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Abstract

Large language models have demonstrated
remarkable success across a wide range of
domains, with supervised fine-tuning being
widely adapted to make them more suitable
for real-world scenarios. Given the diversity of
downstream tasks and varying demands, effi-
ciently deploying multiple full-parameter fine-
tuned models presents a significant challenge.
To address this, we analyze Balanced Inter-
mediate Dropout, a distribution-related phe-
nomenon, whereby the matrix-computed inter-
mediate results for the delta weight of each
fine-tuned model have extremely small vari-
ance and min-max range. Leveraging this
phenomenon, we propose a novel distribution-
driven delta compression framework DeltaDQ,
which employs Group-wise Balanced Dropout
and Delta Quantization to efficiently com-
press the delta weight. Group-wise Balanced
Dropout achieves a favorable trade-off with
accuracy and performance, ensuring an N:M
sparsity pattern. Delta Quantization further
compresses the delta weight based on distri-
bution characteristics. Experimental results
show that the accuracy of our framework on
WizardMath-7B,13B at 96.875% compress rate
is improved by 4.47 and 4.70 compared with
baseline, and we even improve the accuracy
by 1.83 and 0.61 compared with the original
model on WizardCoder-13B,34B.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Touvron et al., 2023) have achieved unprece-
dented advances in recent years, and to be able
to utilize LLMs efficiently, most researchers and
users have adopted the Supervised Fine-Tuning
(SFT) (Ouyang et al., 2022) to emerge the capa-
bilities of LLMs for a variety of different down-
stream tasks. SFT enables LLMs to achieve better
quality in mathematical reasoning, code generation,
and other tasks. Meanwhile, despite the existence
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Figure 1: Overview of delta compression

of many Parameter Efficient Fine-Tuning (PEFT)
(Ding et al., 2022) methods such as LoRA (Hu
et al., 2021), full-parameter fine-tuning models still
have higher accuracy under many complex down-
stream tasks (Chen et al., 2022).

However, how to deploy multiple full-parameter
fine-tuning models efficiently in the inference stage
becomes a new challenge. One difficulty is the
large number of fine-tuned models due to the nu-
merous downstream tasks in real-world scenarios.
Another is the great variation of requests from dif-
ferent models, which leads to substantial resource
demand and low utilization if all models are de-
ployed simultaneously. Conversely, when the mod-
els are loaded according to the request demand, the
duration of loading will be long due to the enor-
mous number of parameters of the models, which
leads to a sharp increase in the total request latency.

The recent study DELTAZIP (Yao and Klimovic,
2023) highlights the efficacy of delta compression,
a novel technique that diverges from conventional
methods. As shown in Figure 1, instead of com-
pressing the entire fine-tuned model, delta compres-
sion targets the model-specific delta weight, offer-
ing a more focused and potentially efficient com-
pression strategy. Although the memory require-
ment of n homologous fine-tuned models changes
from the original p * n to 1 4+ p * n for the same
compress rate p, compressing the delta weight al-



lows for a higher compress rate p compared to the
original fine-tuned weight, resulting in an overall
reduction in memory requirement. Nevertheless,
since DELTAZIP uses SparseGPT (Frantar and Al-
istarh, 2023) to compress the delta weight, it does
not fully utilize the properties of delta weight, re-
sulting in a significant loss of accuracy at high
compress rates. DARE (Yu et al., 2023a) discover
that most of the parameters of delta weight can be
randomly dropout (Srivastava et al., 2014), but the
compressed delta weight is unstructured, leading
to unfriendly deployment.

To address the above issues and achieve efficient
deployment of multiple full-parameter fine-tuning
models, we propose a novel distribution-driven
delta compression framework DeltaDQ. We ob-
serve that the intermediate results of delta weight
during matrix computation have extremely small
variance and min-max range distribution proper-
ties, which we call Balanced Intermediate Results.
Taking advantage of this phenomenon, we design
Group-wise Balanced Dropout, which groups the
elements of each row of delta weight with the size
of M, randomly retains N elements, and dropout
the rest of the elements, which maintains accuracy
while avoids performance degradation by utiliz-
ing the N:M sparsity pattern (Mishra et al., 2021).
We also incorporate the distributional properties
of delta weight and employ Delta Quantization to
further quantize the delta weight and improve the
compress rate. DeltaDQ achieves a compress rate
of 96.875% with little or no accuracy loss for Wiz-
ardMath (Luo et al., 2023a), WizardCoder (Luo
et al., 2023b), and MetaMath (Yu et al., 2023b).

Our main contributions are as follows:

* We have discovered Balanced Intermediate
Results, where delta weight has better com-
pressibility with extremely small variance and
min-max range during matrix computation.

* We propose a novel distribution-driven delta
compression framework, DeltaDQ, which
mainly consists of Group-wise Balanced
Dropout and Delta Quantization to maximize
the compress rate while maintaining accuracy
and performance.

» Experimental results show that our frame-
work can achieve a compress rate of 96.875%,
and specifically the accuracy on WizardMath-
7B,13B is improved by 4.47 and 4.70 com-
pared to baseline, respectively. While on

WizardCoder-13B,34B we even improve the
accuracy by 1.83 and 0.61 compared to the
original model.

2 Related Work

2.1 Low-Rank Adaptation of Large Language
Models

To reduce the resource requirement and cost of
SFT, many PEFT methods have appeared, the most
representative of which is the Low-Rank Adapta-
tion (LoRA). LoRA (Hu et al., 2021) speeds up
computation and reduces resource requirements by
updating only low-rank weights. QLora (Dettmers
et al., 2023) proposes NF4 quantization to quan-
tize low-rank weights, which further reduces re-
source requirements. For efficiently serving thou-
sands of lora adapters, there are many multi-tenant
lora serving work such as Pets (Zhou et al., 2022),
Punica (Chen et al., 2023), and S-Lora (Sheng et al.,
2023) that enhance the inference performance. De-
spite PEFT having substantially reduced the cost
of SFT, their accuracy still trails behind that of full-
parameter fine-tuning methods on complex tasks
(Chen et al., 2022). In this work, we focus on
deploying the full-parameter fine-tuning model.

2.2 Model Compression of Large Language
Models

Many model compression efforts have also
emerged to reduce the deployment cost of LLMs.
SparseGPT (Frantar and Alistarh, 2023) and Wanda
(Sun et al., 2023) compress models by pruning and
removing unimportant parameters. Methods like
Smoothquant (Xiao et al., 2023), GPTQ (Frantar
et al., 2022), LLM.int8() (Dettmers et al., 2022),
and AWQ (Lin et al., 2023b) decrease the resource
demands by quantizing the model’s representation
to a lower bit. In addition to these traditional model
compression methods, delta compression shows
excellent potential for compressing multiple full-
parameter fine-tuning models. DELTAZIP (Yao
and Klimovic, 2023) uses SparseGPT to compress
the delta weight and builds an inference system,
while DARE (Yu et al., 2023a) realizes a model
merging method with higher accuracy by randomly
dropout the delta weight. However, the former
methods experience significant accuracy loss at
high compress rates, while the latter is tailored for
model merging scenarios where the delta weight
eventually merges back into the original weights,
leading to unstructured delta weight.



aproj - layerl aproj - layer31

down - layerl down - layer31

25000 Finet Model

50000

20000
40000
§ 30000
20000

2000 10000

20000

70000

40000 60000

50000
30000

2 40000
30000
20000

10000

10000

5 4 3 2 [ETI

7 s 4 3
Log10 of absolute value

7 6 s
Log10 of absolute value

aproj - layerl qproj - layer31

(a) Variance

4 2

2 -u -1 6
Log10 of absolute value

R )
Log10 of absolute value

down - layerl down - layer31

Finetuned Model 40000
25000 Base Model

35000

20000 30000

25000
5 15000 ?
g 2 20000

10000 15000

10000
5000
5000

§ 15000 §

30000 e as000

25000 30000

25000
20000

£ 20000
15000

10000
10000

5000
5000

] 35 30 -25 -20 -15 -l0 -05 00 05
lue

2 1
Log10 of absolute value Log10 of absolute val

4 3 -2 1 0 1 0
Log10 of absolute value Log10 of absolute value

(b) Min-Max Range

Figure 2: Comparison of the variance and min-max range distribution of the intermediate results of the delta weight,
fine-tuned model, and base model for each output element matrix computation

3 Method

3.1 Preliminaries

Delta Compression. Given n full-parameter fine-
tuning models { My, Mo, ..., M, }, which are fine-
tuned on the homologous base model, such as
Llama. We can split the weights of each model
into two parts, the weights of base model Wy and
the delta weight AW;, in the following way:

Wi =Wo + AW, . ey

With the delta weight AW; obtained in the above
way, we transform the compressed target into delta
weights AW; which is called delta compression.
Layer-Wise Compression. In model compression,
the whole optimization problem is usually trans-
formed into a layer-by-layer subproblem. Assume
that the weights of [-th layer of model M; is Wll
and the compressed weights are Wil, the optimiza-
tion objective of model compression is to minimize
the layer-wise Lo-loss, defined as L4y e

T ~ T
Liyer = || XIW/ = XIWEH 5, @

where X! is the inputs of the [-th layer.

3.2 Balanced Intermediate Results

For a better understanding of the characteristics
of delta compression, further analysis of element-
wise intermediate results of linear layers has been

performed. Assuming VVZ-Z, VAVll € Rhxk Xil €
RF*% and the outputs A!, AL € RU1%492 we can
transform L, ., further:

T ~ T
Elayer = HXZIVVZZ - leWzl H% 3)
= |14} - A}l[3
d1,dz
l ~ !
= Z (ap,q’i_ap,q’z')Q )
p=1,q=1

where ay 4|, G, 4|} are the elements on the outputs
Al and Al locations (p, q) before and after com-
pression:

€all

I _
Apqli = Wp,0T0,q + - + WpkThyg

“)

and if we use the pruning method to compress the
model, setting mask 1, , ..., Mg, 11, € {1}* and
Migyy ooy Myt ky € {0}F2, there are:

€stay

dp,qu = Wp,s1Ts1,qg T -+ Wp,sy ks Tsy+hi g
)
As shown in Figure 2, we find that each element
Aay 4|t of the delta weight outputs X, fAWiZT has
the following two properties compared to the origi-
nal outputs X! WilT:
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e Small Variance: The intermediate results
!
Awp 0x0,q, ..., Awp Tk g Of Aayp4|; have a
small variance between them;

* Narrow Min-Max Range: The intermediate
results Awp 0o q, ..., Awp ;Tg g Of Aanq\é
have a very small range between the maxi-
mum and minimum values.

We call the above phenomenon Balanced Interme-
diate Results, which explains that the distribution
smoothing property of delta weight allows for bet-
ter compressibility compared to the original fine-
tuned weights.

3.3 Overview of DeltaDQ

Based on the above observation, we propose a
novel distribution-driven delta compression frame-
work DeltaDQ, which is shown in Figure 3. Firstly,
the weights of the fine-tuned model are split into
Wy and AW;. Leveraging Balanced Intermediate
Results phenomenon, we introduce a simple-yet-
effective method Group-wise Balanced Dropout
to prune the delta weight, striking a favored trade-
off between compress rate, accuracy, and perfor-
mance. In addition, we utilize Delta Quantization
to enhance the compress rate further. For the final
deployment phase, we apply an independent com-
putation strategy, enabling the deployment of as
many fine-tuned models as possible.

3.4 Group-wise Balanced Dropout

Exploiting the distributional properties of Balanced
Intermediate Results, we can randomly drop some

of the weights according to the dimension of the
matrix computation, i.e., the row dimension of the
weights, then rescale the remaining weights, called
Balanced Dropout. Through the above method,
for any element Aanq\é, we can approximate such
that Aay, 4| before compression and Ady, 4|! after
compression are equal, such that Aay, |} — Ad, 4|k
equals 0, which roughly makes L;qyer = 0.

However, since the delta weight is unstructured
after dropping in this way, it leads to a degradation
of the deployment performance. The traditional
structured approach drops all on the dimension
leading to L;4yer # 0 certainly. Modern GPUs are
optimized for the N:M sparsity pattern, enabling
them to deliver superior performance with mod-
els compressed accordingly. We can simply add
N:M constraints to the original Balanced Dropout
to Group-wise Balanced Dropout, this is done by
adding AW} € R41*% for the {-th layer:

1. N:-M Drop: In the row dimension, m con-
secutive elements are grouped into sets, from
which n elements are randomly selected and
the remaining m — n elements are dropped;

2. Rescale: Multiply by **
elements of each group.

for the remaining n

The original whole dimension dropout is sim-
ilar to simple random sampling with 7} distinct
schemes, whereas Group-wise Balanced Dropout
resembles grouped sampling, featuring 75 distinct
schemes:

k!

= Ok k) = ek — Ky )7

(6)



Ty = C(m, % «m)m (7)

Although T3 offers a substantially larger solution
set than 75, the model weights’ dimensions, com-
monly exceeding 1000, render the number of 75
solutions adequate to maintain the £y, = 0 as-
sumption with reasonable accuracy.
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Figure 4: Distribution of weights before and after quan-
tization

3.5 Delta Quantization

While the Group-wise Balanced Dropout enables
performance to be maintained while reducing mem-
ory, M is usually not larger than 32 due to the N:M
sparsity pattern limited by the design of current
GPUs to avoid the bank conflict issue (Lin et al.,
2023a), which limits the maximum compress rate
to 96.875% (1:32). Fortunately, according to our
insights, the delta weight has the property of being
more tightly distributed with fewer outliers. This
distributional property allows us to further com-
press the delta weight using quantization, called
Delta Quantization.

To avoid inference speed degradation, we use
the uniform quantization approach and min-max
method to statistically obtain the quantization pa-
rameters:

X
Xg = Q(Xp) = clamp(0,2" [ 1)) . (®)
max(|Xg|)
e ©
I, <l
clamp(l,u,z) =<z, [ <xz<u , (10)
U, T>U

where X denotes the original float value, X rep-
resents a quantized k-bit integer. [ and u represent
the lower and upper bounds of the quantization
range, respectively. | -] rounds to the nearest inte-
ger. S is the scaling factor.

Quantizing the weights AW, to a lower bit repre-
sentation can substantially decrease memory usage
and bandwidth requirements, thereby accelerating
computational speed. Figure 4 illustrates that the
weight distribution remains closely aligned with
the original distribution following quantization.

3.6 Deployment

In the deployment phase, we utilize the DELTAZIP
framework to strategically segregate the storage of
the base model weights, Wy, and the compressed
delta weight, AW;. Specifically, Wy is maintained
in the GPUs memory for quick access, while AW,
which are significantly compressed relative to their
original size, are stored on a persistent storage so-
lution, such as a hard disk, which offers more ex-
pansive storage capabilities. This structure allows
for efficient retrieval of AWi from the hard disk to
the GPUs memory on an as-needed basis, triggered
by incoming computational requests.

Computation processes are conducted in parallel,
with the base model weights being processed simul-
taneously alongside the associated delta weight. Af-
ter the computation within each linear layer is com-
plete, the outputs are meticulously synchronized
to ensure that the final outcome integrates both the
foundational computations from the base model
and the specific adjustments encoded in the delta
weight. This method ensures a streamlined com-
putation workflow that is both memory-efficient
and capable of handling dynamic computational
demands.

Fine-tuned Model Base Model
WizardMath-7B Llama2-7B
WizardMath-13B Llama2-13B
WizardMath-70B Llama2-70B

WizardCoder-7B
WizardCoder-13B
WizardCoder-34B

CodeLlama-7B
CodeLlama-13B
CodeLlama-34B

MetaMath-7B
MetaMath-13B

Llama2-7B
Llama2-13B

Table 1: Detailed information on the fine-tuned models
selected for the evaluation, including parameter scales
and their corresponding base models.



Method Structured Quantization Co;n [;ress WizardMath WizardCoder

ate 7B 13B 70B 7B 13B 34B
Dense v X 0% 55.49 63.83 81.80 55.48 64.02 73.17
Magnitude X X 50% 52.00 65.04 7429 4695 6341 69.51
DELTAZIP X X 50% 53.60 64.59 81.65 53.05 62.80 71.95
DARE X X 50% 53.67 6436 80.89 5731 62.80 73.17
DeltaDQ v X 50% 53.14 63.92 81.65 58.32 6524 75.00
Magnitude X X 75% 4571 6171 442 1036 12.19 35.36
DELTAZIP X X 75% 50.87 62.17 81.96 5549 64.63 6829
DARE X X 75% 51.70 63.52 8021 57.92 6158 73.17
DeltaDQ v X 75% 5322 64.51 8195 5548 6524 74.39
Magnitude X X 87.5% 3237 5599 3047 670 243  0.00
DELTAZIP X X 87.5%  46.63 59.29 80.82 42.68 59.15 69.51
DARE X X 87.5%  50.11 63.07 8028 56.70 62.19 71.95
DeltaDQ v X 87.5%  53.14 63.76 80.74 56.70 6524 172.56
Magnitude X X 96.875% 227 30.70 47.83 0.00 0.00 0.00
DELTAZIP X v 96.875% 46.47 58.83 80.82 3841 53.05 68.29
DARE X X 96.875% 46.09 58.75 79.90 53.65 6524 71.34
DeltaDQ v v 96.875% 50.94 63.53 80.74 53.68 65.85 73.78

Table 2: Accuracy comparison of WizardMath and WizardCoder at various compress rates, with bold highlighting
to indicate the top-performing method for each case. "Structured" represents whether the weights are structured
after compression; "Quantization" indicates whether quantization is utilized; "Dense" denotes the original model.

4 Experiment

4.1 Setup

Baseline. We compare DeltaDQ with three prior
compression methods. Magnitude (Han et al.,
2015) is a classical numerical magnitude-based
pruning method and strong baseline. DELTAZIP
(Yao and Klimovic, 2023) is the current opti-
mal delta compression framework. And DARE
(Yu et al., 2023a) randomly dropout in the entire
weights. DeltaDQ and all three methods compress
for the delta weight.

Models, Datasets and Evaluation. We evaluate
three types of fine-tuned models: WizardMath (Luo
et al., 2023a), WizardCoder (Luo et al., 2023b), and
MetaMath (Yu et al., 2023b). We choose three pa-
rameter sizes for the first two models and two for
MetaMath. We exclude MetaMath-70B because
it uses LoRA fine-tuning, while we focus on com-
pressing full-parameter fine-tuning models. The
detailed information is shown in Table 1. Our eval-
uation primarily uses two datasets: GSMS8k (Cobbe
et al., 2021) for assessing WizardMath and Meta-
Math, and HumanEval (Chen et al., 2021) for Wiz-
ardCoder. The main metric we look at is the ac-

curacy of these datasets. We evaluate the impact
of various compression techniques at four distinct
rates: 50%, 75%, 87.5%, and 96.875%
Implementation Details. DeltaDQ is built with
PyTorch (Paszke et al., 2017) and utilizes models
and datasets from Huggingface Transformers (Wolf
et al., 2019), with accuracy assessments conducted
through the vLLM framework (Kwon et al., 2023).
Other methods use open-source implementations
to measure accuracy. All our experiments are con-
ducted on 8 NVIDIA V100 GPUs with 32G of
memory and 8 NVIDIA A100 GPUs with 80G of
memory.

4.2 Comparison with Baseline

As shown in Table 2, our framework achieves bet-
ter accuracy for WizardMath and WizardCoder
models compared to the remaining there meth-
ods in most cases. Our framework, excluding the
WizardMath-70B model, attains top accuracy at
87.5% and 96.875% compress rates, with better
GPUs efficiency than the former due to the charac-
teristics of its structured compression. Especially,
at a 96.875% compress rate, our framework ex-
ceeds the state-of-the-art accuracy for WizardMath-
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Figure 5: Accuracy comparison of Group-wise Balanced Dropout components across various compress rates.

Method Compress Rate w
7B 13B
Dense 0% 66.79 71.03
Magnitude 50% 65.73 71.03
DELTAZIP 50% 65.88 71.49
DARE 50% 66.11 70.96
DeltaDQ 50% 66.41 71.56
Magnitude 75% 61.10 71.03
DELTAZIP 75% 65.13  71.87
DARE 75% 67.09 71.94
DeltaDQ 75% 65.80 71.11
Magnitude 87.5% 52.69 64.67
DELTAZIP 87.5% 61.26 69.07
DAREDARE 87.5% 65.88 69.74
DeltaDQ 87.5% 65.20 70.58
Magnitude 96.875% 13.57 42.30
DELTAZIP 96.875% 60.20 68.08
DARE 96.875% 53.29 60.80
DeltaDQ 96.875% 64.67 68.53

Table 3: Accuracy of MetaMath models at various com-
press rates, with the optimal method denoted in bold.

7B and 13B models by 4.47 and 4.70, respectively,
and outperforms the original WizardCoder-13B and
34B models by 1.83 and 0.61. Table 3 illustrates
that, in most cases, DeltaDQ consistently achieves
optimal accuracy with the MetaMath model. The
comparison results indicate that DeltaDQ is effec-
tive and broadly applicable in balancing trade-offs
between compress rate, accuracy, and performance.

4.3 Analysis

Evaluation of Group-wise Balanced Dropout.
We conduct a detailed analysis of the individual
effects exerted by the components within Group-
wise Balanced Dropout, as illustrated in Figure 5.

N:M 2:4 4:8 8:16 16:32
Acc 51.32 53.07 53.14 52.38
N:M 1:4 2:8 4:16 8:32

Acc 51.93 49.35 53.22 52.46
N:M 1:8 2:16 4:32 8:64

Acc 50.18 52.99 53.14 50.49
N:M 1:16 2:32 4:64 8:128
Acc 47.3 4791 48.21 49.96

Table 4: Accuracy comparison of WizardMath-7B
model across various N:M sparsity patterns.

N:M 2:4 4:8 8:16 16:32
Acc 54.87 56.09 54.87 58.53
N:M 1:4 2:8 4:16 8:32

Acc 54.87 55.48 54.87 54.26
N:M 1:8 2:16 4:32 8:64

Acc 56.70 56.09 54.87 55.48
N:M 1:16 2:32 4:64 8:128
Acc 53.65 56.09 56.09 58.53

Table 5: Accuracy comparison of WizardCoder-7B
model across various N:M sparsity patterns.

N:M 2:4 4:8 8:16 16:32
Acc 65.65 66.33 66.26 66.41
N:M 1:4 2:8 4:16 8:32

Acc 65.35 65.65 65.80 65.57
N:M 1:8 2:16 4:32 8:64

Acc 65.20 64.97 64.89 65.27
N:M 1:16 2:32 4:64 8:128
Acc 64.51 61.94 62.24 63.83

Table 6: Accuracy comparison of MetaMath-7B model
across various N:M sparsity patterns.



Our findings indicate that the Rescale component
is critical for the Group-wise Balanced Dropout.
Omitting Rescale leads to a drastic drop in model
accuracy, with scores plunging to zero at 93.75%
and 96.875% compress rates. This significant de-
crease can be primarily attributed to the ability of
the Rescale operation to facilitate an approxima-
tion Ljqye, close to zero under delta compression.
Conversely, the conventional N:M Sparse approach
fails to accommodate the specialized distribution
characteristics of the delta weight, often culminat-
ing in a substantial decline in accuracy. Combin-
ing N:M Drop and Rescale, Group-wise Balanced
Dropout achieves superior accuracy.

Our analysis of accuracy variations for different
N:M sparsity patterns is presented in Tables 4, 5,
and 6. Given the GPUs bank conflict constraints,
we limit M to a maximum of 32 for practical appli-
cations. However, for this evaluation, we allow a
larger M to explore its potential impact. The experi-
mental results reveal that at the same compress rate,
varying N:M sparsity patterns impact accuracy. For
example, the WizardMath-7B model at a 75% com-
press rate demonstrates that the 4:16 pattern yields
an accuracy improvement of 3.87 over the 2:8 pat-
tern. Moreover, there is no obvious relationship
between the accuracy and the N:M sparsity pattern
and a larger M does not necessarily result in higher
accuracy.

Sparsity 93.75%

= w/o Quantization
60 Quantization

Sparsity 96.875%

== w/o Quantization
Quantization

Accuracy (%)

w
S

Accuracy (%)

0 WizardMath-7B WizardCoder-78 MetaMath-7B 0 WizardMath-7B WizardCoder-78 MetaMath-7B

Figure 6: The impact of Delta Quantization on accuracy.

Evaluation of Delta Quantization. Our analysis
investigates the impact of Delta Quantization on
model accuracy. As reflected in Figure 6, imple-
menting Delta Quantization post Group-wise Bal-
anced Dropout enhances model accuracy. Specif-
ically, at a 93.75% compress rate, this approach
boosts accuracy by 3.49 for WizardMath-7B and
by 1.06 for MetaMath-7B relative to their indi-
vidual applications. Moreover, at a higher com-
press rate of 96.875%, the accuracy enhancements
are notably pronounced, with WizardMath-7B and
MetaMath-7B showing improvements of 5.23 and
24.72, respectively. Although WizardCoder-7B has

a slight accuracy degradation using quantization at
both compress rates, greater compress rates can be
achieved due to the orthogonality of Delta Quan-
tization and Group-wise Balanced Dropout. The
evaluation results demonstrate that Delta Quanti-
zation is effective in substantially enhancing the
compress rate while still preserving both the accu-
racy and performance of the model.

2
; Question: Is there a meaning for Christmas wreaths?
0%

& Compressed Model

oS
Cﬂg: Original Model
S0

placed on doors or windows as
a decoration during the holiday
season to bring joy and warmth to
homes. materials.

used as decorations during
the holiday season and can be found
in various shapes, sizes, and

Figure 7: Comparing responses of the WizardLM-7B
model before and after DeltaDQ.

Case Study. We additionally evaluate the change
in response of WizardLM-7B, a chat model based
on Llama fine-tuning, before and after DeltaDQ.
As seen in Figure 7, the responses generated by the
model before and after applying DeltaDQ exhibit a
high degree of similarity for the identical question,
even at a high compress rate of 96.875%. This
illustrates the generalization of our framework to
different types of fine-tuned models and its non-
awareness to practical users.

5 Conclusion

In this paper, we introduce DeltaDQ, an innova-
tive framework designed for delta compression.
DeltaDQ is primarily composed of two cutting-
edge techniques: Group-wise Balanced Dropout
and Delta Quantization. Group-wise Balanced
Dropout leverages the inherent properties of delta
weights to selectively dropout weights in a stochas-
tic manner, while Delta Quantization applies addi-
tional compression to the compressed weights. Im-
pressively, our framework manages to accomplish
lossless compression for the majority of models at
an astounding compress rate of 96.875%.

Limitations

The effectiveness of deploying our framework in
a real-world setting is dependent on the current
state of N:M sparsity software tools and the level



of support for such sparsity provided by GPUs
hardware. Despite the potential benefits of our
framework, the actual deployment performance is
currently constrained by the absence of optimized
libraries tailored for accelerating operations with
low-bit N:M sparse weights. These specialized
libraries would be necessary to fully exploit the
efficiency gains promised by our framework, as
they would enable faster computation and memory
access patterns suited to the sparse structure of the
weights.

Ethical Impact

Our framework’s compression may lead to varia-
tions in the model’s outputs, as the process can
modify the exact values of the model weights, po-
tentially influencing the inference results. However,
the framework is optimized to minimize the impact
on performance, striving to preserve the quality and
consistency of the outputs.
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