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ABSTRACT

At the core of reinforcement learning is the idea of learning beyond the perfor-
mance in the data. However, scaling such systems has proven notoriously tricky. In
contrast, techniques from generative modeling have shown to be remarkably scal-
able and are simple to train. In this work, we combine these strengths, by deriving
a direct relation between policy improvement and guidance of diffusion models.
The resulting framework, CFGRL, is a policy improvement operator that is trained
with the simplicity of supervised learning, yet is more effective than typically-used
weighted policy extraction strategies. On offline RL tasks, we observe a reliable
trend—increased guidance weighting leads to increased performance. Additionally,
the CFGRL framework can be adapted to “directly” extract policies from offline
data without running a full end-to-end RL algorithm, allowing us to generalize
simple supervised methods (e.g. goal-conditioned behavior cloning) to further pri-
oritize optimality, gaining performance across the board without additional cost.

1 INTRODUCTION

Reinforcement learning (RL) provides a powerful framework for autonomous agents to attain strong
performance by directly optimizing for task rewards. However, scaling up RL algorithms has proven
notoriously challenging, particularly when using off-policy datasets. In contrast, modern generative
modeling techniques have proven remarkably scalable, and have been used for related problems such
as behavioral cloning (BC) (Janner et al., 2022; Black et al., 2024a; Chi et al., 2023). Can we leverage
expressive generative modeling tools to derive simple, scalable RL techniques?

At the heart of RL is the idea of optimizing beyond the performance shown in the data. This
is especially important when training agents from offline data that may have been collected by
an exploratory or otherwise suboptimal policy. On one end of the spectrum, behavioral cloning
methods are simple and can leverage stable generative modeling tools like diffusion (Ho et al., 2020;
Lipman et al., 2024b) and flow-matching, but are only as optimal as the data. On the other end,
iterative temporal difference techniques are in principle more optimal, but in practice can suffer from
hyperparameter sensitivity and instability (Park et al., 2024; Kumar et al., 2020; Fujimoto et al., 2018)
that have made it challenging to scale to larger tasks.

In this work, we combine the strengths of both settings by developing a framework which is trained
with the simplicity of behavioral cloning, yet can further improve on the data behaviors. We first
define policies as products of two factors — a prior reference policy, and an “optimality” distribution.
When the optimality distribution is proportional to a monotonically increasing function of advantage,
we prove that the resulting product will be an improvement over the prior.

The key insight is that we can sample from this product distribution via techniques from diffusion
modeling, and we can do so in a straightforward and controllable way. Rather than optimizing
an optimality predictor, we instead learn an equivalent optimality-conditioned policy, as done in
classifier-free guidance (Ho & Salimans, 2022). The prior and conditional factors can then by
dynamically combined during sampling, allowing for a degree of policy improvement that can be
controlled during test time, without the need for retraining.

Our framework, which we refer to as CFGRL, provides a principled and powerful connection between
generative modeling and policy improvement. Diffusion and flow-matching models already represent
some of the most powerful approaches for imitation learning, but typically do not make use of
guidance (Black et al., 2024a; Chi et al., 2023). CFGRL bridges a connection between guidance and
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traditional RL objectives—in fact, under certain choices, guided sampling results in a distribution
that is equivalent to the solution of a KL-constrained policy improvement objective.

We experimentally show applications of CFGRL in two settings. In the first, CFGRL is used as the
policy extraction step of an end-to-end offline RL method, operating as a drop-in replacement for the
standard weighted regression strategy. CFGRL provides a consistent improvement over the baseline.
Scaling trends highlight how increasing the guidance term results in stronger policies beyond the point
where weighted regression collapses, demonstrating how CFGRL can make better use of learned
value functions.

In the second setting, we use the CFGRL framework to generalize goal-conditioned behavior cloning,
noting that CFGRL can be used to controllably extrapolate the policies defined by the offline data,
unlocking further performance gains without the need for additional training. CFGRL reliably
outperforms baselines across the board on state-based, visual, and hierarchical settings, at times
increasing success rates by a factor of two.

Our contributions are twofold. First, we propose a principled connection between diffusion model
guidance and policy improvement in reinforcement learning. Second, we develop a set of simple
practical algorithms that utilize the above connection, demonstrating reliably improvements both as
a policy improvement operator in an end-to-end RL algorithm, and as a standalone replacement for
naive goal-conditioned behavior cloning. We do not claim to provide a full end-to-end RL algorithm,
but rather a powerful tool in the algorithm designer’s toolbox.

2 RELATED WORK

Offline RL. Unlike standard RL, which involves exploring an environment, offline RL aims to learn
a reward-maximizing policy solely from a previously collected dataset. The key challenge is to
improve performance while preventing erroneous extrapolation when deviating too far from the
dataset. Previous works target this problem from the value learning (Kumar et al., 2020; Kostrikov
et al., 2022; Xu et al., 2023; Garg et al., 2023; An et al., 2021; Nikulin et al., 2023), and policy
extraction (Wu et al., 2019; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025b; Peng et al.,
2019; Nair et al., 2020; Chen et al., 2023; Hansen-Estruch et al., 2023) directions. Our work most
closely relates to weighted regression (Peng et al., 2019; Nair et al., 2020) and return-conditioned
behavioral cloning (Kumar et al., 2019; Chen et al., 2021; Yamagata et al., 2023) methods (of which
goal-conditioned hindsight relabeling (Andrychowicz et al., 2017; Ghosh et al., 2021; Emmons
et al., 2022; Eysenbach et al., 2022a) is a special case), due to their emphasis on simple supervised
objectives. However, we instead frame the tradeoff between regularization and policy improvement
in terms of guiding a diffusion model, providing a way to control this tradeoff during test time.

Diffusion and flow policies for RL. Previous works have proposed diverse ways to leverage the
expressivity of iterative generative models, such as diffusion (Sohl-Dickstein et al., 2015; Ho et al.,
2020) and flow models (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023),
to enhance the capabilities of RL policies. The main challenge with diffusion policy learning lies
in how to extract (Park et al., 2025b): a diffusion policy to maximize the learned Q-function. Prior
works propose strategies based on weighted regression (Lu et al., 2023; Kang et al., 2023; Ding et al.,
2024; Zhang et al., 2025), reparameterized gradients (Wang et al., 2023; He et al., 2023; Ding &
Jin, 2024; Ada et al., 2024; Zhang et al., 2024; Park et al., 2025b), rejection sampling (Chen et al.,
2023; Hansen-Estruch et al., 2023; He et al., 2024), and more (Yang et al., 2023; Kuba et al., 2023;
Mao et al., 2024; Chen et al., 2024b;a; Psenka et al., 2024; Chen et al., 2024c; Li et al., 2024; Mark
et al., 2024; Fang et al., 2025; Ren et al., 2025). Our method introduces classifier-free guidance
as a policy extraction mechanism. This has multiple benefits over previous approaches: unlike
reparameterized gradient-based methods, it does not require (potentially unstable) backpropagation
through time (Park et al., 2025b); unlike rejection sampling, it does not involve a costly sampling-
then-filtering procedure. Close in spirit are Janner et al. (2022) and Ajay et al. (2022), which similarly
utilize diffusion for decision making, however these methods are akin to world models as they operate
over state trajectories and not actions. Algorithmically, the closest work to ours is Kuba et al. (2023),
which also employs guidance over advantage-conditioned diffusion policies. Unlike this work, our
framework supports a range of optimality functions rather than only A = 0, and does not rely on
further rejection sampling. Additionally, we do not necessarily require an explicit value function to
perform policy improvement—in Section 6, we further improve a goal-conditioned BC policy without
additionally training value functions, whereas all aforementioned techniques would require doing so.
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3 PRELIMINARIES

We assume a Markov decision process with state space S, action space A, a transition function
p(s" | s,a) + § x A — A(S), reward function r(s) : & — R, and initial state distribution
p(s0) € A(S). We assume the state is fully observable. Our policy is a probability distribution over
actions w(a | s) : & — A(A) that together with the environment defines a distribution of state-action
trajectories 7 = (g, ao, S1, a1, - - .). The standard RL objective is to learn a parameterized policy 7y
that maximizes the expected sum of future discounted rewards along such trajectories:

J(Tﬂg) = ]Ermp( |7o) Z Fytr(stv a’t)v (D
t

where p(7 | mg) is defined as p(so) [ 1,2 p(st+1 | st ar)mo(ar | s¢).

A policy improvement operator is an update from a reference policy 7 to a new policy 7 such that
the RL objective above does not decrease: J(7) < J(m). This concept is formalized via V; (s) and
Q#(s,a), which denote the discounted expected future reward under the reference policy starting
from a given state or state-action pair, respectively (Sutton & Barto, 2005). The difference between
these terms is the advantage, Az (s,a) = Q#(s,a) — Va(s). A classic result shows that any update
with non-negative advantage under the resulting state distribution, such that

E(s,a)~pn (c,0) [A7 (8, 0)] > 0, 2)

with p (s, @) denoting the discounted state-action occupancy distribution, results in policy improve-
ment (Schulman et al., 2015). In practice, we require algorithms that operate over samples from a
previous reference policy. Therefore, practical algorithms will approximate the above condition under
the previous policy’s state distribution pz (s), and aim to maximize:

j(ﬂ') = ESNP*( )[anﬁ( |S) [Aﬁ-(87 a)]] (3)
Prior work has shown that, as long as the divergence between the reference and resulting policy

is bounded, the approximate objective in Equation (3) provides a bound on the true objective in
Equation (2), enabling monotonic incremental improvement (Schulman et al., 2015).

To account for this divergence, it is common to utilize trust-region methods during policy improve-
ment (Schulman et al., 2015; 2017). While various divergence measures have been considered (Sikchi
et al., 2024), a standard choice is to penalize the KL divergence between the reference and resulting
policy, resulting in the following KL-penalized RL objective as parameterized by a constant 3:

J(m0) = Errop(+|m0) lz Vr(se,ar) | = BEomp, o) [Dru(mo(o | s) | 7(a | 5))]. “

One strategy to optimize the above objective is via iteratively applying a policy gradient (Sutton
et al., 1999); however, such methods require on-policy samples and can have high variance. The
community has instead often relied on methods that resemble supervised learning, such as weighted
regression (Peters & Schaal, 2007; Peng et al., 2019). In the following sections, we introduce a
policy improvement strategy based on generative modeling that maintains the simplicity of supervised
learning, yet allows for controllable policy improvement.

4  DIFFUSION GUIDANCE IS A CONTROLLABLE POLICY IMPROVEMENT
OPERATOR

In this work, we establish a connection between classifier-free guidance in diffusion modeling
and policy improvement in RL. We use this relation to develop a simple framework, CFGRL,
which enables us to leverage stable diffusion training methods, while allowing the degree of policy
improvement to be controlled at fest time, rather than having to be decided during training.

Product policies. We begin by parameterizing policies as a product of two factors—a reference
policy, and an optimality function f : R — R, which is conditional on advantage:

m(a|s) oc(als) f(A(s,a)). )
The motivation behind this factorization is to frame improved policies in terms of a probabilistic adjust-

ment to the current reference policy, building on the control-as-inference framework (Levine, 2018).
As we will show later, diffusion guidance is naturally suited to sampling from such distributions.
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Figure 1: While conditioning on optimality can create a baseline level of improvement, policies can be fur-
ther improved by attenuating this conditioning. When p(o | s, a) is proportional to a monotonically increas-
ing function of advantage, then attenuation provably increases expected return, and this can be accomplished
naturally with diffusion guidnace.

We now show how product policies can be used as policy improvement operators. When f fulfills
certain common criteria, the resulting policy will provably be an improvement over the reference:

Remark 1 (Improvement of product policies). If f is a non-negative, monotonically increasing
function of Az (s, a), then the product w(a | s) x @ (a | s)f(A(s,a)) is an improvement over 7t(a | ).

We provide a formalization and proof of this claim in the Appendix (Theorem 1), which generalizes
previous results with bandits (Dayan & Hinton, 1997; Peters & Schaal, 2007) and exponentiated
advantages (Peng et al., 2019).

The above finding reveals a simple path towards policy improvement. If we can sample from a
properly weighted product policy, then the resulting policy will achieve a higher expected return then
the reference.

Crucially, we can control the degree of improvement by sampling from an attenuated optimality
function. To do so, we consider product policies where the optimality functions are exponentiated:

Remark 2 (Further improvement via attenuation). Ler 0 < wy < wso be real numbers, and
T, X T(a]s) f(A(s,a))Vi fori = 1,2. Then, my, is an improvement over my,,.

The proof of the above theorem is again provided in the Appendix (Theorem 2). Of course, there is no
free lunch. While a higher exponent leads to an improved policy in terms of A, the resulting policy
is also further deviated from the reference. Thus, the empirical performance of an over-adjusted
policy may suffer due to a distribution shift.

This tradeoff between adhering to the reference policy and maximizing return can be understood via
the KL-regularized RL objective in Equation (4). Notably, the solutions to the mentioned objective
naturally form a set of product policies:

Remark 3 (KL-regularized reward-maximization results in product policies (Peng et al., 2019)).
The policies that maximize Equation (4) under a given KL-penalty 3 take the form of

m(a|s) o< w(a|s)exp(A(s,a))'/P. (6)

Equivalently, the 8 term can be folded into the exponent, e.g. 7(a | s) « 7 (a | s) exp(A(s,a)/B).
This condensed objective has been used in prior works (Peters & Schaal, 2007; Peng et al., 2019) to
directly learn 7r; however, in their methods the 8 hyperparameter must be specified ahead of time.
As shown in the next sections, we will instead develop a framework where the product factors are
represented independently, allowing their composition to be freely controlled during evaluation time.

4.1 COMPOSING FACTORS VIA DIFFUSION GUIDANCE

Having understood that product policies are a natural way to induce policy improvement, we can now
instantiate such policies using machinery from diffusion modeling. We start by casting the optimality
function as a binary random variable' o0 € {@, 0, 1} whose likelihood is defined via f:

plo| s, a) = f(A(s,a))/Z(s) M

'Slightly abusing notation, we abbreviate o = 1 as o when it is clear from context. 0 = @& represents an
unconditional case where o is not specified, i.e., the union of o = 0 and 0 = 1.
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Algorithm 1 CFGRL Training Algorithm 2 CFGRL Sampling
while not converged do a~N(0,I)
Collect data, or use offline data. t<« 0
(s,a) ~D,ag ~N(0,I),t~U(0,1) forne[0,...,N—1]do
Label with optimality o € {0, 1}. v=(1—w)vg(a,t,s,d)+wuvg(a,t, s,0=1)
If rand() < 0.1, set optimality o = @. a<a+ (n/N)p
a; < (1—t)ap+ta t <+ t+ (n/N)
0 « Vyllve(as,t,s,0) — (a — ao)l? end for
end while return a
where Z(s) = [ f(A(s,a’))da’ is a state-dependent normalization factor. We will not require

(s)
estimating Z(s). The product policy from Equation (5) can now be equivalently defined as:
mw(a|s) x@(als)plo]s,a). (8)
Recall that diffusion models implicitly model a distribution by learning its normalized score function,
i.e., the gradient of log-likelihood under that distribution (Song & Ermon, 2019). Score functions

have the useful property that for product distributions, they are additively composable. As such, the
score of the product policy above can be represented as the sum of two factors:

Vilogm(a|s) =V,log#(a|s)+ Va logp(o]s,a). )

Avoiding an explicit optimality predictor. In many cases, we would rather avoid explicitly learning
the p(o | s,a) distribution. For one thing, optimality must hold a valid probability distribution,
and calculating the normalization term Z(s) can be tricky. Secondly, explicitly backpropagating
through a neural network predictor may result in adversarial gradient attacks (Goodfellow et al.,
2015) especially at out-of-distribution actions (Kostrikov et al., 2022; Kumar et al., 2020). We also
note that if one wanted to learn an optimality predictor, it would need to remain accurate under the
support of partially-noised actions.

Instead, we can utilize an insight from classifier-free guidance (Ho & Salimans, 2022), and use Bayes’
rule to invert the optimality distribution into an optimality-conditioned policy score function:

Vologm(a|s) =Vlog7(a|s)+ (Velogi(a|s,0) — Vilogn(a] s)). (10)

With the above form, both factors can be unified into a single conditional policy. We can represent both
factors with the same neural network, and train via a straightforward diffusion modeling objective.

Guidance controls the attenuation of optimality. A key benefit of defining the product distribution
in terms of composable factors is that the ratio between these factors can be dynamically controlled.
Introducing a guidance weight w, the score function

Valog7(a|s)+w (Vylog@(als,0) — Vilog7(a|s)) (11)

corresponds to the attenuated distribution
m(a|s) x@(als)plo]s,a)?, andequivalently 7(a | s)f(A(s,a))™. (12)
Recall that in Remark 2, we showed that increasing w results in further policy improvement. This
implies a simple yet crucial relationship—by controlling the guidance weight during sampling, we
can sample from product policies that controllably improve on the reference policy (at the cost of
adherence to the prior). The tradeoff is a key hyperparameter to tune in offline RL (Park et al., 2024),

and often requires many sweeps. In contrast, with CFGRL, this sweep can be performed at test-time
over a single network, without the need for retraining.

4.2 TRAINING AND SAMPLING WITH CFGRL

We instantiate a single diffusion network to serve as both the conditional and unconditional policy.
For simplicity, we adopt the flow-matching framework for training. While flow networks predict
velocity rather than score, previous works have shown they retain similar properties in practice (Gao
et al., 2024; Lipman et al., 2024a). The policy is modeled by a velocity field vy conditioned on a
partially-noised action a;, along with a noise scale ¢, the current state s, as well as the previously
defined optimality variable o € {&,0,1}. This network is trained via the following loss function:

L(0) =Es4up [||v(9(at,t7 s,0) — (a— ao)\|2] where a; = (1 —t)ag + ta, (13)

and where the noise scale ¢ is sampled uniformly between [0, 1], and ag ~ N (0, 1) is Gaussian noise.
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Figure 3: CFGRL controls the tradeoff between reference adherence and optimality by adjusting the
guidance weighting, and does so better than AWR. Guidance addresses the same motivation behind tuning
the temperature in advantage-weighted regression, however, it can be tuned during test time rather than via
retraining, and empirically leads to a higher maximum performance.

Table 1: ExORL results. Table 2: OGBench results.

Task AWR CFGRL Task AWR CFGRL
walker-stand 603 +8 782 x5 pointmaze-large-navigate 70 +25 100 zo
walker-walk 444 +4 608 +32 pointmaze-teleport-navigate 3 +7 57 +7
walker-run 247 10 282 16 antmaze-large-navigate 50 x0 20 +o
quadruped-walk 776 +15 762 +25 antmaze-teleport-navigate 22 +19 30 +22
quadruped-run 485 7 BTL x25 humanoidmaze-large-navigate 3 +4 0 +o

cheetah-run 168 +7 216 +15 antsoccer-arena-navigate 7 +o 20 +5
cheetah-run-backward 146 +8 262 +26 cube-single-play 85+s 8243
jaco-reach-top-right 33 +2 72 +6 scene-play 18 +3 17 +o
jaco-reach-top-left 30 +8 46 +6 puzzle-3x3-play 3 7 3 +4

5 CFGRL IMPROVES OVER WEIGHTED POLICY EXTRACTION IN OFFLINE RL

A common approach to offline RL is to learn a state-action value function Qg (s, a), and then extract
a policy from this value function via a regularized policy extraction method that stays close to the
behavior policy while maximize the value function. This regularization is critical to avoid out-of-
distribution actions for which the value function is likely to overestimate the value (Peng et al., 2019;
Kostrikov et al., 2022). Weighted regression methods are a particularly simple class of methods
for doing this, with advantage-weighted regression (AWR) or its variants being a common choice
in recent work (Peng et al., 2019; Nair et al., 2020; Wang et al., 2020). AWR is trained in a fully
supervised manner, and does not require querying the values of non-dataset actions, with the training
objective given by

Jawr(0) = E(s.a)~p [logm(a | 5) exp(A(s, a) x (1/5))], (14)

where A(s,a) = Q(s,a) — V(s) is calculated as the difference of learned Qg(s,a) and Vp(s)
networks, and [ is a temperature hyperparameter.

However, a weakness of AWR is that the weightings can become peaked, such that much
of the data in training is not used effectively, resulting in a weak learning signal. This
phenomenon is shown in Figure 2 (left), which plots the magnitudes of per-element gradi-
ents within an AWR batch. Notably, the magnitudes are dominated by a few outlier state-
action pairs that hold particularly high weights. In this case, the rest of the batch is effec-
tively ignored, and AWR derives the gradient only from a small subset of the available data.

We now show how we can instead utilize CFGRL to AWR Losses CFGRL Losses
alleviate this issue. Specifically, we will instantiate 10001 Most samples
are ignored

CFGRL with a particularly simple optimality criteria:

1 ifA(s,a) >0

|0 if A(s,a) <0,
which nicely lends itself to Bayes’ inversion for Equa-
tion (10). Equivalently, we are assigning f = 1(A >
0) which is both non-negative and non-decreasing,
fulfilling the criteria of Remark 1.

500 |
(15)

Loss Magnitude

0
Element in Batch Element in Batch

Figure 2: Weighted regression methods result
in uneven gradient magnitudes within a batch.
This can limit the effective signal that each batch
The end-to-end procedure with CFGRL is simple. provides. In contrast, CFGRL uses a simple condi-
Given an state-action sample ( s, a) ~ D, we label tional diffusion modeling loss with even weighting.
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that pair with o € {0, 1} according the above criteria, utilizing our current value function. We then
train with the standard conditional diffusion-modeling loss as done in Section 4.2. Notably, there is no
weighting term used in training. As such, gradients within each batch remain reasonably distributed,
as shown in Figure 2 (right).

There is a suggestive similarity between the temperature hyperparameter in AWR and the guidance
weight in CFGRL. In fact, both these parameters play the same role—they control the tradeoff
between adherence to a reference policy and maximization of rewards. However, with AWR, the
temperature must be chosen beforehand and is folded into the optimization objective. CFGRL keeps
the prior policy and the optimality-conditioned policy separate, and only combines them during
sampling. Thus, this tradeoff can be adjusted without retraining when using CFGRL, making it easy
to find the best value.

Furthermore, we will see that the guidance term in CFGRL is empirically more effective than the
temperature of AWR. Note that while the absolute scale of w and (1/43) can vary, they have a
proportional relationship and share the same base case at w = (1/3) = 0, in which case the resulting
policy simply mimics the dataset policy. We examine the scaling of performance over different
guidance and temperature values in Figure 3. For AWR, performance saturates around a temperature
of (1/8) = 10. In contrast, guidance continues to improve beyond performance beyond this point,
displaying a longer-lasting trend.

Experimental comparison. We further establish the comparison between AWR and CFGRL on
9 tasks from the EXORL benchmark (Yarats et al., 2022), which contains data collected by an
exploratory agent, along with 9 single-task environments from the OGBench suite (Park et al., 2025a).
In all experiments, we use the same state-action value function trained via implicit Q-learning for
both methods (Kostrikov et al., 2022), which notably does not require a policy in the loop to learn and
is therefore independent of the extraction method that is used downstream. For AWR, we sweep over
1/6 in the set of {1, 3,10, 30}, and for CFGRL, we sweep over w € {1,1.25,1.5,2.0,3.0}. Results
are presented in Tables 1 and 2, and are averaged over 4 seeds. On a strong majority of tasks, CFGRL
achieves a better final performance than AWR. This indicates that policy extraction with CFGRL,
which also corresponds to a simple generative modeling objective, is more effective than the widely
used AWR method.

6 CFGRL UNLOCKS HIDDEN GAINS IN GOAL-CONDITIONED BC

While the overall CFCRL framework is general, it is particularly appealing in the special-case of goal-
conditioned RL, where it is common to use a simple (though crude) approximation that bypasses the
need for a learned value estimator (Eysenbach et al., 2022a; Ghosh et al., 2021; Black et al., 2024b).
In such settings, the objective is to find a goal-conditioned policy 7(« | s,¢) : § x S — A(A) that
maximizes likelihood of reaching the goal:

J(T) = Erp(r|n), gop(o) [Z’thsg(st)} ; (16)
t

where p(g) € A(S) is a goal distribution and reward is d, i.e. the Dirac delta “function” at g.>
While in principle, we can optimize the above objective with a full RL procedure, an often-used
simplification is to perform goal-conditioned behavioral cloning (GCBC), which maximizes:

Jaca(0) = Es,,a,)~D, A~nGeom(1—)[10g To(as | ¢, 8¢4n)], (17)

where Geom(1 — «y) denotes the Geometric distribution with parameter 1 — ~y, and we often denote
s¢t+A as g. This avoids the need to train a value function. GCBC can be seen as a special case of
conditional behavioral cloning methods that filter for actions that empirically reach a future goal.
While the GCBC objective above is simple, it does not converge to the optimal goal-reaching policy,
especially when the dataset is suboptimal (Eysenbach et al., 2022a; Ghugare et al., 2024)

Generalizing past naive GCBC. Based on our CFGRL framework in Section 4, we now introduce
a method to further improve GCBC policies while still avoiding training value functions. The key
insight is that, since CFGRL enables one step of policy improvement over the base policy, applying

This “function” is well-defined in a discrete state space, but requires a measure-theoretic formulation (Touati
& Ollivier, 2021) to be well-defined in a continuous state space, which we omit for simplicity.
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Figure 4: CFGRL can extrapolate beyond the GCBC policy, unlocking further performance gains.

In fact, GCBC is implicitly a special case of the CFGRL policy where w = 1. By instead considering w > 1,
the resulting policy is an improvement over the original. We show that performance steadily increases with w on
arange of environments.

CFGRL with guidance on the goal g will produce a policy that is better than the standard GCBC
policy. While this policy is still not as optimal as the end-to-end GCRL solution (which in general
would require many steps of policy improvement), prior work has shown that even one step of policy
improvement can lead to significant performance gains in a range of RL settings (Brandfonbrener
et al., 2021; Eysenbach et al., 2022b). Indeed, our experiments will confirm that CFGRL enables a
significant increase in performance over standard GCBC.

We begin by noting that the GCBC policy that maximizes Equation (17) is given as follows (Eysenbach

et al., 2022b):

i(als)p?(g | s, a)
p'(gs)

where p” denotes the distribution induced by the Geometric goal sampling procedure.

m(als,g) = x #(a|s) Qz(s a,9), (18)

Next, we note that the second factor in Equation (18) satisfies the conditions of Remark 1 (i.e., a
bounded, non-negative, non-decreasing function in Az (s,a)).’ Thus, we can invoke Remark 2 to
achieve a policy improvement. Specifically, the resulting policy 7(a | s) o 7(a | s) p(g | s,a)¥
under any exponent w > 1 will result in a policy improvement, and we can sample from the attenuated
second factor via guidance:

Volog@(a|s)+w (Vglogm(als,g) — Valog7(al]s)). (19)

The above CFGRL interpretation reveals a simple recipe for improving beyond the GCBC policy.
Specifically, naive GCBC results in a product policy that implicitly assumes a weighting of w = 1.
Guidance allows us to instead consider w > 1, leading to improved performance.

We emphasize the practical benefits of this setup—improvement can be gained for “free” relative to a
standard GCBC setup. The components of Equation (19) are simply the original goal-conditioned BC
policy m(a | s, g) along with an unconditional BC policy 7 (« | s). We do not require any additional
techniques such as training an explicit value function, or sampling further on-policy actions.

6.1 EXPERIMENTAL RESULTS

Tasks. We empirically verify effectiveness over 17 state-based and 7 pixel-based goal-conditioned
RL tasks from the OGBench task suite (Park et al., 2025a) (Figure 5). These tasks span a variety
of robotic navigation and manipulation domains, including whole-body humanoid control, maze
navigation, sequential object manipulation, and combinatorial puzzle solving. Among them, the tasks
prefixed with “visual-" require image-based control.

Methods. In this experiment, we consider four imitation learning baselines that do not involve
value learning (recall that CFGRL also does not train a value function): (1) BC, (2) flow BC (Chi
et al., 2023), (3) goal-conditioned BC (GCBC) (Ghosh et al., 2021), and (4) flow GCBC. BC
trains an (unconditional) behavioral cloning policy, and GCBC trains a goal-conditioned policy with
Equation (17). Flow BC and flow GCBC maximize the same objectives, but with flow policies (Chi
et al., 2023; Black et al., 2024a). In the CFGRL framework, flow BC corresponds to CFGRL with
w = 0 and flow GCBC corresponds to w = 1.

3Specifically, we set f as Qx (s,a, g), which is a bounded, non-negative, non-decreasing function of
Ax(s,a, g). This can also be understood as defining p(o | g, s,a) x p”(g | s,a), i.e., an action’s optimality is
proportional to the likelihood of reaching the goal in the discounted future.
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Table 3: Improving on GCBC. CFGRL consistently improves performance over GCBC across the board.
Numbers at or above the 95% of the best performance in each category are boldfaced, as in OGBench.

Flat Policies Hierarchical Policies
Task BC Flow BC GCBC Flow GCBC CFGRL HGCBC Flow HGCBC HCFGRL
pointmaze-medium-navigate 0 <o 1+2 9 5 66 +4 77 6 0 +o 57 +7 63 15
pointmaze-large-navigate 0 +o 0 +o 25 +9 T4 +7 TT +5 0 +o 75 +6 57 +8
pointmaze-giant-navigate 0 +o 0 +o 2 +2 4 +2 30+10  0=+o 6 +5 18 +s
pointmaze-teleport-navigate 0 <o 0+ 24 +7 46 4 41 =8 6 +5 37 10 38 +13
antmaze-medium-navigate 13 +2 15 +6 25 +8 42 +o 53 +12 45 47 67 +8 90 +5
antmaze-large-navigate 11 +4 5 +2 20 +4 22 +5 24 +10 4524 61 +5 78 +4
antmaze-giant-navigate 0 <o 0 +o 0 +o 0 +o 1+ 8 +5 14 15 38 +7
antmaze-teleport-navigate 4 +2 3 +2 19 +5 24 +7 35+0 3546 38 +5 50 +5
humanoidmaze-medium-navigate 3 +3 2 42 6 +3 8 +3 196 133 23 +4 64 +10
humanoidmaze-large-navigate 0+ 0 +o PES 142 3 +2 8 +5 11 +2 38 +4
antsoccer-arena-navigate 2 +2 4 +1 4 +3 10 +5 15 +6 8 +4 16 +5 37 +5
antsoccer-medium-navigate 0 +o 0 +o0 6 +4 5 +3 5 +3 7 +2 8 +3 11 +4
cube-single-play 412 7 5 6 +2 8 +2 115 1223 26 +5 46 +6
cube-double-play 141 2 +1 2 +1 3 +1 2 +2 2 41 21 +7 42 45
scene-play 5 +2 53 4 +3 15 +5 19 +4 7 +2 14 +4 18 +5
puzzle-3x3-play 3 +2 2 2 3 +2 141 2 +2 3 +2 1+ 2 2
puzzle-4x4-play 0 +o 0 +1 0 +o 0 +o 0 +o 0 +o 0 +o 0 xo
visual-antmaze-medium-navigate 14 +s 741 11 +5 19 +a 23 +4 - - -
visual-antmaze-large-navigate 6 +4 1+ 5 +2 31 11 +2 - - -
visual-cube-single-play 1+ 11 12 13 +7 37 +o - - -
visual-cube-double-play 0 +o 0 +o0 0 +o 10 +4 745 - - -
visual-scene-play 51 7 +2 5 x2 25 +4 40 =8 - - -
visual-puzzle-3x3-play 1=+ 0 +1 01 01 01 - - -
visual-puzzle-4x4-play 0 +o 0 +o 0 +o 0 +o 0 +o - - -

In addition to the five “flat” methods above, we also consider hierarchical behavioral cloning (Gupta
etal., 2019; Lynch et al., 2019) on state-based tasks, where we train both a high-level policy 7" (/ |

,7) 1 S x 8 = A(S) that outputs subgoals £ and a low-level policy 7(a | 5,/) : S x S — A(A)
that takes subgoals and outputs actions. In this setting, we can apply CFGRL to each level’s GCBC
objective to enhance the optimality of both policies. We call this variant hierarchical CFGRL
(HCFGRL). As baselines, we consider hierarchical GCBC Gupta et al. (2019); Lynch et al. (2019)
and flow hierarchical GCBC, which trains Gaussian and flow policies, respectively.

Results. Table 3 presents evaluation results over 8 seeds for state-based tasks and 4 seeds for pixel-
based tasks, denoting standard deviations after the &= symbols. Results show CFGRL consistently
outperforms all four baselines on most of the tasks, even with a single fixed value of the guidance
strength (w = 3). Notably, on some tasks (e.g., pointmaze-giant and visual-cube-single),
CFGRL achieves more than 3x the success of the strongest baseline. We emphasize that this
improvement is achieved simply by contrasting the prior and GCBC policies, without training a value
function. As in Section 5, we measure how performance varies with different values of guidance
weights w. We present the results on four tasks in Figure 4 (see Figure 6 for the full results), which
shows that the performance generally improves as w increases, as predicted by Remark 2.

7 DISCUSSION AND CONCLUSION

In this work, we introduced a principled connection between diffusion guidance and policy improve-
ment in RL. Using this connection, we derive a framework that combines the simplicity of generative
modeling objectives with the policy improvement capabilities of RL. We then instantiate this frame-
work as 1) a policy extraction method in offline RL when learning a value function, and 2) a “direct”
method of learning performant policies without a value function. We show that CFGRL improves
over the widely used AWR approach in the offline RL setting, and achieves a substantial improvement
over GCBC in the goal-conditioned setting, while maintaining the simplicity of these prior methods.

Limitations. Our method does not claim to replace full RL procedures—we assume a given value
function and do not make any prescriptions about how to train it. In our experiments, CFGRL takes
the place of prior supervised learning methods for policy extraction, maintaining their simplicity and
stability. However, more advanced policy extraction methods and online RL techniques, such as policy
gradients (Lillicrap et al., 2016; Schulman et al., 2017), could provide for stronger extrapolation. By
itself, CFGRL does not represent a state-of-the-art RL algorithm, but rather an additional tool in the
algorithm designer’s toolbox that can take the place of policy extraction methods such as AWR, as
well as a theoretical connection that we hope will inspire future work.
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REPRODUCIBILITY STATEMENT

We provide our anonymized implementation and instructions at https://anonymous.4open.
science/r/cfgrl_submit-206C, and describe the full experimental details in Appendix.
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A THEORETICAL RESULTS

Lemma 1 (Chebyshev’s sum inequality for probability measures). For any probability measure i on
R and any bounded, measurable, non-decreasing functions g, h : R — R,

/R g(2)h(z)p(dz) > / g()p(de) / h(x)u(da). 20)

Proof. Since g and h are non-decreasing, the signs of g(y) — g(z) and h(y) — h(z) are the same for
any y, z € R. Hence, we have

0< / (9() — 9(2)) (h(y) — h(2)) (1 @ 1) (dy, d2) 1)
RxR

-/ ( [ 6wh) + 5(:In6z) — gl)hiz) - g(Z)h(y))u(dy)> Wdz) @)
R R

—2 [ gh(utds) -2 [ glan(do) [ hou(do) @3)

R R R
from which the conclusion follows, where ¢+ ® p denotes the product measure of w4 and itself, and we
use Fubini’s theorem in the second line. O

Lemma 2. Let s € S be a state, m,7 : S — A(A) be policies, and f : R — R be a bounded,
measurable, non-negative, non-decreasing function. Suppose that w(a | s) = f(Ax(s,a))7(a | s)
and Eq 515 [f(Az(s,a))] = 1. Then,

Eqmn(1s) (@4 (s, a)] > Vi(s). 24)

Proof. To apply Lemma 1, we first rewrite the left-hand side of Equation (24) using probability
measures as follows:

By Q@ (5,a)] = /A Q+ (5, a)ms(da) (25)
_ /A O (s,a)f(Ax (s, a))7s(da) (26)
- /A Qa(5,0) F(Q(5,) — Va(s))s(dla), @7)

where 7, and 75 denote the probability measures corresponding to the distributions 7 (- | s) and
7(- | s), respectively. Then,

oo Qe(5.0)] = [ @1(5.0)(@a(5.) = Va(s)s(do) e8)
= [[afta= Ve 9)
> ([ oxaa)) ([ rla=vatenaan) 60)
R R

- ( [ st a)frs(da)) ( [ f@sts.0) - Vﬁ(s))ﬁs(da)) (1)

A A
= ( Qx(s, a)ws(da)) ( F(Ax(s, a))ws(da)> (32)

A A
= fr(s)EaNfr('\s) [f(Aﬁ'(Sv a))] (33)
= Vi (s), (34)
where A denotes the pushforward measure of 75 by Qx (s, -), and we use Lemma 1 in the third line
with g(x) = 1 and h(x) = f(z — Vi(s)), both of which are non-decreasing. O

Lemma 3 (Policy improvement theorem for stochastic policies (Sutton & Barto, 2005; da Silva,
2023)). For any policies w and 7 satisfying Eqx(.|s)[Q#(s,a)] > Vi (s) forall s € S,

J(m) > J(7). (35
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Proof. This is a straightforward generalization of the policy improvement theorem to stochastic
policies. See Section 4.2 of Sutton & Barto (2005) and Theorem 3 of da Silva (2023). O

Theorem 1 (Policy improvement by reweighting). Let w, 7 : S — A(A) be policies and f : R — R
be a bounded, measurable, non-negative, non-decreasing function. Suppose that w satisfies 7(a |
s) x f(Az(s,a))@(a| s). Then,

J() > J(7). (36)

Proof. Fix s € S. Letw(a | s) = f(Ax(s,a))@(a | s)/Z(s), where the normalization function
Z : S — Ris defined as

Z(s) = /,4 F(Ax (s, a))is(da). 37)
Then, we have
- / F(As(s,0))/2(s)7s(da) (38)
A
= ]anfr('\s)[f(Afr(s?a‘))/Z(s)]’ (39

Defining g = f/Z(s), we get Eqz(.s)[9(A%(s,a))] = 1. Since f is non-negative and non-
decreasing, so is g, and the conclusion directly follows from Lemma 2 (with 7w(a | s) =
g(As(s,a))7(a | s)) and Lemma 3.

Theorem 2. Let 0 < wy < wy be real numbers, w1, 72,7 : S — A(A) be policies, and f : R —
R be a bounded, measurable, non-negative, non-decreasing function. Suppose that 7; satisfies

mi(a ] s) x f(Az(s,a))?7(a | s)fori=1,2. Then,
J(ﬂ'l) S J(7T2>. (40)

Proof. Fix s € §. As in the proof of Theorem 1, write

_ f(Az(s,a))" #(a | s)
m(a| 5) = TERRAETLY, @)
_ [(Ax(s,a))27(a ] s)
my(a ) = AT : “2)
where Z1, Z5 : S — R are the normalization functions. Then, we have
mla]s) = fAx(s,@) 2ma o). @)

Since Z; and Z5 are both bounded (which follows from the boundedness of f), measurable, and non-
negative, we can apply Lemma 2 to the bounded, measurable, non-negative, non-decreasing function
x = f(x)¥27"1Z1(s)/Z2(s) with (m,7t) = (7, m1) (in the notation of Lemma 2). The result then
directly follows from Lemma 3 as before. O

16



Under review as a conference paper at ICLR 2026

Figure 5: OGBench environments.
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Figure 6: Full ablation results on CFG weight w. The performance of CFGRL generally improves as the
CFG weight increases.

B ADDITIONAL RESULTS

Enviromments. Figure 5 illustrates OGBench tasks.
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Figure 7: Ablation study on optimality conditioning. Shared policies lead to better performance and
extrapolation than separate policies, likely because the former shares representations.

Ablation study on the CFG weight w. We present the full ablation study on the CFG weight w
across all 17 state-based OGBench tasks in Figure 6. The results show that the performance improves
as the CFG weight increases, although it sometimes declines beyond a certain point, likely because
the policy deviates too far from the data distribution.

Ablation study on optimality conditioning. When modeling an optimality-conditioned policy
m(a | s,0) with o € {&,0,1}, we can either have separate networks for each o value, or share the
same network with a learnable optimality embedding. We choose the latter in our experiments, and
present an ablation study in Figure 7. The results suggest that the shared architecture generally works
and extrapolates better than the separate one. We believe this is likely because extrapolation benefits
from shared representations.

C IMPLEMENTATION DETAILS

We implement CFGRL on top of the reference implementations provided by OGBench (Park et al.,
2025a). Each experiment in this work takes no more than 4 hours on a single A5000 GPU.

Tasks. In Section 5, we employ 9 tasks from the ExXORL benchmark (Yarats et al., 2022) and 9 single-
task (singletask) variants from the OGBench suite (Park et al., 2025a). We use the RND datasets
for our EXORL experiments. In Section 6, we employ the oraclerep variant of OGBench tasks
to remove confounding factors related to goal representation learning, where this variant provides
ground-truth goal representations (e.g., in antmaze, a goal is specified by only the z-y position, as
opposed to the full 29-dimensional state including proprioceptive information).

Methods and hyperparameters. For baselines, we follow the original implementations and hyper-
parameters whenever possible (Kostrikov et al., 2022; Park et al., 2025a;b). For GCBC methods in
Section 6, we sample goals uniformly from future states, as in the original implementation in OG-
Bench (Park et al., 2025a). This can be viewed as an approximation of geometric sampling with a
high ~. We present the full list of the hyperparameters in Tables 4 to 8.
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Table 4: Hyperparameters for ExORL offline RL experiments (Table 1).

Hyperparameter Value

Learning rate 0.0003

Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000

Minibatch size 1024

MLP dimensions [512,512,512]

Nonlinearity Mish (Misra, 2020)

Target network smoothing coefficient  0.005

Discount factor 0.99 (default), 0.995 (antmaze-giant, humanoidmaze, antsoccer)
Flow steps 32

Flow time sampling distribution Unif ([0, 1])

IQL expectile 0.9

CFGRL w and AWR 1/ Table 5

Table 5: Per-task hyperparameters for ExoRL offline RL experiments (Table 4).

Task AWR1/3 CFGRL w
walker-stand 3 30
walker-walk 3 30
walker-run 10 30
quadruped-walk 3 3
quadruped-run 3 10
cheetah-run 30 10
cheetah-run-backward 3 30
jaco-reach-top-right 3 3
jaco-reach-top-left 3 3

Table 6: Hyperparameters for OGBench offline RL experiments (Table 2).

Hyperparameter Value

Learning rate 0.0003

Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 500000

Minibatch size 256

MLP dimensions [512,512,512,512]

Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Target network smoothing coefficient  0.005

Discount factor 0.99 (default), 0.995 (antmaze-giant, humanoidmaze, antsoccer)
Flow steps 16

Flow time sampling distribution Unif ([0, 1])

IQL expectile 0.9

AWR 1/ and CFGRL w Table 7

Table 7: Per-task hyperparameters for OGBench offline RL experiments (Table 2).

Task AWR1/3 CFGRL w
pointmaze-large-navigate 10 1
pointmaze-teleport-navigate 1 1
antmaze-large-navigate 10 1.25
antmaze-teleport-navigate 10 3
humanoidmaze-large-navigate 3 1
antsoccer-arena-navigate 10 1.5
cube-single-play 1 1.5
scene-play 3 3
puzzle-3x3-play 1 3
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Table 8: Hyperparameters for GCBC experiments (Table 3).

Hyperparameter Value

Learning rate 0.0003

Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000

Minibatch size 1024 (states), 256 (pixels)
MLP dimensions [512,512,512,512]
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Image augmentation probability 0.5

Flow steps 16

Flow time sampling distribution ~ Unif ([0, 1])

CFGRL w 3

Subgoal steps for hierarchical BC 25 (default), 10 (OGBench manipulation), 50 (humanoidmaze)
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