Large-Play 0.0±0.0 0.0±0.0 1.0

A.5 More Baseline Comparison

We also extend our comparative analysis to include additional up-to-date most state-of-the-art baseline
methods on the D4RL MuJoCo datasets. Our expanded evaluation now encompasses notable offline
RL algorithms such as BEAR, UWAC and EDAC, as well as model-based approaches like MOPO
and MOReL ([16, 29, 2, 31, 13]). The results are obtained from the original paper or implemented
based on the author’s official implementation for each method, with the normalized average returns
presented in Table 6.

Table 6: Average D4RL normalized score over the final 10 evaluations on 5 seeds, ± standard
deviation over seeds. Experiment results for other algorithms are based on their original paper, or
re-implements with author’s recommended parameters. We highlight the best average, and the ones
that are close to the best average, but have comparably smaller variance.

Task Name BEAR MOReL MOPO UWAC EDAC EDAC-
10

EABC
(ours)

halfcheetah-r 2.3±0.0 25.6 35.9±2.9 14.5±3.3 28.4±1.0 13.4±1.1 32.4±0.7
hopper-r 3.9±2.3 53.6 16.7±12.2 22.4±12.1 25.3±10.4 16.9±10.1 31.5±0.4
walker2d-r 12.8±10.2 37.3 4.2±5.7 15.5±11.7 16.6±7.0 6.7±8.8 1.7±1.7

halfcheetah-m 43.0±0.2 42.1 73.1±2.4 46.5±2.5 65.9±0.6 64.1±1.1 67.3±0.9
hopper-m 51.8±4.0 95.4 38.3±34.9 88.9±12.2 101.6±0.6 103.6±0.2 92.4±3.9
walker2d-m -0.2±0.1 77.8 41.2±30.8 57.5±7.8 92.5±0.8 87.6±11 89.0±0.6

halfcheetah-m-r 36.3±3.1 40.2 69.2±1.1 46.8±3.0 61.3±1.9 60.1±0.3 61.4±1.6
hopper-m-r 52.2±19.3 93.6 32.7±9.4 39.4±6.1 101.0±0.5 102.8±0.3 102.6±1.4
walker2d-m-r 7.0±7.8 49.8 73.7±9.4 27.0±6.3 87.1±2.3 94.0±1.2 93.2±2.9

halfcheetah-m-e 46.0±4.7 53.3 70.3±21.9 127.4±3.7 106.3±1.9 107.2±1.0 92.9±1.9
hopper-m-e 50.6±25.3 108.7 60.6±32.5 134.7±21.1 110.7±0.1 58.1±22.3 104.0±3.6
walker2d-m-e 22.1±44.9 95.6 77.4±27.9 99.7±12.2 114.7±0.9 115.4±0.5 112.0±0.3

halfcheetah-e 92.7±0.6 - 81.3±21.8 128.6±2.9 106.8±3.4 104.0±0.8 97.6±0.2
hopper-e 54.6±21.0 - 62.5±29.0 135.0±14.1 110.1±0.1 77.0±43.9 111.2±0.3
walker2d-e 106.6±6.8 - 62.4±3.2 121.1±22.4 115.1±1.9 57.8±55.7 110.8±0.1

Total 38.78±10.0 64.4 53.3±16.34 73.7±9.4 82.9±2.2 71.2±10.6 80.0±1.4

The results demonstrate that overall, EABC achieves better or comparable performance relative to
most baseline methods, and closely matches the state-of-the-art EDAC method, but with a smaller
standard deviation. Notably, the EDAC algorithm also employs an ensemble approach, but defaults
to using 50 Neural Networks (NNs). We also compare against EDAC with 10 NNs as presented
in Table 6 ([30]), where EABC outperforms EDAC-10 in most cases with the same number of
NNs. Remarkably, we attain these results with a straightforward algorithm structure and minimal
hyperparameters added to the base TD3+BC algorithm, with a comparatively short runtime.
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A.6 Ablation Study Results

In the next few pages, we provide complete ablation study results for hyperparameters K, p, and
different choices of pess(Q). The detailed setting and choices of the hyperparameters are described
in Section 5.2.

Figure 2: Ablation study of EABC for K, where K’s are chosen from set {3, 5, 7, 10, 20, 30}. The p
value is set at the corresponding optimal values for each tasks.
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Figure 3: Ablation study of p for EABC (K = 10), where the choices of p’s are described in 5.2.
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Figure 4: Ablation study results of pess(Q). All the experiments are performed at K = 10, and the
curves shown are corresponding to their optimistic p value for each task.
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A.7 Runtime

The runtime of EABC (K = 10) for 1 million time steps, on average, is approximately 3.17 times
that of TD3+BC, which amounts to around 2 hours of wall-clock time using the same hardware
as TD3+BC. The longer runtime compared to the TD3+BC algorithm is unsurprising, considering
TD3+BC employs 2 NNs, whereas EABC by default uses 10 NNs. Nevertheless, EABC’s runtime
is roughly half that of some more sophisticated algorithms, such as the CQL algorithm. See 5 for a
visual comparison.

CQL EABC
(K = 10)

TD3+BC

4h 11m

2h 4m

39m

Run Time

Figure 5: Runtime comparison of EABC with CQL and TD3+BC. Average wall-clock run time of
EABC is about 3.17 times of TD3+BC. We therefore use the runtime of TD3+BC as a baseline,
where from TD3+BC paper, all experiments are run on a single GeForce GTX 1080 GPU and an
Intel Core i7-6700K CPU at 4.00GHz [9].
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