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Abstract

Many important problems in science and engineering require solving the so-called
parametric partial differential equations (PDEs), i.e., PDEs with different physical
parameters, boundary conditions, shapes of computation domains, etc. Recently,
building learning-based numerical solvers for parametric PDEs has become an
emerging new field. One category of methods such as the Deep Galerkin Method
(DGM) and Physics-Informed Neural Networks (PINNs) aim to approximate
the solution of the PDEs. They are typically unsupervised and mesh-free, but
require going through the time-consuming network training process from scratch
for each set of parameters of the PDE. Another category of methods such as
Fourier Neural Operator (FNO) and Deep Operator Network (DeepONet) try to
approximate the solution mapping directly. Being fast with only one forward
inference for each PDE parameter without retraining, they often require a large
corpus of paired input-output observations drawn from numerical simulations, and
most of them need a predefined mesh as well. In this paper, we propose Meta-Auto-
Decoder (MAD), a mesh-free and unsupervised deep learning method that enables
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the pre-trained model to be quickly adapted to equation instances by implicitly
encoding (possibly heterogenous) PDE parameters as latent vectors. The proposed
method MAD can be interpreted by manifold learning in infinite-dimensional
spaces, granting it a geometric insight. Extensive numerical experiments show
that the MAD method exhibits faster convergence speed without losing accuracy
than other deep learning-based methods. The project page with code is available:
https://gitee.com/mindspore/mindscience/tree/master/MindElec/.

1 Introduction

Many important problems in science and engineering, such as inverse problems, control and optimiza-
tion, risk assessment, and uncertainty quantification [1, 2], require solving the so-called parametric
PDEzs, i.e., partial differential equations (PDEs) with different physical parameters, boundary condi-
tions, or solution regions. Mathematically, they require to solve the so-called parametric PDEs that
can be formulated as:

Llu=0,7€QCRY BXu=0, 7 € 00 (1)

where £7* and B2 are partial differential operators parametrized by ~; and ~9, respectively, and =
denotes the independent variable in spatiotemporal-dependent PDEs. Given U = U/(2; R%) and
the space of parameters A, = (v1,72,§2) € A is the variable parameter of the PDEs and u € U
is the solution of the PDEs. Note that the form of 1 considered here is very general with possible
heterogeneity allowed, since the computational domain shape 2 and the functions defined on this
domain or its boundary (which may be involved in 71, ¥2) is obviously of different type. Solving
parametric PDEs requires to learn an infinite-dimensional operator G : A — U that map any PDE
parameter 7 to its corresponding solution " (i.e., the solution mapping).

In recent years, learning-based PDE solvers have become very popular, and it is generally believed
that learning-based PDE solvers have the potential to improve efficiency [3, 4} |5]. The learning-based
PDE solvers can be categorized into two categories in terms of the objects that are approximated
by neural networks (NN), i.e., the approximation of the solution »" and the approximation of the
solution mapping G.

NN as a new ansatz of solution. This kind of approaches approximate the solution of the PDEs
with a neural network and mainly rely on governing equations and boundary conditions (or their
variants) to train the neural networks. For example, PINNs [3]] and DGM [6]] constrain the output of
deep neural networks to satisfy the given governing equations and boundary conditions. Deep Ritz
Method (DRM) [7] exploits the variational form of PDEs and can be used to solve PDEs that can be
reformulated as equivalent energy minimization problems. Based on a weak formulation of PDEs,
Weak Adversarial Network (WAN) [8] parameterizes the weak solution and test functions as primal
and adversarial neural networks, respectively. These neural approximation methods can work in an
unsupervised manner, without the need to generate labeled data from conventional computational
methods. However, all these methods treat different PDE parameters as independent tasks, and need
to retrain the neural network from scratch for each PDE parameter. When a large number of tasks
with different PDE parameters need to be solved, these methods are computationally expensive and
impractical. In order to mitigate retraining cost, E and Yu [7] recommends a transfer learning method
that uses a model trained for one task as the initial model to train another task. However, according to
our experiments, transfer learning method is not always effective in improving convergence speed

(see Sec[3.1][B-3).

NN as a new ansatz of solution mapping. This kind of approaches use neural networks to learn the
solution mapping between two infinite-dimensional function spaces [9, 10} [11} [12}[13]]. For example,
PDE-Nets [9} 10] are among the earliest neural operators that are specifically designed convolutional
neural networks inspired by finite difference approximations of PDEs. They are able to uncover
hidden PDE models from observed dynamical data and perform fast and accurate predictions at
the same time. DeepONet [11]] uses two subnets to encode the parameters and location variables
of the PDEs separately, and merge them together to compute the solution. FNO [[13]] utilizes fast
Fourier transform to build the neural operator architecture and learn the solution mapping between
two infinite-dimensional function spaces. A significant advantage of these approaches is that once the
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neural network is trained, the prediction time is almost negligible. Although they have demonstrated
promising results across a wide range of applications, several issues occur. First, the data acquisition
cost is prohibitive in complex physical, biological, or engineering systems, and the generalization
ability of these models is poor when there is not enough labeled data [14]]. Second, most of these
methods [9} [10} [12] [13] require a predefined mesh and utilize the labeled data on the mesh for
training and inference. Third, simply applying one forward inference may lead to unsatisfactory
generalization, especially on out-of-distribution (OOD) settings (i.e., PDE parameters for training
and inference are from different probability distributions). Finally, these operators directly takes the
PDE parameter 7 as network input, which would bring inconvenience in network implementation if n
is heterogeneous. The recently proposed Physics-Informed DeepONet (PI-DeepONet) [15] can learn
a mesh-free solution mapping without any labeled data and retraining. However, it needs to collect
a large number of training samples in the parameter space A to obtain an acceptable accuracy (see
Sec[3.1), and is still inflexible dealing with heterogeneous PDE parameters.

Meta-Learning. Different from conventional machine learning that learns to do a given task,
meta-learning learns to improve the learning algorithm itself based on multiple learning episodes
over a distribution of related tasks. As a result, meta-learning can handle new tasks faster and better.
In this field, the Model-Agnostic Meta-Learning (MAML) [[16] algorithm and its variants [17} 18} [19]]
have beed widely used. These algorithms try to find an initial model with good generalization ability
such that it can be adapted to new tasks with a small number of gradient updates. For example,
MAML [16] firstly trains a meta-model with good initialization weight on a variety of learning tasks,
which is then fine-tuned on a new task through a few steps of gradient descent to get the target model.
The Reptile [[18] algorithm eliminates second-order derivatives in MAML algorithm by repeatedly
sampling a task, training on it, and moving the initialization towards the trained weight on that task.

Borrowing the idea of meta-learning may inspire new ways to solve parametric PDEs, where different
PDE parameters correspond to different tasks. To the best of our knowledge, Meta-MgNet [20] is
the first work that view solving parametric PDEs as a meta-learning problem, which is based on
hypernet and the multigrid algorithm. Meta-MgNet utilizes the similarity between tasks to generate
good smoothing operators adaptively, and thereby accelerates the solution process, but is not directly
applicable to PDEs on which the multigrid algorithm is not available. Recently, the Reptile algorithm
is also used to accelerate the PDE solving problems in [21]. However, MAML and Reptile are not
always effective in improving convergence speed (see Sec[3.2]and 3.3).

Our contributions. We propose Meta-Auto-Decoder (MAD), a mesh-free and unsupervised deep
learning method that enables the pre-trained model to be quickly adapted to equation instances by
implicitly encoding heterogeneous PDE parameters as latent vectors. Different from Meta-MgNet,
MAD makes use of the similarity between tasks from the perspective of manifold learning, and tries
to learn a nonlinear approximation of the solution manifold. We construct the ansatz of solution as a
neural network in the form ug (7, z). By taking the spatial (or spatial-temporal) coordinate Z directly
as the network input, unsupervised training loss is allowed, and a mesh is no longer required. As the
additional input z varies, ug(Z, z) moves on a manifold in an infinite-dimensional function space,
which may be an approximation of the true solution manifold for certain 6. The PDE parameter 7 is
implicitly encoded into z by applying the auto-decoder architecture motivated by [22]], regardless of
the possible heterogeneity. When a new task comes, MAD achieves fast transfer by projecting the
new task to the manifold and fine-tuning the manifold at the same time. The main contributions of
this paper are summarized as follows:

* A mesh-free and unsupervised deep neural network approach is proposed to solve parametric
PDEs. Based on meta-learning concept, once the neural network is pre-trained, solving a new
task involves only a small number of iterations. In addition, the auto-decoder architecture
adopted by MAD can realize auto-encoding of heterogeneous PDE parameters.

* The mathematical intuition behind the MAD method is analyzed from the perspective of
manifold learning. In short, a neural network is pre-trained to approximate the solution
manifold, and the required solution is searched on the solution manifold or in a neighborhood
of the solution manifold.

» Extensive numerical experiments are carried out to demonstrate the effectiveness of our
method, which show that MAD can significantly improve the convergence speed and has
good extrapolation ability for OOD settings.
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Figure 1: Architecture of Meta-Auto-Decoder.

2 Methodology

2.1 Meta-Auto-Decoder

We adopt meta-learning concept to realize fast solution of parametric PDEs. Our basic idea is to first
learn some universal meta-knowledge from a set of sampled tasks in the pre-training stage, and then
solve a new task quickly by combining the task-specific knowledge with the shared meta-knowledge
in the fine-tuning stage. We also adapt the auto-decoder architecture in [22]], and introduce ug(Z, z)
to approximate the solutions of parametric PDEs. The architecture of uy(Z, z) is shown in Fig A
physics-informed loss is used for training, making the proposed method unsupervised. Putting all
these together, we propose a new method Meta-Auto-Decoder (MAD) to solve parametric PDEs. For
the rest of the subsection, the loss function and the two stages of training will be explained in details.

To enable unsupervised learning, given any PDE parameter n € A, the physics-informed loss
L": U — [0, 00) about Eq.(T)

L'u) = L2 ul[ 220y + el BY ullZ2 (00, 2)

is considered, where Ap. > 0 is a weighting coefficient. The Monte Carlo estimate of L"[u] is

Fn 1 <L Vi, (o 2 Abe il Y2, (b 2
D) = 57 Y|l ezu@)|, + 5 || B, 3)
j=1 j=1

where {7} }je(1,..., 0,y and {Ec'gc}je{l_erbc} are two sets of random sampling points in € and 92,

.....

respectively. This task-specific loss Ln [u] can be computed by automatic differentiation [23]], and
will be used in the pre-training stage and the fine-tuing stage.

In the pre-training stage, through minimizing the loss function, a pre-trained model parametrized
by 6 is learned for all tasks and each task is paired with its own decoded latent vector z;. Such a
pre-trained model is considered as the meta knowledge as it is learned from the distribution of all
tasks and the learned latent vector z; is the task-specific knowledge. When solving a new task in
the fine-tuning stage, keep the model weight 6* fixed and minimize the loss by fine-tuning the latent
vector z. Alternatively, we may unfreeze 6 and allow it to be fine-tuned along with z. These two
fine-tuning strategies give rise to different versions of MAD, which are called MAD-L and MAD-LM,
respectively. The corresponding problems of pre-training and fine-tuning are formulated as follows:

Pre-training Stage Given N randomly generated PDE parameters 7, ...,ny € A, both MAD-L
and MAD-LM solve the following optimization problem

N

- 1
({z Vieqrny, 0F) =  argmin Y (Lm [ua (-, z:)] + 02||Zz‘||2> ; 4)

0.{zi}icf1,....N} =1

where 0* is the optimal model weight, {z;}; e{1,...,n} are the optimal latent vectors for different PDE
parameters, and L" is defined in Eq.(3). The regularization % || 2:]|? is added for training stability.



Fine-tuning Stage (MAD-L) Given a new PDE parameter 1),., MAD-L keeps 0* fixed, and
minimizes the following loss function to get

* . ) 1
Znew = arg min L [ug- (-, 2)] + — |12, 5)

*

then wg- (-, 2%, ) is the approximate solution of PDEs with parameter 7j,ey,. To speed up convergence,

we can set the initial value of z to 2z} obtained during pre-training where 7; is the nearesﬂ tO Mnew-

Fine-tuning Stage (MAD-LM) MAD-LM fine-tunes the model weight § with the latent vector z
simultaneously, and solves the following optimization problem

* * . 7 1
(Znew7 gnew) = arg rgun L [UQ(-, Z)} + ?”'Z”2 (6)
2,

with initial model weight 6*. This would produce an alternative approximate solution ug= (-, 2, )-
The latent vector is initialized in the same way as MAD-L.

Remark 1 The MAD method has several key advantages compared with existing methods. Besides
being mesh-free and unsupervised, it can deal with heterogeneous PDE parameters painlessly, since
1) is not taken as the network input, and is encoded into z in an implicit way. Introduction of the
meta-knowledge 0* would accelerate the fine-tuning process, which can be better understood in the
light of the manifold learning perspective. For MAD-LM, the accuracy on OOD tasks is likely to be
at least comparable with training from scratch based on PINNs. Although the fine-tuning process of
MAD is still slower than one forward inference of a neural network solution mapping, the advantages
presented above can make it more suitable for some real applications.

Remark 2 If we replace the physics-informed loss by certain supervised loss, the MAD-L method
would then coincide with the DeepSDF algorithm [22|]. Despite of this, the field of solving parametric
PDE:s is quite different from 3D shape representation in computer graphics. Moreover, the introduction
of model weight fine-tuning in MAD-LM can significantly improve solution accuracy, as is explained
intuitively in Sec[2.2|2.3|and validated by numerical experiments in Sec[3]

2.2 Manifold Learning Interpretation of MAD-L

We interpret how the MAD-L method works from the manifold learning perspective, which also
provides a new interpretation of the DeepSDF algorithm [22]]. For the rest of this section, the domain
Q is fixed and excluded from 7 for simplicity. Now, we consider the following scenario.

Scenario 1 The set of solutions G(A) = {G(n) | n € A} C U is contained in a low-dimensional
structure. To be more specific, there is a finite-dimensional space Z = R! (with | < dimU) and a
Lipschitz continuous mapping G : Z — U, such that G(A) C G(Z). In other words, for any 1 € A,
there exists z € Z satisfying G(z) = G(n).

The mapping G is Lipschitz continuous if and only if there exists some C' > 0 such that ||(¥ (z) —

G(7 >Hu < C|lz — #/| for all z,z" € Z. This Lipschitz continuous constraint excludes highly
irregular mappings like space-filling curves. When A is a finite-dimensional space and G is Lipschitz
continuous, the parametric PDE would fall into this scenario (just take Z = A, G = G). Since
dim Z < dim U (the latter is usually infinity) holds, we may view the mapping GG as some sort of
“decoder”, and Z is the corresponding latent vector space, despite of the fact that there doesn’t exist
an “encoder”. In many cases, G(Z) C U forms an embedded submanifold, and therefore our MAD
method can be viewed as a manifold-learning approach. Once the mapping G is learned as above,
then for a given parameter 7, searching for the solution u" in the whole space I/ is no longer needed.
Instead, we may focus on the smaller subset G(Z), i.e. the class of functions in ¢/ that is parametrized
by Z, since u" = G(n) € G(Z) holds for any 1 € A. We then solve the optimization problem

2" = argmin L"[G(2)], (7)

z

?For example, if A is a space of functions, we can discretize a function into a vector and then find the
Euclidean distance between the two vectors as the distance between two PDE parameters.
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Figure 2: TIllustration of how MAD works from the manifold learning perspective. (a) MAD-L: The
function space U is mapped to a 2-dimensional plane. The blue solid curve represents the solution set
G(A) formed by exact solutions corresponding to all possible PDE parameters, and each point on the
curve represents an exact solution corresponding to one PDE parameter. The orange dotted curve
represents the solution set Gy~ (Z) obtained by the pre-trained model, and each point on the curve
corresponds to a latent vector z. Given ey € A, rather than searching in the entire function space U,
MAD-L only searches on the orange dotted curve to find an optimal z such that its corresponding
solution g~ (-, z) is nearest to the blue point u. (b) MAD-LM: The solution set G(.A) lies within
a neighborhood of Gy-(Z) that is represented by a gray shadow band. To find solution u", we
have to fine-tune 6 (i.e., the orange dotted lines) and the latent vector z (i.e., the points on the orange
dotted lines) simultaneously to approach the exact solution. As the search scope is limited to a strip
with a small width, the fine-tuning process can be expected to converge quickly.

and G(z") is the approximate solution. Assuming that the dimension of Z is chosen (either empirically
or through trial and error), the aim is to find the mapping G. Since such a mapping is usually complex
and hard to design by hand, we consider the 9—parametrizecﬂ version Gy : Z — U, and find the best
0 automatically by solving an optimization problem. G can be constructed in the simple form

Go(2) (%) = uo (T, 2), (®)

where ug is a neural network whose input is the concatenation of = € R? and z € R'. The next step
is to find the optimal model weight € via training, with the target being G(A) C Gy(Z). Assuming
that the PDE parameters are generated from a probability distribution 77 ~ p 4, then G(n) € Go(Z)
holds almost surely if and only if

dif)= E [dy(u",Gy(Z))]= E {minHu” —up(+, 2) Hu} =0, 9)

n~pa n~pA z
which suggests taking 8* = arg min, d(#). In case we do not have direct access to the exact solutions
u", the equivalen condition

2(0)= E [minLus(, 2)]] =0 (10)
n~pa Lz
is considered, and d’(#) becomes the alternative loss to be minimized.In the specific implementation,
the expectation on 17 ~ p 4 is estimated by Monte Carlo samples 71, . .., nn, and the optimal network
weight 6 is taken to be

N

1
0* ~ argaminﬁgngan [ug (-, 2i)]- (11)
We further estimate the physics-informed loss L" using Monte Carlo method to obtain Eq.(d). After
that, when a new PDE parameter e € A comes, a direct adaptation of Eq. would then give rise
to the fine-tuning process Eq.(9), since ug+ (-, z) = Go=(z) ~ G(2) holds. An intuitive illustration of
how MAD-L works from the manifold learning perspective is given in Fig2(a)]

~ 3Two types of parametrization are considered here. The latent vector z parametrizes a point on the manifold
G(Z) or G¢(Z), and 0 parametrizes the shape of the entire manifold Go(Z).

* Assume that the solution of Eq.(I) is unique for all n € A, and v € U is the solution if and only if
L"u] = 0.
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Figure 3: Visualization of the MAD pre-training and fine-tuning process for the ODE problem.

A Visualization Example An ordinary differential equation (ODE) is used to visualize the pre-
training and fine-tuning processes of MAD-L. Consider the following problem with domain 2 =
(—m,m) CR:

du 2 . 2

i 2(z —n) cos((z — n)?), u(+m) = sin((£7 —n)?). (12)
We sample 20 points equidistantly on the interval [0, 2] as variable ODE parameters, and randomly
select one 7,ey for fine-tuning stage and the rest {n;}ic(1,... 19} for pre-training stage. MAD-L

generates a sequence of (™), {zgm)}ie{17... ,19}) in pre-training stage, and terminates at m = 200
with the optimal (6%, {2} }icq1,... .10} ). The infinite-dimensional function space U = C([—, 7]) is
projected onto a 2-dimensional plane using Principal Component Analysis (PCA). Fig[3(a)| visualizes
how Gy(Z) gradually fits G(A) in pre-training stage. The set of exact solutions G(.A) forms a
1-dimensional manifold (i.e. the red solid curve), and the marked points {G (7;) }icq1,... 19} represent
the corresponding ODE parameters used for pre-training. Each dotted curve represents a solution

set G((,m)(Z ) obtained by the neural network at the m-th iteration with the points Gm) (zl-(m)) =

Ugem) (- zl-(m)) also marked on the curve. As the number of iterations m increases, the network weight

6 = (") updates, making the dotted curves evolve and finally fit the red solid curve, i.e., the target
manifold C&) Fig illustrates the fine-tuning process for a given new ODE parameter 7y, € A.
As in Fig[3(a)| the red solid curve represents the set of exact solutions G(.A), while the cyan dotted
curve represents the solution set Gg- (Z) = Gyao0) (Z) obtained by the pre-trained network. As

z = z,gg,ﬁ) updates (i.e., through fine-tuning z), the marked point Gy~ (zég&)) moves on the cyan dotted

curve, and finally converges to the approximate solution Gg» (2%, ) = Go~ (zr(,;\?,)) ~ G(Nnew)-

2.3 Manifold Learning Interpretation of MAD-LM

The MAD-L method is designed for Scenario [} However, many parametric PDEs encountered in
real applications do not fall into this scenario, especially when the parameter set A of PDEs is an
infinite-dimensional function space. Simply applying MAD-L method to these PDE solving problems
would likely lead to unsatisfactory results. However, MAD-LM works in a more general scenario, and
thus has the potential of getting improved performance for a wide range of parametric PDE problems.
This alternative scenario is given as follows.

Scenario 2 The solution set G(A) C U can be approximated by a set with low-dimensional structure,
in the sense that there is a finite-dimensional space Z = R (with | < dimU) and a Lipschitz
continuous mapping G : Z — U, such that G(A) is contained in the c-neighborhood of G(Z) C U,
where c is a relatively small constant. In other words, for any n € A, there exists some z € Z

satisfying ||G(2) — G(n)|lu < c.

Appendix A gives an example of G(.A) that falls into Scenario [2| but not Scenario I} In this new
scenario, similar derivation leads to the same pre-training stage, which is used to find the initial
decoder mapping G¢- ~ G. However, in the fine-tuning stage, simply fine-tuning the latent vector z
won’t give a satisfactory solution in general due to the existence of the c-gap. Therefore, we have
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Figure 4: The mean L2 error convergence with respect to the number of training iterations.

to fine-tune the model weight 6 with the latent vector z simultaneously, and solve the optimization
*

problem Eq.(6). It produces a new decoder Gox (Znew) specific to the parameter 7. An intuitive
illustration is given in Fig[2(b)]

3 Numerical Experiments

To evaluate the effectiveness of the MAD method, we apply it to solve three parametric PDEs: (1)
Burgers’ equation with variable initial conditions; (2) Maxwell’s equations with variable equation
coefficients; and (3) Laplace’s equation with variable solution domains and boundary conditions
(heterogeneous PDE parameters). Accuracy of the model is measured by average relative Lo error
(abbreviated as Ly error) between predicted solutions and reference solutions, and we provide the
mean value and the 95% confidence interval of Lo error. We compare MAD with other methods
including learning from scratch (abbreviated as From-Scratch), Transfer-Learning [[7], MAML [16,[17],
Reptile [18] and PI-DeepONet [15]]. For each experiment, the PDE parameters are divided into two
sets: S7 and Ss. Parameters in S7 correspond to sample tasks for pre-training, and parameters in
So correspond to new tasks for fine-tuning. See Appendix B for the default experimental setup,
and more detailed experimental setups and results for Burgers’ equation, Maxwell’s equation and
Laplace’s equation are given in Appendix C, D and E respectively. Unless otherwise specified, all the
experiments are conducted under the MindSporef’}

3.1 Burgers’ Equation

We consider the 1-D Burgers’ equation:

0 0 0?

ai; + u£ = VT;;, ze(0,1),te (0,1, w0 =u(z), z€(0,1), (13
Eq.(T3) can model one-dimensional flow of a viscous fluid, where w is the velocity, v is the viscosity
coefficient and initial condition ug(x) is the changing parameter of the PDE, i.e. n = ug(z).
The initial condition ug(z) is generated using Gaussian random field (GRF) [24] according to
ug(x) ~ N(0; 100(—A + 97)~3) with periodic boundary conditions.

Fig[d(a)| shows the mean Ly error of all methods as the number of training iterations increases. All
methods converge to nearly the same accuracy (the mean Ly error close to 0.013) except for MAD-L,
which we guess probably due to the c-gap introduced in Sec[2.3] In terms of convergence speed,
From-Scratch and Transfer-Learning need about 1200 iterations to converge, whereas MAML, Reptile
and MAD-LM need about 200 iterations to converge. MAD-LM has the fastest convergence speed,
requiring only 17% of the training iterations of From-Scratch. In this experiment, Transfer-Learning
does not show any advantage over From-Scratch, which means that Transfer-Learning fails to obtain
any useful knowledge in pre-training stage.

PI-DeepONet can directly inference for unseen PDE parameters in .S, so it has no fine-tuning process.
Table |1| shows the comparison of the mean Lo error of PI-DeepONet and MAD under different
numbers of training samples in S;. The results show that PI-DeepONet has a strong dependence
on the number of training samples, and its mean Lo error is remarkably high when S is small.
Moreover, its mean Ly error is significantly higher than that of MAD-L or MAD-LM in all cases.

>https://www.mindspore.cn/



Table 1: The mean Lo error of PI-DeepONet and MAD under different numbers of samples in S;.

|Sy|  PI-DeepONet MAD-L ~MAD-LM

10 0.715 0.365 0.015
50 0.247 0.046 0.013
100 0.217 0.028 0.013
200 0.169 0.020 0.013
300 0.181 0.018 0.013
400 0.183 0.019 0.013
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Figure 5: The mean Ly error convergence with respect to the number of training iterations for
extrapolation experiments.

In the above experiments, s in S; and So come from the same GRF, so we can assume that the
tasks in the pre-training stage come from the same task distribution as the tasks in the fine-tuing
stage. We investigate the extrapolation capability of MAD, that is, tasks in the fine-tuing stage
come from different task distribution than those in the pre-training stage. Specifically, S is still the
same as above, but Sy is generated from N (0; 100(—A + 257)~2%). Fig shows the results of
extrapolation experiments. Since the distribution of tasks has changed, the manifold learned in the
pre-training stage fits G(.A) worse, so MAD-L exhibits worse accuracy than that in Fig However,
as with Figl(a)] the convergence speed of MAD-LM in Fig[5(a)|is also better than other methods.
This shows that the extrapolation capability of MAD is also better than other methods in this example.

3.2 Time-Domain Maxwell’s Equations

We consider the time-domain 2-D Maxwell’s equations with a point source in the transverse Electric
(TE) mode [25]]:
0E, 1 0H, O0FE, 1 0H, OH, 1 <(‘3Ey OF

x
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where E,, E, and H, are the electromagnetic fields, J is the point source term. The equation
coefficients €y and g are the permittivity and permeability in vacuum, respectively. The equation
coefficients €, and i, are the relative permittivity and relative permeability of the media, respectively.
[26] uses modified PINNs method to solve Eq.@]) with fixed ¢, = 1 and p,. = 1. However, in this
paper, (€, ) are variable parameters of the PDEs, i.e., n = (€, 1), which corresponds to the
media properties in the simulation region.

Fig A(b)] shows that all methods converge to similar accuracy (mean Ly error is close to 0.04), and
MAD-LM achieves the lowest mean Ly error (0.028). In terms of convergence speed, MAD-L and
MAD-LM are obviously superior to other methods. It is worth noting that MAML fails to converge in
pre-training stage, therefore its data is missing in Fig[d(b)] We guess the reason is that singularity
brought by point source and computation of second-order derivatives pose great difficulties in solving
optimization problem. Reptile also does not show good generalization ability probably due to the
same singularity problem.

We do an extrapolation experiment, where (¢,., j1,-) in S7 comes from [1, 5]2, but in the fine-tuning
stage, we only consider the (€., ) = (7, 7) case. Because the extrapolated task does not lie in the
task distribution in the pre-training stage, the point G(7)ew ) corresponding to the extrapolated task in



the function space U is not on the learned manifold Gy~ (Z), which causes MAD-L to converge to
poor accuracy. Fig[5(b)|indicates that MAD-LM is significantly faster than From-Scratch and Reptile
in convergence speed while maintaining high accuracy. Notably, Transfer-Learning also exhibits
faster convergence than From-Scratch and Reptile. This is because (¢, y.) = (4,5) is randomly
selected in the pre-training stage and is very close to (€, i) = (7, 7) in Euclidean distance.

3.3 Laplace’s Equation
We consider the 2-D Laplace’s equation as follows:

0?u  d%u

@4_37#:07 (may) €Q7 ’U,(,’E7y):g($,y), (xay) eaQa (15)
where the shape of 2 and boundary condition g(x, y) are the variable parameters of the PDE, i.e.
n = (,¢9(x,y)). In this experiment, we use triangular domain 2 and vary the shape of Q by
randomly choosing three points on the circumference of a unit circle to form the triangle. Given that h
is the boundary condition on the unit circle, we use GRF to generate h ~ N(0, 10%/2(—=A+1001)~3)
with periodic boundary conditions. The analytical solution of the Laplace’s equation on the unit
circle can be obtained by Fourier method. Then, we use the analytical solution on the three sides
of the triangle as the boundary condition g(x,y). The variable PDE parameters include the shape
of the solution domain (the shape of the triangle) and the boundary conditions on the three sides
of the triangle, so the PDE parameters here are heterogeneous. MAD can implicitly encode such
heterogeneous PDE parameters as latent vectors conveniently, whereas PI-DeepONet is unable to
handle this case without further adaptations.

Fig[4(c)| shows that all methods finally converge to similar accuracy (mean Ly error close to 0.001),
and MAD-LM achieves the lowest mean Ly error. MAD-L, MAD-LM and Reptile show good
generalization capability and excellent convergence speed, whereas Transfer-Learning and MAML do
not show any advantage over From-Scratch.

Summary of experimental results. Achieving fast adaptation is the major focus of this paper,
and solutions within a reasonable precision need to be found. Indeed, in many control and inverse
problems, a higher precision in solving the forward problem (such as parametric PDEs) does not
always lead to better results. For example, a solution with about 5% relative error is already enough
for Maxwell’s equations in certain engineering scenarios. We are therefore interested in reducing
the cost of solving the PDE with a new set of parameters by using only a relatively small number
of iterations, in order to obtain an accurate enough solution in practice. The advantages of MAD
(especially MAD-LM) is directly validated in the numerical experiments, as it achieves very fast
convergence in the early stage of the training process. Some other applications may focus more on
the final precision, and is not as sensitive to the training cost. In this alternate criterion, the superiority
of the MAD method becomes less obvious in our test cases except Maxwell’s equations, but its
performance is still comparable to other methods.

4 Conclusions

In this paper, a novel mesh-free and unsupervised deep learning method MAD is proposed for solving
parametric PDEs based on meta-learning idea. A good initial model is obtained in pre-training
stage to learn useful information from a set of sampled tasks, which is then used to help solve the
parametric PDEs quickly in fine-tuning stage. Moreover, MAD can implicitly encode heterogeneous
PDE parameters as latent vectors. The effectiveness of MAD method is analyzed from the perspective
of manifold learning and verified by extensive numerical experiments.
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