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Figure 1: Samples from Flash-DMD, taking less than 3% training cost of DMD2.

ABSTRACT

Diffusion Models have emerged as a leading class of generative models, yet their
iterative sampling process remains computationally expensive. Timestep distilla-
tion is a promising technique to accelerate generation, but it often requires exten-
sive training and leads to a degradation in image quality. Furthermore, fine-tuning
these distilled models to optimize for specific objectives, such as aesthetic appeal
or user preference, using Reinforcement Learning (RL) is notoriously unstable,
and easily falls into reward hacking. In this work, we introduce Flash-DMD,
a novel framework that enables fast convergence with distillation and stable RL-
based refinement for stable optimization. Specifically, we first propose an efficient
timestep-aware distillation strategy that siginicantly reduce training cost with en-
hanced human preference and realism. Second, and most critically, we introduce a
joint training scheme where the model is fine-tuned with an RL objective while the
timestep distillation training continues simultaneously. We demonstrate that the
stable, well-defined loss from the ongoing distillation acts as a powerful regular-
izer, effectively stabilizing the RL training process and preventing policy collapse.
Our experiments show that our proposed Flash-DMD not only converges signif-
icantly faster but also achieves state-of-the-art generation quality in the 4-step
sampling regime, outperforming existing methods in human preference evalua-
tions. Our work presents an effective paradigm for training efficient, high-fidelity,
and stable generative models. Codes are attached in the supplementary.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Rombach et al., 2022; Podell et al., 2023; Esser et al., 2024; Labs,
2024) have demonstrated remarkable success in text-to-image generation in recent years. However,
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generating high-quality images necessitates numerous iterative denoising steps, resulting in substan-
tial computational overhead, especially as models grow in size and complexity. This overhead poses
a significant obstacle to real-time or resource-constrained deployment. To address this issue, various
diffusion distillation techniques have been developed to distill multi-step teacher diffusion models
into efficient student models that can produce comparable image quality in just one or a few infer-
ence steps (Luo et al., 2023a; Wang et al., 2024; Yin et al., 2024c;b; Lin et al., 2024; Chadebec et al.,
2025; Ge et al., 2025; Lu et al., 2025). However, existing distillation methods are often inefficient
and resource-intensive, requiring thousands of GPU hours for training. This significantly limits its
accessibility to research groups and institutions with limited resources, and hinders rapid iteration
and deployment in practical applications.

Among existing distillation methods, Distribution Matching Distillation (DMD) methods (Yin et al.,
2024c;b; Lu et al., 2025; Ge et al., 2025) stand out for their superior generative quality, leveraging
variational score distillation objectives (Yu et al., 2023) to align the output distributions of student
and teacher models. However, this objective function suffers from unstable training and a tendency
to mode seeking. Some approaches have employed adversarial methods to mitigate these problems.
DMD2 (Yin et al., 2024b) proposes latent adversarial regulations with real images and designs a
Two-Time scale Update Rule (TTUR) to stabilize training, but it combines the GAN (Sauer et al.,
2024b;a) framework with DMD in a naive manner, neglecting the timestep aware feature of timestep
distilled diffusion models, and the fake score µfake is trained both to discriminate real and generated
images, but also to track the distribution changes of student models. These design compromises its
efficiency in matching the distribution of teacher models. Furthermore, DM loss is inefficient in the
latter part of distillation as it is hard to guide detailed learning, preventing it from effectively guiding
the student diffusion model. These observations motivate our core research questions:

Q1 In the early phase, how can we more effectively coordinate distribution matching with
perceptual realism enhancement to accelerate convergence and stabilize training?
Q2 In the later phase, how can we refine the student model for better visual details and
perceptual fidelity when gradient signals from distribution matching become less informative?

To address the inefficiencies of the distribution matching methods, we proposed Flash-DMD, a
twofold method in the four-step distillation task that outperforms DMD2 in the human preference
benchmark with a much smaller training cost, while preserving superior perceptual realism. Specif-
ically, our Flash-DMDfollows different principles in the early and later generation phases.

In the early phase, the denoising performance at different stages varied, so the distillation target
should also differ. We accordingly decoupled the GAN and distribution matching frameworks. At
high-noise timesteps, the denoising model’s primary objective is to learn global composition and
structure from the teacher, and DM loss is effective to process noisy latents. Therefore, we use
a pure DM loss to align the student model with the teacher model’s output distribution. At low-
noise timesteps, the model focuses on refining fine-grained details and enhancing perceptual real-
ism. Thus, we use an adversarial loss to match the distribution of real images and improve the
photorealism of the final outputs.

In the later phase, as gradient signals from distribution matching diminish, we directly optimize
for visual quality and human preference. Our approach combines the DMD framework with latent
reinforcement learning to efficiently refine the model’s handling of fine-grained details. Simultane-
ously, the distribution matching (DM) loss constrains domain shift, preventing the mode collapse
and visual degeneration common in few-step reinforcement learning. This ensures the final results
maintain high realism, avoiding reward hacking and the emergence of “oil painting” artifacts.

By combining faster convergence in the early phase with finer optimisation in the latter phase, we
demonstrate the efficiency and superior performance of our method of distilling from SDXL to
produce high-quality, realistic images. Notably, our method achieves the highest human preference
scores while requiring the lowest training cost to date.

To summarize, our main contributions are threefold:

• We introduce Flash-DMD, a highly efficient framework for Distribution Matching Distil-
lation. we decouple training objectives via a timestep-aware strategy to efficiently distill
the fundamental distribution of the teacher model in low-SNR timesteps and refine percep-
tual quality and texture in high-SNR timesteps, and we counteract the mode-seeking of the
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DM loss with a SAM-based Pixel-GAN that robustly enhances realism. The combination
of these strategies and the stabilized score estimator allows for fastest convergence and
stabilized distillation.

• Extensive experiments demonstrate that our method achieves superior performance com-
pared to both the teacher model and baseline in human preference metrics, using only 2.1%
of the training cost of DMD2. Further improvements are attained with an additional 6.2%–
35.4% of DMD2’s training cost with even enhanced realism and textural detail.

• We successfully integrate reinforcement learning into the distillation process, creating a
unified framework that seamlessly combines post-training refinement with distillation. This
innovation eliminates the need for separate reinforcement and distillation phases, signifi-
cantly reducing computational training costs while enabling efficient optimization of fine-
grained details and perceptual fidelity in few-step image generation.

2 RELATED WORK

Diffusion Distillation. Progressive Distillation (Salimans & Ho, 2022; Meng et al., 2023; Lin
et al., 2024) reduce inference steps in diffusion models by iteratively halving them, ultimately pro-
ducing a one-step generator. Although effective, this iterative process is computationally expensive
and is constrained by the preceding teacher model’s quality, leading to compounding errors. Con-
sistency Distillation (Luo et al., 2023a;b) enforces a consistency constraint for the diffusion models,
stipulating that any point on a given trajectory will revert to its starting point. However, it leads
to performance degradation in the few-step inference. To migrate the issue, recent works (Wang
et al., 2024; Ren et al., 2024; Zheng et al., 2024) have segmented the trajectory and progressively
perform distillation on timestep segments, thereby achieving enhanced stability and fidelity. Adver-
sarial Distillation introduces a discriminator to align the few-step student’s output with the multi-
step teacher’s, either at the pixel level (Sauer et al., 2024b) or latent level (Sauer et al., 2024a),
DMD2(Yin et al., 2024b). DMD2(Yin et al., 2024b) also uses latent adversarial training to match
real-world data distribution, but its straightforward combination of adversarial loss and distribution
matching may introduce conflicting objectives that can hinder overall distillation efficiency. Score
Distillation was subsequently adapted for the distillation of diffusion models themselves (Yin et al.,
2024c; Nguyen & Tran, 2024; Franceschi et al., 2023). An early approach, Distribution Matching
Distillation (DMD) (Yin et al., 2024c), aims to minimize the KL-divergence between the teacher
and student distributions. DMD2 (Yin et al., 2024b) replaced regression loss with adversarial loss
for better realism. Building on this, Adversarial Distribution Matching (ADM) (Lu et al., 2025)
introduced a GAN framework with Hinge loss, while SenseFlow (Ge et al., 2025) optimized scorers
and discriminators for efficient distillation of larger models.

Reinforcement Learning in T2I Generation. Reinforcement learning is rapidly migrating to im-
age generation tasks to align large-scale diffusion models with human feedback. Direct Preference
Optimization (DPO) (Wallace et al., 2024; Liang et al., 2025; Lee et al., 2025; Li et al., 2025b; Miao
et al., 2025; Zhang et al., 2025a) and Group Relative Policy Optimization (GRPO)(Liu et al., 2025;
Xue et al., 2025; Li et al., 2025a; Wang et al., 2025; He et al., 2025) are two popular paradigms.
The former methods construct offline or online win-lose pairs and back-propagate the preference
order by the Bradley-Terry formed objectives. The latter methods sample a group of images on the
SDE/mixed ODE-SDE trajectory, calculate the normalized advantage within the group, and con-
strain the policy generation direction. However, current research on performing RL on few-step
models remains quite limited. Miao et al. (2025) proposed pairwise sample optimization (PSO),
strengthening the relative likelihood margin between the training and reference sets. In contrast to
PSO, we leverage a reward model operating in the latent space without relying on extrinsic posi-
tive targets(e.g., human-preferred labels, stylized images), which exclusively utilizes self-generated
image pairs produced by the model itself and reduces computational overhead during training.

3 METHODOLOGY

3.1 PRELIMINARY OF DISTRIBUTION MATCHING DISTILLATION

Given pretrained diffusion model Tϕ(xt, t) as teacher model, where xt is noisy sample at timestep
t ∼ U(1,T), DMD(Yin et al., 2024c) and DMD2(Yin et al., 2024b) distill it into few-step effi-
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Figure 2: Framework of our proposed method Flash-DMD. There are two training stages: fast
distillation and reinforcement learning. In stage 1, we take timestep-aware strategy and PixelGAN
to efficiently create a realistic version of the teacher. In stage 2, latent preference optimization on
high noise timesteps is utilized to enhance generation fidelity to surpass the teacher.

cient generator Gθ(xt, t) by minimizing the reverse KL divergence between the teacher model’s
distribution ptea and the few-step generator’s distribution pgen. DMD series methods estimate ptea
through score estimator µtea(xt, t), and pgen is tracked with estimator µgen(xt, t). Score function of
the diffused distribution is:

sgen(xt, t) = −
xt − αtµgen(xt, t)

σ2
t

; stea(xt, t) = −
xt − αtµtea(xt, t)

σ2
t

(1)

where αt, σt > 0 are scalars determined by the noise schedule. sgen and stea are vector fields that
point towards higher density of distribution. Gradient of Distribution Matching objective w.r.t. θ is,

∇θLDMD = Ez,t
[
− (stea(Gθ(z, t))− sgen(Gθ(z, t)))

dGθ(z, t)
dθ

]
, (2)

where z ∼ N (0, I), t ∼ U(0,T). In addition to the Distribution Matching objective, DMD2 intro-
duces the combination with adversarial training with real images. Gradient of generator’s adversarial
objective w.r.t. θ is,

∇θLAdvGen = Ez,t
[
logD (Gθ(z, t))

dGθ(z, t)
dθ

]
, (3)

where D is the discrimator forward process. The score estimator of teacher Tϕ(·) is itself, the
generator’s score estimator µψgen(·) is initialized with Tϕ(·), and is dynamiclly updated to track pgen
with diffusion loss:

LDiffusion = Ext−1,t,ϵ∼N (0,I)[∥µψgen(xt, t)− ϵ∥22], (4)

DMD2 reuses the parameter ψ of µψgen(xt, t) and extra trainable heads to distinguish pgen and real
image distribution preal. Gradient of estimators’s adversarial objective w.r.t. ψ is,

∇ψLAdvDisc = Ez,t,xreal∼preal

[
logD (xreal)

dD (xreal)

dψ
− logD (Gθ(z, t))

dD (Gθ(z, t))
dψ

]
, (5)

3.2 TRAINING INEFFICIENCY OF DMD SERIES

Despite their impressive performance, methods in the DMD series are characterized by significant
computational overhead during distillation. This is evident in the extensive training schedules re-
quired by prominent models. For instance, the original DMD(Yin et al., 2024c) required 20, 000
iterations with a batch size of 2,304 to distill Stable Diffusion v1.5 (Rombach et al., 2022) for
single-step generation. Similarly, DMD2 (Yin et al., 2024b) used 24, 000 iterations to distill SDXL
(Podell et al., 2023) for four-step generation, and ADM (Lu et al., 2025) used 16, 000 iterations
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for single-step SDXL distillation. Given the strong empirical results and open-source implemen-
tation of DMD2, we select it as the foundation for our investigation into these inefficiencies. One
primary source of inefficiency in DMD2 stems from its optimization strategy. As noted by Cheng
et al. (2025), DMD2 simultaneously optimizes the model using two distinct gradients: a distribution-
matching gradient (Eq. equation 2) and an adversarial gradient (Eq. equation 3). A direct summa-
tion of these gradients can introduce conflicting objectives, potentially steering the model toward
a suboptimal state. This conflict can degrade both the accuracy of the distribution matching and
the perceptual quality of the generated images, thereby hindering efficient convergence. A second
challenge lies in the dual role assigned to the generator’s score estimator. It is tasked with two
demanding objectives: tracking the output distribution of Gθ(·)(Eq. equation 4) and discriminating
between real and generated samples (Eq. equation 5). To stabilize this complex dynamic, a two-
time scale update rule (TTUR) is employed in DMD2, where score estimator is updated five times
for every single update of the generator Gθ(·). This significantly contributes to the model’s overall
training inefficiency.

3.3 FASTER CONVERGENCE IN EARLY PHASE

Adversarial Training is Necessary. DMD2 framework optimizes the generator by naively sum-
ming the Distribution-Matching (DM) loss from the teacher and an adversarial loss against real
images at every timestep. This superposition of gradients can result in suboptimal and inefficient
optimization. When we remove the adversarial teacher entirely, we observe that under pure DM loss
supervision, the generator rapidly converges to a suboptimal domain, producing outputs with unnat-
urally high contrast and lacking fine-grained textures. We attribute this behavior to the mode-seeking
nature of the reverse KL divergence, an observation also discussed in ADM (Lu et al., 2025). This
finding underscores the necessity of the adversarial loss with real images for perceptual fidelity.

Decoupling Losses with a Timestep-Aware Strategy. We observe that the generator’s objec-
tive changes throughout the denoising process. For a 4-step distilled model, the initial, high-noise
timesteps (low Signal-to-Noise Ratio, or SNR) primarily establish global composition and struc-
ture, and the low-noise timesteps (high SNR) focus on refining details, textures, and color tones
to enhance realism. This observation is corroborated by findings of Cheng et al. (2025) in video
generation tasks, which noted that the adversarial training in DMD2 is most active at high SNRs,
whereas DM loss excels at guiding the model through high-noise regimes. Based on these insights,
we assign DM loss and adversarial loss to distinct timesteps: during the high-noise regime (steps
1-3 in a 4-step model), we optimize the generator exclusively with the DM loss (Eq. equation 2).
This allows the model to efficiently learn the teacher’s fundamental distribution and ODE trajectory
in the early phases of generation. For the low-noise step, we apply the adversarial loss against real
images, enabling the model to refine perceptual quality and texture in the final denoising step.

During each generator update, we sample one timestep t ∼ 999, 749, 499, 249 and xt from DMD2’s
back-simulation forward process B to compute the DM loss:

xt = Detach(B(z, t));∇θLAT
DMD = Ez,t

[
− (stea(Gθ(xt, t))− sgen(Gθ(xt, t)))

dGθ(xt, t)
dθ

]
, (6)

then employ B to propagate the denoised output xt−1 to a final clean imagex0:

xt1 = Gθ(xt, t);x0 = Detach(B(xt1 , 0)) (7)

where Detach denotes stop gradient, x0 is then used for the adversarial loss computation. We
perform diffusion forward on x0 to obtain the noisy sample x249. Gradient for adversarial loss is:

∇θLTA
AdvGen =

[
Et=249 logD (Deocde (Gθ(x249, t)))

dGθ(x249, t)
dθ

]
(8)

where the D(·) is the pixel-level discriminator, and Decode is the decode process of SDXL-
VAE(Podell et al., 2023). This timestep-aware strategy reduces interference between these two
optimization objectives. Our experiments demonstrate that this approach significantly improves
training efficiency while generating high-quality images with enhanced realism and textural detail.

Pixel-GAN alleviates mode-seeking. In order to enforce realism and structural coherence, the
present study performs adversarial learning directly in the pixel space using a discriminator based
on features that is new and innovative. In contrast to a conventional latent-space GAN, the discrim-
inator in our model is constructed upon the frozen vision encoder of the Segment Anything Model
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(SAM) to extract hierarchical features with multiple trainable discriminator heads attached. The
discriminator’s trainable parameters ω are updated via the Hinge loss:

LPG
AdvDisc = Exreal [− logDω (xreal)] + Ez,t=249 [logDω (Decode(Gθ(xt, t))] (9)

The discriminator is characterized by its exceptional sensitivity to local geometric structures and
fine-grained textures, a capability that is facilitated by SAM’s powerful, general-purpose represen-
tations, as noted by Lu et al. (2025). This pixel-level supervision exerts a stringent realism constraint
from the training’s earliest stages, compelling the generator to expeditiously discern and anchor to
diverse, high-fidelity modes within the data distribution. This approach effectively prevents prema-
ture convergence to simplistic or blurry solutions (mode-seeking).

Stabilize Score Estimator. In contrast to DMD2 Yin et al. (2024b), where the score estimator is
required to serve as a discriminator (Eq. equation 5) and thus faces conflicting optimization objec-
tives, our approach trains µψgen solely via the diffusion loss (Eq. equation 4), eliminating the tasking
burden and training complexity for Gθ(·). Our experiments show that updating the score estimator
only once or twice per generator update (TTUR=1,2) is sufficient for stable and accurate distribu-
tion tracking. This lightweight coupling leads to more stable training dynamics and superior sample
fidelity compared to DMD2 with TTUR=5, while reducing computational overhead.

Similar to implicit distribution alignment proposed by Ge et al. (2025), we also adopt an Exponential
Moving Average (EMA) update strategy to ensure that the score estimator µψgen accurately tracks the
evolving distribution of the generator Gθ(·). Specifically, after each generator update, we inject the
latest generator parameters into the score estimator using an EMA coefficient λema, i.e.,

ψ ← λemaψ + (1− λema)θ, (10)

which enables µψgen to closely follow the generator’s trajectory with minimal additional updates.

Putting everything together. We introduce Flash-DMD, a highly efficient framework for Distri-
bution Matching Distillation. In summary, Flash-DMD’s training objectives via a timestep-aware
strategy efficiently distill the fundamental distribution of the teacher model in low-SNR timesteps
and refine perceptual quality and texture in the final high-SNR timestep. To counteract the mode-
seeking tendency of the DM loss, we introduce a SAM-based Pixel-GAN that robustly enhances
realism. The combination of these strategies and the stabilized score estimator enables a more ef-
fective and balanced optimization of the generator Gθ(·).

3.4 REINFORCEMENT LEARNING FOR FINER PERFORMANCE IN THE LATER PHASE

Reinforcement learning boosts model performance. Leveraging the above training paradigm,
we have developed a student generator capable of rivaling the teacher model. Subsequently, our
focus shifts to enhancing its performance beyond that of the teacher and deploying it in practical
scenarios. Preference optimization provides a direct shortcut to significantly improve image fidelity,
aesthetics, and detail richness with limited resources.

Choosing a suitable Reward Model. Selecting an appropriate reward model is a critical step. We
begin with an empirical investigation of the prevalent models and systematically summarize their
characteristics in the appendix. The empirical findings lead to the following conclusions: 1) Most
models operate in pixel space, with only the Latent Reward Model (LRM) exploring in latent space.
2) Although the timestep constitutes a critical factor for text-to-image models, it is neglected by most
reward models, with a few exceptions. 3) In general, these reward models score on dimensions such
as image fidelity, aesthetics, and text-image alignment. In light of the analysis above, we incorporate
LRM into our distillation training pipeline.

The best of both worlds. Born from stable diffusion models, LRM can score noisy latent repre-
sentations at any timestep without the need for complex VAE decoder transformations. This capa-
bility inherently meets our demands. A subsequent key challenge is how to integrate LRM into our
framework to achieve greater gains effectively. To adapt the approach to our method, we introduce
several key changes: 1) In the sampling process for win-lose pair construction and log-likelihood
computation stage, we replace the original noise scheduler, Denoising Diffusion Implicit Model
(DDIM), with Latent Consistency Model (LCM) since the distilled model is compatible with the
latter. 2) As shown in Fig. 3, with the same initialized noise, it is evident that images sampled at
high-noise steps exhibit better diversity in layout and fine-grained details compared to those from
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low-noise steps. As a result, we only perform stochastic sampling in the high-noise phase, altering
latent representations that are deemed optimal/suboptimal by the reward model. 3) The dynamic
threshold is removed because the original dynamic boundary range is insufficient to adapt to the
distribution characteristics of distilled models adequately. 4) We combine the logarithmic likelihood
loss with the vanilla loss of Flash-DMDduring the training process rather than applying preference
optimization separately. We will explore a reasonable time scale update rule in the appendix file.

Figure 3: Sampling variance analysis at different time steps. The first row displays samples obtained
at the 999th denoising step, while the second row corresponds to the 499th step.

Win-lose Pair Construction and Final RL Loss. Given a generator Gθ(·) distilled from a pre-
trained diffusion model Tϕ(·), it can sample clean images from pure noise zT ∼ N (0, I), con-
ditioned on text prompt c, within T = 4 steps. At high-noise timesteps, we sample a set of k
noisy latent images {z1t−1, ..., z

k
t−1} from the same initial latent image zt. LRM predicts preference

scores. The samples corresponding to the highest and lowest normalized scores are selected as win-
lose pairs, thereby constructing paired training data (zt, z

w
t−1, z

l
t−1) to the sampling pool. These

pairs are subsequently used to minimize the loss function:

Lrl = −Ezwt−1,z
l
t−1∼pθ(zt−1|zt,c)[log σ(β log(

pθ(z
w
t−1|zt, c)

pref (zwt−1|zt, c)
− β log(

pθ(z
l
t−1|zt, c)

pref (zlt−1|zt, c)
)] (11)

where pθ(zt−1|zt, c) denotes the backward process to denoise zt and can be formulated as follows:

p(zt−1|zt) = N (µt, σ
2
t ϵt), ϵt ∼ N (0, I) (12)

µt =
√
αt−1 · ẑ0,t +

√
1− αt−1 − σ2

t · ϵθ(zt, t) (13)

ẑ0,t = cout(t) · (
zt −

√
1− αt · ϵθ(zt|c)√

αt
) + cskip(t) · zt (14)

where ẑ0,t denotes clean latent images predicted by noise predictor ϵθ(·) at timestep t. cskip(·) and
cout(·) are differentiable functions predefined in the LCM scheduler.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Experiment Setup For the first phase, we utilize a filtered set from the LAION 5B (Schuhmann
et al., 2022) dataset to provide high-quality image-text pairs for training, following the setting of
(Yin et al., 2024a). For discriminator conditioning, we adopt the vision encoder from Kirillov et al.
(2023) as the backbone to extract image representations. The structure of trainable discriminator
heads follows the 2D architecture of (Lu et al., 2025). For the second phase, we adopt the training
dataset from the first phase and utilize the Latent Reward Model from (Zhang et al., 2025a). We
sample a set of noisy latent images at the high-noise timesteps t = 749, 999 and set k = 4 following
(Zhang et al., 2025a). We conduct all of our experiments on NVIDIA H20 GPUs.
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Table 1: Comparison with other distillation methods on COCO-10k dataset.

Method #NFE ImageReward ↑ CLIP ↑ Pick ↑ HPSv2 ↑ MPS ↑ Cost ↓
SDXL 100 0.7143 0.3295 0.2265 0.2865 11.87 -

LCM-SDXL 4 0.5562 0.3250 0.2236 0.2818 11.11 -
SDXL-Lightning 4 0.6952 0.3268 0.2285 0.2888 12.15 -
SDXL-Turbo 4 0.8338 0.3302 0.2286 0.2899 12.25 -
NitroSD-Realism 4 0.9112 0.3274 0.2291 0.2975 12.43 -
NitroSD-Vibrant 4 0.8419 0.3201 0.2205 0.2865 11.13 -
DMD2-SDXL 4 0.8748 0.3302 0.2309 0.2937 12.41 128*24k

Flash-DMD under Phase 1
TTUR1-1k 4 0.9509 0.3292 0.2322 0.2968 12.67 64*1k (2.1%)
TTUR2-4k 4 0.9450 0.3291 0.2322 0.2969 12.65 64*4k (8.3%)
TTUR2-8k 4 0.9740 0.3298 0.2327 0.2981 12.71 64*8k (16.7%)
TTUR5-18k 4 0.9426 0.3302 0.2319 0.2982 12.63 64*18k (37.5%)

Table 2: Comparison with other methods with reinforcement learning on COCO-10k dataset.

Method #NFE ImageReward ↑ CLIP ↑ Pick ↑ HPSv2 ↑ MPS ↑ GPU Hours ↓
Hyper-SDXL 4 1.085 0.3300 0.2324 0.3030 12.45 400 A100
PSO-DMD2 4 0.9157 0.3285 0.2338 0.2897 12.53 160 A100
LPO-SDXL 40 1.042 0.3324 0.2342 0.2965 12.58 92 A100
Flash-DMD 4 1.004 0.3285 0.2346 0.2930 12.84 12 H20

Evaluation Tasks and Baseline The evaluation of image generators is conducted on 10K prompts
from COCO 2014 (Lin et al., 2014), adhering to the DMD2(Yin et al., 2024a) framework, containing
10,000 images. We present the result of CLIP score(Radford et al., 2021) (ViT-B/32) to evaluate text-
image similarity, and we adopt a set of advanced preference-based metrics to thoroughly evaluate the
quality of generated images from multiple human-aligned perspectives. We use HPSv2(Wu et al.,
2023) to measure fine-grained image-text semantic alignment, focusing on how well the generated
content adheres to the input prompt. ImageReward(Xu et al., 2023) and PickScore(Kirstain et al.,
2023) are employed to assess overall aesthetic quality and perceptual appeal, reflecting general hu-
man preferences in visual coherence and composition. Furthermore, we evaluate multidimensional
human preferences using MPS(Zhang et al., 2024), a recently proposed metric that captures diverse
aspects of human judgment, such as object accuracy, spatial relation, and attribute binding-beyond
global similarity. Together, these metrics provide a comprehensive and human-centric evaluation
of both fidelity and preference in text-to-image generation. To demonstrate the effectiveness of
phase 1 distillation, we compare our 4-step generative models against SDXL(Podell et al., 2023), as
well as other open-sourced timestep distillation methods, including LCM-SDXL(Luo et al., 2023a),
SDXL-Lighting(Lin et al., 2024), SDXL-Turbo(Sauer et al., 2024b), Realism and Vibrant version
of NitroSDChen et al. (2025), and DMD2(Yin et al., 2024b). For phase 2, we further evaluate our
approach by comparing it with three reinforcement learning-finetuned models, Hyper-SDXL(Ren
et al., 2024), PSO-DMD2Miao et al. (2025), and LPO-SDXLZhang et al. (2025a).

4.2 EXPERIMENT ANALYSIS

Faster and Better Distillation under Phase 1. Our method achieves highly efficient distillation
from the teacher model, leading to state-of-the-art performance across all benchmarks, by decou-
pling the distribution matching (DM) and adversarial losses with a timestep-aware strategy, employ-
ing PixGAN to alleviate mode-seeking behavior, and stabilizing the generator’s score estimator. As
shown in Tab. 1, we distill SDXL using various two-time update rules (TTUR), which corresponds
to the update frequency ratio between the score estimator and generator. In contrast to DMD2, which
uses a TTUR of 5 and thus hinders training efficiency, we experiment with TTUR values of 1, 2,
and 5. Our results demonstrate significant improvements in both efficiency and performance. With
a TTUR of 5, our model surpasses DMD2 on all benchmarks while requiring only 37.5% of the
training cost (batch size × training steps). Reducing the TTUR to 2 allows us to maintain superior
human preference scores and comparable text-image consistency with only 8.3% of DMD2’s train-
ing cost. In the most extreme case, training for only 1,000 steps with a TTUR of 1, with merely
2.1% of DMD2’s training cost, we still yield a higher human preference score. Notably, under all
tested settings, our model consistently outperforms the original teacher model.
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Figure 4: Qualitative comparisons with other reinforcement approaches on SDXL.

Figure 5: Evaluation results of DMD2 and Flash-DMD (ours) with TTUR=2.

Boost Performance under Phase 2. By incorporating reinforcement learning, Flash-
DMD achieves a performance comparable to other reinforcement approaches with fewer compu-
tational resources, as shown in the Tab. 2 and Fig. 4. Flash-DMDscores the highest on PickScore
and MPS, and image fidelity surpasses SDXL and other competitors. Although Hyper-SDXL has the
highest ImageReward score and HPSv2 score, it generates overexposed colors and unnatural images.
LPO-SDXL gets the highest CLIP score, but it produces oversmoothed images. We speculate that
the reason may be that these models use the trained models directly for reinforcement training. This
is prone to reward hacking and only rewards the results preferred by the reward model. Meanwhile,
Flash-DMDintroduces preference optimization during the training process. With the constraints
from distribution matching and PixelGAN, the problem of reward hacking can be alleviated.

4.3 ABLATION STUDIES

Phase1: Comparision with DMD2 under samller TTUR. We set TTUR=2 for ablate the per-
formance of DMD2 and Flash-DMD under phase 1. The results, presented in Fig. 5, show that our
method exhibits stable and continuous improvement throughout the training process. In contrast,
DMD2 shows slight initial gains but quickly degrades as training progresses. This comparison val-
idates that our approach offers much better training stability and efficiency under these conditions.
To keep the main text focused on core experiments and results, we have moved some detailed ab-
lation studies to the appendix. These additional experiments further validate the design choices of
our method and their impact on model performance. Readers can refer to the appendix for more
comprehensive data and analysis that support the conclusions presented in the main text.

5 CONCLUSION

We present Flash-DMD, a twofold approach that addresses the inefficiencies of existing diffusion
distillation methods by leveraging timestep-aware objectives and optimizing the distillation process.
In the early phase, Flash-DMDaccelerates convergence by coordinating distribution matching and
perceptual realism enhancement. In the later phase, it refines visual details using latent reinforce-
ment learning while preventing mode collapse and artifacts. Experiments show Flash-DMDachieves
superior generation quality and the highest human preference scores with significantly reduced train-
ing costs. Our method makes diffusion distillation more efficient and accessible, paving the way for
advancements in low-step generative modeling. We hope our findings can open new avenues for
research and contribute to advancing the field of visual generation.
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contributing to societal well-being, upholding scientific excellence, avoiding harm, and ensuring
fairness. Our method builds upon existing diffusion model frameworks and does not involve direct
experimentation with human subjects. All datasets used in this work are established public bench-
marks commonly adopted in the generative modeling community, and no new data involving per-
sonal or sensitive information has been collected or released. We have taken care to ensure that our
approach minimizes potential for misuse and does not introduce new risks related to bias, discrimi-
nation, or privacy. The focus of this work is on improving training efficiency and generation quality
within a controlled research setting. While advanced generative models may have downstream appli-
cations with ethical implications, we emphasize transparency in methodology and encourage future
deployment only in socially responsible contexts. We support open and reproducible science while
complying with all relevant academic and institutional standards.

REPRODUCIBILITY STATEMENT
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Figure 6: Evaluation results of Flash-DMD (ours) with or without EMA on ImageReward,
PickScore, and HPSv2. The training steps range from 1,000 to 8,000. Both models are trained
with a two-time scale update rule (TTUR). The generator and the score estimator are updated at a
rate of 1:2, i.e., TTUR=2.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized large language models (LLMs) as assistive tools to refine the writing.
Specifically, LLMs were employed to enhance the clarity, coherence, and linguistic quality of these
sections without altering the core content or scientific contributions of the paper. The use of LLMs
was limited to language refinement and did not play a significant role in research ideation, method-
ology development, or experimental design. This statement is provided to ensure transparency in
accordance with the guidelines for LLM usage.

A.2 ABLATION STUDIES

Phase 1: Significance of EMA in Score Estimator. As described in Sec. 3.3, we employ a
Exponential Moving Average (EMA) strategy to help the score estimator more accurately track the
generator’s distribution, especially under high-frequency updates. To validate the effectiveness of
this approach, we conduct an ablation study comparing performance with and without the EMA
strategy. As shown in Fig. 6, the model with EMA achieves higher ImageReward and Pickapic
scores in later training stages. The HPSv2 scores remain nearly identical. This confirms that the
EMA strategy enhances visual quality and human preference without compromising text alignment.

Phase 2: Trade-Off in Time Scale Update Rule for RL. Rather than superimposing multiple loss
functions via a weighted sum, we use an alternating update strategy to update the generator, applying
different loss functions at different frequencies. At the beginning, we initialize the generator and
the fake score estimator with weights from TTUR1-1k experiment, and the real score estimator
is initialized with SDXL. We trained the model for 2,000 iterations on a single H20 GPU under
different frequency ratios between reinforcement loss and distribution matching loss (1:1, 2:1, 5:1,
10:1). The metric comparisons are shown in Table 3. The 5:1 ratio achieves the highest score among
these settings.

Phase 2: Other ablation experiments on reinforcement learning. Online training VS Post-
training. We compare online training with post-training by LPO (Zhang et al., 2025b) alone. Our
method demonstrates superior performance over Post-Train LPO, which validates the advantage of
our proposed training paradigm. and full-noise timestep sampling. High-noise VS all noise. Training
only on high-noise steps achieves better results than training on all-noise steps. Including PixelGAN
loss.Furthermore, the incorporation of an additional Pixel-Gan objective yields a positive gain, re-
sulting in a marginal improvement in the metrics. Fig. ?? supplements the results with and without
GAN loss across 1,000 to 5,000 iterations. We selected the 5k-step model with GAN loss as our
final enhanced version, as it delivered the best performance. The training cost for this model was 12
H20 GPU hours.
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Table 3: Comparison of Different Variants in Reinforcement Learning Experiments.

ImageReward PickScore MPS CLIP GPU Hours

Base-TTUR1-1k 0.9508 0.2322 12.672 0.3292 –

1:1 0.9135 0.2330 12.755 0.3284 5.72
2:1 0.9315 0.2329 12.770 0.3271 5.16
5:1 0.9808 0.2345 12.764 0.3275 4.83

10:1 0.9640 0.2344 12.685 0.3272 4.72

Post-Train LPO 0.9795 0.2345 12.689 0.3284 4.96
all noise 0.9421 0.2331 12.800 0.3294 7.3

+ pixelgan 0.9678 0.2345 12.812 0.3280 5.77
Flash-DMD 1.0004 0.2346 12.813 0.3285 12.0

Table 4: Mainstream Image Reward Models

Model Space Evaluation Dimension VLM Step-aware
PickScore Pixel Fidelity CLIP ×

ImageReward Pixel Fidelity/Aes. BLIP ×
MPS Pixel Align./Fidelity/Aes. CLIP ×

HPSv2 Pixel Align./Fidelity CLIP ×
SPM Pixel Align./Aes. CLIP

√

LRM Latent Align./Aes. SD1.5/SDXL
√

VisionReward Pixel Align./Fidelity Llama ×
UnifiedReward Pixel Align. Qwen2.5VL ×

A.3 ANALYSIS OF IMAGE REWARD MODELS

In the Tab. 4, we summarize the scope space and evaluation dimensions of popular image reward
models. We also include the Visual Large Model (VLM) used, and whether the timestep is consid-
ered for these models.

A.4 ADDITIONAL QUALITATIVE RESULTS

We show additional qualitative comparison as in Figure7, demonstrating that our model not only
surpasses other distillation models but also outperforms the teacher model in refining image qual-
ity. Specifically, we compare our results with SDXL, SDXL-Lighting(Lin et al., 2024), SDXL-
Turbo(Sauer et al., 2024b), Hyper-SDXL(Ren et al., 2024), DMD2(Yin et al., 2024b), LPO (Zhang
et al., 2025b), Realism version of NitroSDChen et al. (2025), PSO(Miao et al., 2025). Additionally,
we present qualitative examples of Phase 1-generated images in Figure 8, further highlighting the
strengths of our approach.
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SDXL
100 NFE CFG7.5

SDXL-Lightning
4 NFE

SDXL-Turbo
4 NFE

Hyper-SDXL
4 NFE

DMD2
4 NFE

LPO-SDXL
40 NFE CFG 5

NitroSD
4 NFE

PSO-DMD2
4 NFE

Flash-DMD
4 NFE

(a) A woman holding a colorful umbrella with writing on it.

(c) A pack of hot dogs in beer on a table.

(b) A skateboarder in brown pants is doing a trick.

(d) A child sits on the ground next to a skateboard.

Figure 7: Qualitative comparisons with other models.

Figure 8: Qualitative results of our first phase model.
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