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ABSTRACT

This work introduces novel computational methods for entropic optimal transport
(OT) problems under martingale-type conditions. The problems can map to a
prevalent class of OT problems with structural constraints, encompassing the dis-
crete martingale optimal transport (MOT) problem, as the (super-)martingale con-
ditions are equivalent to row-wise (in-)equality constraints on the coupling matrix.
Inspired by the recent empirical success of Sinkhorn-type algorithms, we propose
an entropic formulation for the MOT problem and introduce Sinkhorn-type algo-
rithms with sparse Newton iterations that utilize the (approximate) sparsity of the
Hessian matrix of the dual objective. As exact martingale conditions are typically
infeasible, we adopt entropic regularization to find an approximate constraint sat-
isfied solution. We show that, in practice, the proposed algorithms enjoy both
super-exponential convergence and robustness with controllable thresholds for to-
tal constraint violations.

1 INTRODUCTION

Obtaining the martingale optimal transport (MOT) (Peyré et al.,|2019) plan between statistical dis-
tributions has attracted significant research interests (Tan & Touzil 2013; Beiglbock et al.l 2013;
Galichon et al., [2014; [Dolinsky & Soner, 2014; |(Guo & Obt6j,[2019). In the quantized setting, one
encodes the martingale condition into two matrices V, W € R"*¢, and the MOT problem admits a
linear programming (LP) formulation:

min C-P,
P:Pl=r,P " 1=c,P>0 (1)

subject to PV = W,

where - stands for entry-wise inner product, C € R™ ™ is the cost matrix, and r =
[r1,... ,rn]T ,c = [017...,cn]—r € R™ are respectively the source and target density with
>imi = >.;¢; = 1. Likewise, super-martingale conditions (Nutz & Stebegg, [2018) in optimal
transport can be written as an LP

min C-P
P:Pl=r,P" 1=c,P>0 (2)

subject to PV > W.

The martingale-type conditions PV = W and PV > W constitute a prevalent class of constrained
optimal transport problems whereby a few equality or inequality constraints are placed for every site
in the source distribution. The large number of constraints makes the corresponding optimization
task quite different from optimal transport (OT). There has been a considerable body of work on the
mathematical property of MOT (Ghoussoub et al.|[2019; Huesmann & Trevisan, 2019;|Alfonsi et al.,
2020; |[Backhoff-Veraguas & Pammer, 2022} |Wiesel, |2023)) and OT problems with super martingale
conditions (Nutz & Stebeggl [2018)). The MOT problem under entropic regularization is of indepen-
dent research interest and is studied as a Schrodinger bridge problem with martingale constraints
(Henry-Labordere} 2019; Nutz & Wiesel, [2024)).
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Motivation Super-martingale conditions are prevalent for optimal transport problems with in-
equality constraints from inventory management concerns (Galichon, [2018]). In this case, the source
distribution and target distribution, respectively, model receiver and supplier in a transport model.
For example, suppose that the resource supplied by supplier j is of an auxiliary utility v; and

the receiver i needs the total utility to exceed w;. In this case, write v. = [vq,... ,vn]T, w =
[wy, ..., w,] " and the structural constraint on the coupling matrix P reads
Pv > w.

The MOT problem appears first in financial applications in computing upper and lower bounds for
model-free option pricing under the calibrated market model. This task assumes an asset with known
initial and final distributions and an exotic option whose expected payoff is a function of the price
of the asset at the initial and final time. In the calibrated market model, the distribution of the asset
is a martingale, which gives rise to the martingale condition in MOT. The computed bounds are
model-free as they hold under all stochastic processes the asset undergoes.

In addition, fairness in machine learning is growing in importance as a benchmark for machine
learning algorithms (Mehrabi et al.| 2021; Barocas et al.| 2023). Fairness in resource allocation can
also be cast as martingale-type constraints similar to|Si et al.|(2021)); Buyl & De Bie|(2022).

Main approach Inspired by recent theoretical analysis and empirical success of the Sinkhorn’s
algorithm (Yule, |1912} [Sinkhorn, |1964; |Cuturi, |2013)) for optimal transport, this work uses entropic
regularization and explores fast numerical algorithms for the OT problems with martingale-type
constraints in equation[IJand equation[2] In contrast to recent works in constrained optimal transport
with entropic regularization (Benamou et al., 2015} [Tang et al., 2024a)), the constraints considered
in this setting are special with its nd constraints embedded in the linear equation PV = W or
PV >W.

For OT under martingale-type constraints, entropic regularization following |[Fang| (1992) admits a
dual formulation in the form of a concave maximization problem. Given the formulation, we de-
velop two iterative maximization algorithms with a per-iteration complexity of O(n?). We introduce
a Sinkhorn-type algorithm utilizing the sparse structure of the Hessian matrix. We further utilize the
fact that the full Hessian matrix admits sparse approximations and introduce a Sinkhorn-Newton-
Sparse (SNS) algorithm, which performs Sinkhorn-type iterations followed by sparse Newton iter-
ations. The SNS algorithm rapidly converges to the entropically optimal solution, in practice often
achieving exponential or even super-exponential convergence. Thus, the numerical performance of
the proposed approach has the same O(n?) per-iteration complexity, and we show it has similar
practical convergence properties as that of Sinkhorn’s algorithm in optimal transport.

For equality constraints of the type PV = W, it often occurs that the LP does not admit a feasible
solution. Thus, we propose to consider a modified LP problem for MOT, first introduced in |Guo
& Obtgj| (2019), with the defining feature that it allows for the transport plan to have constraint
violations under a threshold. For practical purposes, having control over the constraint violation
threshold has the additional benefit that it allows more flexibility in the obtained transport plan.

Contribution We summarize our contribution as follows:

* For the MOT problem, we propose a novel entropic regularization approach based on ap-
proximate constraint satisfaction.

* Following the analysis in [Weed| (2018), we prove that the entropically optimal MOT solu-
tion is exponentially close to the LP solution.

* We show that the approximate Hessian sparsity in [Tang et al. (2024a) extends to the
martingale-type constraint setting.

* We introduce a Sinkhorn-type algorithm and a Sinkhorn-Newton-Sparse algorithm for OT
under martingale constraints and super-martingale constraints.

1.1 RELATED LITERATURE

Model-free option pricing There is a large body of work on martingale optimal transport in option
pricing. The readers are referred to [Tan & Touzi| (2013); |[Beiglbock et al.| (2013)); \Galichon et al.
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(2014); Dolinsky & Soner| (2014); |Guo & Obt6j| (2019) for detailed derivations. In general, an
option might depend on multiple assets and more than two time steps, which would necessitate a
multi-marginal martingale optimal transport (MMOT) framework, as can be seen in [Eckstein et al.
(2021)); Nutz et al.|(2020). We remark that multi-marginal OT is exponentially hard to compute even
under entropic regularization (Lin et al.,|2022), and the same is true for MMOT. Thus, even though
our framework readily applies to the MMOT case by taking entropic LP regularization, we shall not
pursue this direction in this work.

Constrained optimal transport Constrained optimal transport (Peyré et al., 2019} [Tang et al.,
2024a) describes optimal transport tasks under equality or inequality constraints, with MOT and
partial optimal transport (Chapel et al) [2020; [Le et al., 2022} [Nguyen et al.| 2022} |2024) being
two of the most widely considered cases. In particular, iterative Bregman projection is a widely
used methodology for solving OT problems with equality and inequality constraint (Benamou et al.,
2015)). This work is more similar to|Tang et al.|(2024a), which uses a variational framework derived
directly from the entropic LP formulation. The main contribution of this work compared to Tang
et al.|(2024a) is that this work applies to a setting in which one has O(n) equality constraints. In
contrast, [Tang et al.| (2024a)) has an explicit assumption that only O(1) constraints are allowed for
efficiency consideration. Moreover, this work applies to a setting in which one controls the total
constraint violation, which is quite different from the formulation of the aforementioned works,
which are all based on exact constraint satisfaction.

Variational methods in optimal transport There is considerable research interest in the varia-
tional form of entropic OT (Dvurechensky et al.l 2018} Lin et al.,|2019; |Kemertas et al., 2023} Tang
et al.l 2024b). Similar to the OT case, this work provides a variational framework that converts
entropic MOT to a convex optimization problem, for which a wide range of existing tools can be
used. Detailed analysis of the dual potential of the entropic MOT problem could lead to convergence
bounds of the methods provided.

1.2 NOTATIONS

Forn € N, we let [n] = {1,...,n}. Weuse M - M’ := } ., m;ym;; to denote the entry-wise
inner product. For a matrix M, the notation log (M) stands for entry-wise logarithm, and similarly
exp(M) denotes entry-wise exponential. We use the symbol || M ||; to denote the entry-wise [ norm,
Le. [[M[}1 = [[vec(M)[| = >_;;lmij|. The || M|~ and [[M]|2 norms are defined likewise as the
entry-wise [, and I norms, respectively. The notation 1 denotes the all-one vector of appropriate
size.

2 BACKGROUND

2.1 MARTINGALE-TYPE CONDITIONS

Constraint of the type PV = W or PV > W often arises from continuous geometric problems.
From continuous distributions i, v € L?(R?), the discretization step approximates the two distri-
butions by weighted samples. For p, v, one typically performs sampling or quantization to obtain
points {w; 7, {v;}7—; C R* with weights {r;}/_,, {¢;}]_,. The discretization is through point

mass approximation by taking p ~ i = Y | 70w,V R U = Z?Zl iy,

After the discretization, the MOT problem becomes a discrete optimization task with the decision
space being coupling matrices P € RZ;". For a coupling matrix P, we use (X,Y) ~ P to
denote that (X,Y") is a pair of random variables with P[X = w;,Y = v;] = p;;. We require the
marginal distribution of X,Y to equal i, 7, which coincides with the row/column sum condition
P1 = r,PT1 = c in optimal transport. The defining feature of the MOT problem is that one
requires the joint distribution (X, Y’) to be a martingale, i.e., E(x yy.p [Y | X = w;] = w;, which
one can write in terms of the coupling matrix P by ﬁ > j P;jv; = w;. We use the condition

that > y P;; = r;, and so the discretized martingale condition is

ZPz'jVj =TW;. 3)
J
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By taking V' = [vy,...,v,] and W = [rywy,... ,rnwn}T, we see that the martingale condition
in equation [3|is equivalent to PV = W. Likewise, the super-martingale condition is modelled by
Ex,yy~p [Y | X = w;] > w;, which can be written as the condition PV > W.

2.2  SUPER-MARTINGALE CONDITIONS IN E-COMMERCE RANKING

The multi-objective ranking is a formulation where the goal is to find a ranking of products that
perform well in multiple relevance metrics (Dong et al., 2010; Dai et al., 201 1;Momma et al., [2019;
Carmel et al., [2020). The task is practically relevant and is an important instance of information
retrieval (Liu et al., 2009; Manning, 2009). In practice, the objectives might be conflicting with
no ranking satisfying all of the objectives. To this end, one applies a convex relaxation which can
be interpreted as a stochastic ranking policy of the form (p;, 7;);e[z) Where Zle[ b =1 and
the policy picks ranking 7; with probability p;. The use of optimal transport arises in this context
by considering the doubly stochastic matrix P = Zze[ ) P The entry p;; is the probability of
assigning product ¢ to position j.

For linear additive ranking metrics, such as precision, recall, and discounted cumulative gain (DCG),
the expectation of the performance of the ranking policy only depends on P. Thus, optimization over
such linear metrics in expectation is an optimal transport task, and constrained optimal transport
instances occur when one places certain linear metrics as equality or inequality constraints. Once
P is solved, one can recover a stochastic policy (p;, 7)i(z) through the Birkhoff algorithm with

L = O(n?) (Birkhoff, [1946).

In addition, even though ranking to a user is primarily deterministic in practice, the optimal stochas-
tic ranking can provide useful information for ranking design. For example, one might consider the
expected position of each product j in the optimal stochastic ranking, and the quantity is computable
through the equation ), Py;k. We remark that this average position calculation is the barycentric
projection under the transport P (Villani et al.,[2009).

For the stochastic ranking policy, the super-martingale condition usually occurs as diversity con-
straints. For example, when the user searches for a type of product, it might make sense to present
products that are complementary to the searched product type (McAuley et al 2015). Moreover,
the product ranking case has inherent product heterogeneity in the sense that the complementary
products might be of varying degrees of relevance to the searched product. The product informa-
tion is encoded by a vector v = [vq,... ,vn}—r, where v; encodes the extent to which product @
belongs to the complementary product type. Thus, the subgroup diversity requirement is modeled
by a constraint

Pv >w,

where w = [w1, ..., w,]" encodes the threshold at each position i € [n].

Remark 1. The mathematical structure of the martingale and super-martingale conditions are similar.
For simplicity, subsequent sections in the main text focus on MOT. The super-martingale condition
is a simpler case and is deferred to Appendix

3  APPROXIMATE CONSTRAINT SATISFACTION IN MOT

While it might be conceptually appealing to enforce the O(n) equality constraints in equation this
formulation faces significant feasibility and robustness concerns. For feasibility, there is a simple
observation supporting the claim: Summing over the martingale condition in equation |3| for all
i € [n] shows that /i, 7 must coincide in their respective barycenter, i.e., >, mw; = >, ¢;vj,
which is quite strict and one can see any perturbation might change a feasible LP scheme into
an infeasible one. The criteria for feasibility is more complicated than coinciding barycenter, and
practical post-processing of the discretization to maintain feasibility is an open problem in general.
In addition, exact constraint satisfaction in MOT faces robustness concerns even when the problem
is feasible. The construction in Briickerhoff & Juillet| (2022) shows that MOT problems with exact
constraint satisfaction are unstable: when d > 2, the optimal cost from equation |1| might fail to
converge even when (fi, 7) — (p, v). Thus, entropic LP algorithms based on equation |1| are prone
to feasibility and stability issues coming from discretization errors in general.
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For the martingale condition, this work focuses on an approximate constraint satisfaction approach
due to the reasons discussed. For a threshold parameter € > 0, we write the program as follows:

min C-P,
P:P1=r,PT1=c,P>0 4)

subject to ||PV — W||; <e,

where || M |1 denotes the entry-wise [; norm, i.e. [ M|y := [[vec(M)|| = >_;;|m;;|. Moreover, we
write equation in an equivalent LP formulation with an auxiliary variable £ € R™*:

min C-P.
P,E:Pl=r,P  1=c,P,E>0,1T E1<¢ (5)
PV—W—E<0,PV—-W+E>0

We remark that the choice of € has an overall simple rule from (Guo & Obtdj| (2019). Let W7 be
the Wasserstein-1 distance based on the [; metric in R%. Let § = Wi (u, 1) + Wi (v, ), and then
any choice of € > 4 leads to a feasible LP problem. Moreover, when the cost matrix C' comes from
a cost function h: R? x R? — R with cij = h(w;,v; ), the estimation of continuous martingale
optimal transport cost through equation|[5|has an estimation error of Lip(h)e = O(e), where Lip(h)
is the Lipschitz constant of the cost function h. Hence, the approximate constraint satisfaction
construction is robust and feasible under a suitable choice of €.

Remark 2. In practice, u,v are continuous distributions with compact support, and i, 7 are ob-
tained through quantization or sampling. If /i, © are obtained through quantization, the bound on §
can be obtained through conventional error analysis in histogram-based density estimation (Wasser-
man), [2006). If ji, ¥ are obtained through sampling, one would need to determine ¢ through cross-
validation, and alternatively one can use upper bounds for § = Wy (u, ii) + Wi (v, ?) such as in
Weed & Bach! (2019); Chewi et al.|[(2024).

Entropic formulation We use the entropic LP formulation in|Fang|(1992) to add entropy regular-
ization. In particular, one writes

1
min C-P+-H(P,S,T,E,q),
P,S,T,E,q:P1=r,P' 1=c n (6)
S=W-—-PV+E
T=PV-W+E
1T El4q=¢

where S, T € R"*¢ ¢ € R are auxiliary slack variables, and the entropy term is defined by

H(P,S,T,E,q) =Y pijlogpij)+ Y  eloglew)+six log(sin) +tin log(tix) +qlog(q).
ij i€[n],keld]

We refer to equation [6] as the entropic MOT problem. In particular, the entropic LP approach leads
to an exponential convergence guarantee by Theorem [I] which shows that the entropy-regularized
optimal solution is exponentially close to the optimal solution (proof is in Appendix [B):

Theorem 1. For simplicity, assume that y_,r; = Y ;6 =1 and that the LP in equation |5| has
a unique solution P*. Denote Py as the entropically optimal transport plan in equation@ There

exists a constant A, depending only on the LP in equation 5 so that the following holds jor n >
14-3e(1+log(3nd+1))
A

IP; — P*|ly < 6n*(1+ 3¢) exp (—nA + 3elog(3nd + 1)) |

1+ 3¢

We remark that typically ¢ < 1, and so the exponential convergence guarantee is quite close to that
of entropic optimal transport (Weed, 2018)). In addition, one may use different entropic regulariza-
tion strengths for the terms in equation [6] which might lead to practical performance benefits.
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4 MAIN ALGORITHM

4.1 VARIATIONAL FORMULATION OF ENTROPIC MOT

By introducing Lagrangian dual variables and using the minimax theorem (derivation is standard
and deferred to Appendix [C)), one obtains the associated dual problem to equation [6}

1
max f(x,y,A, B u) = 7% E exp (n(fcij + E (@i + big)vjk + T + ;) — 1)
x,y,A,Bu —

ij keld]

1
+ E x;r; + E Y;cj + E (aik + bik)wik +ecu — ;}exp(nu — 1) 7
i J

i€[n],ke(d]

1
— Z exp(na;x — 1) + exp(—nbir, — 1) + exp(n(u — a; + bix) — 1) | ,
N i€[n],ke(d]

where the optimization over f is an unconstrained maximization task with variables x € R™,y €
R", A € R B ¢ R"*4 4 € R. Intuitively, the x,y variables correspond to the row and the
column constraint, and the A, B, u variables correspond to the approximate satisfaction of the mar-
tingale condition. As a consequence of the minimax theorem, maximizing over f is equivalent to
solving the problem defined in equation[6] We emphasize that f is concave, and thus, one can use
routine convex optimization techniques to solve the problem.

Among the alternative implementations, a notable candidate is the adaptive primal-dual accelerated
gradient descent (APDAGD) algorithm, which has shown robust performance in optimal transport
(Dvurechensky et al.| [2018). We leave the detail to Appendix |A| for APDAGD on entropic MOT.
Overall, our proposed Sinkhorn-type algorithms enjoy better performance for converging to entrop-
ically optimal solutions.

4.2 SINKHORN-TYPE ALGORITHM

We introduce the implementation of the Sinkhorn-type algorithm for entropic MOT. Similar to
Sinkhorn’s algorithm for entropic optimal transport, we let g = (x, A, B, u) and split the dual vari-
ables into y and g. The Sinkhorn-type algorithm performs an alternating maximization on (y, g).
The algorithm is summarized in Algorithm[I} The optimization in y has an explicit solution by the
formula on Lineof Algorithm For the optimization on g, we show later in this section that Vé f
has O(n) nonzero entries. Thus, for the g variable, the maximization over g uses Newton’s method
with back-tracking line search (Boyd & Vandenberghel 2004). The Newton step iteration count
takes Ng = 1 for simplicity, and we observe the iteration count is sufficient for good numerical
performance.

Sparsity of Hessian We show that Vé f has only O(n) nonzero entries. We write A =
[ai,...,a4) and B = [by,...,bg),and let P = exp (n(—C + (A+ B)V' +x1" +1y") - 1)
denote the intermediate transport plan obtained from the current dual variable. Direct calculation

shows

Vx Vb, [ = VxVa, f = —ndiag(Pvy),
and one can likewise show that the blocks V,, Vi, f, Va, Va, [, Vb, Vb, f are diagonal matrices.
Essentially, the sparsity structure arises from the fact that in f the dual variables x;, a;x, b;x are only
non-linearly coupled with dual variables z; and {b;x/, a;i } re[k]- Lastly, the block VgV, f only
introduces O(n) non-zero entries.

Complexity analysis of Algorithm We omit the scaling in d for simplicity, as typically d =
O(1). The y update step is the well-understood column scaling step in Sinkhorn’s algorithm with
an O(n?) complexity. For the g update step, as V2 f has only O(n) nonzero entries, one can apply
a sparse linear solver to obtain Ag in O(n?) time. Moreover, querying f and V f are both O(n?)
operations. In summary, the per-iteration complexity is O(n?) as that of Sinkhorn’s algorithm.

Remark 3. Tt is also possible to split the dual variable into x,y,h = (A, B,u) and perform alter-
nating maximization on (x,y,h). Similarly, the update for the x,y variable can be performed by
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Algorithm 1 Sinkhorn-type algorithm for entropic MOT
Require: f,Xinit € R”, yinit € R™, Ainit, Binit € R Uiy € R, N,i =0, Ng =3

L1 Y < Yinit, & < (Xinit, Ainit, Binit, Yinit) > Initialize dual variable
2: while: < N do

3: 1g 0,0 i+1

4: # Column scaling step

5: (x,A,B,u) + g

6: P=exp(n(-C+(A+B)VT +x1" +1y") —1)

7: y+<y+ (log(c) — log(PTl)) /n

8: # g variable update step

9: while i, < Ng do
10: Ag=—(Vif) ! Vef i Obtain search direction
11: a « Line_search(f, g, Ag)
12: g g+alg
13: iy g+ 1

14: end while
15: end while
16: Output dual variables (x,y, 4, B, u).

matrix scaling, and the update for h can be done by Newton’s method. Overall, we observe better
numerical performance for alternating maximization on (y, g).

4.3 SPARSE NEWTON ALGORITHM

For enhanced accuracy, we augment Algorithm[T|with an efficient Newton’s method which optimizes
over dual variables jointly. Sparse Newton iteration performs Newton’s method with the Hessian
matrix replaced by its sparsification, which is a type of quasi-Newton method (Nocedal & Wright,
1999; Tang et al., 2024b)).

The sparse Newton iteration is motivated by an approximate sparsity analysis of the Hessian matrix
of dual potential, which shows that the Hessian matrix admits accurate sparse approximation. We
define important concepts for subsequent approximate sparsity analysis. Let ||-||o denote the I

norm. The sparsity of a matrix M € R™*" is defined by 7(M) := % Furthermore, we
say that a matrix M € R™*"™ is (\,§)-sparse if there exists a matrix M so that 7(M) < X and
[M — M|y < 6.

Approximate sparsity of Hessian Let P be the intermediate transport plan formed by the current
dual variable. We show that the approximate sparsity of the Hessian matrix V2 f reduces to that
of P. By previous discussion, the blocks Vf,f, Véf are sparse for g = (x, A, B,u). Thus, we
only focus on the block Vy Vg f. The block V, V., f is negligible as it contributes only n non-zero
entries. For the blocks ViV f, VyV ap f, we compute

Vyvxf = —UPT7 vyvbkf = vyvakf =N diag(vk)PT>
which shows that one can obtain sparse approximation of V2 f by sparse approximation of P.

We now discuss the approximate sparsity of the transport plan P. To reach the super-exponential
convergence stage, both Newton’s method and quasi-Newton methods rely on the current dual vari-
able to be close to the maximizer. Therefore, the sparse Newton iteration is only used when P ~ P;; s
where P is the entropically optimal transport plan in equation (6} Therefore, the applicability of
sparse Newton iteration to aid super-exponential convergence relies on the approximate sparsity of
Py. By the fundamental theorem of linear programming, a unique solution to equation |5 must be a
basic solution (Luenberger et al |1984). Then, assuming uniqueness, the optimal coupling matrix
P* for equation can have 2n — 1 + nd nonzero entries. Thus under Theorem Pyis O(A, 6)-
sparse, where A = O(1/n) and § is exponentially small in 7.

In summary, following the Hessian matrix computation and the sparsity pattern of P, one only

needs to keep an O(1/n) fraction of entries in the Hessian matrix for an accurate Hessian approx-
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imation. The approximate sparsity argument relies on P ~ P*. Thus, for practical purposes, it is
desirable to perform warm initialization with Algorithm [1| before applying the sparse Newton iter-
ations. In addition to the importance of warm initialization to Newton’s method, another important
factor particular to this setting is that initialization leads to a better Hessian approximation.

Algorithm implementation We introduce Algorithm [2] which is the main algorithm for entropic
MOT under the approximate constraint satisfaction formulation. One runs the Sinkhorn-type algo-
rithm in Algorithm [I] for a few iterations, followed by sparse Newton iterations. Following Tang
et al.|(2024b)), we refer to Algorithm as the Sinkhorn-Newton-Sparse algorithm for entropic MOT.

Hessian approximation details We specify the sparsification operation Sparisfy (V2 £, p) in Al-
gorithm We first keep the first [pn?] largest terms in the transport matrix P and obtain the
resulting sparsification Psparse. By the discussion given, we only need to perform the sparsifica-
tion procedure for the blocks V,V 4p f, V,V, f and their respective transpose, which is done by
replacing the role of P with that of Piparse. In particular, the approximation Sparisfy(V?2f, p)
replaces the VyVf block with —nP and replaces the V,Vy, f,V,Vy, f blocks with

sparse
—n diag(v) P

sparse*

Algorithm 2 Sinkhorn-Newton-Sparse for entropic MOT

Require: f,Xinit € R™, ¥init € R", Ainit, Binit € R™*% tiniy € R, N1, No, p,i =0

1: # Warm initialization stage
2: Run Algorithm for V; iterations to obtain warm initialization (Xinit, Yinit; Ainit, Binits Yinit )-
3: 2z < (Xinit, Yinit, Ainit; Binit, Uinit) > Initialize dual variable
4. # Newton stage
5: while i < N5 do
6: H + Sparisfy(V2f, p) > Sparse approximation of V2 f.
7 Az + —H™ Y (Vf(z)) > Solve sparse linear system
8: o < Line_search(f, z, Az) > Line search for step size
9: z +— 2+ alz
10: 1+—1+1
11: end while

12: Output dual variables (x,y, 4, B, u) + z.

Complexity analysis of Algorithm 2] For the formula of the Hessian, the cost of obtaining and
sparsifying the Hessian is O(n?). By keeping an O(1/n) fraction of entries of the Hessian through
sparsification, obtaining the search direction in a sparse linear system solving step has cost O(n?).
Thus, the sparse Newton iteration has a per-iteration complexity of O(n?).

5 NUMERICAL EXPERIMENT

We conduct three numerical experiments to showcase the performance of the proposed algorithms
for entropically regularized optimal transport under martingale and super-martingale conditions.
The goal is to obtain an accurate approximation of the LP solution efficiently. Therefore, we take
n = 800 and 7 = 1200. The choice of parameter leads to an interesting setting where the problem
size is relatively large and the entropically optimal transport plan is close to the LP solution in
transport cost. For the evaluation metric, we form the intermediate transport plan P with the dual
variable and compute the [; distance [P — P||. The reference entropically optimal transport plan
P is obtained by running full Newton iteration until convergence. As a benchmark, we also include
the performance of the APDAGD algorithm. The detail for the Sinkhorn-type algorithm and the
Sinkhorn-Newton-Sparse algorithm for the super-martingale case is in Appendix

Similar to interior point methods, directly optimizing under a large 1 without warm initialization is
less efficient. Therefore, the experiments use a warm initialization strategy with a geometric schedul-
ing of . We take an initial regularization strength of 79 = 12.5 and take N,, = [logy(n/n0)].
Then, we use successively doubling regularization levels g < ... < ny, so that i, = 2m_4
forl = 1,...,N, — 1. We run 5 iterations of Algorithm [I| for every regularization level n; for
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Figure 1: Performance of Algorithm |2 on optimal transport problems with martingale-type con-

straints. Here, the system size is n
examples.

800. A warm initialization is applied for the two MOT

l=1,...,N, — 1. Our warm initialization strategy takes a few iterations and leads to a better op-
timization landscape at the chosen value of 7. The run time for the warm initialization is quick, and
so we omit it in the plotted results for simplicity. To ensure fairness of comparison, the APDAGD
algorithm uses the same initialization.

Option pricing under martingale condition The first experiment concerns the setting of option
pricing under the martingale condition (Hobson & Neuberger, 2012} (Guo & Obtdj, [2019). In this
case, one typically has access to the probability distribution of one asset, which is why we take
d = 1, even though the algorithm can handle more general cases. We take y to be the uniform
distribution Unif([0, 1]) with du(z) = 1,¢[,1]. and we take v to be the law of X + Y, where
X ~ i, Y ~ N(0,10~%). The source and target distribution are obtained from quantization, and
we check that taking ¢ = 2/n = 0.0025 is sufficient to guarantee feasibility. For the cost we take
Cij = |vi — wW; |, which is the payoff function considered in|Hobson & Neuberger|(2012). We plot
the result in Figure We take N1 = 20 and run a few steps of sparse Newton iteration. One can
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see that the SNS algorithm is able to achieve convergence to machine accuracy in a few iterations,
far exceeding the performance of APDAGD.

Resource allocation under balance constraints We consider a random assignment problem (Al-
dous| 2001) where we take r = ¢ = %1 and we generate the entries of the cost matrix C' by i.i.d.
random variables following the distribution Unif ([0, 1]). In resource allocation tasks where one al-
locates products to customers, one might encounter a balance constraint on the transport plan, in
which two subgroups of products need to have equal weights sent to each customer. Let S4,.Sp
denote the two subgroups, and such a balance constraint can be written by
n n

S

where 15 for S C [n] is a one-hot encoding with (15); = 1ifi € S and (15); = 0 otherwise. The
constraint is a martingale condition where each index ¢ is an embedding of v; = n/|S4|ifi € Sx
and v; = —n/|Sp|ifi € Sp.

P(

In our case, as the matrix C' does not have a special structure, we simply take S4 = {1,...,100}
and Sp = {101, ...,200}. Also, it is clear that the problem is always feasible, and we take e = 0.1
to allow for some constraint violation. The result is plotted in Figure [[b] We take N; = 10 for the
number of Sinkhorn-type iterations, and we see that the proposed method has better performance
than APDAGD and converges quickly to machine accuracy. As the matrix C' is randomly generated,
we test the performance across the random instances by repeating the same experiment 100 times.
For all of the instances, the SNS algorithm reaches machine accuracy within No = 5 sparse Newton
iterations.

Stochastic ranking under diversity constraint We consider a stochastic ranking problem with
a diversity constraint under the e-commerce setting as described in Section 2.2] In this setting,
each product with index j has a main relevance score s; and an auxiliary utility v;. We consider
a normalized discounted cumulative gain metric (NDCG) with C;; = alogg(islj-&-i)’
normalization constant (Jarvelin & Kekildinen, [2002)). The diversity constraint for the stochastic
ranking policy asks the expected auxiliary utility for each position ¢ exceeds w;. We let s;,v; ~
Unif([0, 1]). For the information retrieval setting, the primary focus of the ranking task is on top
positions. Therefore, we take the threshold at position ¢ to be w; = 0.3 when ¢ < 40, and w; = 0
otherwise. For this case, no warm initialization is applied. The result is plotted in Figure[Ic| and we
see that N; = 11 iterations of the Sinkhorn-type algorithm suffices to reach machine accuracy.

where « is the

6 CONCLUSION

We introduce two numerical algorithms for entropic regularization of optimal transport problems
under martingale-type constraints. While the two algorithms’ numerical performance is quite strong,
future work should analyze the proposed approach’s convergence property.
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A ACCELERATED FIRST-ORDER METHOD FOR ENTROPIC MOT

In this section, we implement the adaptive primal-dual accelerated gradient descent (APDAGD)
method in |[Dvurechensky et al.| (2018) for entropic MOT. In particular, the APDAGD algorithm
already generalizes to this case, as it is a general-purpose algorithm for entropic LP. The term f is
the dual potential defined in equation [7] The algorithm is summarized in Algorithm [3] The per-
iteration complexity of this algorithm is O(n?). One can also consider alternatives such as in Lin
et al. (2019).

Algorithm 3 Adaptive primal-dual accelerated gradient descent algorithm (APDAGD)

Require: f, N,k = 0,20 = (o = Ao = O2n4m
1: ag 0750 «—0,Lg=1,

2: while £ < N do

3: Mk:Lk/Q

4: while True do

5: Mk = 2Mk

6: Q41 = 71+W

7: Br+1 = Br + a1

8: T = (;:73

9: A1 < TG + (1 — 70) 2k
10: Cit1 < Cr + 1V (Apt1)
11: Zit1 < ThCet1 + (1 — 7o)z
12: if f(zir1) = F Q1) + (VFNrg1)s 2ot — Aes1) — 222 |Zkg1 — Aes1[| then
13: Break

14: end if

15: end while

16: Lk+1(—M;C/27k‘(—k—‘r1

17: end while

18: Output dual variables (x,y, A, B,u) < zy_1.

B PROOF OF THEOREM

Definition 1. Define P as the polyhedron formed by the feasible set of equation[4] i.e.
P:={P|Pl=r,P'1=¢c,P>0,|PV-W]|; <¢}.

The symbol V denotes the set of vertices of P. The symbol O stands for the set of optimal vertex

solutions, i.e.
O :=argminC - P. ®)
Pey

The symbol A denotes the vertex optimality gap
A= min Q-C—minP-C.
QeEV-0 PeO

We can now finish the proof.

Proof. This convergence result is mainly due to the application of Corollary 9 in [Weed| (2018)) to
this case. We define another polyhedron Q as follows:
Q:={(P,S,T,E,q)|Pl=r,PT"1=c,1"El+q=c¢,
S=W-PV+E>0T=PV-W+E>0,E>0,q>0}
We use Ry and Ry to denote the [y and entropic radius of Q in the sense defined in|(Weed! (2018).

We first bound Ry. For any (P,S,T,E,q) € Q we note that S,7 > 0 and so ||S]1 + || T]:1 =
IS + T'||1 = 2| E||1. Thus for R; one has

1< Ry = max ([|[P]i+3]E[:+]q) <1+3e.
(P,S,T,E)€Q
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For Ry, we first bound the entropic radius by the entropic radius of P and of (S, T, E).

RH H(‘P’ S7T’ EVq) _H(P/’ S/’T/’ E/’q/)

= max
(P,S,T\E,q),(P",5'\T",E’,q")€Q

< max H(P)— H(P')
(P,S,T,E,q),(P",S",T"\E,q")€Q

H(S,T,E,q)— H(S",T',E',q).
(P,S’,T,E,q),(g%flg‘(’,T',E’,o’)eQ (5, 7 ( 7)
We bound the entropic radius of P by the fact that (P, S, T, E,q) € Q implies 17 P1 = 1, and thus

H(P)- H(P)<I 2).
(P,S,TyE,q)igég’yT’,E’,q’)GQ ( ) ( )_ og(n)

Likewise, the entropic radius of (S, T, E, q) relies on the fact that (P, S,T,FE,q) € Q implies
lT(S + T+ E)1 + q < 3¢, and thus

H(S,T,E,q)—H(S",T',E',¢) < 3clog(3nd + 1),
(P.S.1,1,0),(P1S! T B q) €@ (5.1, B, q) ~ H(S’ ¢) < 3elog(3nd +1)
and thus, one has

Ry <log(n?) + 3clog(3nd + 1).
Let (Py, Sy, Ty, Ey, q;) be the optimal solution to equation El For n > 1+3€(1+1°Ag(3"d+1)) >
%, one has

[1P* = Pllly <[[(P*, 8%, T%, E*, q%) = (P, S5, T, B ap) |

A R
<2R; exp (—an +1+ R‘?)

=2R; exp (RHR_nA + 1)
1

Ry —nA
<2(1 + 3¢) exp <f+3z + 1)
2log(n) + 3elog(3nd + 1) — nA
+1
1+ 3¢
—nA + 3elog(3nd + 1)
14 3¢ ’

=2(1+ 3¢) exp <

<6n?(1 4 3¢) exp (

where the third inequality is because Ry — nA < 0, and the last inequality holds because

exp(zi(fég) +1) < exp(2log(n) + 1) < 3n2. O

C DERIVATION OF DUAL FORM FOR MOT

We now show that the dual form in equation [/|can be obtained from the primal-dual form by elimi-
nating the dual variables. Let H be the entropy term with H(M) = M - log(M). Define

1
L(P,S,T,E,q,x,y,A,B,u) =—H(P,S,T,E,q) +C-P—-x-(P1—-r)—y-(P'1-c¢)
n
—-A-(PV-E-W+S)—-B-(PV+E-W-T)
~u(1"E1+q—¢).
Then, we show that for the f in equationis indeed the dual potential, as one has

f(x,y,A,Bu) = P,g?%%,qL(P’ S, T,E,q,x,y,A,B,u). 9)

By rearranging the terms, one has
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min L(P,S,T,FE,q,%x,y, A, B,u)

P,S,T,E,q
=min lH(P) —P-(x1" +1y" +(A+B)V' -0)
n
+mian(S) —S’-A-l—mian(T) -T-(—-B)
s T

1 1
+mEian(E)—E-(—A—i—B—&-ullT)—i—mian(q)—qu

n a7
+x-r+y-c+ (A+B) - W + ue.

For M of arbitrary size, one has miny  H(M) — M - D = —. 37, exp (ndy; — 1). Thus, the
calculation gives

min L(P,S,T,F,q,x,y,A, B,u)

P.S,T,E.q
1
=—- ZGXP (TI(*Cz‘j + Z (aik + bir)vjk + @i +y;) — 1)
" reld
1
- Z exp(nair — 1) + exp(—nbix — 1) + exp(n(u — ax + bi) — 1)
n i€[n],ke(d]

1
——exp(nu—1) +an+2y]cj+ Z (air + bix)wir, + €u,
n i€[n],ke(d]

which coincides with the formula for f. As L is concave in P,S,T,FE, q and concave in
x,y, A, B, u, we can invoke the Von-Neumann minimax theorem, and thus obtaining the optimal
solution to entropic MOT problem is equivalent to maximization over f.

D SUPER-MARTINGALE CONDITION UNDER ENTROPIC REGULARIZATION
This section details the treatment of super-martingale optimal transport (SMOT). In this case, the
feasibility of the constraint PV > W is typically mild. Moreover, W can always be sufficiently
decreased to reach feasibility. Thus, we work on this problem by performing the entropic linear
programming for the LP in equation 2]

Variational formulation of SMOT In this case, we introduce a primal-dual form

1
L(P,S,x,y, A) :EH(P,S) +C-P-x-(Pl-r)—y-(P"1—¢c)—A-(PV-W —8),
where each dual variable a;; corresponds to the (i, k)-th constraint in the matrix inequality PV >
W. By the same calculation as that of Appendix [C} one has
r113171§1 L(P,S,x,y,A)
1
=min-H(P)-P-(x1" +1y" + AV' - C)
Pon
1
+X-r+y-c+A-W—&-msian(S’)—i-S-A.
n

Thus, taking g(x,y, A) = minp g L(P, S,x,y, A), one then has the dual problem as follows:

max g(x,y, A :—fZexp< (=Ci + Z Gik vjk—i-xz—&-yj)—l)
ke(d]
X (10)
+ Zx ri + ZyJCJ + Z (@i )wi — — Z exp(—na;x — 1).
i€[n],ke(d] K i€[n],ke(d]
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Sparsity and approximate sparsity of Hessian We discuss sparsity patterns of the Hessian matrix
V2g for the algorithmic development of SMOT. Let P = exp (n(—C +x17 + 1y + AV") — 1)
be the intermediate transport plan corresponding to the current dual variable (x,y, A). We re-
mark that the blocks Vg, V5V 4g both have a block structure of diagonal matrices. Writing
A =[ay,...,ay], one has

vxvakg =N diag(ka')a

and likewise Vg, V4, , g are diagonal matrices.

For the approximate sparsity, we note that V, V 4 g, V, Vg are dense matrices defined by P, as one
has
VyVyig=-nP", VyVa,g=—ndiag(vi)P',

which shows that one can obtain sparse approximation of V2g by sparse approximation of P.

Sinkhorn-type algorithm Due to the sparsity analysis, one can define h = (x, A) and perform
alternating maximization on (y, h). The Sinkhorn-type algorithm is summarized in Algorithm

Algorithm 4 Sinkhorn-type algorithm for entropic SMOT
Require: g,Xinis € R™, yinit € R, Ajnie, N, i =0, Np, =3

I Y < Yinit, B < (Xinit, Ainit) > Initialize dual variable
2: while i < N do

3: i 0,1 1+1

4: # Column scaling step

5: (x,A) < h

6: P=exp(n(-C+AVT +x17 +1y") —1)

7.y <y + (log(c) —log(PT1)) /n

8: # h variable update step

9: while i, < Ny, do
10: Ah = — (Vﬁg) ! Vhg > Obtain search direction
11: a < Line_search(g, h, Ah)
12: h+ h+ aAh
13: ip —ip + 1

14: end while
15: end while
16: Output dual variables (x,y, A).

We remark that the algorithm is almost identical to Algorithm El:] except for slight modification. We
take IV}, = 3 in this work. The per-iteration complexity is O(n

Sinkhorn-Newton-Sparse Due to the analysis above, one sees that the approximate sparsity of
V2g relies on the approximate sparsity of P, which in turn relies on the approximate sparsity of
the entropically optimal SMOT solution P;. A slight modification of the analysis in|Weed| (2013)
would likewise show that P is exponentlally close to the 0pt1mal LP solution P*, which has at most
2n — 1 + nd nonzero entrles assuming uniqueness of the LP in equation 2] By running sufficient
iterations of the Sinkhorn-type algorithm, one has P ~ Py, and thus one can likewise introduce
the Sinkhorn-Newton-Sparse (SNS) algorithm, whereby one runs the Sinkhorn-type algorithm for
a few iterations, and one then switches to sparse Newton iteration. We summarize the algorithm in
Algorithm l 5| The per-iteration complexity is O(n?).

For completeness, we detail the Hessian approximation implementation. For Sparisfy(V?2g, p) in
Algorithm we keep the first [pn?] largest terms in the transport matrix P and obtain the resulting
sparsification Pyparee. Similar to the MOT case, by the discussion given, we only need to perform
the sparsification procedure for the blocks V,V 49, V, Vg by replacing the role of P with that of

Psparse-
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Algorithm 5 Sinkhorn-Newton-Sparse for entropic SMOT

Require: g, Xt € R", yinit € R", Ajnit, N1, Na, p,i =0

: # Warm initialization stage

Run Algorithmfor N iterations to obtain warm initialization (Xinit, ¥init, Ainit )-

2 ¢ (Xinit, Yinit, Ainit) > Initialize dual variable

# Newton stage

while ¢ < N5 do
H « Sparisfy(V3g, p) > Sparse approximation of V2g.
Az <+ —H 1 (Vg(z)) > Solve sparse linear system
« + Line_search(g, z, Az) > Line search for step size
7z 2+ alAz
14 1+1

: end while

: Output dual variables (x,y, A) « z.

A A T e

_—
NP
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