
DeltaDQ: Distribution-Driven Delta Compression for Fine-tuned LLMs

Anonymous ACL submission

Abstract

Large language models have demonstrated001
remarkable success across a wide range of002
domains, with supervised fine-tuning being003
widely adapted to make them more suitable004
for real-world scenarios. Given the diversity of005
downstream tasks and varying demands, effi-006
ciently deploying multiple full-parameter fine-007
tuned models presents a significant challenge.008
To address this, we analyze Balanced Inter-009
mediate Dropout, a distribution-related phe-010
nomenon, whereby the matrix-computed inter-011
mediate results for the delta weight of each012
fine-tuned model have extremely small vari-013
ance and min-max range. Leveraging this014
phenomenon, we propose a novel distribution-015
driven delta compression framework DeltaDQ,016
which employs Group-wise Balanced Dropout017
and Delta Quantization to efficiently com-018
press the delta weight. Group-wise Balanced019
Dropout achieves a favorable trade-off with020
accuracy and performance, ensuring an N:M021
sparsity pattern. Delta Quantization further022
compresses the delta weight based on distri-023
bution characteristics. Experimental results024
show that the accuracy of our framework on025
WizardMath-7B,13B at 96.875% compress rate026
is improved by 4.47 and 4.70 compared with027
baseline, and we even improve the accuracy028
by 1.83 and 0.61 compared with the original029
model on WizardCoder-13B,34B.030

1 Introduction031

Large Language Models (LLMs) (Brown et al.,032

2020; Touvron et al., 2023) have achieved unprece-033

dented advances in recent years, and to be able034

to utilize LLMs efficiently, most researchers and035

users have adopted the Supervised Fine-Tuning036

(SFT) (Ouyang et al., 2022) to emerge the capa-037

bilities of LLMs for a variety of different down-038

stream tasks. SFT enables LLMs to achieve better039

quality in mathematical reasoning, code generation,040

and other tasks. Meanwhile, despite the existence041

𝑀! 𝑀" 𝑀#…

𝑀$ 𝑀%
! 𝑀%

#…

1 Base Weight 𝑛 Delta Weight

Fine-tuned Models

𝑀&

𝑛 Compressed Models

Compress Rate 𝑝

Conventional Model Compression

Delta Compression

𝑀%
&

𝑛 Compressed
Delta Weight

Compress Rate 𝑝Split Weight

Figure 1: Overview of delta compression

of many Parameter Efficient Fine-Tuning (PEFT) 042

(Ding et al., 2022) methods such as LoRA (Hu 043

et al., 2021), full-parameter fine-tuning models still 044

have higher accuracy under many complex down- 045

stream tasks (Chen et al., 2022). 046

However, how to deploy multiple full-parameter 047

fine-tuning models efficiently in the inference stage 048

becomes a new challenge. One difficulty is the 049

large number of fine-tuned models due to the nu- 050

merous downstream tasks in real-world scenarios. 051

Another is the great variation of requests from dif- 052

ferent models, which leads to substantial resource 053

demand and low utilization if all models are de- 054

ployed simultaneously. Conversely, when the mod- 055

els are loaded according to the request demand, the 056

duration of loading will be long due to the enor- 057

mous number of parameters of the models, which 058

leads to a sharp increase in the total request latency. 059

The recent study DELTAZIP (Yao and Klimovic, 060

2023) highlights the efficacy of delta compression, 061

a novel technique that diverges from conventional 062

methods. As shown in Figure 1, instead of com- 063

pressing the entire fine-tuned model, delta compres- 064

sion targets the model-specific delta weight, offer- 065

ing a more focused and potentially efficient com- 066

pression strategy. Although the memory require- 067

ment of n homologous fine-tuned models changes 068

from the original p ∗ n to 1 + p ∗ n for the same 069

compress rate p, compressing the delta weight al- 070

1

lows for a higher compress rate p compared to the071

original fine-tuned weight, resulting in an overall072

reduction in memory requirement. Nevertheless,073

since DELTAZIP uses SparseGPT (Frantar and Al-074

istarh, 2023) to compress the delta weight, it does075

not fully utilize the properties of delta weight, re-076

sulting in a significant loss of accuracy at high077

compress rates. DARE (Yu et al., 2023a) discover078

that most of the parameters of delta weight can be079

randomly dropout (Srivastava et al., 2014), but the080

compressed delta weight is unstructured, leading081

to unfriendly deployment.082

To address the above issues and achieve efficient083

deployment of multiple full-parameter fine-tuning084

models, we propose a novel distribution-driven085

delta compression framework DeltaDQ. We ob-086

serve that the intermediate results of delta weight087

during matrix computation have extremely small088

variance and min-max range distribution proper-089

ties, which we call Balanced Intermediate Results.090

Taking advantage of this phenomenon, we design091

Group-wise Balanced Dropout, which groups the092

elements of each row of delta weight with the size093

of M, randomly retains N elements, and dropout094

the rest of the elements, which maintains accuracy095

while avoids performance degradation by utiliz-096

ing the N:M sparsity pattern (Mishra et al., 2021).097

We also incorporate the distributional properties098

of delta weight and employ Delta Quantization to099

further quantize the delta weight and improve the100

compress rate. DeltaDQ achieves a compress rate101

of 96.875% with little or no accuracy loss for Wiz-102

ardMath (Luo et al., 2023a), WizardCoder (Luo103

et al., 2023b), and MetaMath (Yu et al., 2023b).104

Our main contributions are as follows:105

• We have discovered Balanced Intermediate106

Results, where delta weight has better com-107

pressibility with extremely small variance and108

min-max range during matrix computation.109

• We propose a novel distribution-driven delta110

compression framework, DeltaDQ, which111

mainly consists of Group-wise Balanced112

Dropout and Delta Quantization to maximize113

the compress rate while maintaining accuracy114

and performance.115

• Experimental results show that our frame-116

work can achieve a compress rate of 96.875%,117

and specifically the accuracy on WizardMath-118

7B,13B is improved by 4.47 and 4.70 com-119

pared to baseline, respectively. While on120

WizardCoder-13B,34B we even improve the 121

accuracy by 1.83 and 0.61 compared to the 122

original model. 123

2 Related Work 124

2.1 Low-Rank Adaptation of Large Language 125

Models 126

To reduce the resource requirement and cost of 127

SFT, many PEFT methods have appeared, the most 128

representative of which is the Low-Rank Adapta- 129

tion (LoRA). LoRA (Hu et al., 2021) speeds up 130

computation and reduces resource requirements by 131

updating only low-rank weights. QLora (Dettmers 132

et al., 2023) proposes NF4 quantization to quan- 133

tize low-rank weights, which further reduces re- 134

source requirements. For efficiently serving thou- 135

sands of lora adapters, there are many multi-tenant 136

lora serving work such as Pets (Zhou et al., 2022), 137

Punica (Chen et al., 2023), and S-Lora (Sheng et al., 138

2023) that enhance the inference performance. De- 139

spite PEFT having substantially reduced the cost 140

of SFT, their accuracy still trails behind that of full- 141

parameter fine-tuning methods on complex tasks 142

(Chen et al., 2022). In this work, we focus on 143

deploying the full-parameter fine-tuning model. 144

2.2 Model Compression of Large Language 145

Models 146

Many model compression efforts have also 147

emerged to reduce the deployment cost of LLMs. 148

SparseGPT (Frantar and Alistarh, 2023) and Wanda 149

(Sun et al., 2023) compress models by pruning and 150

removing unimportant parameters. Methods like 151

Smoothquant (Xiao et al., 2023), GPTQ (Frantar 152

et al., 2022), LLM.int8() (Dettmers et al., 2022), 153

and AWQ (Lin et al., 2023b) decrease the resource 154

demands by quantizing the model’s representation 155

to a lower bit. In addition to these traditional model 156

compression methods, delta compression shows 157

excellent potential for compressing multiple full- 158

parameter fine-tuning models. DELTAZIP (Yao 159

and Klimovic, 2023) uses SparseGPT to compress 160

the delta weight and builds an inference system, 161

while DARE (Yu et al., 2023a) realizes a model 162

merging method with higher accuracy by randomly 163

dropout the delta weight. However, the former 164

methods experience significant accuracy loss at 165

high compress rates, while the latter is tailored for 166

model merging scenarios where the delta weight 167

eventually merges back into the original weights, 168

leading to unstructured delta weight. 169

2

10 9 8 7 6 5 4 3 2
Log10 of absolute value

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y
qproj - layer1

Finetuned Model
Base Model
Delta Weight

10 9 8 7 6 5 4 3 2
Log10 of absolute value

0

10000

20000

30000

40000

50000

Fr
eq

ue
nc

y

qproj - layer31
Finetuned Model
Base Model
Delta Weight

12 11 10 9 8 7 6 5 4
Log10 of absolute value

0

10000

20000

30000

40000

Fr
eq

ue
nc

y

down - layer1
Finetuned Model
Base Model
Delta Weight

8 6 4 2
Log10 of absolute value

0

10000

20000

30000

40000

50000

60000

70000

Fr
eq

ue
nc

y

down - layer31
Finetuned Model
Base Model
Delta Weight

(a) Variance

3 2 1 0
Log10 of absolute value

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

qproj - layer1
Finetuned Model
Base Model
Delta Weight

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5
Log10 of absolute value

0

5000

10000

15000

20000

25000

30000

35000

40000

Fr
eq

ue
nc

y

qproj - layer31
Finetuned Model
Base Model
Delta Weight

4 3 2 1 0
Log10 of absolute value

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

down - layer1
Finetuned Model
Base Model
Delta Weight

3 2 1 0 1
Log10 of absolute value

0

5000

10000

15000

20000

25000

30000

35000

Fr
eq

ue
nc

y

down - layer31
Finetuned Model
Base Model
Delta Weight

(b) Min-Max Range

Figure 2: Comparison of the variance and min-max range distribution of the intermediate results of the delta weight,
fine-tuned model, and base model for each output element matrix computation

3 Method170

3.1 Preliminaries171

Delta Compression. Given n full-parameter fine-172

tuning models {M1,M2, ...,Mn}, which are fine-173

tuned on the homologous base model, such as174

Llama. We can split the weights of each model175

into two parts, the weights of base model W0 and176

the delta weight ∆Wi, in the following way:177

Wi = W0 +∆Wi . (1)178

With the delta weight ∆Wi obtained in the above179

way, we transform the compressed target into delta180

weights ∆Wi which is called delta compression.181

Layer-Wise Compression. In model compression,182

the whole optimization problem is usually trans-183

formed into a layer-by-layer subproblem. Assume184

that the weights of l-th layer of model Mi is W l
i185

and the compressed weights are Ŵ l
i , the optimiza-186

tion objective of model compression is to minimize187

the layer-wise L2-loss, defined as Llayer:188

Llayer = ||X l
iW

l
i
T −X l

iŴ
l
i

T
||22 , (2)189

where X l
i is the inputs of the l-th layer.190

3.2 Balanced Intermediate Results191

For a better understanding of the characteristics192

of delta compression, further analysis of element-193

wise intermediate results of linear layers has been194

performed. Assuming W l
i , Ŵ

l
i ∈ Rd1×k, X l

i ∈ 195

Rk×d2 and the outputs Al
i, Â

l
i ∈ Rd1×d2 , we can 196

transform Llayer further: 197

Llayer = ||X l
iW

l
i
T −X l

iŴ
l
i

T
||22 (3) 198

= ||Al
i − Âl

i||
2
2 199

=

d1,d2∑
p=1,q=1

(ap,q|li − âp,q|li)2 , 200

where ap,q|li, âp,q|li are the elements on the outputs 201

Al
i and Âl

i locations (p, q) before and after com- 202

pression: 203

ap,q|li =
eall︷ ︸︸ ︷

wp,0x0,q + ...+ wp,kxk,q , (4) 204

and if we use the pruning method to compress the 205

model, setting mask ms1 , ...,ms1+k1 ∈ {1}k1 and 206

ms2 , ...,ms2+k2 ∈ {0}k2 , there are: 207

âp,q|li =
estay︷ ︸︸ ︷

wp,s1xs1,q + ...+ wp,s1+k1xs1+k1,q .
(5) 208

As shown in Figure 2, we find that each element 209

∆ap,q|li of the delta weight outputs X l
i∆W l

i
T has 210

the following two properties compared to the origi- 211

nal outputs X l
iW

l
i
T : 212

3

Group-wise Balanced Dropout

Fine-tuned
Model

Delta Weight
Δ𝑊!

Base Weight
𝑊"

Split Weight1

2

Non-zero
values

IndicesDelta weight N:M Drop
and Rescale

Delta Quantization3

Non-zero
values

Low bit
values

Quantize

Deployment4

GPUs memory

𝑛 compressed
delta weight

……

1 Base weight

Larger persisted memory

Storage Computation

Request

Corresponding
delta weight

Base weight

Response

Figure 3: Overview of our DeltaDQ delta compression framework. Our framework is divided into four steps; Step1:
Split Weight; Step2: Group-wise Balanced Dropout; Step3: Delta Quantization; Step4: Deployment.

• Small Variance: The intermediate results213

∆wp,0x0,q, ...,∆wp,kxk,q of ∆ap,q|li have a214

small variance between them;215

• Narrow Min-Max Range: The intermediate216

results ∆wp,0x0,q, ...,∆wp,kxk,q of ∆ap,q|li217

have a very small range between the maxi-218

mum and minimum values.219

We call the above phenomenon Balanced Interme-220

diate Results, which explains that the distribution221

smoothing property of delta weight allows for bet-222

ter compressibility compared to the original fine-223

tuned weights.224

3.3 Overview of DeltaDQ225

Based on the above observation, we propose a226

novel distribution-driven delta compression frame-227

work DeltaDQ, which is shown in Figure 3. Firstly,228

the weights of the fine-tuned model are split into229

W0 and ∆Wi. Leveraging Balanced Intermediate230

Results phenomenon, we introduce a simple-yet-231

effective method Group-wise Balanced Dropout232

to prune the delta weight, striking a favored trade-233

off between compress rate, accuracy, and perfor-234

mance. In addition, we utilize Delta Quantization235

to enhance the compress rate further. For the final236

deployment phase, we apply an independent com-237

putation strategy, enabling the deployment of as238

many fine-tuned models as possible.239

3.4 Group-wise Balanced Dropout240

Exploiting the distributional properties of Balanced241

Intermediate Results, we can randomly drop some242

of the weights according to the dimension of the 243

matrix computation, i.e., the row dimension of the 244

weights, then rescale the remaining weights, called 245

Balanced Dropout. Through the above method, 246

for any element ∆ap,q|li, we can approximate such 247

that ∆ap,q|li before compression and ∆âp,q|li after 248

compression are equal, such that ∆ap,q|li−∆âp,q|li 249

equals 0, which roughly makes Llayer = 0. 250

However, since the delta weight is unstructured 251

after dropping in this way, it leads to a degradation 252

of the deployment performance. The traditional 253

structured approach drops all on the dimension 254

leading to Llayer ̸= 0 certainly. Modern GPUs are 255

optimized for the N:M sparsity pattern, enabling 256

them to deliver superior performance with mod- 257

els compressed accordingly. We can simply add 258

N:M constraints to the original Balanced Dropout 259

to Group-wise Balanced Dropout, this is done by 260

adding ∆W l
i ∈ Rd1×d2 for the l-th layer: 261

1. N:M Drop: In the row dimension, m con- 262

secutive elements are grouped into sets, from 263

which n elements are randomly selected and 264

the remaining m− n elements are dropped; 265

2. Rescale: Multiply by m
n for the remaining n 266

elements of each group. 267

The original whole dimension dropout is sim- 268

ilar to simple random sampling with T1 distinct 269

schemes, whereas Group-wise Balanced Dropout 270

resembles grouped sampling, featuring T2 distinct 271

schemes: 272

T1 = C(k, k1) =
k!

k1!(k − k1)!
, (6) 273

4

T2 = C(m,
k1
k

∗m)
k
m . (7)274

Although T1 offers a substantially larger solution275

set than T2, the model weights’ dimensions, com-276

monly exceeding 1000, render the number of T2277

solutions adequate to maintain the Llayer = 0 as-278

sumption with reasonable accuracy.279

0.004 0.003 0.002 0.001 0.000 0.001 0.002 0.003 0.004
Value

0

1

2

3

4

5

6

Fr
eq

ue
nc

y

1e6 qproj - layer31
Original Weight
Quantized Weight

0.003 0.002 0.001 0.000 0.001 0.002
Value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fr
eq

ue
nc

y
1e7 down - layer31

Original Weight
Quantized Weight

Figure 4: Distribution of weights before and after quan-
tization

3.5 Delta Quantization280

While the Group-wise Balanced Dropout enables281

performance to be maintained while reducing mem-282

ory, M is usually not larger than 32 due to the N:M283

sparsity pattern limited by the design of current284

GPUs to avoid the bank conflict issue (Lin et al.,285

2023a), which limits the maximum compress rate286

to 96.875% (1:32). Fortunately, according to our287

insights, the delta weight has the property of being288

more tightly distributed with fewer outliers. This289

distributional property allows us to further com-290

press the delta weight using quantization, called291

Delta Quantization.292

To avoid inference speed degradation, we use293

the uniform quantization approach and min-max294

method to statistically obtain the quantization pa-295

rameters:296

XQ = Q(XR) = clamp(0, 2k−1, ⌊XR

S
⌉) , (8)297

298

S =
max(|XR|)
2k−1 − 1

, (9)299

300

clamp(l, u, x) =


l, x ≤ l

x, l ≤ x ≤ u

u, x ≥ u

, (10)301

where XR denotes the original float value, XQ rep-302

resents a quantized k-bit integer. l and u represent303

the lower and upper bounds of the quantization304

range, respectively. ⌊·⌉ rounds to the nearest inte-305

ger. S is the scaling factor.306

Quantizing the weights ∆Wi to a lower bit repre- 307

sentation can substantially decrease memory usage 308

and bandwidth requirements, thereby accelerating 309

computational speed. Figure 4 illustrates that the 310

weight distribution remains closely aligned with 311

the original distribution following quantization. 312

3.6 Deployment 313

In the deployment phase, we utilize the DELTAZIP 314

framework to strategically segregate the storage of 315

the base model weights, W0, and the compressed 316

delta weight, ∆Ŵi. Specifically, W0 is maintained 317

in the GPUs memory for quick access, while ∆Ŵi, 318

which are significantly compressed relative to their 319

original size, are stored on a persistent storage so- 320

lution, such as a hard disk, which offers more ex- 321

pansive storage capabilities. This structure allows 322

for efficient retrieval of ∆Ŵi from the hard disk to 323

the GPUs memory on an as-needed basis, triggered 324

by incoming computational requests. 325

Computation processes are conducted in parallel, 326

with the base model weights being processed simul- 327

taneously alongside the associated delta weight. Af- 328

ter the computation within each linear layer is com- 329

plete, the outputs are meticulously synchronized 330

to ensure that the final outcome integrates both the 331

foundational computations from the base model 332

and the specific adjustments encoded in the delta 333

weight. This method ensures a streamlined com- 334

putation workflow that is both memory-efficient 335

and capable of handling dynamic computational 336

demands. 337

Fine-tuned Model Base Model

WizardMath-7B Llama2-7B
WizardMath-13B Llama2-13B
WizardMath-70B Llama2-70B

WizardCoder-7B CodeLlama-7B
WizardCoder-13B CodeLlama-13B
WizardCoder-34B CodeLlama-34B

MetaMath-7B Llama2-7B
MetaMath-13B Llama2-13B

Table 1: Detailed information on the fine-tuned models
selected for the evaluation, including parameter scales
and their corresponding base models.

5

Method Structured Quantization Compress
Rate

WizardMath WizardCoder

7B 13B 70B 7B 13B 34B

Dense ✓ ✗ 0% 55.49 63.83 81.80 55.48 64.02 73.17

Magnitude ✗ ✗ 50% 52.00 65.04 74.29 46.95 63.41 69.51
DELTAZIP ✗ ✗ 50% 53.60 64.59 81.65 53.05 62.80 71.95

DARE ✗ ✗ 50% 53.67 64.36 80.89 57.31 62.80 73.17
DeltaDQ ✓ ✗ 50% 53.14 63.92 81.65 58.32 65.24 75.00

Magnitude ✗ ✗ 75% 45.71 61.71 44.2 10.36 12.19 35.36
DELTAZIP ✗ ✗ 75% 50.87 62.17 81.96 55.49 64.63 68.29

DARE ✗ ✗ 75% 51.70 63.52 80.21 57.92 61.58 73.17
DeltaDQ ✓ ✗ 75% 53.22 64.51 81.95 55.48 65.24 74.39

Magnitude ✗ ✗ 87.5% 32.37 55.99 30.47 6.70 2.43 0.00
DELTAZIP ✗ ✗ 87.5% 46.63 59.29 80.82 42.68 59.15 69.51

DARE ✗ ✗ 87.5% 50.11 63.07 80.28 56.70 62.19 71.95
DeltaDQ ✓ ✗ 87.5% 53.14 63.76 80.74 56.70 65.24 72.56

Magnitude ✗ ✗ 96.875% 2.27 30.70 47.83 0.00 0.00 0.00
DELTAZIP ✗ ✓ 96.875% 46.47 58.83 80.82 38.41 53.05 68.29

DARE ✗ ✗ 96.875% 46.09 58.75 79.90 53.65 65.24 71.34
DeltaDQ ✓ ✓ 96.875% 50.94 63.53 80.74 53.68 65.85 73.78

Table 2: Accuracy comparison of WizardMath and WizardCoder at various compress rates, with bold highlighting
to indicate the top-performing method for each case. "Structured" represents whether the weights are structured
after compression; "Quantization" indicates whether quantization is utilized; "Dense" denotes the original model.

4 Experiment338

4.1 Setup339

Baseline. We compare DeltaDQ with three prior340

compression methods. Magnitude (Han et al.,341

2015) is a classical numerical magnitude-based342

pruning method and strong baseline. DELTAZIP343

(Yao and Klimovic, 2023) is the current opti-344

mal delta compression framework. And DARE345

(Yu et al., 2023a) randomly dropout in the entire346

weights. DeltaDQ and all three methods compress347

for the delta weight.348

Models, Datasets and Evaluation. We evaluate349

three types of fine-tuned models: WizardMath (Luo350

et al., 2023a), WizardCoder (Luo et al., 2023b), and351

MetaMath (Yu et al., 2023b). We choose three pa-352

rameter sizes for the first two models and two for353

MetaMath. We exclude MetaMath-70B because354

it uses LoRA fine-tuning, while we focus on com-355

pressing full-parameter fine-tuning models. The356

detailed information is shown in Table 1. Our eval-357

uation primarily uses two datasets: GSM8k (Cobbe358

et al., 2021) for assessing WizardMath and Meta-359

Math, and HumanEval (Chen et al., 2021) for Wiz-360

ardCoder. The main metric we look at is the ac-361

curacy of these datasets. We evaluate the impact 362

of various compression techniques at four distinct 363

rates: 50%, 75%, 87.5%, and 96.875% 364

Implementation Details. DeltaDQ is built with 365

PyTorch (Paszke et al., 2017) and utilizes models 366

and datasets from Huggingface Transformers (Wolf 367

et al., 2019), with accuracy assessments conducted 368

through the vLLM framework (Kwon et al., 2023). 369

Other methods use open-source implementations 370

to measure accuracy. All our experiments are con- 371

ducted on 8 NVIDIA V100 GPUs with 32G of 372

memory and 8 NVIDIA A100 GPUs with 80G of 373

memory. 374

4.2 Comparison with Baseline 375

As shown in Table 2, our framework achieves bet- 376

ter accuracy for WizardMath and WizardCoder 377

models compared to the remaining there meth- 378

ods in most cases. Our framework, excluding the 379

WizardMath-70B model, attains top accuracy at 380

87.5% and 96.875% compress rates, with better 381

GPUs efficiency than the former due to the charac- 382

teristics of its structured compression. Especially, 383

at a 96.875% compress rate, our framework ex- 384

ceeds the state-of-the-art accuracy for WizardMath- 385

6

50% 75% 87.5% 93.75% 96.875%
Sparsity

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

WizardMath-7B

N:M Sparse
N:M Drop w/o Rescale
Group-wise Balanced Dropout

50% 75% 87.5% 93.75% 96.875%
Sparsity

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

WizardCoder-7B

N:M Sparse
N:M Drop w/o Rescale
Group-wise Balanced Dropout

50% 75% 87.5% 93.75% 96.875%
Sparsity

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

MetaMath-7B

N:M Sparse
N:M Drop w/o Rescale
Group-wise Balanced Dropout

Figure 5: Accuracy comparison of Group-wise Balanced Dropout components across various compress rates.

Method Compress Rate MetaMath

7B 13B

Dense 0% 66.79 71.03

Magnitude 50% 65.73 71.03
DELTAZIP 50% 65.88 71.49

DARE 50% 66.11 70.96
DeltaDQ 50% 66.41 71.56

Magnitude 75% 61.10 71.03
DELTAZIP 75% 65.13 71.87

DARE 75% 67.09 71.94
DeltaDQ 75% 65.80 71.11

Magnitude 87.5% 52.69 64.67
DELTAZIP 87.5% 61.26 69.07

DAREDARE 87.5% 65.88 69.74
DeltaDQ 87.5% 65.20 70.58

Magnitude 96.875% 13.57 42.30
DELTAZIP 96.875% 60.20 68.08

DARE 96.875% 53.29 60.80
DeltaDQ 96.875% 64.67 68.53

Table 3: Accuracy of MetaMath models at various com-
press rates, with the optimal method denoted in bold.

7B and 13B models by 4.47 and 4.70, respectively,386

and outperforms the original WizardCoder-13B and387

34B models by 1.83 and 0.61. Table 3 illustrates388

that, in most cases, DeltaDQ consistently achieves389

optimal accuracy with the MetaMath model. The390

comparison results indicate that DeltaDQ is effec-391

tive and broadly applicable in balancing trade-offs392

between compress rate, accuracy, and performance.393

4.3 Analysis394

Evaluation of Group-wise Balanced Dropout.395

We conduct a detailed analysis of the individual396

effects exerted by the components within Group-397

wise Balanced Dropout, as illustrated in Figure 5.398

N:M 2:4 4:8 8:16 16:32
Acc 51.32 53.07 53.14 52.38
N:M 1:4 2:8 4:16 8:32
Acc 51.93 49.35 53.22 52.46
N:M 1:8 2:16 4:32 8:64
Acc 50.18 52.99 53.14 50.49
N:M 1:16 2:32 4:64 8:128
Acc 47.3 47.91 48.21 49.96

Table 4: Accuracy comparison of WizardMath-7B
model across various N:M sparsity patterns.

N:M 2:4 4:8 8:16 16:32
Acc 54.87 56.09 54.87 58.53
N:M 1:4 2:8 4:16 8:32
Acc 54.87 55.48 54.87 54.26
N:M 1:8 2:16 4:32 8:64
Acc 56.70 56.09 54.87 55.48
N:M 1:16 2:32 4:64 8:128
Acc 53.65 56.09 56.09 58.53

Table 5: Accuracy comparison of WizardCoder-7B
model across various N:M sparsity patterns.

N:M 2:4 4:8 8:16 16:32
Acc 65.65 66.33 66.26 66.41
N:M 1:4 2:8 4:16 8:32
Acc 65.35 65.65 65.80 65.57
N:M 1:8 2:16 4:32 8:64
Acc 65.20 64.97 64.89 65.27
N:M 1:16 2:32 4:64 8:128
Acc 64.51 61.94 62.24 63.83

Table 6: Accuracy comparison of MetaMath-7B model
across various N:M sparsity patterns.

7

Our findings indicate that the Rescale component399

is critical for the Group-wise Balanced Dropout.400

Omitting Rescale leads to a drastic drop in model401

accuracy, with scores plunging to zero at 93.75%402

and 96.875% compress rates. This significant de-403

crease can be primarily attributed to the ability of404

the Rescale operation to facilitate an approxima-405

tion Llayer close to zero under delta compression.406

Conversely, the conventional N:M Sparse approach407

fails to accommodate the specialized distribution408

characteristics of the delta weight, often culminat-409

ing in a substantial decline in accuracy. Combin-410

ing N:M Drop and Rescale, Group-wise Balanced411

Dropout achieves superior accuracy.412

Our analysis of accuracy variations for different413

N:M sparsity patterns is presented in Tables 4, 5,414

and 6. Given the GPUs bank conflict constraints,415

we limit M to a maximum of 32 for practical appli-416

cations. However, for this evaluation, we allow a417

larger M to explore its potential impact. The experi-418

mental results reveal that at the same compress rate,419

varying N:M sparsity patterns impact accuracy. For420

example, the WizardMath-7B model at a 75% com-421

press rate demonstrates that the 4:16 pattern yields422

an accuracy improvement of 3.87 over the 2:8 pat-423

tern. Moreover, there is no obvious relationship424

between the accuracy and the N:M sparsity pattern425

and a larger M does not necessarily result in higher426

accuracy.427

WizardMath-7B WizardCoder-7B MetaMath-7B0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Sparsity 93.75%
w/o Quantization
Quantization

WizardMath-7B WizardCoder-7B MetaMath-7B0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Sparsity 96.875%
w/o Quantization
Quantization

Figure 6: The impact of Delta Quantization on accuracy.

Evaluation of Delta Quantization. Our analysis428

investigates the impact of Delta Quantization on429

model accuracy. As reflected in Figure 6, imple-430

menting Delta Quantization post Group-wise Bal-431

anced Dropout enhances model accuracy. Specif-432

ically, at a 93.75% compress rate, this approach433

boosts accuracy by 3.49 for WizardMath-7B and434

by 1.06 for MetaMath-7B relative to their indi-435

vidual applications. Moreover, at a higher com-436

press rate of 96.875%, the accuracy enhancements437

are notably pronounced, with WizardMath-7B and438

MetaMath-7B showing improvements of 5.23 and439

24.72, respectively. Although WizardCoder-7B has440

a slight accuracy degradation using quantization at 441

both compress rates, greater compress rates can be 442

achieved due to the orthogonality of Delta Quan- 443

tization and Group-wise Balanced Dropout. The 444

evaluation results demonstrate that Delta Quanti- 445

zation is effective in substantially enhancing the 446

compress rate while still preserving both the accu- 447

racy and performance of the model. 448

Question: Is there a meaning for Christmas wreaths?

Yes, Christmas wreaths have a
significant meaning behind them.
They represent the evergreen tree,
which is a symbol of life and
renewal in winter. Additionally,
the circular shape of the wreath
represents the cyclical nature of
life and the continuity of
traditions. Christmas wreaths are
often placed on doors or windows as
a decoration during the holiday
season to bring joy and warmth to
homes.

Yes, Christmas wreaths have a
significant meaning behind them.
They represent the evergreen tree,
which is a symbol of life and
renewal in winter. Additionally,
the circular shape of the wreath
represents the cyclical nature of
life and the continuity of
traditions. Christmas wreaths are
often used as decorations during
the holiday season and can be found
in various shapes, sizes, and
materials.

Original Model Compressed Model

Figure 7: Comparing responses of the WizardLM-7B
model before and after DeltaDQ.

Case Study. We additionally evaluate the change 449

in response of WizardLM-7B, a chat model based 450

on Llama fine-tuning, before and after DeltaDQ. 451

As seen in Figure 7, the responses generated by the 452

model before and after applying DeltaDQ exhibit a 453

high degree of similarity for the identical question, 454

even at a high compress rate of 96.875%. This 455

illustrates the generalization of our framework to 456

different types of fine-tuned models and its non- 457

awareness to practical users. 458

5 Conclusion 459

In this paper, we introduce DeltaDQ, an innova- 460

tive framework designed for delta compression. 461

DeltaDQ is primarily composed of two cutting- 462

edge techniques: Group-wise Balanced Dropout 463

and Delta Quantization. Group-wise Balanced 464

Dropout leverages the inherent properties of delta 465

weights to selectively dropout weights in a stochas- 466

tic manner, while Delta Quantization applies addi- 467

tional compression to the compressed weights. Im- 468

pressively, our framework manages to accomplish 469

lossless compression for the majority of models at 470

an astounding compress rate of 96.875%. 471

Limitations 472

The effectiveness of deploying our framework in 473

a real-world setting is dependent on the current 474

state of N:M sparsity software tools and the level 475

8

of support for such sparsity provided by GPUs476

hardware. Despite the potential benefits of our477

framework, the actual deployment performance is478

currently constrained by the absence of optimized479

libraries tailored for accelerating operations with480

low-bit N:M sparse weights. These specialized481

libraries would be necessary to fully exploit the482

efficiency gains promised by our framework, as483

they would enable faster computation and memory484

access patterns suited to the sparse structure of the485

weights.486

Ethical Impact487

Our framework’s compression may lead to varia-488

tions in the model’s outputs, as the process can489

modify the exact values of the model weights, po-490

tentially influencing the inference results. However,491

the framework is optimized to minimize the impact492

on performance, striving to preserve the quality and493

consistency of the outputs.494

References495

Tom Brown, Benjamin Mann, Nick Ryder, Melanie496
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind497
Neelakantan, Pranav Shyam, Girish Sastry, Amanda498
Askell, et al. 2020. Language models are few-shot499
learners. Advances in neural information processing500
systems, 33:1877–1901.501

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and502
Shangsong Liang. 2022. Revisiting parameter-503
efficient tuning: Are we really there yet? arXiv504
preprint arXiv:2202.07962.505

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo,506
Luis Ceze, and Arvind Krishnamurthy. 2023.507
Punica: Multi-tenant lora serving. arXiv preprint508
arXiv:2310.18547.509

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming510
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-511
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,512
Greg Brockman, et al. 2021. Evaluating large513
language models trained on code. arXiv preprint514
arXiv:2107.03374.515

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,516
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias517
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro518
Nakano, Christopher Hesse, and John Schulman.519
2021. Training verifiers to solve math word prob-520
lems.521

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke522
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-523
tiplication for transformers at scale. arXiv preprint524
arXiv:2208.07339.525

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 526
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 527
of quantized llms. arXiv preprint arXiv:2305.14314. 528

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong- 529
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 530
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning: 531
A comprehensive study of parameter efficient meth- 532
ods for pre-trained language models. arXiv preprint 533
arXiv:2203.06904. 534

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 535
sive language models can be accurately pruned in 536
one-shot. In International Conference on Machine 537
Learning, pages 10323–10337. PMLR. 538

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 539
Dan Alistarh. 2022. Gptq: Accurate post-training 540
quantization for generative pre-trained transformers. 541
arXiv preprint arXiv:2210.17323. 542

Song Han, Jeff Pool, John Tran, and William Dally. 543
2015. Learning both weights and connections for 544
efficient neural network. Advances in neural infor- 545
mation processing systems, 28. 546

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 547
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 548
and Weizhu Chen. 2021. Lora: Low-rank adap- 549
tation of large language models. arXiv preprint 550
arXiv:2106.09685. 551

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 552
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 553
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 554
memory management for large language model serv- 555
ing with pagedattention. In Proceedings of the 29th 556
Symposium on Operating Systems Principles, pages 557
611–626. 558

Bin Lin, Ningxin Zheng, Lei Wang, Shijie Cao, Lingx- 559
iao Ma, Quanlu Zhang, Yi Zhu, Ting Cao, Jilong Xue, 560
Yuqing Yang, et al. 2023a. Efficient gpu kernels for 561
n: M-sparse weights in deep learning. Proceedings 562
of Machine Learning and Systems, 5. 563

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, 564
Xingyu Dang, and Song Han. 2023b. Awq: 565
Activation-aware weight quantization for llm 566
compression and acceleration. arXiv preprint 567
arXiv:2306.00978. 568

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 569
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 570
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz- 571
ardmath: Empowering mathematical reasoning for 572
large language models via reinforced evol-instruct. 573
arXiv preprint arXiv:2308.09583. 574

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo 575
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing- 576
wei Lin, and Daxin Jiang. 2023b. Wizardcoder: 577
Empowering code large language models with evol- 578
instruct. 579

9

http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko580
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong581
Yu, and Paulius Micikevicius. 2021. Accelerat-582
ing sparse deep neural networks. arXiv preprint583
arXiv:2104.08378.584

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,585
Carroll Wainwright, Pamela Mishkin, Chong Zhang,586
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.587
2022. Training language models to follow instruc-588
tions with human feedback. Advances in Neural589
Information Processing Systems, 35:27730–27744.590

Adam Paszke, Sam Gross, Soumith Chintala, Gregory591
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,592
Alban Desmaison, Luca Antiga, and Adam Lerer.593
2017. Automatic differentiation in pytorch.594

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman595
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,596
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al.597
2023. S-lora: Serving thousands of concurrent lora598
adapters. arXiv preprint arXiv:2311.03285.599

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,600
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.601
Dropout: a simple way to prevent neural networks602
from overfitting. The journal of machine learning603
research, 15(1):1929–1958.604

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico605
Kolter. 2023. A simple and effective pruning ap-606
proach for large language models. arXiv preprint607
arXiv:2306.11695.608

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier609
Martinet, Marie-Anne Lachaux, Timothée Lacroix,610
Baptiste Rozière, Naman Goyal, Eric Hambro,611
Faisal Azhar, et al. 2023. Llama: Open and effi-612
cient foundation language models. arXiv preprint613
arXiv:2302.13971.614

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien615
Chaumond, Clement Delangue, Anthony Moi, Pier-616
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,617
et al. 2019. Huggingface’s transformers: State-of-618
the-art natural language processing. arXiv preprint619
arXiv:1910.03771.620

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,621
Julien Demouth, and Song Han. 2023. Smoothquant:622
Accurate and efficient post-training quantization for623
large language models. In International Conference624
on Machine Learning, pages 38087–38099. PMLR.625

Xiaozhe Yao and Ana Klimovic. 2023. Deltazip: Multi-626
tenant language model serving via delta compression.627
arXiv preprint arXiv:2312.05215.628

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin629
Li. 2023a. Language models are super mario: Ab-630
sorbing abilities from homologous models as a free631
lunch. arXiv preprint arXiv:2311.03099.632

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 633
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo 634
Li, Adrian Weller, and Weiyang Liu. 2023b. Meta- 635
math: Bootstrap your own mathematical questions 636
for large language models. 637

Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu 638
Sun. 2022. {PetS}: A unified framework for 639
{Parameter-Efficient} transformers serving. In 2022 640
USENIX Annual Technical Conference (USENIX 641
ATC 22), pages 489–504. 642

10

http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284

	Introduction
	Related Work
	Low-Rank Adaptation of Large Language Models
	Model Compression of Large Language Models

	Method
	Preliminaries
	Balanced Intermediate Results
	Overview of DeltaDQ
	Group-wise Balanced Dropout
	Delta Quantization
	Deployment

	Experiment
	Setup
	Comparison with Baseline
	Analysis

	Conclusion

