
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFUSION GUIDANCE IS A CONTROLLABLE
POLICY IMPROVEMENT OPERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

At the core of reinforcement learning is the idea of learning beyond the perfor-
mance in the data. However, scaling such systems has proven notoriously tricky. In
contrast, techniques from generative modeling have shown to be remarkably scal-
able and are simple to train. In this work, we combine these strengths, by deriving
a direct relation between policy improvement and guidance of diffusion models.
The resulting framework, CFGRL, is a policy improvement operator that is trained
with the simplicity of supervised learning, yet is more effective than typically-used
weighted policy extraction strategies. On offline RL tasks, we observe a reliable
trend—increased guidance weighting leads to increased performance. Additionally,
the CFGRL framework can be adapted to “directly” extract policies from offline
data without running a full end-to-end RL algorithm, allowing us to generalize
simple supervised methods (e.g. goal-conditioned behavior cloning) to further pri-
oritize optimality, gaining performance across the board without additional cost.

1 INTRODUCTION

Reinforcement learning (RL) provides a powerful framework for autonomous agents to attain strong
performance by directly optimizing for task rewards. However, scaling up RL algorithms has proven
notoriously challenging, particularly when using off-policy datasets. In contrast, modern generative
modeling techniques have proven remarkably scalable, and have been used for related problems such
as behavioral cloning (BC) (Janner et al., 2022; Black et al., 2024a; Chi et al., 2023). Can we leverage
expressive generative modeling tools to derive simple, scalable RL techniques?

At the heart of RL is the idea of optimizing beyond the performance shown in the data. This
is especially important when training agents from offline data that may have been collected by
an exploratory or otherwise suboptimal policy. On one end of the spectrum, behavioral cloning
methods are simple and can leverage stable generative modeling tools like diffusion (Ho et al., 2020;
Lipman et al., 2024b) and flow-matching, but are only as optimal as the data. On the other end,
iterative temporal difference techniques are in principle more optimal, but in practice can suffer from
hyperparameter sensitivity and instability (Park et al., 2024; Kumar et al., 2020; Fujimoto et al., 2018)
that have made it challenging to scale to larger tasks.

In this work, we combine the strengths of both settings by developing a framework which is trained
with the simplicity of behavioral cloning, yet can further improve on the data behaviors. We first
define policies as products of two factors – a prior reference policy, and an “optimality” distribution.
When the optimality distribution is proportional to a monotonically increasing function of advantage,
we prove that the resulting product will be an improvement over the prior.

The key insight is that we can sample from this product distribution via techniques from diffusion
modeling, and we can do so in a straightforward and controllable way. Rather than optimizing
an optimality predictor, we instead learn an equivalent optimality-conditioned policy, as done in
classifier-free guidance (Ho & Salimans, 2022). The prior and conditional factors can then by
dynamically combined during sampling, allowing for a degree of policy improvement that can be
controlled during test time, without the need for retraining.

Our framework, which we refer to as CFGRL, provides a principled and powerful connection between
generative modeling and policy improvement. Diffusion and flow-matching models already represent
some of the most powerful approaches for imitation learning, but typically do not make use of
guidance (Black et al., 2024a; Chi et al., 2023). CFGRL bridges a connection between guidance and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

traditional RL objectives—in fact, under certain choices, guided sampling results in a distribution
that is equivalent to the solution of a KL-constrained policy improvement objective.

We experimentally show applications of CFGRL in two settings. In the first, CFGRL is used as the
policy extraction step of an end-to-end offline RL method, operating as a drop-in replacement for the
standard weighted regression strategy. CFGRL provides a consistent improvement over the baseline.
Scaling trends highlight how increasing the guidance term results in stronger policies beyond the point
where weighted regression collapses, demonstrating how CFGRL can make better use of learned
value functions.

In the second setting, we use the CFGRL framework to generalize goal-conditioned behavior cloning,
noting that CFGRL can be used to controllably extrapolate the policies defined by the offline data,
unlocking further performance gains without the need for additional training. CFGRL reliably
outperforms baselines across the board on state-based, visual, and hierarchical settings, at times
increasing success rates by a factor of two.

Our contributions are twofold. First, we propose a principled connection between diffusion model
guidance and policy improvement in reinforcement learning. Second, we develop a set of simple
practical algorithms that utilize the above connection, demonstrating reliably improvements both as
a policy improvement operator in an end-to-end RL algorithm, and as a standalone replacement for
naive goal-conditioned behavior cloning. We do not claim to provide a full end-to-end RL algorithm,
but rather a powerful tool in the algorithm designer’s toolbox.

2 RELATED WORK

Offline RL. Unlike standard RL, which involves exploring an environment, offline RL aims to learn
a reward-maximizing policy solely from a previously collected dataset. The key challenge is to
improve performance while preventing erroneous extrapolation when deviating too far from the
dataset. Previous works target this problem from the value learning (Kumar et al., 2020; Kostrikov
et al., 2022; Xu et al., 2023; Garg et al., 2023; An et al., 2021; Nikulin et al., 2023), and policy
extraction (Wu et al., 2019; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025b; Peng et al.,
2019; Nair et al., 2020; Chen et al., 2023; Hansen-Estruch et al., 2023) directions. Our work most
closely relates to weighted regression (Peng et al., 2019; Nair et al., 2020) and return-conditioned
behavioral cloning (Kumar et al., 2019; Chen et al., 2021; Yamagata et al., 2023) methods (of which
goal-conditioned hindsight relabeling (Andrychowicz et al., 2017; Ghosh et al., 2021; Emmons
et al., 2022; Eysenbach et al., 2022a) is a special case), due to their emphasis on simple supervised
objectives. However, we instead frame the tradeoff between regularization and policy improvement
in terms of guiding a diffusion model, providing a way to control this tradeoff during test time.

Diffusion and flow policies for RL. Previous works have proposed diverse ways to leverage the
expressivity of iterative generative models, such as diffusion (Sohl-Dickstein et al., 2015; Ho et al.,
2020) and flow models (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023),
to enhance the capabilities of RL policies. The main challenge with diffusion policy learning lies
in how to extract (Park et al., 2025b): a diffusion policy to maximize the learned Q-function. Prior
works propose strategies based on weighted regression (Lu et al., 2023; Kang et al., 2023; Ding et al.,
2024; Zhang et al., 2025), reparameterized gradients (Wang et al., 2023; He et al., 2023; Ding &
Jin, 2024; Ada et al., 2024; Zhang et al., 2024; Park et al., 2025b), rejection sampling (Chen et al.,
2023; Hansen-Estruch et al., 2023; He et al., 2024), and more (Yang et al., 2023; Kuba et al., 2023;
Mao et al., 2024; Chen et al., 2024b;a; Psenka et al., 2024; Chen et al., 2024c; Li et al., 2024; Mark
et al., 2024; Fang et al., 2025; Ren et al., 2025). Our method introduces classifier-free guidance
as a policy extraction mechanism. This has multiple benefits over previous approaches: unlike
reparameterized gradient-based methods, it does not require (potentially unstable) backpropagation
through time (Park et al., 2025b); unlike rejection sampling, it does not involve a costly sampling-
then-filtering procedure. Close in spirit are Janner et al. (2022) and Ajay et al. (2022), which similarly
utilize diffusion for decision making, however these methods are akin to world models as they operate
over state trajectories and not actions. Algorithmically, the closest work to ours is Kuba et al. (2023),
which also employs guidance over advantage-conditioned diffusion policies. Unlike this work, our
framework supports a range of optimality functions rather than only A = 0, and does not rely on
further rejection sampling. Additionally, we do not necessarily require an explicit value function to
perform policy improvement—in Section 6, we further improve a goal-conditioned BC policy without
additionally training value functions, whereas all aforementioned techniques would require doing so.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

We assume a Markov decision process with state space S, action space A, a transition function
p(s′ | s, a) : S × A → ∆(S), reward function r(s) : S → R, and initial state distribution
p(s0) ∈ ∆(S). We assume the state is fully observable. Our policy is a probability distribution over
actions π(a | s) : S → ∆(A) that together with the environment defines a distribution of state-action
trajectories τ = (s0, a0, s1, a1, . . .). The standard RL objective is to learn a parameterized policy πθ

that maximizes the expected sum of future discounted rewards along such trajectories:

J(πθ) = Eτ∼p(τ |πθ)

∑
t

γtr(st, at), (1)

where p(τ | πθ) is defined as p(s0)
∏∞

t=0 p(st+1 | st, at)πθ(at | st).
A policy improvement operator is an update from a reference policy π̂ to a new policy π such that
the RL objective above does not decrease: J(π̂) ≤ J(π). This concept is formalized via Vπ̂(s) and
Qπ̂(s, a), which denote the discounted expected future reward under the reference policy starting
from a given state or state-action pair, respectively (Sutton & Barto, 2005). The difference between
these terms is the advantage, Aπ̂(s, a) = Qπ̂(s, a)− Vπ̂(s). A classic result shows that any update
with non-negative advantage under the resulting state distribution, such that

E(s,a)∼pπ(s,a)[Aπ̂(s, a)] ≥ 0, (2)

with pπ(s, a) denoting the discounted state-action occupancy distribution, results in policy improve-
ment (Schulman et al., 2015). In practice, we require algorithms that operate over samples from a
previous reference policy. Therefore, practical algorithms will approximate the above condition under
the previous policy’s state distribution pπ̂(s), and aim to maximize:

J̃(π) = Es∼pπ̂(s)[Ea∼π(a|s)[Aπ̂(s, a)]]. (3)

Prior work has shown that, as long as the divergence between the reference and resulting policy
is bounded, the approximate objective in Equation (3) provides a bound on the true objective in
Equation (2), enabling monotonic incremental improvement (Schulman et al., 2015).

To account for this divergence, it is common to utilize trust-region methods during policy improve-
ment (Schulman et al., 2015; 2017). While various divergence measures have been considered (Sikchi
et al., 2024), a standard choice is to penalize the KL divergence between the reference and resulting
policy, resulting in the following KL-penalized RL objective as parameterized by a constant β:

J(πθ) = Eτ∼p(τ |πθ)

[∑
t

γtr(st, at)

]
− βEs∼pπ(s) [DKL(πθ(a | s) ∥ π̂(a | s))] . (4)

One strategy to optimize the above objective is via iteratively applying a policy gradient (Sutton
et al., 1999); however, such methods require on-policy samples and can have high variance. The
community has instead often relied on methods that resemble supervised learning, such as weighted
regression (Peters & Schaal, 2007; Peng et al., 2019). In the following sections, we introduce a
policy improvement strategy based on generative modeling that maintains the simplicity of supervised
learning, yet allows for controllable policy improvement.

4 DIFFUSION GUIDANCE IS A CONTROLLABLE POLICY IMPROVEMENT
OPERATOR

In this work, we establish a connection between classifier-free guidance in diffusion modeling
and policy improvement in RL. We use this relation to develop a simple framework, CFGRL,
which enables us to leverage stable diffusion training methods, while allowing the degree of policy
improvement to be controlled at test time, rather than having to be decided during training.

Product policies. We begin by parameterizing policies as a product of two factors—a reference
policy, and an optimality function f : R→ R, which is conditional on advantage:

π(a | s) ∝ π̂(a | s) f(A(s, a)). (5)

The motivation behind this factorization is to frame improved policies in terms of a probabilistic adjust-
ment to the current reference policy, building on the control-as-inference framework (Levine, 2018).
As we will show later, diffusion guidance is naturally suited to sampling from such distributions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Unconditional Policy Optimality Conditioned Policy Optimality Guided Policy
π̂(a | s) π̂(a | s, o) ∝ π̂(a | s) p(o | s, a) π̂(a | s) p(o | s, a)w

Figure 1: While conditioning on optimality can create a baseline level of improvement, policies can be fur-
ther improved by attenuating this conditioning. When p(o | s, a) is proportional to a monotonically increas-
ing function of advantage, then attenuation provably increases expected return, and this can be accomplished
naturally with diffusion guidnace.

We now show how product policies can be used as policy improvement operators. When f fulfills
certain common criteria, the resulting policy will provably be an improvement over the reference:
Remark 1 (Improvement of product policies). If f is a non-negative, monotonically increasing
function of Aπ̂(s, a), then the product π(a | s) ∝ π̂(a | s)f(A(s, a)) is an improvement over π̂(a | s).

We provide a formalization and proof of this claim in the Appendix (Theorem 1), which generalizes
previous results with bandits (Dayan & Hinton, 1997; Peters & Schaal, 2007) and exponentiated
advantages (Peng et al., 2019).

The above finding reveals a simple path towards policy improvement. If we can sample from a
properly weighted product policy, then the resulting policy will achieve a higher expected return then
the reference.

Crucially, we can control the degree of improvement by sampling from an attenuated optimality
function. To do so, we consider product policies where the optimality functions are exponentiated:
Remark 2 (Further improvement via attenuation). Let 0 ≤ w1 < w2 be real numbers, and
πwi
∝ π̂(a | s) f(A(s, a))wi for i = 1, 2. Then, πw2

is an improvement over πw1
.

The proof of the above theorem is again provided in the Appendix (Theorem 2). Of course, there is no
free lunch. While a higher exponent leads to an improved policy in terms of Aπ̂ , the resulting policy
is also further deviated from the reference. Thus, the empirical performance of an over-adjusted
policy may suffer due to a distribution shift.

This tradeoff between adhering to the reference policy and maximizing return can be understood via
the KL-regularized RL objective in Equation (4). Notably, the solutions to the mentioned objective
naturally form a set of product policies:
Remark 3 (KL-regularized reward-maximization results in product policies (Peng et al., 2019)).
The policies that maximize Equation (4) under a given KL-penalty β take the form of

π(a | s) ∝ π̂(a | s) exp(A(s, a))1/β . (6)

Equivalently, the β term can be folded into the exponent, e.g. π(a | s) ∝ π̂(a | s) exp(A(s, a)/β).
This condensed objective has been used in prior works (Peters & Schaal, 2007; Peng et al., 2019) to
directly learn π; however, in their methods the β hyperparameter must be specified ahead of time.
As shown in the next sections, we will instead develop a framework where the product factors are
represented independently, allowing their composition to be freely controlled during evaluation time.

4.1 COMPOSING FACTORS VIA DIFFUSION GUIDANCE

Having understood that product policies are a natural way to induce policy improvement, we can now
instantiate such policies using machinery from diffusion modeling. We start by casting the optimality
function as a binary random variable1 o ∈ {∅, 0, 1} whose likelihood is defined via f :

p(o | s, a) = f(A(s, a))/Z(s) (7)
1Slightly abusing notation, we abbreviate o = 1 as o when it is clear from context. o = ∅ represents an

unconditional case where o is not specified, i.e., the union of o = 0 and o = 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 CFGRL Training

while not converged do
Collect data, or use offline data.
(s, a) ∼ D, a0 ∼ N (0, I), t ∼ U(0, 1)
Label with optimality o ∈ {0, 1}.
If rand() < 0.1, set optimality o = ∅.
at ← (1− t) a0 + t a
θ ← ∇θ∥vθ(at, t, s, o)− (a− a0)∥2

end while

Algorithm 2 CFGRL Sampling

a ∼ N (0, I)
t← 0
for n ∈ [0, . . . , N − 1] do

v = (1− w) vθ(a, t, s,∅) + w vθ(a, t, s, o = 1)
a← a+ (n/N)v
t← t+ (n/N)

end for
return a

where Z(s) =
∫
f(A(s, a′))da′ is a state-dependent normalization factor. We will not require

estimating Z(s). The product policy from Equation (5) can now be equivalently defined as:
π(a | s) ∝ π̂(a | s) p(o | s, a). (8)

Recall that diffusion models implicitly model a distribution by learning its normalized score function,
i.e., the gradient of log-likelihood under that distribution (Song & Ermon, 2019). Score functions
have the useful property that for product distributions, they are additively composable. As such, the
score of the product policy above can be represented as the sum of two factors:

∇a log π(a | s) = ∇a log π̂(a | s) +∇a log p(o | s, a). (9)

Avoiding an explicit optimality predictor. In many cases, we would rather avoid explicitly learning
the p(o | s, a) distribution. For one thing, optimality must hold a valid probability distribution,
and calculating the normalization term Z(s) can be tricky. Secondly, explicitly backpropagating
through a neural network predictor may result in adversarial gradient attacks (Goodfellow et al.,
2015) especially at out-of-distribution actions (Kostrikov et al., 2022; Kumar et al., 2020). We also
note that if one wanted to learn an optimality predictor, it would need to remain accurate under the
support of partially-noised actions.

Instead, we can utilize an insight from classifier-free guidance (Ho & Salimans, 2022), and use Bayes’
rule to invert the optimality distribution into an optimality-conditioned policy score function:

∇a log π(a | s) = ∇a log π̂(a | s) + (∇a log π̂(a | s, o)−∇a log π̂(a | s)). (10)
With the above form, both factors can be unified into a single conditional policy. We can represent both
factors with the same neural network, and train via a straightforward diffusion modeling objective.

Guidance controls the attenuation of optimality. A key benefit of defining the product distribution
in terms of composable factors is that the ratio between these factors can be dynamically controlled.
Introducing a guidance weight w, the score function

∇a log π̂(a | s) + w (∇a log π̂(a | s, o)−∇a log π̂(a | s)) (11)
corresponds to the attenuated distribution

π(a | s) ∝ π̂(a | s) p(o | s, a)w, and equivalently π̂(a | s)f(A(s, a))w. (12)
Recall that in Remark 2, we showed that increasing w results in further policy improvement. This
implies a simple yet crucial relationship—by controlling the guidance weight during sampling, we
can sample from product policies that controllably improve on the reference policy (at the cost of
adherence to the prior). The tradeoff is a key hyperparameter to tune in offline RL (Park et al., 2024),
and often requires many sweeps. In contrast, with CFGRL, this sweep can be performed at test-time
over a single network, without the need for retraining.

4.2 TRAINING AND SAMPLING WITH CFGRL

We instantiate a single diffusion network to serve as both the conditional and unconditional policy.
For simplicity, we adopt the flow-matching framework for training. While flow networks predict
velocity rather than score, previous works have shown they retain similar properties in practice (Gao
et al., 2024; Lipman et al., 2024a). The policy is modeled by a velocity field vθ conditioned on a
partially-noised action at, along with a noise scale t, the current state s, as well as the previously
defined optimality variable o ∈ {∅, 0, 1}. This network is trained via the following loss function:

L(θ) = Es,a∼D

[
∥vθ(at, t, s, o)− (a− a0)∥2

]
where at = (1− t)a0 + ta, (13)

and where the noise scale t is sampled uniformly between [0, 1], and a0 ∼ N(0, 1) is Gaussian noise.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 3 5 10 30
AWR 1/β

100

200

300

Pe
rfo

rm
an

ce

walker-run (AWR)

1 3 5 10 30
CFG w

100

200

300
walker-run (CFGRL)

1 3 5 10 30
AWR 1/β

150

200

Pe
rfo

rm
an

ce

cheetah-run (AWR)

1 3 5 10 30
CFG w

150

200

cheetah-run (CFGRL)

Figure 3: CFGRL controls the tradeoff between reference adherence and optimality by adjusting the
guidance weighting, and does so better than AWR. Guidance addresses the same motivation behind tuning
the temperature in advantage-weighted regression, however, it can be tuned during test time rather than via
retraining, and empirically leads to a higher maximum performance.

Table 1: ExORL results.

Task AWR CFGRL

walker-stand 603 ±8 782 ±8

walker-walk 444 ±4 608 ±32

walker-run 247 ±10 282 ±6

quadruped-walk 776 ±15 762 ±25

quadruped-run 485 ±7 571 ±25

cheetah-run 168 ±7 216 ±15

cheetah-run-backward 146 ±8 262 ±26

jaco-reach-top-right 33 ±2 72 ±6

jaco-reach-top-left 30 ±8 46 ±6

Table 2: OGBench results.

Task AWR CFGRL

pointmaze-large-navigate 70 ±25 100 ±0

pointmaze-teleport-navigate 3 ±7 57 ±7

antmaze-large-navigate 50 ±9 20 ±9

antmaze-teleport-navigate 22 ±19 30 ±22

humanoidmaze-large-navigate 3 ±4 0 ±0

antsoccer-arena-navigate 7 ±0 20 ±5

cube-single-play 85 ±8 82 ±3

scene-play 18 ±3 17 ±9

puzzle-3x3-play 3 ±7 3 ±4

5 CFGRL IMPROVES OVER WEIGHTED POLICY EXTRACTION IN OFFLINE RL

A common approach to offline RL is to learn a state-action value function Qθ(s, a), and then extract
a policy from this value function via a regularized policy extraction method that stays close to the
behavior policy while maximize the value function. This regularization is critical to avoid out-of-
distribution actions for which the value function is likely to overestimate the value (Peng et al., 2019;
Kostrikov et al., 2022). Weighted regression methods are a particularly simple class of methods
for doing this, with advantage-weighted regression (AWR) or its variants being a common choice
in recent work (Peng et al., 2019; Nair et al., 2020; Wang et al., 2020). AWR is trained in a fully
supervised manner, and does not require querying the values of non-dataset actions, with the training
objective given by

JAWR(θ) = E(s,a)∼D [log πθ(a | s) exp(A(s, a)× (1/β))] , (14)

where A(s, a) = Q(s, a) − V (s) is calculated as the difference of learned Qθ(s, a) and Vθ(s)
networks, and β is a temperature hyperparameter.

However, a weakness of AWR is that the weightings can become peaked, such that much
of the data in training is not used effectively, resulting in a weak learning signal. This
phenomenon is shown in Figure 2 (left), which plots the magnitudes of per-element gradi-
ents within an AWR batch. Notably, the magnitudes are dominated by a few outlier state-
action pairs that hold particularly high weights. In this case, the rest of the batch is effec-
tively ignored, and AWR derives the gradient only from a small subset of the available data.

Element in Batch
0

500

1000

Lo
ss

M
ag

ni
tu

de

AWR Losses

Element in Batch
0

2

CFGRL Losses

Most samples
are ignored

Figure 2: Weighted regression methods result
in uneven gradient magnitudes within a batch.
This can limit the effective signal that each batch
provides. In contrast, CFGRL uses a simple condi-
tional diffusion modeling loss with even weighting.

We now show how we can instead utilize CFGRL to
alleviate this issue. Specifically, we will instantiate
CFGRL with a particularly simple optimality criteria:

o =

{
1 if A(s, a) ≥ 0

0 if A(s, a) < 0,
(15)

which nicely lends itself to Bayes’ inversion for Equa-
tion (10). Equivalently, we are assigning f = 1(A ≥
0) which is both non-negative and non-decreasing,
fulfilling the criteria of Remark 1.

The end-to-end procedure with CFGRL is simple.
Given an state-action sample (s, a) ∼ D, we label

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

that pair with o ∈ {0, 1} according the above criteria, utilizing our current value function. We then
train with the standard conditional diffusion-modeling loss as done in Section 4.2. Notably, there is no
weighting term used in training. As such, gradients within each batch remain reasonably distributed,
as shown in Figure 2 (right).

There is a suggestive similarity between the temperature hyperparameter in AWR and the guidance
weight in CFGRL. In fact, both these parameters play the same role—they control the tradeoff
between adherence to a reference policy and maximization of rewards. However, with AWR, the
temperature must be chosen beforehand and is folded into the optimization objective. CFGRL keeps
the prior policy and the optimality-conditioned policy separate, and only combines them during
sampling. Thus, this tradeoff can be adjusted without retraining when using CFGRL, making it easy
to find the best value.

Furthermore, we will see that the guidance term in CFGRL is empirically more effective than the
temperature of AWR. Note that while the absolute scale of w and (1/β) can vary, they have a
proportional relationship and share the same base case at w = (1/β) = 0, in which case the resulting
policy simply mimics the dataset policy. We examine the scaling of performance over different
guidance and temperature values in Figure 3. For AWR, performance saturates around a temperature
of (1/β) = 10. In contrast, guidance continues to improve beyond performance beyond this point,
displaying a longer-lasting trend.

Experimental comparison. We further establish the comparison between AWR and CFGRL on
9 tasks from the ExORL benchmark (Yarats et al., 2022), which contains data collected by an
exploratory agent, along with 9 single-task environments from the OGBench suite (Park et al., 2025a).
In all experiments, we use the same state-action value function trained via implicit Q-learning for
both methods (Kostrikov et al., 2022), which notably does not require a policy in the loop to learn and
is therefore independent of the extraction method that is used downstream. For AWR, we sweep over
1/β in the set of {1, 3, 10, 30}, and for CFGRL, we sweep over w ∈ {1, 1.25, 1.5, 2.0, 3.0}. Results
are presented in Tables 1 and 2, and are averaged over 4 seeds. On a strong majority of tasks, CFGRL
achieves a better final performance than AWR. This indicates that policy extraction with CFGRL,
which also corresponds to a simple generative modeling objective, is more effective than the widely
used AWR method.

6 CFGRL UNLOCKS HIDDEN GAINS IN GOAL-CONDITIONED BC

While the overall CFCRL framework is general, it is particularly appealing in the special-case of goal-
conditioned RL, where it is common to use a simple (though crude) approximation that bypasses the
need for a learned value estimator (Eysenbach et al., 2022a; Ghosh et al., 2021; Black et al., 2024b).
In such settings, the objective is to find a goal-conditioned policy π(a | s, g) : S × S → ∆(A) that
maximizes likelihood of reaching the goal:

J(π) = Eτ∼p(τ |π), g∼p(g)

[∑
t

γtδg(st)

]
, (16)

where p(g) ∈ ∆(S) is a goal distribution and reward is δg, i.e. the Dirac delta “function” at g.2
While in principle, we can optimize the above objective with a full RL procedure, an often-used
simplification is to perform goal-conditioned behavioral cloning (GCBC), which maximizes:

JGCBC(θ) = E(st,at)∼D, ∆∼Geom(1−γ)[log πθ(at | st, st+∆)], (17)

where Geom(1− γ) denotes the Geometric distribution with parameter 1− γ, and we often denote
st+∆ as g. This avoids the need to train a value function. GCBC can be seen as a special case of
conditional behavioral cloning methods that filter for actions that empirically reach a future goal.
While the GCBC objective above is simple, it does not converge to the optimal goal-reaching policy,
especially when the dataset is suboptimal (Eysenbach et al., 2022a; Ghugare et al., 2024)

Generalizing past naïve GCBC. Based on our CFGRL framework in Section 4, we now introduce
a method to further improve GCBC policies while still avoiding training value functions. The key
insight is that, since CFGRL enables one step of policy improvement over the base policy, applying

2This “function” is well-defined in a discrete state space, but requires a measure-theoretic formulation (Touati
& Ollivier, 2021) to be well-defined in a continuous state space, which we omit for simplicity.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

25

50

75
S

uc
ce

ss
R

at
e

pointmaze-large

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

20

40

60

antmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

10

20

humanoidmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

10

20

scene-play

Figure 4: CFGRL can extrapolate beyond the GCBC policy, unlocking further performance gains.
In fact, GCBC is implicitly a special case of the CFGRL policy where w = 1. By instead considering w > 1,
the resulting policy is an improvement over the original. We show that performance steadily increases with w on
a range of environments.

CFGRL with guidance on the goal g will produce a policy that is better than the standard GCBC
policy. While this policy is still not as optimal as the end-to-end GCRL solution (which in general
would require many steps of policy improvement), prior work has shown that even one step of policy
improvement can lead to significant performance gains in a range of RL settings (Brandfonbrener
et al., 2021; Eysenbach et al., 2022b). Indeed, our experiments will confirm that CFGRL enables a
significant increase in performance over standard GCBC.

We begin by noting that the GCBC policy that maximizes Equation (17) is given as follows (Eysenbach
et al., 2022b):

π(a | s, g) = π̂(a | s)pγ(g | s, a)
pγ(g | s) ∝ π̂(a | s) Qπ̂(s, a, g), (18)

where pγ denotes the distribution induced by the Geometric goal sampling procedure.

Next, we note that the second factor in Equation (18) satisfies the conditions of Remark 1 (i.e., a
bounded, non-negative, non-decreasing function in Aπ̂(s, a)).3 Thus, we can invoke Remark 2 to
achieve a policy improvement. Specifically, the resulting policy π(a | s) ∝ π̂(a | s) p(g | s, a)w
under any exponent w ≥ 1 will result in a policy improvement, and we can sample from the attenuated
second factor via guidance:

∇a log π̂(a | s) + w (∇a log π(a | s, g)−∇a log π̂(a | s)). (19)

The above CFGRL interpretation reveals a simple recipe for improving beyond the GCBC policy.
Specifically, naive GCBC results in a product policy that implicitly assumes a weighting of w = 1.
Guidance allows us to instead consider w > 1, leading to improved performance.

We emphasize the practical benefits of this setup—improvement can be gained for “free” relative to a
standard GCBC setup. The components of Equation (19) are simply the original goal-conditioned BC
policy π(a | s, g) along with an unconditional BC policy π̂(a | s). We do not require any additional
techniques such as training an explicit value function, or sampling further on-policy actions.

6.1 EXPERIMENTAL RESULTS

Tasks. We empirically verify effectiveness over 17 state-based and 7 pixel-based goal-conditioned
RL tasks from the OGBench task suite (Park et al., 2025a) (Figure 5). These tasks span a variety
of robotic navigation and manipulation domains, including whole-body humanoid control, maze
navigation, sequential object manipulation, and combinatorial puzzle solving. Among them, the tasks
prefixed with “visual-” require image-based control.

Methods. In this experiment, we consider four imitation learning baselines that do not involve
value learning (recall that CFGRL also does not train a value function): (1) BC, (2) flow BC (Chi
et al., 2023), (3) goal-conditioned BC (GCBC) (Ghosh et al., 2021), and (4) flow GCBC. BC
trains an (unconditional) behavioral cloning policy, and GCBC trains a goal-conditioned policy with
Equation (17). Flow BC and flow GCBC maximize the same objectives, but with flow policies (Chi
et al., 2023; Black et al., 2024a). In the CFGRL framework, flow BC corresponds to CFGRL with
w = 0 and flow GCBC corresponds to w = 1.

3Specifically, we set f as Qπ̂(s, a, g), which is a bounded, non-negative, non-decreasing function of
Aπ̂(s, a, g). This can also be understood as defining p(o | g, s, a) ∝ pγ(g | s, a), i.e., an action’s optimality is
proportional to the likelihood of reaching the goal in the discounted future.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Improving on GCBC. CFGRL consistently improves performance over GCBC across the board.
Numbers at or above the 95% of the best performance in each category are boldfaced, as in OGBench.

Flat Policies Hierarchical Policies

Task BC Flow BC GCBC Flow GCBC CFGRL HGCBC Flow HGCBC HCFGRL

pointmaze-medium-navigate 0 ±0 1 ±2 9 ±5 66 ±4 77 ±6 0 ±0 57 ±7 63 ±5

pointmaze-large-navigate 0 ±0 0 ±0 25 ±9 74 ±7 77 ±5 0 ±0 75 ±6 57 ±8

pointmaze-giant-navigate 0 ±0 0 ±0 2 ±2 4 ±2 30 ±10 0 ±0 6 ±5 18 ±8

pointmaze-teleport-navigate 0 ±0 0 ±1 24 ±7 46 ±4 41 ±8 6 ±5 37 ±10 38 ±13

antmaze-medium-navigate 13 ±2 15 ±6 25 ±8 42 ±9 53 ±12 45 ±7 67 ±8 90 ±5

antmaze-large-navigate 11 ±4 5 ±2 20 ±4 22 ±5 24 ±10 45 ±4 61 ±5 78 ±4

antmaze-giant-navigate 0 ±0 0 ±0 0 ±0 0 ±0 1 ±1 8 ±5 14 ±5 38 ±7

antmaze-teleport-navigate 4 ±2 3 ±2 19 ±5 24 ±7 35 ±9 35 ±6 38 ±5 50 ±5

humanoidmaze-medium-navigate 3 ±3 2 ±2 6 ±3 8 ±3 19 ±6 13 ±3 23 ±4 64 ±10

humanoidmaze-large-navigate 0 ±1 0 ±0 2 ±1 1 ±2 3 ±2 8 ±5 11 ±2 38 ±4

antsoccer-arena-navigate 2 ±2 4 ±1 4 ±3 10 ±5 15 ±6 8 ±4 16 ±5 37 ±5

antsoccer-medium-navigate 0 ±0 0 ±0 6 ±4 5 ±3 5 ±3 7 ±2 8 ±3 11 ±4

cube-single-play 4 ±2 7 ±5 6 ±2 8 ±2 11 ±5 12 ±3 26 ±5 46 ±6

cube-double-play 1 ±1 2 ±1 2 ±1 3 ±1 2 ±2 2 ±1 21 ±7 42 ±5

scene-play 5 ±2 5 ±3 4 ±3 15 ±5 19 ±4 7 ±2 14 ±4 18 ±5

puzzle-3x3-play 3 ±2 2 ±2 3 ±2 1 ±1 2 ±2 3 ±2 1 ±1 2 ±2

puzzle-4x4-play 0 ±0 0 ±1 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

visual-antmaze-medium-navigate 14 ±5 7 ±1 11 ±5 19 ±4 23 ±4 - - -
visual-antmaze-large-navigate 6 ±4 1 ±1 5 ±2 3 ±1 11 ±2 - - -
visual-cube-single-play 1 ±1 1 ±1 1 ±2 13 ±7 37 ±9 - - -
visual-cube-double-play 0 ±0 0 ±0 0 ±0 10 ±4 7 ±5 - - -
visual-scene-play 5 ±1 7 ±2 5 ±2 25 ±4 40 ±8 - - -
visual-puzzle-3x3-play 1 ±2 0 ±1 0 ±1 0 ±1 0 ±1 - - -
visual-puzzle-4x4-play 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 - - -

In addition to the five “flat” methods above, we also consider hierarchical behavioral cloning (Gupta
et al., 2019; Lynch et al., 2019) on state-based tasks, where we train both a high-level policy πh(ℓ |
s, g) : S × S → ∆(S) that outputs subgoals ℓ and a low-level policy πℓ(a | s, ℓ) : S × S → ∆(A)
that takes subgoals and outputs actions. In this setting, we can apply CFGRL to each level’s GCBC
objective to enhance the optimality of both policies. We call this variant hierarchical CFGRL
(HCFGRL). As baselines, we consider hierarchical GCBC Gupta et al. (2019); Lynch et al. (2019)
and flow hierarchical GCBC, which trains Gaussian and flow policies, respectively.

Results. Table 3 presents evaluation results over 8 seeds for state-based tasks and 4 seeds for pixel-
based tasks, denoting standard deviations after the ± symbols. Results show CFGRL consistently
outperforms all four baselines on most of the tasks, even with a single fixed value of the guidance
strength (w = 3). Notably, on some tasks (e.g., pointmaze-giant and visual-cube-single),
CFGRL achieves more than 3× the success of the strongest baseline. We emphasize that this
improvement is achieved simply by contrasting the prior and GCBC policies, without training a value
function. As in Section 5, we measure how performance varies with different values of guidance
weights w. We present the results on four tasks in Figure 4 (see Figure 6 for the full results), which
shows that the performance generally improves as w increases, as predicted by Remark 2.

7 DISCUSSION AND CONCLUSION

In this work, we introduced a principled connection between diffusion guidance and policy improve-
ment in RL. Using this connection, we derive a framework that combines the simplicity of generative
modeling objectives with the policy improvement capabilities of RL. We then instantiate this frame-
work as 1) a policy extraction method in offline RL when learning a value function, and 2) a “direct”
method of learning performant policies without a value function. We show that CFGRL improves
over the widely used AWR approach in the offline RL setting, and achieves a substantial improvement
over GCBC in the goal-conditioned setting, while maintaining the simplicity of these prior methods.

Limitations. Our method does not claim to replace full RL procedures—we assume a given value
function and do not make any prescriptions about how to train it. In our experiments, CFGRL takes
the place of prior supervised learning methods for policy extraction, maintaining their simplicity and
stability. However, more advanced policy extraction methods and online RL techniques, such as policy
gradients (Lillicrap et al., 2016; Schulman et al., 2017), could provide for stronger extrapolation. By
itself, CFGRL does not represent a state-of-the-art RL algorithm, but rather an additional tool in the
algorithm designer’s toolbox that can take the place of policy extraction methods such as AWR, as
well as a theoretical connection that we hope will inspire future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide our anonymized implementation and instructions at https://anonymous.4open.
science/r/cfgrl_submit-206C, and describe the full experimental details in Appendix.

REFERENCES

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generalization
in offline reinforcement learning. IEEE Robotics and Automation Letters (RA-L), 9:3116–3123,
2024.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
In International Conference on Learning Representations (ICLR), 2023.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. In Neural Information Processing Systems
(NeurIPS), 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Neural Information Processing Systems (NeurIPS), 2017.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for
general robot control. ArXiv, abs/2410.24164, 2024a.

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar, and
Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion models. In
International Conference on Learning Representations (ICLR), 2024b.

David Brandfonbrener, William F. Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. In Neural Information Processing Systems (NeurIPS), 2021.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. In International Conference on Learning Representa-
tions (ICLR), 2023.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In International Conference on Learning Representations (ICLR),
2024a.

Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with q-functions
for efficient continuous control. In Neural Information Processing Systems (NeurIPS), 2024b.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, P. Abbeel,
A. Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Neural Information Processing Systems (NeurIPS), 2021.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2024c.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Robotics:
Science and Systems (RSS), 2023.

Bruno C. da Silva. Reinforcement learning lectures notes, 2023. URL https://people.cs.umass.
edu/~bsilva/courses/CMPSCI_687/Fall2023/Lecture_Notes_v1.0_687_F23.pdf.

10

https://anonymous.4open.science/r/cfgrl_submit-206C
https://anonymous.4open.science/r/cfgrl_submit-206C
https://people.cs.umass.edu/~bsilva/courses/CMPSCI_687/Fall2023/Lecture_Notes_v1.0_687_F23.pdf
https://people.cs.umass.edu/~bsilva/courses/CMPSCI_687/Fall2023/Lecture_Notes_v1.0_687_F23.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9:271–278, 1997.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. In Neural
Information Processing Systems (NeurIPS), 2024.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. In International Conference on Learning Representations (ICLR), 2024.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential
for offline rl via supervised learning? In International Conference on Learning Representations
(ICLR), 2022.

Benjamin Eysenbach, Soumith Udatha, Russ R Salakhutdinov, and Sergey Levine. Imitating past
successes can be very suboptimal. In Neural Information Processing Systems (NeurIPS), 2022a.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning
as goal-conditioned reinforcement learning. In Neural Information Processing Systems (NeurIPS),
2022b.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. In International Conference on Learning Representations (ICLR), 2025.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), 2018.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
Salimans. Diffusion meets flow matching: Two sides of the same coin, 2024. URL https:
//diffusionflow.github.io/.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. In International Conference on Learning Representations (ICLR), 2023.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. In International
Conference on Learning Representations (ICLR), 2021.

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between td
learning and supervised learning–a generalisation point of view. In International Conference on
Learning Representations (ICLR), 2024.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning (CoRL), 2019.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. ArXiv, abs/2304.10573,
2023.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion model
based constrained policy search for offline reinforcement learning. ArXiv, abs/2310.05333, 2023.

Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Aligniql: Policy alignment in implicit q-
learning through constrained optimization. ArXiv, abs/2405.18187, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). ArXiv, abs/1606.08415, 2016.

11

https://diffusionflow.github.io/
https://diffusionflow.github.io/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. ArXiv, abs/2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Neural
Information Processing Systems (NeurIPS), 2020.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning (ICML), 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations (ICLR), 2022.

Jakub Grudzien Kuba, Pieter Abbeel, and Sergey Levine. Advantage-conditioned diffusion: Offline
rl via generalization. OpenReview, 2023.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. ArXiv,
abs/1912.13465, 2019.

Aviral Kumar, Aurick Zhou, G. Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2020.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Zechu Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. In Neural Information
Processing Systems (NeurIPS), 2024.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In International Conference on Learning Representations (ICLR), 2016.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In International Conference on Learning Representations (ICLR), 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. ArXiv,
abs/2412.06264, 2024a.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In International Conference on Learning Representations (ICLR),
2023.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning (ICML), 2023.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning (CoRL), 2019.

Liyuan Mao, Haoran Xu, Xianyuan Zhan, Weinan Zhang, and Amy Zhang. Diffusion-dice: In-sample
diffusion guidance for offline reinforcement learning. In Neural Information Processing Systems
(NeurIPS), 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any class
and backbone. ArXiv, abs/2412.06685, 2024.

Diganta Misra. Mish: A self regularized non-monotonic activation function. In British Machine
Vision Association (BMVC), 2020.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. ArXiv, abs/2006.09359, 2020.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. In International Conference on Machine Learning (ICML), 2023.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? In Neural Information Processing Systems (NeurIPS), 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR),
2025a.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In International Conference on
Machine Learning (ICML), 2025b.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. ArXiv, abs/1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In International Conference on Machine Learning (ICML), 2007.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. In International Conference on Machine Learning (ICML),
2024.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. In
International Conference on Learning Representations (ICLR), 2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Harshit S. Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new
methods for reinforcement and imitation learning. In International Conference on Learning
Representations (ICLR), 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning
(ICML), 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Neural Information Processing Systems (NeurIPS), 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Transactions
on Neural Networks, 16:285–286, 2005.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Neural Information Processing Systems
(NeurIPS), 1999.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. In Neural Information Processing Systems
(NeurIPS), 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In Neural
Information Processing Systems (NeurIPS), 2021.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representations
(ICLR), 2023.

Ziyun Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott E. Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Manfred Otto Heess, and Nando
de Freitas. Critic regularized regression. In Neural Information Processing Systems (NeurIPS),
2020.

Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
abs/1911.11361, 2019.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Chan, and Xianyuan Zhan.
Offline rl with no ood actions: In-sample learning via implicit value regularization. In International
Conference on Learning Representations (ICLR), 2023.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In International
Conference on Machine Learning (ICML), 2023.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. ArXiv, abs/2305.13122, 2023.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, P. Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. ArXiv, abs/2201.13425, 2022.

Ruoqi Zhang, Ziwei Luo, Jens Sjölund, Thomas B Schön, and Per Mattsson. Entropy-regularized
diffusion policy with q-ensembles for offline reinforcement learning. In Neural Information
Processing Systems (NeurIPS), 2024.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. In International Conference on Learning Representations (ICLR), 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THEORETICAL RESULTS

Lemma 1 (Chebyshev’s sum inequality for probability measures). For any probability measure µ on
R and any bounded, measurable, non-decreasing functions g, h : R→ R,∫

R
g(x)h(x)µ(dx) ≥

∫
R
g(x)µ(dx)

∫
R
h(x)µ(dx). (20)

Proof. Since g and h are non-decreasing, the signs of g(y)− g(z) and h(y)− h(z) are the same for
any y, z ∈ R. Hence, we have

0 ≤
∫
R×R

(g(y)− g(z))(h(y)− h(z))(µ⊗ µ)(dy,dz) (21)

=

∫
R

(∫
R
(g(y)h(y) + g(z)h(z)− g(y)h(z)− g(z)h(y))µ(dy)

)
µ(dz) (22)

= 2

∫
R
g(x)h(x)µ(dx)− 2

∫
R
g(x)µ(dx)

∫
R
h(x)µ(dx), (23)

from which the conclusion follows, where µ⊗ µ denotes the product measure of µ and itself, and we
use Fubini’s theorem in the second line.

Lemma 2. Let s ∈ S be a state, π, π̂ : S → ∆(A) be policies, and f : R → R be a bounded,
measurable, non-negative, non-decreasing function. Suppose that π(a | s) = f(Aπ̂(s, a))π̂(a | s)
and Ea∼π̂(·|s)[f(Aπ̂(s, a))] = 1. Then,

Ea∼π(·|s)[Qπ̂(s, a)] ≥ Vπ̂(s). (24)

Proof. To apply Lemma 1, we first rewrite the left-hand side of Equation (24) using probability
measures as follows:

Ea∼π(·|s)[Qπ̂(s, a)] =

∫
A
Qπ̂(s, a)πs(da) (25)

=

∫
A
Qπ̂(s, a)f(Aπ̂(s, a))π̂s(da) (26)

=

∫
A
Qπ̂(s, a)f(Qπ̂(s, a)− Vπ̂(s))π̂s(da), (27)

where πs and π̂s denote the probability measures corresponding to the distributions π(· | s) and
π̂(· | s), respectively. Then,

Ea∼π(·|s)[Qπ̂(s, a)] =

∫
A
Qπ̂(s, a)f(Qπ̂(s, a)− Vπ̂(s))π̂s(da) (28)

=

∫
R
qf(q − Vπ̂(s))λ(dq) (29)

≥
(∫

R
qλ(dq)

)(∫
R
f(q − Vπ̂(s))λ(dq)

)
(30)

=

(∫
A
Qπ̂(s, a)π̂s(da)

)(∫
A
f(Qπ̂(s, a)− Vπ̂(s))π̂s(da)

)
(31)

=

(∫
A
Qπ̂(s, a)π̂s(da)

)(∫
A
f(Aπ̂(s, a))π̂s(da)

)
(32)

= Vπ̂(s)Ea∼π̂(·|s)[f(Aπ̂(s, a))] (33)

= Vπ̂(s), (34)

where λ denotes the pushforward measure of π̂s by Qπ̂(s, ·), and we use Lemma 1 in the third line
with g(x) = 1 and h(x) = f(x− Vπ̂(s)), both of which are non-decreasing.

Lemma 3 (Policy improvement theorem for stochastic policies (Sutton & Barto, 2005; da Silva,
2023)). For any policies π and π̂ satisfying Ea∼π(·|s)[Qπ̂(s, a)] ≥ Vπ̂(s) for all s ∈ S,

J(π) ≥ J(π̂). (35)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. This is a straightforward generalization of the policy improvement theorem to stochastic
policies. See Section 4.2 of Sutton & Barto (2005) and Theorem 3 of da Silva (2023).

Theorem 1 (Policy improvement by reweighting). Let π, π̂ : S → ∆(A) be policies and f : R→ R
be a bounded, measurable, non-negative, non-decreasing function. Suppose that π satisfies π(a |
s) ∝ f(Aπ̂(s, a))π̂(a | s). Then,

J(π) ≥ J(π̂). (36)

Proof. Fix s ∈ S. Let π(a | s) = f(Aπ̂(s, a))π̂(a | s)/Z(s), where the normalization function
Z : S → R is defined as

Z(s) =

∫
A
f(Aπ̂(s, a))π̂s(da). (37)

Then, we have

1 =

∫
A
f(Aπ̂(s, a))/Z(s)π̂s(da) (38)

= Ea∼π̂(·|s)[f(Aπ̂(s, a))/Z(s)]. (39)

Defining g = f/Z(s), we get Ea∼π̂(·|s)[g(Aπ̂(s, a))] = 1. Since f is non-negative and non-
decreasing, so is g, and the conclusion directly follows from Lemma 2 (with π(a | s) =
g(Aπ̂(s, a))π̂(a | s)) and Lemma 3.

Theorem 2. Let 0 ≤ w1 ≤ w2 be real numbers, π1, π2, π̂ : S → ∆(A) be policies, and f : R →
R be a bounded, measurable, non-negative, non-decreasing function. Suppose that πi satisfies
πi(a | s) ∝ f(Aπ̂(s, a))

wi π̂(a | s) for i = 1, 2. Then,

J(π1) ≤ J(π2). (40)

Proof. Fix s ∈ S. As in the proof of Theorem 1, write

π1(a | s) =
f(Aπ̂(s, a))

w1 π̂(a | s)
Z1(s)

, (41)

π2(a | s) =
f(Aπ̂(s, a))

w2 π̂(a | s)
Z2(s)

, (42)

where Z1, Z2 : S → R are the normalization functions. Then, we have

π2(a | s) = f(Aπ̂(s, a))
w2−w1

Z1(s)

Z2(s)
π1(a | s). (43)

Since Z1 and Z2 are both bounded (which follows from the boundedness of f), measurable, and non-
negative, we can apply Lemma 2 to the bounded, measurable, non-negative, non-decreasing function
x 7→ f(x)w2−w1Z1(s)/Z2(s) with (π, π̂) = (π2, π1) (in the notation of Lemma 2). The result then
directly follows from Lemma 3 as before.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: OGBench environments.

0.5 1.0 1.25 1.5 2.0 3.0

40

60

80

S
uc

ce
ss

R
at

e

pointmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0
20

40

60

pointmaze-large

0.5 1.0 1.25 1.5 2.0 3.0
0

10

pointmaze-giant

0.5 1.0 1.25 1.5 2.0 3.0

30

40

50

pointmaze-teleport

0.5 1.0 1.25 1.5 2.0 3.0
20

40

60

S
uc

ce
ss

R
at

e

antmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0

10

20

30

antmaze-large

0.5 1.0 1.25 1.5 2.0 3.0
0.0

0.5

1.0

antmaze-giant

0.5 1.0 1.25 1.5 2.0 3.0

10

20

antmaze-teleport

0.5 1.0 1.25 1.5 2.0 3.0

10

20

S
uc

ce
ss

R
at

e

humanoidmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0
0

2

4

humanoidmaze-large

0.5 1.0 1.25 1.5 2.0 3.0
5

10

15

antsoccer-arena

0.5 1.0 1.25 1.5 2.0 3.0

2

4

antsoccer-medium

0.5 1.0 1.25 1.5 2.0 3.0
5

10

S
uc

ce
ss

R
at

e

cube-single

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

2

4

cube-double

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

5

10

scene-play

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

1

2

3

puzzle-3x3

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

0.00

0.25

S
uc

ce
ss

R
at

e

puzzle-4x4

Figure 6: Full ablation results on CFG weight w. The performance of CFGRL generally improves as the
CFG weight increases.

B ADDITIONAL RESULTS

Enviromments. Figure 5 illustrates OGBench tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

25

50

75
S

uc
ce

ss
R

at
e

pointmaze-large

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

20

40

60

antmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

10

20

humanoidmaze-medium

0.5 1.0 1.25 1.5 2.0 3.0
CFG w

10

20

scene-play

Architecture
Shared
Separate

Figure 7: Ablation study on optimality conditioning. Shared policies lead to better performance and
extrapolation than separate policies, likely because the former shares representations.

Ablation study on the CFG weight w. We present the full ablation study on the CFG weight w
across all 17 state-based OGBench tasks in Figure 6. The results show that the performance improves
as the CFG weight increases, although it sometimes declines beyond a certain point, likely because
the policy deviates too far from the data distribution.

Ablation study on optimality conditioning. When modeling an optimality-conditioned policy
π(a | s, o) with o ∈ {∅, 0, 1}, we can either have separate networks for each o value, or share the
same network with a learnable optimality embedding. We choose the latter in our experiments, and
present an ablation study in Figure 7. The results suggest that the shared architecture generally works
and extrapolates better than the separate one. We believe this is likely because extrapolation benefits
from shared representations.

C IMPLEMENTATION DETAILS

We implement CFGRL on top of the reference implementations provided by OGBench (Park et al.,
2025a). Each experiment in this work takes no more than 4 hours on a single A5000 GPU.

Tasks. In Section 5, we employ 9 tasks from the ExORL benchmark (Yarats et al., 2022) and 9 single-
task (singletask) variants from the OGBench suite (Park et al., 2025a). We use the RND datasets
for our ExORL experiments. In Section 6, we employ the oraclerep variant of OGBench tasks
to remove confounding factors related to goal representation learning, where this variant provides
ground-truth goal representations (e.g., in antmaze, a goal is specified by only the x-y position, as
opposed to the full 29-dimensional state including proprioceptive information).

Methods and hyperparameters. For baselines, we follow the original implementations and hyper-
parameters whenever possible (Kostrikov et al., 2022; Park et al., 2025a;b). For GCBC methods in
Section 6, we sample goals uniformly from future states, as in the original implementation in OG-
Bench (Park et al., 2025a). This can be viewed as an approximation of geometric sampling with a
high γ. We present the full list of the hyperparameters in Tables 4 to 8.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for ExORL offline RL experiments (Table 1).

Hyperparameter Value
Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000
Minibatch size 1024
MLP dimensions [512, 512, 512]
Nonlinearity Mish (Misra, 2020)
Target network smoothing coefficient 0.005
Discount factor γ 0.99 (default), 0.995 (antmaze-giant, humanoidmaze, antsoccer)
Flow steps 32
Flow time sampling distribution Unif([0, 1])
IQL expectile 0.9
CFGRL w and AWR 1/β Table 5

Table 5: Per-task hyperparameters for ExoRL offline RL experiments (Table 4).

Task AWR 1/β CFGRL w

walker-stand 3 30
walker-walk 3 30
walker-run 10 30
quadruped-walk 3 3
quadruped-run 3 10
cheetah-run 30 10
cheetah-run-backward 3 30
jaco-reach-top-right 3 3
jaco-reach-top-left 3 3

Table 6: Hyperparameters for OGBench offline RL experiments (Table 2).

Hyperparameter Value
Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 500000
Minibatch size 256
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Target network smoothing coefficient 0.005
Discount factor γ 0.99 (default), 0.995 (antmaze-giant, humanoidmaze, antsoccer)
Flow steps 16
Flow time sampling distribution Unif([0, 1])
IQL expectile 0.9
AWR 1/β and CFGRL w Table 7

Table 7: Per-task hyperparameters for OGBench offline RL experiments (Table 2).

Task AWR 1/β CFGRL w

pointmaze-large-navigate 10 1
pointmaze-teleport-navigate 1 1
antmaze-large-navigate 10 1.25
antmaze-teleport-navigate 10 3
humanoidmaze-large-navigate 3 1
antsoccer-arena-navigate 10 1.5
cube-single-play 1 1.5
scene-play 3 3
puzzle-3x3-play 1 3

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for GCBC experiments (Table 3).

Hyperparameter Value
Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000
Minibatch size 1024 (states), 256 (pixels)
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Image augmentation probability 0.5
Flow steps 16
Flow time sampling distribution Unif([0, 1])
CFGRL w 3
Subgoal steps for hierarchical BC 25 (default), 10 (OGBench manipulation), 50 (humanoidmaze)

20

	Introduction
	Related work
	Preliminaries
	Diffusion guidance is a controllable policy improvement operator
	Composing factors via diffusion guidance
	Training and sampling with CFGRL

	CFGRL improves over weighted policy extraction in offline RL
	CFGRL unlocks hidden gains in goal-conditioned BC
	Experimental results

	Discussion and Conclusion
	Theoretical results
	Additional results
	Implementation details

