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ABSTRACT

Implicit models, an emerging model class, compute outputs by iterating a sin-
gle parameter block to a fixed point. This architecture realizes an infinite-depth,
weight-tied network that trains with constant memory, significantly reducing
memory needs for the same level of performance compared to explicit models.
While it is empirically known that these compact models can often match or even
exceed the accuracy of larger explicit networks by allocating more test-time com-
pute, the underlying reasons are not yet well understood.
We study this gap through a non-parametric analysis of expressive power. We
provide a strict mathematical characterization, showing that a simple and regular
implicit operator can, through iteration, progressively express more complex map-
pings. We prove that for a broad class of implicit models, this process allows the
model’s expressive power to grow with test-time compute, ultimately matching a
much richer function class. The theory is validated across four domains: imaging,
scientific computing, operations research, and LLM reasoning, demonstrating that
as test-time iterations increase, the complexity of the learned mapping rises, while
the solution quality simultaneously improves and stabilizes.

1 INTRODUCTION

Many machine-learning tasks can be cast as learning a mapping F from input x to the desired output
y∗, i.e., y∗ = F(x). An emerging alternative is the implicit models: train an operator G whose fixed
point matches the target, i.e., y∗ = G(y∗,x) (Bai et al., 2019; El Ghaoui et al., 2021). At inference
time, the fixed point is obtained via a root-finding solver. While advanced algorithms (e.g., Anderson
acceleration or Broyden’s method) exist, the canonical approach is the Picard iteration:

y1 = G(y0,x), y2 = G(y1,x), y3 = G(y2,x), · · · , (1)
and expect yt(x) → y∗(x) = F(x) for all x. Rather than producing y∗ in a single feed-forward
pass, implicit models reach the target through gradual equilibrium-seeking updates. Here, “test-time
compute” refers to the computational budget spent at inference—primarily the number of iterations.
By tailoring the structure of G, implicit models have shown strong results across many domains
(e.g., imaging (Gilton et al., 2021), scientific computing (Marwah et al., 2023), generative modeling
(Pokle et al., 2022; Geng et al., 2023), LLM reasoning (Geiping et al., 2025), etc.).

Behind these successes, the advantages of implicit models include: (i) they realize an infinite-depth,
weight-tied network trainable with constant memory, which yields efficient training (Fung et al.,
2022; Geng et al., 2021); (ii) they allow us to “implicitly bake in” domain constraints and structure
(e.g., physics, geometry, safety), see Xie et al. (2022); Güngör et al. (2023); Oshin et al. (2024); and,
most surprisingly, (iii) they can often match or even exceed the accuracy of larger explicit networks
by allocating more iterations (Marwah et al., 2023; Wang et al., 2024; Geiping et al., 2025). Point
(i) stems from the weight-tied architecture and avoiding full back-propagation. Point (ii) arises
from the inherently implicit nature of many real-world, equation-based constraints. In contrast, the
mechanism underlying the surprising effectiveness of (iii) remains less well understood.

We study this through the lens of expressive power—the set of input–output maps a model family
can represent. We ask two questions. First, as a baseline: (Q1) Do implicit models (at least) match
the expressive power of explicit ones? Concretely, for a target map F : x 7→ y∗, does there always
exist an implicit operator G such that the iterates of (1) satisfy yt(x) → F(x) for all x? If yes,
a more insightful question follows: (Q2) Do implicit models offer an expressive advantage? In
particular, can a relatively simple implicit operator G, through iteration, represent a complex explicit
map F? A positive answer to (Q2) would directly explain phenomenon (iii).
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To our knowledge, these questions remain largely open. While universality has been touched upon
in specific settings (Bai et al., 2019; Marwah et al., 2023) and separation results have demonstrated
advantages over explicit models (Wu et al., 2024), a complete characterization of the representable
function class of implicit models (and hence a direct answer to questions (Q1) and (Q2)) is still
missing. Unlike studies focusing on infinite-width limits and kernel connections (Gao et al., 2022;
Feng & Kolter, 2023; Ling et al., 2024), our work fills this gap from a nonparametric, function-space
perspective, establishing that an implicit model’s expressive power scales with test-time compute.
(See Appendix J for broader contextual discussions.) Specifically:

• Expressive boundary. We identify locally Lipschitz mappings as a natural target class and
prove: every such map F can be expressed as the fixed point of a “regular” (simple and well-
behaved) G, and conversely, every such fixed-point map is locally Lipschitz.

• Emergent expressive power. Our theory, combined with iterative solvers’ dynamics, yields a
new viewpoint on implicit models: the expressive power is progressively unlocked by iterations.

• Validation across domains. We validate our theory with case studies in a wide range of applica-
tions (e.g., image reconstruction, scientific computing, operations research, and LLM reasoning).

Note that, while explicit networks are capable of expressing locally Lipschitz target maps (Beneven-
tano et al., 2021) by scaling up the model size, implicit models are able to scale expressivity with
test-time iterations and represent increasingly complex functions without adding parameters.

2 MAIN RESULTS

We now return to (Q1): given a target map F , does there exist an implicit operator G whose fixed-
point iteration yields yt(x) → F(x)? A naive construction answers “yes”: define, for 0 < η < 1,

G(y,x) := (1− η)y + ηF(x). (2)
Then the fixed-point iteration reduces to yt = (1 − η)yt−1 + ηF(x), hence yt − F(x) = (1 −
η)(yt−1 −F(x)). As 0 < η < 1, it holds that, for all x, yt(x)−F(x) → 0 as t→ ∞.

However, (2) is merely a trivial averaging of y and F(x); learning such an implicit model is no
different from learning F directly. This prompts the natural follow-up: is there any nontrivial
implicit representation that is able to indicate the expressive benefits of implicit models?

An illustrative example. Let F(x) = 1/x on [−1, 1] \ {0}. This function is smooth (differentiable
to any order) almost everywhere, but blows up near the singular point x = 0:

|F(x)| =
∣∣∣∣ 1x
∣∣∣∣→ ∞,

∣∣∣∣dFdx
∣∣∣∣ = ∣∣∣∣− 1

x2

∣∣∣∣→ ∞, as x→ 0.

Neural networks approximating 1/x on [−1,−δ) ∪ (δ, 1] typically demands higher network com-
plexity—i.e., increasing depth/width as δ → 0 to capture the growing steepness near the singularity
(Telgarsky, 2017). If we adopt the naive implicit form (2), G(y, x) = (1 − η)y + η/x, nothing is
gained: the model still inherits the singular behavior |∂G/∂x| = η/x2 → ∞.

What would be a nontrivial implicit representation in this setting? Instead of writing (1/x) explicitly,
we can regard it as the solution of the equation xy − 1 = 0 (implicit representation). Inspired by
this, we apply a fixed-point iteration to xy − 1 = 0: G(y, x) = y − η(xy − 1). Using the general
scheme in (1), we have yt = yt−1 − η(xyt−1 − 1). Subtracting the true solution gives

yt −
1

x
= yt−1 −

1

x
− ηx

(
yt−1 −

1

x

)
= (1− ηx)

(
yt−1 −

1

x

)
For any 0 < η < 1 and any x ∈ (0, 1], we have 0 < (1 − ηx) < 1 which implies yt → 1/x. (For
x < 0, simply flip the stepsize sign, η to −η.) This implicit formulation is much simpler and more
elegant: the operator G(y, x) = y − η(xy − 1) has no singularity and no blow-up.

The example indicates: intuitively, an implicit representation can realize a complicated map with
singularities via a much simpler, smoother update operator G. Next, we make it precise: we for-
mally define what we mean by “simple” versus “complex,” and characterize—beyond the 1/x ex-
ample—the class of target functions for which an implicit representation admits such a simple form.
Definition 2.1 (Lipschitz continuity). Let (X, ∥ · ∥) and (Y, ∥ · ∥) be normed spaces, and let Q :
X → Y. We say Q is L-Lipschitz (globally Lipschitz) on X if there exists L > 0 such that

∥Q(x1)−Q(x2)∥ ≤ L ∥x1 − x2∥ for all x1,x2 ∈ X,
and the smallest such L is the Lipschitz constant (or Lipschitz modulus), denoted as Lip(Q). If the
Lipschitz constant L < 1, we say Q is L-contractive on X. Given x ∈ X, we say Q is locally
Lipschitz at x if there exists a neighborhood U of x on which Q is LU-Lipschitz continuous for
some LU > 0. If Q is locally Lipschitz at every x ∈ X, we say Q is locally Lipschitz on X.
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Intuitively, Lipschitz continuity limits how quickly a function’s value can change. When a function
is differentiable, its Lipschitz modulus can be characterized by the norm of its first derivative via
the mean-value theorem. For example, F(x) = 1/x is locally Lipschitz on [−1, 1] \ {0} but not
globally Lipschitz there, since |dF/dx| = 1/x2 is unbounded as x → 0, causing local Lipschitz
constants to blow up near the singularity. In contrast, the implicit update G(y, x) = y − η(xy − 1)
has simple partial derivatives |∂G/∂x| = |η y| and |∂G/∂y| = |1− ηx| without singularity.

Locally Lipschitz mappings form a much richer class than globally Lipschitz ones. Typical examples
(locally Lipschitz everywhere in their domains but not globally Lipschitz on the whole set) include:
log x in (0, 1], tanx in

(
−π

2 ,
π
2

)
,
√
x in (0, 1], Γ(x) in R\{0,−1,−2, · · · }, etc.

For this reason, we refer to globally Lipschitz maps as “simple” operators and locally Lipschitz maps
(which may exhibit large local slopes near certain inputs) as “complex.” Next, we formally state our
main result: identifying a broad family of target functions for which implicit representations provide
such simple update operators while expressing complex fixed-point mappings.
Assumption 2.2. Let X ⊂ Rd and F : X → Rn be locally Lipschitz on X.
We do NOT assume the domain X to be bounded, compact, closed, or connected. For instance,
X = R\{0} excludes the singular point and permits F(x) = 1/x to blow up at the interior gap x = 0
while remaining locally Lipschitz on X. Another example is X =

⋃
k∈Z
(
kπ − π

2 , kπ + π
2

)
, where

F(x) = tanx remains locally Lipschitz despite blowing up at the singularity points {kπ+ π
2 }k∈Z.

We now formalize what we mean by “simple” update rules—namely, regular implicit operators.
Definition 2.3 (Regular implicit operator). Let X ⊂ Rd be bounded. An operator G : Rn×X → Rn

is regular if: (i) For any y ∈ Rn, the map x 7→ G(y,x) is globally Lipschitz (w.r.t. x) on X, and
the Lipschitz constant grows linearly w.r.t. ∥y∥, and (ii) For each x ∈ X, there exists µ(x) ∈ (0, 1),
the map y 7→ G(y,x) is µ(x)-contractive on Rn, and µ(x) is continuous w.r.t. x.
A regular G satisfies: (i) Fixing y, G(y, ·) is globally Lipschitz in x, this makes it a “simple” operator,
and (ii) Fixing x, G(·,x) is contractive in y; by Banach’s theorem, this yields a unique fixed point
y∗(x) and guarantees that iterates of (1) converge to it: yt(x) → y∗(x). An example of regular G
is the aforementioned G(y, x) = y − η(xy − 1) on x ∈ (0, 1] with 0 < η < 1. Moreover, regularity
does not require joint Lipschitz properties. With this definition, we present our main results.
Theorem 2.4 (Sufficiency). Under Assumption 2.2, for any F there exists a regular implicit operator
G : Rn × X → Rn whose fixed-point map reproduces F: Fix

(
G(·,x)

)
= F(x) for all x ∈ X.

Theorem 2.5 (Necessity). Let X ⊂ Rd and let G : Rn × X → Rn be regular. For every x ∈ X,
G(·,x) has a unique fixed point y∗, and the fixed-point map x 7→ y∗(x) is locally Lipschitz on X.
Proofs are deferred to Appendix A. Theorem 2.4 provides an affirmative answer to (Q1) and (Q2)
posed in the introduction. It proves that for any locally Lipschitz target F on a bounded domain,
there exists a regular implicit operator G, whose iterations converge to the target yt(x) → F(x)
for all x. This demonstrates that the expressive power of implicit models not only matches that
of explicit models but also provides a distinct expressive benefit: a relatively simple (regular)
implicit representation can yield a complex fixed-point mapping. Complementarily, Theorem 2.5
shows the boundary is tight: fixed points induced by any regular G are necessarily locally Lipschitz.
Together, the two results give an exact expressivity characterization for regular implicit models.

What does our theory imply? Take a locally Lipschitz target F (e.g., the curve in Fig. 1). Our re-
sults guarantee the existence of a regular implicit operator G such that the iteration yt = G(yt−1,x)
with y0 = 0 converges: yt(x) → F(x). Consider the first iterate and its Lipschitz property:

y1(x) = G(0,x) =⇒ Lip(y1) = sup
x,x′

∥G(0,x)− G(0,x′)∥
∥x− x′∥

= Lip(G(0, ·)).

Because a regular operator G is globally Lipschitz by definition, y1(·) is restricted to representing
“simple,” globally smooth mappings. However, as iterations progress, yt converges toward F . If the
target F features singularities (regions where local slopes become large or unbounded), the effective
Lipschitz constant of the iterate yt(·) naturally grows with t to match that complexity:

lim
t→∞

∥yt(x)− yt(x
′)∥

∥x− x′∥
=

∥F(x)−F(x′)∥
∥x− x′∥

.

This dynamic highlights a fundamental distinction: While explicit networks scale their model size to
approximate locally Lipschitz targets (Beneventano et al., 2021), implicit models can scale expres-
sivity with test-time compute. Since our theory guarantees a regular operator can define a complex
equilibrium, iterating this single operator realizes this complexity without adding parameters.
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Figure 1: (Conceptual diagram) A simple implicit update expresses a complex map via iteration.

Generalization. Someone may ask: does a large Lipschitz constant of the fixed-point map y∗(x)
imply sensitivity or poor generalization (cf. Pabbaraju et al. (2021))? Our view is that this sensitivity
is inherent to the target F , not to the implicit representation—any faithful model, explicit or implicit,
must track F ’s sharp variations. Our case studies in Section 3 confirm this: the target F in many
tasks is indeed steep somewhere and the effective Lipschitz grows as accuracy improves. Crucially,
the implicit formulation can realize such targets with a simple operator G, which regularizes training
and supports good generalization in practice.
Insights for practitioners. A substantial line of work (e.g., El Ghaoui et al. (2021); Winston &
Kolter (2020); Jafarpour et al. (2021); Revay et al. (2020); Havens et al. (2023)) enforces a global
Lipschitz bound on the fixed-point map y∗(x). Typically, the model is parameterized as G(y,x) =
σ(Ay+Bx+b), and by imposing specific algebraic structure on A and B, one ensures that y∗(x)
is globally Lipschitz in x. While this indeed improves robustness, our theory shows it constrains
expressivity and undercuts the unique advantage of implicit models. Our recommendation is
different: rather than imposing uniform Lipschitz constraints, incorporate case-by-case domain-
specific knowledge, priors, or constraints (as illustrated in our case studies Sec. 3). This method
provides effective regularization, leading to robustness and strong test performance while unlocking
the full power of implicit models—representing complex maps with relatively simple operators.

3 CASE STUDIES

In this section, we present four case studies. For the first three tasks, we (i) verify that the target
satisfies Assumption 2.2; (ii) specify a domain-informed architecture for G; (iii) confirm empirically
that, under standard training without explicitly enforcing G to be regular, the learned operators G
exhibit these properties—i.e., G is Lipschitz in x and iterates yt converge (see Appendix F for train-
ing strategies and discussions regarding regularity guarantees); and (iv) demonstrate that expressive
power scales with test-time iterations. Finally, we extend this analysis to LLM reasoning to validate
our predictions in a domain where strict mathematical definitions are less applicable.

3.1 CASE STUDY 1: IMAGE RECONSTRUCTION (INVERSE PROBLEMS)
Inverse problems in imaging seek to recover an image y∗ ∈ Rn from partial, noisy measurements
x = Ay∗ + n ∈ Rd (d < n), where A is a known linear operator and n is noise. A common prior
is that y∗ lies near a smooth data manifold M ⊂ Rn. To recover y∗, a standard estimator solves

min
y∈Rn

1

2
∥x−Ay∥2 +

α

2
dist2(y,M), (3)

or, equivalently, a variable–splitting surrogate

min
y,z∈Rn

1

2
∥x−Ay∥2 +

α

2
dist2(z,M) +

β

2
∥y − z∥2. (4)

Next we will show that, under mild assumptions, both (3) and (4) admit a unique minimizer for each
x in a bounded set, and the solution map x 7→ ŷ(x) is locally Lipschitz. Hence the reconstruction
target falls within Assumption 2.2 and is covered by our expressivity results in Section 2.
Assumption 3.1. Let M ⊂ Rn be a compact, C2, embedded (possibly nonconvex) submanifold
with positive reach τ > 0. Assume the forward operator A : Rn→Rd is (µ,L)–bi-Lipschitz when
restricted to M and let σmax denote the maximal singular value of A.
These assumptions are modest: they are standard in prior work and supported by existing theory.
Formal definitions (reach and bi-Lipschitz continuity) and relevant literature appear in Appendix C.
Definition 3.2. Define the admissible set of observations x for (3) and (4):

X :=

{
x : x = Ay∗ + n, for some y∗ ∈ M, ∥n∥ < 1

80

µ5

σ2
maxL

2
τ.

}
Theorem 3.3. Under Assumption 3.1, there exists α > 0 for all x ∈ X such that the minimization
problem (3) yields a unique minimizer ŷ. Let F1a: x 7→ ŷ denote the associated solution map from
input x to the recovery ŷ. Then F1a is locally Lipschitz continuous on X.
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Theorem 3.4. Under Assumption 3.1, there exist α, β > 0 for all x ∈ X such that the minimization
problem (4) yields a unique minimizer (ŷ, ẑ). Let F1b: x 7→ ŷ denote the associated solution map
from input x to the recovery ŷ. Then F1b is locally Lipschitz continuous on X.
Corollary 3.5. There must be a regular implicit operator G(y,x) such that Fix(G(·,x)) = F1a(x)
for all x ∈ X. The same conclusion holds for F1b(x).

Proofs of the theorems are deferred to Appendix C, and Corollary 3.5 follows immediately from
Theorems 2.4, 3.3, and 3.4. This corollary guarantees the existence of regular implicit models G for
image reconstruction. Next, we present how to implement G in this context.

Problem-specific G. We adopt algorithm-inspired designs that mirror classical solvers for (3) and
(4). Parameterizing these iterative solvers gives problem-tailored implicit models. In particular,

• Option I (PGD-style). To solve (3), if M were known, one would use proximal gradient descent
(PGD): yt+1 = proxσ(yt − γA⊤(Ayt − x)), with parameters σ, γ > 0, where proxσ is the
proximal map of (σ/2)dist2(y,M) (see Appendix C.1). In practice, we replace proxσ by a
learnable neural network denoiser Hθ,σ (parameters θ and noise level input σ) and obtain

GΘ(y,x) = Hθ,σ

(
y − γA⊤(Ay − x)

)
, Θ = {θ, σ, γ}. (5)

• Option II (HQS-style). For (4), a standard solver is half–quadratic splitting (HQS, see Ap-
pendix C.2). Similar to Option I, we replace the proximal map by a learned module and obtain

GΘ(y,x) = Hθ,σ

( (
A⊤A+ βI

)−1(
A⊤x+ β y

))
, Θ = {θ, σ, β}. (6)

Here we follow the long-standing “plug-in denoiser” idea from Plug-and-Play (PnP) methods
(Venkatakrishnan et al., 2013), which replaces a proximal operator with an off-the-shelf denoiser
inside an iterative solver (see brief bibliography in Appendix C.2). Unlike PnP, one can also train
the entire GΘ as an implicit model, in both PGD-style (Gilton et al., 2021; Winston & Kolter, 2020;
Zou et al., 2023; Yu & Dansereau, 2024; Daniele et al., 2025; Shenoy et al., 2025) and HQS-style
(Gkillas et al., 2023) formulations. We adopt the latter.

Questions. Given the parameterizations in (5) and (6), we examine: (i) are these GΘ operators
Lipschitz with respect to x; and (ii) do they, as our theory predicts, realize progressively more
complex input–output mappings over iterations despite having simple per-iteration operators?

Experiment settings. We study image deblurring, x = A(y∗) + n, where A is a motion-blur
operator and n is additive Gaussian noise. Using BSDS500 (Martin et al., 2001), we construct 200
training, 100 validation, and 200 test pairs (x,y∗), yielding datasets Dinv,train, Dinv,val, and Dinv,test.
Implementation details (data preprocessing, model choices, and training) are in Appendix G.

For evaluation, we analyze 100 iterations of the learned dynamics, yt+1(x) = GΘ(yt(x),x), 0 ≤
t ≤ 99 and y0 = 0, on the test set Dinv,test = {(xi,y

∗
i )}200i=1. For each i, we create 5 perturbed

ground truths y∗
i,j , 1 ≤ j ≤ 5, and for each y∗

i,j , we apply A, add noise, and then obtain xi,j . The
perturbed pairs {(xi,j ,y

∗
i,j)}i,j form the perturbed dataset D′

inv,test. Details appear in Appendix G.
We track two metrics, including an empirical Lipschitz estimate and reconstruction quality in PSNR
(i.e., Peak Signal-to-Noise Ratio, higher PSNR means more accurate reconstruction, see appendix):

Lt := max
1≤i≤200

max
1≤j≤5

∥yt(xi)− yt(xi,j)∥
∥xi − xi,j∥

, and Pt(i, j) := PSNR(yt(xi,j),y
∗
i,j),

for 1 ≤ i ≤ 200, 0 ≤ j ≤ 5, where j = 0 means the original (unperturbed) sample, xi,0 :=
xi,y

∗
i,0 := y∗

i . Here, Lt estimates how complex the t-th iterate map yt(·) is, while Pt measures the
reconstruction quality on both the original dataset Dinv,test and the perturbed set D′

inv,test.

Experiment results. (i) Results in Figure 2 support our theory. Figure 2a plots Lt versus t, while
Figure 2b reports the mean ± std of {Pt(i, j)}i,j versus t. At t = 1, the mapping y1(x) = GΘ(0,x)
reflects a single application of GΘ and exhibits low Lipschitz constant: L1 = 0.140 for PGD and
L1 = 0.436 for HQS. As t increases, yt approaches the fixed point and Lt grows substantially,
saturating around ≈ 5.0 for both models (Figure 2a). Meanwhile, the PSNR rises and stabilizes,
indicating that yt(x) converges toward the ground truth (Figure 2b). Thus, the increase in Lt does
not reflect divergence or instability; rather, it captures the greater complexity of the underlying
target mapping x 7→ y∗, which is progressively expressed through iteration. (ii) We also provide a
comparison (both visually and quantitatively) to an explicit model in Figure 3. This baseline uses
the identical DRUnet and is trained on the deblurring dataset with an end-to-end MSE loss. A visual
inspection reveals that implicit models, particularly implicit HQS (6), produce sharper images with

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Iteration t

0
1
2
3
4
5
6

Lip
sc

hi
tz

 L
t

Implicit (PGD)
Implicit (HQS)

(a) Empirical Lipschitz Lt of yt(·) vs. iteration. Lt

starts small at t=1 and grows to a plateau (∼5),
indicating increasing expressivity of yt(·).
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(b) Reconstruction quality Pt (mean ± std over the
original and perturbed test samples) increases and

stabilizes: yt(x) converges toward the truth.

Figure 2: Validation on image deblurring. Iterating a simple operator GΘ produces a complex fixed-
point mapping: Lipschitz (a) grows, while accuracy (b) improves and stabilizes.

Ground Truth
-
-

Observation
-
-

Explicit:28.49dB
26.97 ± 3.54 dB
Params: 32.64 M

Imp-PGD:30.03dB
28.20 ± 3.70 dB
Params: 32.64 M

Imp-HQS:31.53dB
29.18 ± 3.66 dB
Params: 32.64 M

Figure 3: Visual results for deblurring. The top PSNR values (28.49, 30.03, or 31.53 dB) correspond
to the single visualized image; the second line shows the average (± std) over all test samples.

better-recovered textures and fewer artifacts than the explicit baseline. This perceptual advantage is
corroborated by the quantitative metrics, where the DEQ-HQS model achieves a significant PSNR
gain of over 2dB on average across the entire test set. (iii) Additional experiments showing a small
implicit model outperforming larger explicit ones appear in Appendix G.

3.2 CASE STUDY 2: SCIENTIFIC COMPUTING

The Navier-Stokes (NS) equations are foundational to computational fluid dynamics. We focus on
the 2D steady-state incompressible case on a periodic domain Ω := [0, 2π]2:

(u · ∇)u+∇p = ν∆u+ f, ∇ · u = 0 on Ω (7)
where u : Ω → R2 is the velocity field, p : Ω → R is the pressure, ν > 0 is the viscosity,
f : Ω → R2 is the external force. Solving NS equations refers to determining u given f . Although
global existence/smoothness of the solution given general forcings is famously open, classical results
guarantee well-posedness under suitable conditions on f .
Theorem 3.6 (Temam (1995)). There exists a constant c > 0 depending only on Ω such that, if
∥f∥L2(Ω) ≤ c ν2, then (7) admits a unique solution u∗(f). Let H denote the space of admissible
forcings1, and set Bν := {f ∈ H : ∥f∥L2(Ω) ≤ cν2}. Then there exists a subset Hν ⊂ Bν that is
dense in Bν , on which the solution map f 7→ u∗(f) is locally Lipschitz.
Vorticity form. Let ω := ∇×u (and hence ω∗ := ∇×u∗). Under periodic boundary and zero-mean
conditions, one can recover the velocity u from vorticity ω by solving a Poisson equation (Majda
et al., 2002). We hence focus on the solution map in vorticity: f 7→ ω∗.

While Theorem 3.6 gives a local Lipschitz result in function spaces, our expressivity results (Section
2) are stated for finite-dimensional spaces. To bridge this gap, we discretize the NS equations.

Discretization. Partition Ω into Nh cells Ωh := {Ci}Nh
i=1 and define the cell–average restriction

Rh(f)|C := 1
|C|
∫
C
f(ξ)dξ (similarly for ω). We work with the discrete forcings and vorticities:

x := Rh(f) ∈ RNh×2, y := Rh(ω) ∈ RNh

and aim to learn x 7→ y∗ where y∗ := Rh(ω∗) is the discrete solution in vorticity form. Back to
the continuum setting, let the lifting operator Eh be the piecewise–constant reconstruction Eh(x) :=∑

C∈Ωh
xC1C , and let P be the orthogonal projection onto divergence–free, zero–mean fields.

1Details regarding the function spaces are provided in Appendix D.
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(a) Empirical Lipschitz Lt of the t-step map yt(·)
vs. iteration. Lt starts small at t=1 (23.1) and grows

substantially, reaching ∼ 367 by t=50.
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(b) Relative error Et (mean ± std over original and
perturbed inputs) vs. iteration. Et decreases to
0.078± 0.028—yt converges towards y∗.

Figure 4: Validation on the steady Navier–Stokes task. Iterating a simple operator GΘ yields a
complex fixed-point mapping: Lipschitz constant (a) increases, while error (b) decreases.

Ground Truth y∗
-

Prediction by
FNO

Error: 0.260
0.179 ± 0.050

Prediction by
implicit FNO

Error: 0.112
0.078 ± 0.028

Figure 5: Visual results for NS equations. The top value (0.260 and 0.112) means the relative error
(between the prediction and the ground truth) on the single visualized sample; the second line shows
the average relative error (± std) over all test samples. Both models have 2.376 M parameters.

Corollary 3.7. F2 : x 7→ y∗ is locally Lipschitz on Xν,h := {x ∈ RNh×2 : P(Eh(x)) ∈ Hν} and
there exists a regular implicit operator G(y,x) satisfying Fix(G(·,x)) = F2(x) on Xν,h.

The corollary instantiates our expressivity theory for steady-state NS, guaranteeing the existence of
a regular implicit model G. As in the image–reconstruction case, we now (i) choose a problem-
specific parameterization of G and (ii) verify our theory numerically on this architecture.
Problem-tailored parameterization. We use Marwah et al. (2023) as our code base. In particular,

z∗ = GΘ

(
z∗, QΦ(x)

)
, y∗ = QΨ(z∗).

The core GΘ is implemented as a Fourier Neural Operator (FNO) (Li et al., 2021), and both the
encoder QΦ and decoder QΨ use pointwise MLPs2. Details appear in Appendix H.

Experiments. We use the dataset of Marwah et al. (2023) with viscosity ν = 0.01, which provides
4500 training pairs and 500 test pairs (x,y∗), where x is the discretized force and y∗ is the corre-
sponding vorticity; we denote these sets by Dpde,train and Dpde,test. Details are given in Appendix H.

We test iteration-wise behavior for 50 steps starting from z0 = 0: zt+1 = GΘ

(
zt,QΦ(x)

)
for

0 ≤ t ≤ 49, and yt(x) = QΨ(zt). Analogous to the inverse-problem study, we augment the test set
with perturbations. For each (xi,y

∗
i ) ∈ Dpde,test, we construct 15 perturbed vorticities {y∗

i,j}15j=1;
we then compute compatible forces {xi,j}15j=1 by evaluating the NS operator (see Appendix H for
details). The perturbed test set is D′

pde,test = {(xi,j ,y
∗
i,j) : 1 ≤ i ≤ 500, 1 ≤ j ≤ 15}. Across

iterations we report an empirical Lipschitz estimate Lt and relative reconstruction error Et:

Lt := max
1≤i≤500

max
1≤j≤15

∥yt(xi)− yt(xi,j)∥
∥xi − xi,j∥

, and Et(i, j) :=
∥yt(xi,j)− y∗

i,j∥
∥y∗

i,j∥+ ϵ
,

for 1 ≤ i ≤ 500, 0 ≤ j ≤ 15, where j = 0 means the original (unperturbed) sample, xi,0 :=
xi,y

∗
i,0 := y∗

i . Therefore, Et evaluates accuracy on both Dpde,test and D′
pde,test.

The results in Figure 4 align with our theory. At t = 1, the mapping y1(x) reflects a single applica-
tion of GΘ and exhibits low Lipschitz constant: L1 = 23.1. As iterations proceed toward the fixed
point, the complexity grows markedly: Lt increases to ≈ 367 by t = 50 (Figure 4a). Meanwhile,

2Introducing additional encoder and decoder is common in practice. Compared to the vanilla formulation
y∗ = G(y∗,x), it does not change our expressivity results in Section 2. Details appear in Appendix B.
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min c1 y1 + c2 y2 + c3 y3

s.t. l1 ≤ y1 ≤ u1, l2 ≤ y2 ≤ u2, l3 ≤ y3 ≤ u3

A11 y1 + A12 y2 = b1

A22 y2 + A23 y3 ≤ b2

b1 =

node W1

b2 ≤
node W2

c1 l1 u1

node V1

c2 l2 u2

node V2

c3 l3 u3
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⇒

z
(t)
1

z
(t)
2

z
(t)
3

zt
static parts

A linear program Graph representation Implicit GNN iteratively called

Figure 6: The graph representation of LP and implicit GNN applied on this graph

the relative error Et decreases monotonically and stabilizes at 0.078± 0.028 (Figure 4b), indicating
convergence to a good approximation of y∗. Thus, the learned operator GΘ is simple (Lipschitz
in x), while additional test-time iterations let yt realize progressively more complex mappings. In
addition, a comparison with an explicit baseline (vanilla FNO) in Figure 5 shows the implicit model
produces more accurate solutions, both visually and quantitatively. Additional experiments showing
a small implicit model outperforming larger explicit ones appear in Appendix H.

3.3 CASE STUDY 3: OPERATIONS RESEARCH

Linear program (LP) is foundamental to operations research, of which a general form is given by
min
y∈Rn

c⊤y, s.t. Ay ◦ b, l ≤ y ≤ u. (8)

Here, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, l ∈ Rn,u ∈ Rn, and ◦ ∈ {=,≤}m denotes componentwise
relations, i.e., each ◦i ∈ {=,≤} specifies whether (Ay)i equals or is bounded above by bi. Let
x := (A, b, c, ◦, l,u) as the input that discribes the LP in (8). To define the solution mapping F3

that maps x to the solution of LP, we require feasibility and boundedness (which ensure an optimal
solution (Bertsimas & Tsitsiklis, 1997)). Accordingly, let

X := {(A, b, c, ◦, l,u) : The resulting LP is feasible and bounded}
Within X, there are some LPs where the solution mapping is not single-valued or not continuous. By
excluding these LPs, it forms a subset Xsub ⊂ X on which F3 is single-valued and locally Lipschitz.
The strict definition of Xsub and the proof of Theorem 3.8 are provided in Appendix E.
Theorem 3.8. There is a subset Xsub ⊂ X that is dense in X, on which each LP admits a unique
solution y∗, and the solution map F3 : x 7→ y∗ is locally Lipschitz continuous on Xsub.

Corollary 3.9. There exists a regular implicit model G(y,x) with Fix(G(·,x)) = F3(x) on Xsub.

Corollary 3.9 follows immediately from Theorems 2.4 and 3.8. It indicates the existence of implicit
models with desired properties that solves LP. As in the previous case studies, we now (i) choose a
problem-specific parameterization of G and (ii) verify the theory numerically on this architecture.
Implicit GNN parameterization. We model the implicit operator G for LP with a graph neural
network (GNN). First, express an LP instance x = (A, b, c, ◦, l,u) as a bipartite graph (Figure 6).
We create n variable nodes {Vj}nj=1 and m constraint nodes {Wi}mi=1. Node features collect the
data of the LP: each Vj stores (cj , lj , uj); each Wi stores (bi, ◦i). We connect Wi to Vj if Aij ̸= 0,
and place Aij on that edge as its feature. Given this representation, an (explicit) GNN can map the
LP to a solution, i.e., y∗ = GNN(x) where x denotes the graph-encoded LP. This approach was
proposed in Gasse et al. (2019), and Chen et al. (2023) subsequently showed that (explicit) GNNs
offer a universal framework for representing LPs. Built on this, we propose an implicit GNN:

z∗ = GΘ(z∗,QΦ(x)), y∗ = QΨ(z∗) (9)
where GΘ is the core GNN, QΦ encodes instance-specific (static) features from x, and QΨ decodes
per-variable states to the solution. Both QΦ and QΨ are small MLPs shared across all nodes. At
inference, we repeatedly call GΘ with initialization z0 = 0: zt = GΘ(zt−1,QΦ(x)) for t =
1, 2, · · · , T , and finally output yt = QΨ(zt). Relative to prior work, our only modification is to
attach to each variable node an additional dynamic state z(t)j ∈ R. Details appear in Appendix I.
There is a rapidly growing literature on implicit GNNs with diverse applications and theories (Gu
et al., 2020; Park et al., 2022; Chen et al., 2022a;b; Baker et al., 2023; Lin et al., 2024; Nastorg et al.,
2024; Zhong et al., 2024; Yang et al., 2025). Our LP case study is complementary to this line of
work: rather than adopting a particular implicit-GNN architecture, we start from a standard explicit
GNN for LP and convert it into a fixed-point formulation tailored to linear programs.
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(a) Empirical Lipschitz Lt of the t-step map yt(·)
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substantially by t=8 for all perturbation modes.
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Figure 7: Numerical validation on the linear-program task.

Table 1: Comparison between explicit GNNs and implicit GNNs on the LP task.

Exp-GNNs

Emb. size 4 8 16 32
# Params. 580 2,088 7,888 30,624
Err (Train) 0.387 ± 0.103 0.233 ± 0.084 0.183 ± 0.070 0.112 ± 0.049
Err (Test) 0.397 ± 0.107 0.273 ± 0.104 0.283 ± 0.111 0.318 ± 0.122

Imp-GNNs

Emb. size 4 8 16 32
# Params. 722 2,350 8,390 31,606
Err (Train) 0.203 ± 0.107 0.162 ± 0.094 0.131 ± 0.080 0.118 ± 0.073
Err (Test) 0.218 ± 0.117 0.177 ± 0.105 0.152 ± 0.098 0.156 ± 0.109

Experiments. We sample LP instances x = (A, b, c, ◦, l,u), solve it to obtain an optimal solution
y∗, and form 2,500 training pairs and 1,000 test pairs like (x,y∗), denoted DLP,train and DLP,test. We
also create five perturbed test sets {D(j)

LP,test}5j=1 by altering exactly one block among (A, b, c, l, or
u). For each (xi,y

∗
i ) ∈ DLP,test and each perturbation type j, we form a perturbed instance xi,j ,

solve it to obtain y∗
i,j , and collect D(j)

LP,test = {(xi,j ,y
∗
i,j)}1000i=1 . Details in Appendix I. We report:

Lt(j) := max
1≤i≤1000

∥yt(xi)− yt(xi,j)∥
∥xi − xi,j∥

, and Et(i, j) :=
∥yt(xi,j)− y∗

i,j∥
∥y∗

i,j∥+ ϵ
,

for 1 ≤ i ≤ 1000, 0 ≤ j ≤ 5, where j = 0 denotes the unperturbed pair (xi,0,y
∗
i,0) := (xi,y

∗
i ).

Results support our theory. (i) Figure 7a plots the five curves Lt(j) (one for each perturbation type).
At t = 1, a single application of (9) yields relatively small empirical Lipschitz constants for all per-
turbation modes. As iterations proceed toward the fixed point, Lipschitz constants grow markedly.
(ii) Figure 7b reports the mean±std of Et(i, j): Et decreases and stabilizes at 0.146, indicating that
the growth of Lt reflects the higher intrinsic complexity of the solution mapping y∗(x) rather than
divergence or instability. (iii) Table 1 contrasts implicit and explicit GNNs. At matched embedding
sizes, implicit GNNs match or beat explicit ones—most clearly at small/mid sizes (4/8/16). In addi-
tion, a smaller implicit model can outperform a larger explicit model on training error. For example,
implicit–4 vs. explicit–8 (0.203 vs. 0.233) and implicit–8 vs. explicit–16 (0.162 vs. 0.183). This
supports our theory that iterating a simple implicit operator can yield strong expressivity.

Discussion on generalization. While generalization is not our main focus, a trend in Table 1 is
informative: explicit GNNs improve as width increases from 4 to 8 but then overfit (test error signif-
icantly rises at 16/32), whereas implicit GNNs improve from 4 to 8 to 16 and only tick up slightly at
32. We attribute this to: (i) LP constraints Ay ◦ b in (8) are specified implicitly rather than as an ex-
plicit set; implicit models align naturally with such a structure, and (ii) while fixed-point maps y∗(x)
can be sensitive to inputs x, the implicit formulation allows us realize them via a simpler, smaller
operator G, which “implicitly” regularizes training and support good generalization in practice.

3.4 CASE STUDY 4: LLM REASONING

While previous case studies focused on domains with strict mathematical definitions (inverse prob-
lems, PDEs, LPs), we now investigate if our theory extends to broader applications where metrics
like “smoothness” and “Lipschitz continuity” are less formally defined. We examine the looped
transformer for LLM reasoning, utilizing the pre-trained model from Geiping et al. (2025). Unlike
standard feed-forward transformers, this architecture recycles a shared block GΘ to iteratively update
a latent “thought” vector z: zt = GΘ(zt−1,QΦ(x)), yt = QΨ(zt) where QΦ encodes the input x,
and QΨ decodes the latent state into the output sequence yt obtained after t recurrent blocks.

9
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Table 2: Evolution of model outputs for the inputs “charge and voltage” vs. “charge and pay”,
showing how the semantic difference emerges over iterations.

Input/Output 1 Input/Output 2 Comments

x: explain the difference between charge and
voltage.

x′: explain the difference between charge and
pay.

Prompts differ in a single
word, but the context shifts
from Physics to Finance.

y2(x): explain the difference between charge
and voltage.

y2(x
′): explain the difference between charge

and pay.
Both outputs merely echo in-
puts.

y4(x): explain the difference between charge
and voltage. explain the difference between cur-
rent and voltage.

y4(x
′): explain the difference between charge

and pay. explain the difference between the two.
Outputs repeat the inputs with
slight variations; contexts are
not yet separated.

y6(x): The difference between voltage and
charge is that voltage is the difference between
the potential difference between two points,
while charge is the difference between the elec-
tric field between two points.

y6(x
′): explain the difference between charge

and pay. Explain the difference between charge
and pay.

Separation begins: Output 1
moves into a Physics expla-
nation (potential difference),
while Output 2 still stays near
the prompt.

y8(x): The difference between charge and volt-
age is that voltage is the difference in electric
potential between two points in an electric field,
while charge is the amount of electric charge in
a system.

y8(x
′): Charge is the amount of money that a

person owes to a company or organization. Pay
is the amount of money that a person receives
from a company or organization.

Full separation: Output 1
gives a Physics definition;
Output 2 correctly adopts
the Financial interpretation
(money owed vs. received).

y32(x): Charge is the amount of electric charge
present in a body. Voltage is the difference in
electric potential between two points.

y32(x
′): Charge is the amount of money that

a person or company owes to a credit card com-
pany. Pay is the amount of money that a person
or company has paid to the credit card company.

Refinement: both domains
have stable, concise, and ac-
curate definitions specialized
to Physics versus Finance.

Strictly extending our Lipschitz theory to the discrete space of language tokens is challenging, as
standard norms do not apply. However, we can empirically test the core prediction of our theory: can
the model express increasingly complex mappings as iterations increase? In this context, complexity
implies: subtle differences in the input correspond to substantial shifts in context. A capable model
must effectively distinguish these semantic nuances and produce vastly different responses.

Qualitative Results. Table 2 visualizes the evolution of reasoning on a typical example. At early
iterations (t = 2, 4), the model fails to differentiate context (Physics vs. Finance), producing rep-
etitions or shallow associations. Conversely, with more iterations (t = 6, 8 or more), the model
utilizes increased test-time compute to resolve this ambiguity, correctly defining “charge” as electric
potential versus financial debt. This confirms the implicit operator’s ability to progressively realize
complex, context-sensitive mappings.
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Figure 8: Empirical Lipschitz of the output se-
quence yt(·) generated by Geiping et al. (2025)
using t recurrent blocks. Lt grows as t increases.

Quantitative Results. To quantitatively mea-
sure this, we define an “Empirical Lipschitz”
constant Lt using Levenshtein distance d(·, ·):

Lt(i) :=
d(yt(xi),yt(x

′
i))

d(xi,x′
i)

We construct {(xi,x
′
i)}200i=1, a dataset of 200

pairs where inputs differ by only 1–2 words but
require vastly different semantic contexts3. Fig-
ure 8 plots the geometric mean of Lt, which
rises from ≈ 29.2 at t = 2 (indicating relative
insensitivity) to saturate at ≈ 52.5 by t = 16. Consistent with our theory, this growth reflects the
model’s emergent capacity to map proximal inputs to semantically distinct outputs. Even in the dis-
crete domain of language reasoning, iterating a fixed operator allows the model to scale its expressive
power, evolving from simple surface-level processing to complex, context-aware reasoning.

4 CONCLUSIONS AND FUTURE DIRECTIONS

We have provided a strict characterization of the representational capacity of regular implicit mod-
els. Our analysis reveals that iterating a simple operator allows the model to progressively realize
increasingly complex mappings, ultimately covering the entire class of locally Lipschitz functions.
This theory is validated through four diverse case studies, showing that the empirical Lipschitz con-
stant rises alongside solution quality. A key direction for future work is to quantify the precise rate
of this Lipschitz growth to inform optimal test-time iteration heuristics.

3Available at: https://anonymous.4open.science/r/semantic_contrast_pairs-4F4F/semantic_contrast_pairs_200.csv
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A PROOFS OF MAIN RESULTS

The core intuition behind our proofs is an extension of the 1/x example discussed in the introduction.

For Theorem 2.4 (Sufficiency), we construct the implicit operator G as a dynamic interpolation:
G(y,x) = (1− ε(x))y+ ε(x)F(x), which iteratively pulls the state y toward the target F(x) with
a step size ε(x). The key theoretical innovation is making this step size adaptive: we construct ε(x)
to be inversely proportional to the local steepness (Lipschitz constant) of the target y∗(x). In regions
where the target function becomes extremely steep or singular (like x→ 0 for 1/x), our constructed
ε(x) naturally vanishes. This effectively “slows down” the dynamics, ensuring the operator G itself
remains globally smooth and contractive.

Theorem 2.5 (Necessity) establishes the converse: we show that for any regular operator, the local
steepness of the fixed point is mathematically bounded by the operator’s parameters (y-contraction
modulus µ(x)); and the fixed point map y∗(x) can only become singular if the convergence rate
slows down (contraction modulus → 1), perfectly matching the mechanism used in our sufficiency
construction.

A.1 PROOF OF SUFFICIENCY

Proof of Theorem 2.4. Given any F satisfying Assumption 2.2, the existence of G is proved by the
following construction:

G(y,x) = F(x) + (1− ε(x))(y −F(x)). (10)

The proof will be done by choosing a function ε : X → R such that

• Functions ε(x) and ε(x)F(x) are both globally Lipschitz continuous on X.

• 0 < ε(x) < 1 for any x ∈ X.

The existence of such a ε function is deferred to Theorem A.4. Now let’s suppose such a ε(x) is
given and finish the whole proof. First let’s check the contractivity of G in (10) as x fixed. For any
y, ŷ ∈ Rn, it holds that

G(y,x)− G(ŷ,x) = (1− ε(x))(y −F(x))− (1− ε(x))(ŷ −F(x)) = (1− ε(x))(y − ŷ).

Since 0 < ε(x) < 1 for x ∈ X, we conclude that G(·,x) is a contractor for x ∈ X. In addition,
the continuity of the contractive factor (1 − ε(x)) is directly resulted from the continuity of ε(x).
Finally, we check the Lipschitz continuity as y fixed. For any x, x̂ ∈ X and any y ∈ Rn, it holds
that

G(y,x)− G(y, x̂)

=
(
G(y,x)− y

)
−
(
G(y, x̂)− y

)
=
(
F(x)− y + (1− ε(x))(y −F(x))

)
−
(
F(x̂)− y + (1− ε(x̂))(y −F(x̂))

)
=− ε(x)(y −F(x)) + ε(x̂)(y −F(x̂))

=
(
− ε(x) + ε(x̂)

)
y +

(
ε(x)F(x)− ε(x̂)F(x̂)

)
With a fixed y ∈ Rn, the Lipschitz continuity of G(y, ·) follows from the Lipschitz continuity of
ε(x) and ε(x)F(x). In particular, by denoting the Lipschitz constants of ε(x) and ε(x)F(x) as Lε

and LεF respectively, we have

∥G(y,x)− G(y, x̂)∥ ≤ Lε∥x− x̂∥ · ∥y∥+ LεF∥x− x̂∥ ≤
(
Lε∥y∥+ LεF

)
∥x− x̂∥

where the Lipschitz constant of G, L := Lε∥y∥+LεF , grows linearly w.r.t. ∥y∥, which finishes the
whole proof.

Below we provide the core theorems used in the proof of Theorem 2.4. We first consider X to be
bounded (Theorem A.1) and then extend the results to the unbounded domain (Theorem A.4).
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Theorem A.1. For any F satisfying Assumption 2.2 defined on a bounded domain X ⊂ Rd, there
exists a function ε : X → R such that 0 < ε(x) < 1 for x ∈ X, and ε(x) and ε(x)F(x) are both
globally Lipschitz continuous on X.

Proof. Let X be the closure of set X. In this proof, we will first extend F to X, construct the ε
function on X, and finally prove the global Lipschitz continuity of ε(x) and ε(x)F(x) on X.

Step 1: Extension to X. First we extend F to x̄ ∈ X\X by the limit relative to X:

F(x̄) =

{
lim

X∋x→x̄
F(x), if lim

X∋x→x̄
F(x) exists,

0, otherwise.
Note that even if F is continuously extendable to x̄, it is still possible that F is not locally Lipschitz
continuous at the point x̄. A simple example is the function

√
x, which is continuous as x ≥ 0 and

locally Lipschitz continuous for all points x > 0 but NOT locally Lipschitz at x = 0. We collect all
these points (where F is not locally Lipschitz) into the set D(F):

D(F) :=
{
x ∈ X : F is not locally Lipschitz continuous at x

}
For brevity, we will use D to denote D(F). It holds that D is a closed set (ref. to Lemma A.2) and
D ⊂ X\X.

Step 2: Constructing a function ε : X → R≥0.Now let’s define a set including all points that
are very “safe”, i.e., sufficiently far from the discontinuity set D. In particular, given a positive real
number r > 0, the set Dr is define by

Dr :=
{
x ∈ X : d(x,D) ≥ r

}
,

where d(x,D) means the distance of x and D, and the closedness of Dr can be derived from the
continuity of the distance function. Since Dr ⊂ X and X is compact, Dr must be compact. Note that
Dr and D are disjoint, hence F is locally Lipschitz continuous everywhere on Dr. Thanks to the fact
that local Lipschitz continuity on a compact set implies global Lipschitz continuity (ref to Lemma
A.3), we can conclude that F is bounded and globally Lipschitz continuous on Dr for all r > 0.
Therefore, the following two supremums exist, as long as the cardinality (number of elements) of
Dr is large enough:

h1(r) =

 sup
x1,x2∈Dr,x1 ̸=x2

∥F(x1)−F(x2)∥
∥x1 − x2∥

, card(Dr) ≥ 2,

0, otherwise.

h2(r) =

{
sup
x∈Dr

∥F(x)∥, card(Dr) ≥ 1,

0, otherwise.

Here, both h1 and h2 are non-negative and monotone non-increasing on (0,+∞). Then we define:

ĥ(r) =
1

h1(r) + h2(r) + 1
.

It has the following properties:

• Bounded: 0 < ĥ(r) ≤ 1 as r > 0.

• Monotone : ĥ(r1) ≤ ĥ(r2) as 0 < r1 ≤ r2. (Due to the monotonicity of h1 and h2)

• Naturally extended to r = 0: limr→0+ ĥ(r) exists. (Due to the monotonicity of ĥ)

• ĥ(r)hi(r) < 1 for r ≥ 0 and i = 1, 2.

These properties implies that ĥ is Riemann integrable on [0,+∞). Then we can define the following
function:

ε̂(r) :=

∫ r

0

ĥ(s)ds

with the following properties:
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• ε̂(0) = 0.

• Monotone increasing. This is a straightforward result of the fact that ĥ(s) > 0 for s > 0.

• Strictly positive as r > 0. This is also straightforward as ĥ(s) > 0 for s > 0.

• 1-Lipschitz continuous on [0,+∞). For any r1, r2 with 0 ≤ r1 ≤ r2 < +∞, we have

|ε̂(r1)− ε̂(r2)| = ε̂(r2)− ε̂(r1) =

∫ r2

r1

ĥ(s)ds ≤
(
sup
r≥0

ĥ(r)

)
|r1 − r2| = |r1 − r2|.

With such a ε̂(r), we can define ε(x) by

ε(x) =
ε̂
(
d(x,D)

)
1 + ε̂

(
d(x,D)

) .
It holds that ε(x) = 0 for x ∈ D and 0 < ε(x) < 1 for x ∈ X\D. As D ⊂ X\X, we have
0 < ε(x) < 1 for x ∈ X.

Step 3: Establishing the Lipscthiz continuity. Since the distance function d(x,D) is 1-Lipschitz
continuous (Federer, 1959, Theorem 4.8 (1)), the Lipschitz continuity of ε̂ implies the Lipschitz
continuity of ε. In particular, for all x1,x2 ∈ X, it holds that∣∣∣ε(x1)− ε(x2)

∣∣∣
=

∣∣∣∣∣∣
ε̂
(
d(x1,D)

)
1 + ε̂

(
d(x1,D)

) −
ε̂
(
d(x2,D)

)
1 + ε̂

(
d(x2,D)

)
∣∣∣∣∣∣
(

x

1 + x
is 1-Lipschitz as

(
x

1 + x

)′

=
1

(1 + x)2

)

≤
∣∣∣ε̂(d(x1,D)

)
− ε̂
(
d(x2,D)

)∣∣∣ (Lipschitz continuity of ε̂)

≤
∣∣∣d(x1,D)− d(x2,D)

∣∣∣ ≤ ∥x1 − x2∥ (Lipschitz continuity of d)

Therefore, to complete the whole proof, it’s enough to show the global Lipschitz continuity of εF
on X. As X is compact, and thanks to Lemma A.3, it’s enough to show εF is locally Lipschitz
everywhere on X.

First, we consider the local Lipschitz continuity of εF on X\D. Due to Lemma A.2, X\D must
be open relative to X. For any x ∈ X\D, there must be a small enough r > 0 such that U :=
B(x, r) ∩ X ⊂ X\D. Pick x1,x2 ∈ U. For any x1,x2, it holds that

∥ε(x1)F(x1)− ε(x2)F(x2)∥
=∥ε(x1)F(x1)− ε(x1)F(x2) + ε(x1)F(x2)− ε(x2)F(x2)∥
≤ε(x1)

∥∥F(x1)−F(x2)
∥∥+ |ε(x1)− ε(x2)| ·

∥∥F(x2)
∥∥. (11)

Since both ε and F are locally Lipschitz and locally bounded everywhere on X\D, they must be
Lipschitz and bounded within U. Then the local Lipschitz continuity of εF at x immediately follows
from (11). Note that x is arbitrarily picked from X\D, hence εF is locally Lipschitz everywhere on
X\D.

Next, we consider the local Lipschitz continuity of εF on D. For any x ∈ D, we consider its
neighborhood U := B(x, 1) ∩ X and pick x1,x2 ∈ U. Then we need to consider three cases. The
first case is both x1,x2 belong to the discontinuity set D: x1,x2 ∈ D. In this case, it holds that
ε(x1) = ε(x2) = 0 and hence∥∥∥ε(x1)F(x1)− ε(x2)F(x2)

∥∥∥ = 0 ≤ ∥x1 − x2∥.

The second case is that one of the point is in D while the other is not, we suppose x1 ∈ D,x2 ∈ X\D,
then ∥∥∥ε(x1)F(x1)− ε(x2)F(x2)

∥∥∥
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=
∥∥∥ε(x2)F(x2)

∥∥∥ ≤ ε̂
(
d(x2,D)

)
∥F(x2)∥

=

(∫ d(x2,D)

0

ĥ(s)ds

)
∥F(x2)∥

≤ĥ(d(x2,D)) · d(x2,D) · ∥F(x2)∥ (Monontonicity of ĥ)

≤ĥ(d(x2,D)) · d(x2,D) · h2(d(x2,D)) (Definition of h2)

<d(x2,D) (ĥ(r) · h2(r) < 1 as r ≥ 0)

=d(x2,D)− d(x1,D) ≤ ∥x1 − x2∥

Finally, we consider the last case where x1,x2 ∈ X\D. Without loss of generality, we assume

0 < d(x1,D) ≤ d(x2,D).

Then the definition of h1 and h2 implies that

∥F(x1)−F(x2)∥

≤max
(
h1(d(x1,D)), h1(d(x2,D))

)
· ∥x1 − x2∥

=h1(d(x1,D)) · ∥x1 − x2∥,

and
∥F(x2)∥ ≤ h2(d(x2,D)).

Consequently, applying (11) and the above inequalities, we have

∥ε(x1)F(x1)− ε(x2)F(x2)∥
≤ε(x1)

∥∥F(x1)−F(x2)
∥∥+ |ε(x1)− ε(x2)| ·

∥∥F(x2)
∥∥

≤ε(x1) · h1(d(x1,D)) · ∥x1 − x2∥+ |ε(x1)− ε(x2)| · h2(d(x2,D))

≤ε̂
(
d(x1,D)

)
· h1(d(x1,D)) · ∥x1 − x2∥+

∣∣∣ε̂(d(x1,D)
)
− ε̂
(
d(x2,D)

)∣∣∣ · h2(d(x2,D))

=

(∫ d(x1,D)

0

ĥ(s)ds

)
· h1(d(x1,D)) · ∥x1 − x2∥+

(∫ d(x2,D)

d(x1,D)
ĥ(s)ds

)
· h2(d(x2,D))

≤d(x1,D) · ĥ(d(x1,D)) · h1(d(x1,D)) · ∥x1 − x2∥

+
∣∣∣d(x1,D)− d(x2,D)

∣∣∣ · ĥ(d(x2,D)) · h2(d(x2,D))

<d(x1,D) · ∥x1 − x2∥+
∣∣∣d(x1,D)− d(x2,D)

∣∣∣
≤d(x1,D) · ∥x1 − x2∥+ ∥x1 − x2∥

The last inequality results from ĥ(r) · (h1(r)+h2(r)) < 1 for all r > 0. And the above inequalities
imply

∥ε(x1)F(x1)− ε(x2)F(x2)∥ ≤ (diam(X) + 1) · ∥x1 − x2∥.
Combining all the results together, we have εF is locally (diam(X) + 1)-Lipschitz at any x ∈ X.
Then the compactness of X concludes the global Lipschitz continuous of εF , which finishes the
whole proof.

Follows are some lemmas (as well as their proofs) that we used in the proof of Theorem A.1.
Lemma A.2. Let T ⊂ Rd be closed and let F : T → Rn. Denote by D(F) ⊂ T the set of points at
which F is not locally Lipschitz. Then D(F) is closed (in T, hence in Rd).

Proof. Recall that F is locally Lipschitz (relative to T) at x ∈ T if there exist r > 0 and L > 0 such
that

∥F(u)−F(v)∥ ≤ L ∥u− v∥ for all u,v ∈ T ∩ B(x, r).
Let G := T\D(F) be the set of points where F is locally Lipschitz. We first show that G is
relatively open in T. Fix x ∈ G and choose r, L as above. If x′ ∈ T∩B(x, r/2), then B(x′, r/2) ⊂
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B(x, r); hence the same L works on T ∩ B(x′, r/2), so F is locally Lipschitz at x′. Therefore
T ∩ B(x, r/2) ⊂ G, proving that G is open in T. Consequently, D(F) = T\G is closed in T.
Since T is closed in Rd, every set closed in T is also closed in Rd. Hence D(F) is closed in Rd as
well.

Lemma A.3. Let T be a compact set. If F is locally Lipschitz everywhere on T, then it must be
globally Lipschitz on T.

Proof. Assume, to the contrary, that F is not globally Lipschitz on T. Then we can choose se-
quences {xk}k≥1, {yk}k≥1 ⊂ T such that

∥F(xk)−F(yk)∥
∥xk − yk∥

k→∞−−−−→ ∞. (12)

Local Lipschitzness implies continuity of F on T, so by compactness F is bounded: there exists
C <∞ with ∥F(z)∥ ≤ C for all z ∈ T. Consequently,

∥F(xk)−F(yk)∥ ≤ 2C for all k,

and therefore (12) forces ∥xk − yk∥ → 0.

By sequential compactness of T, passing to a subsequence (not relabeled) we may assume xk →
x ∈ T; since ∥xk − yk∥ → 0, we also have yk → x. Since F is locally Lipschitz at x, for k large
enough we have

∥F(xk)−F(yk)∥
∥xk − yk∥

≤ L,

for some L > 0, which contradicts (12). Therefore F must be globally Lipschitz on T.

Now we relax the condition in Theorem A.1 and extend it to unbounded domains.

Theorem A.4. For any X ⊂ Rd (not necessarily bounded) and any locally Lipschitz function F :
X → R, there exists a function ε : X → R such that 0 < ε(x) < 1 for x ∈ X, and ε(x) and
ε(x)F(x) are both globally Lipschitz continuous on X.

Proof. We consider the following grids in Rd:

k = (2k1, 2k2, . . . , 2kd), ki ∈ Z, i ∈ [d].

We define the closed d-dimensional cubic centered at k by

Ck =

[
2k1 −

3

2
, 2k1 +

3

2

]
×
[
2k2 −

3

2
, 2k2 +

3

2

]
× · · · ×

[
2kd −

3

2
, 2kd +

3

2

]
.

According to Theorem A.1, there exists a function εk defined on Ck ∩ X, so that

• 0 < εk(x) < 1 on Ck ∩ X.

• εk(x) is 1-Lipschitz on Ck ∩ X.

• εk(x)F(x) is (diam(Ck) + 1)-Lipschitz on Ck ∩ X.

Next, we concatenate all these εk functions and get a global ε : X → R. We define the following
concatenation function in 1-dimensional space:

ρ(x) =



x+
3

2
, x ∈

[
−3

2
,−1

2

]
,

1, x ∈
[
−1

2
,
1

2

]
,

− x+
3

2
, x ∈

[
1

2
,
3

2

]
,

0, otherwise.
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Then we define the d-dimensional concatenation function. Let x = (x1, x2, . . . , xd).

ρ(d)(x) =

d∏
i=1

ρ(xi).

We define the shifting function ρ(d)k (x) = ρ(d)(x− k). On X, we construct

ε(x) =
∑

k∈{k:x∈Ck}

ρ
(d)
k (x)εk(x).

Given the constructed ε(x), it’s enough to prove that: 0 < ε(x) < 1, ε(x) and ε(x)F(x) are
globally Lipschitz over X. We will show these claims one by one and finish the proof.

First, let’s show 0 < ε(x) < 1. As ρ(d) is non-negative and 0 < εk(x) < 1, we have

0 < ε(x) <
∑
k

ρ
(d)
k (x) = 1

where
∑

k ρ
(d)
k (x) = 1 comes from the fact that each term ρ(xi − 2ki) depends only on its spe-

cific index ki and not on the others, and hence we can distribute the summation as
∑

i

∑
j aibj =

(
∑

i ai)(
∑

j bj). That is,

∑
k

ρ
(d)
k (x) =

(∑
k1∈Z

ρ(x1 − 2k1)

)
×

(∑
k2∈Z

ρ(x2 − 2k2)

)
× · · · ×

(∑
kd∈Z

ρ(xd − 2kd)

)
=1× 1× · · · × 1 = 1.

Second, we prove the Lipschitz continuity of ε(x). In particular, it holds that

|ε(x)− ε(x̂)| =

∣∣∣∣∣∑
k

ρ
(d)
k (x)εk(x)−

∑
k

ρ
(d)
k (x̂)εk(x̂)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

ρ
(d)
k (x)(εk(x)− εk(x̂)) +

∑
k

(ρ
(d)
k (x)− ρ

(d)
k (x̂))εk(x̂)

∣∣∣∣∣
≤
∑
k

ρ
(d)
k (x) |εk(x)− εk(x̂)|︸ ︷︷ ︸

≤∥x−x̂∥

+
∑

k∈{k:x∈Ck}

|ρ(d)k (x)− ρ
(d)
k (x̂)|︸ ︷︷ ︸

≤
√
d∥x−x̂∥

|εk(x̂)|︸ ︷︷ ︸
≤1

≤ ∥x− x̂∥+ 2d
√
d∥x− x̂∥ = (1 + 2d

√
d)∥x− x̂∥

where 2d comes from the fact at most 2d grid cubes overlap at each point x.

Third, using the same argument, we can show that ε(x)F(x) is globally Lipschitz over X, and
the Lipschitz constant is bounded by

(
3
√
d+ 1 + 2d

√
d
)

(Recall that diam(Ck) = 3
√
d), which

finishes the proof.

A.2 PROOF OF NECESSITY

For Theorem 2.5, we adopt a similar idea: first considering a bounded domain and then extending
the results to unbounded domains.

Theorem A.5. Let X ⊂ Rd be a bounded domain and let G : Rn × X → Rn be regular. Then, for
every x ∈ X, the map y 7→ G(y,x) has a unique fixed point y∗(x), and the resulting fixed-point
map y∗(x) must be locally Lipschitz on X.

Proof. Let X be the closure of X. In this proof, we will first extend the operator G to Rn × X, and
then analyze its properties on this closed domain.
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Step 1: Extension to X. For any y ∈ Rn, G(y,x) is globally Lipschitz continuous on X, hence its
extension is naturally define by

G(y, x̄) := lim
X∋x→x̄

G(y,x), for all x̄ ∈ X\X.

Different from the proof of Theorem A.1 where F might be not locally Lipschitz at x̄ even if it is
continuous at x̄, here the extended G must be Lipschitz at x̄ and hence Lipschitz on the overall set
X. This can be verified by examining the difference quotient for x1 ̸= x2 and y ∈ Rn:

∆G[y;x1,x2] :=
∥G(y,x1)− G(y,x2)∥

∥x1 − x2∥
Let G(y, ·)’s Lipschitz constant on X be L(y) := supx1 ̸=x2∈X ∆G[y;x1,x2]. For any x1 ∈ X and
x̄2 ∈ X\X, it holds that

∆G[y;x1, x̄2] = lim
X∋x2→x̄2

∆G[y;x1,x2] ≤ sup
x2∈X:x2 ̸=x1

∆G[y;x1,x2] ≤ L(y)

For any x̄1 ̸= x̄2 ∈ X\X, we have

∆G[y; x̄1, x̄2] = lim
X∋x1→x̄1

lim
X∋x2→x̄2

∆G[y;x1,x2] ≤ sup
x1,x2∈X:x2 ̸=x1

∆G[y;x1,x2] = L(y)

Therefore, we obtain an upper bound for G(y, ·)’s Lipschitz constant on X:

sup
x1 ̸=x2∈X

∆G[y;x1,x2]

=max

(
sup

x1 ̸=x2∈X
∆G[y; x̄1, x̄2], sup

x1∈X,x2∈X\X
∆G[y;x1, x̄2], sup

x1 ̸=x2∈X\X
∆G[y; x̄1, x̄2]

)
≤max (L(y), L(y), L(y)) = L(y)

That is, for any y ∈ Rn, G(y, ·) is globally Lipschitz on X, and the Lipschitz constant is the same
with that of X.

In the other hand, let’s consider the Lipschitz constant (contraction constant) w.r.t. y when fixing
x̄ ∈ X\X:

µ(x̄) = lim
X∋x→x̄

µ(x)

Since 0 < µ(x) < 1 for x ∈ X, by taking limit, we have 0 ≤ µ(x̄) ≤ 1. For those x̄ with µ(x̄) < 1,
the operator G(·, x̄) is still contractive. But if µ(x̄) = 1, the operator G(·, x̄) is not contractive.

Step 2: Defining D and Dr. We collect all points x ∈ X where the operator G(·,x) is not contrac-
tive:

D :=
{
x ∈ X : µ(x) = 1

}
and define a “safe” set that is sufficiently far from D:

Dr :=
{
x ∈ X : d(x,D) ≥ r

}
.

Note that X\D =
⋃

r>0 Dr and X ⊂ X\D. We obtain

X ⊂
⋃
r>0

Dr.

For any Dr with r > 0, we can obtain a uniform contraction of the operator G(·,x): There is a
constant µr ∈ (0, 1) such that

∥G(y1,x)− G(y2,x)∥ ≤ µr∥y1 − y2∥ (13)

for all y1,y2 ∈ Rn and x ∈ Dr, which follows immediately from the continuity of µ(x) and the
compactness of Dr. By the Banach fixed-point theorem, the operator G(·,x) must have a unique
fixed point y∗ for each x ∈ Dr.

To complete the proof of Theorem 2.5, thanks to the fact that X ⊂
⋃

r>0 Dr, it’s enough to show
that: For any Dr with r > 0, there is a constant Cr such that

∥y∗(x1)− y∗(x2)∥ ≤ Cr∥x1 − x2∥ (14)
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holds for all x1,x2 ∈ Dr. In the following steps, we will show (14).

Step 3: A controllable sequence. Fix x ∈ Dr. By defining a sequence {yk(x)}k≥0 ⊂ Rn:

yk+1(x) = G(yk(x),x), y0 is constant for all x,

we are able to estimate the upper bound of ∥y∗(x)∥. In particular, we decompose y0 − y∗ by a
series:

y0 − y∗ = lim
k→∞

(y0 − yk) =

∞∑
k=0

(yk − yk+1)

Thanks to (13), we have

∥yk(x)− yk+1(x)∥ ≤ µr∥yk−1(x)− yk(x)∥ · · · ≤ µk
r∥y0 − y1(x)∥ = µk

r∥y0 − G(y0,x)∥

for all x ∈ Dr. Therefore, it holds that

∥y0 − y∗(x)∥ ≤
∞∑
k=0

∥yk(x)− yk+1(x)∥

≤

( ∞∑
k=0

µk
r

)
∥y0 − G(y0,x)∥ =

1

1− µr
∥y0 − G(y0,x)∥

Now we can conclude the boundedness of ∥y∗(x)∥ for x ∈ Dr by the compactness of Dr:

∥y∗(x)∥ ≤ ∥y0∥+
1

1− µr
sup
x∈Dr

∥y0 − G(y0,x)∥︸ ︷︷ ︸
defined as Mr ≥ 0.

With the same argument, we have ∥yk(x)∥ ≤Mr for all k ≥ 0 and x ∈ Dr. It implies that

L(yk(x)) ≤ L1 + L2Mr

for some L1, L2 > 0 as L(y) grows linearly w.r.t. ∥y∥. Consequently, we can estimate an upper
bound for the Lipschitz constant of yk(x). In particular, for x1,x2 ∈ Dr, it holds that

∥yk+1(x1)− yk+1(x2)∥
=∥G(yk(x1),x1)− G(yk(x2),x2)∥
=∥G(yk(x1),x1)− G(yk(x2),x1) + G(yk(x2),x1)− G(yk(x2),x2)∥
≤∥G(yk(x1),x1)− G(yk(x2),x1)∥+ ∥G(yk(x2),x1)− G(yk(x2),x2)∥
≤µr∥yk(x1)− yk(x2)∥+ (L1 + L2Mr)∥x1 − x2∥

For simplicity, let Lr := L1 + L2Mr, ak := ∥yk(x1) − yk(x2)∥, and h := ∥x1 − x2∥. By
recursively applying ak+1 ≤ µrak + Lh and a0 = 0, we have

∥yk(x1)−yk(x2)∥ = ak ≤ (µr)
ka0+(µk−1

r +· · ·+µr+1)Lrh ≤ 1

1− µr
Lrh =

Lr

1− µr
∥x1−x2∥.

Step 4: Final proof. As G(·,x) is a contractor w.r.t. y for any x ∈ Dr, it holds that yk(x) → y∗(x)
for any x ∈ Dr. (Here, as for the “convergence,” we mean the pointwise convergence, which is
enough here. We don’t need stronger conditions like the uniform convergence.) For the above
x1,x2, there is a K such that

∥yk(x1)− y∗(x1)∥ ≤ Lr

1− µr
∥x1 − x2∥, ∥yk(x2)− y∗(x2)∥ ≤ Lr

1− µr
∥x1 − x2∥

for k ≥ K. Combining the above results, we obtain

∥y∗(x1)− y∗(x2)∥ ≤∥y∗(x1)− yk(x1)∥+ ∥yk(x1)− yk(x2)∥+ ∥yk(x2)− y∗(x2)∥

≤ 3Lr

1− µr
∥x1 − x2∥

By letting Cr = 3Lr/(1− µr), we get (14), which completes the proof.
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Remark A.6. Our result relaxes two uniformity requirements in (Dontchev & Rockafellar, 2009,
Thm. 1A.4): (i) the contraction modulus µ(x) is allowed to vary with x (it only needs to be contin-
uous in x), rather than being a single global constant; and (ii) for each y, the mapping x 7→ G(y,x)
is Lipschitz on X with a constant that may grow linearly in ∥y∥, instead of being uniformly bounded
in y. Because these bounds are not uniform, we conclude only local (as opposed to global) Lipschitz
continuity of the fixed-point map x 7→ y∗(x) on X.

Now we relax the condition in Theorem A.5 to unbounded domains and prove Theorem 2.5 based
on Theorem A.5.

Proof of Theorem 2.5. We cover the domain Rd using the grid k = (2k1, . . . , 2kd) for ki ∈ Z,
defining closed cubic regions Ck of side length 3 centered at each k:

Ck =

[
2k1 −

3

2
, 2k1 +

3

2

]
×
[
2k2 −

3

2
, 2k2 +

3

2

]
× · · · ×

[
2kd −

3

2
, 2kd +

3

2

]
.

By applying Theorem A.5 to the bounded set Ck ∩ X, we guarantee the existence of a unique fixed-
point map yk,∗ : Ck ∩ X → Rn which is locally Lipschitz continuous on its domain.

Consider any x in the intersection of two regions Ck ∩ Ck′ . Since G(·,x) is a contraction, it admits
a unique fixed point in Rn. Therefore, the local solutions must coincide:

yk,∗(x) = yk′,∗(x).

This consistency allows us to define a global fixed-point map y∗ : X → Rn by setting y∗(x) =
yk,∗(x) for any k such that x ∈ Ck. Since y∗ coincides with a locally Lipschitz function yk,∗ on
every compact neighborhood Ck, y∗ is locally Lipschitz continuous on X.

B A VARIANT ARCHITECTURE

In practice, many works use a variant of the vanilla model y∗ = G(y∗,x):

z∗ = G(z∗,Q1(x)), y∗ = Q2(z∗) (15)

where G is the core implicit model, Q1 is a encoding network and Q2 is a decoding (readout).

At inference, one iterates zt = G(zt−1,Q1(x)) for 1 ≤ t ≤ T and finally yT = Q2(zT ). This
often improves empirical performance but does not alter the expressivity in Theorems 2.4–2.5.

Corollary B.1. Under Assumption 2.2, for any F there exists a regular implicit operator G and
globally Lipschitz maps Q1,Q2 such that Q2

(
Fix
(
G(·,Q1(x))

))
= F(x) for all x ∈ X. Con-

versely, for any regular implicit operator G any globally Lipschitz Q1,Q2, the fixed point z∗ defined
by (15) exists uniquely and the induced map x 7→ y∗ must be locally Lipschitz on X.

Proof. The claim follows directly from Theorems 2.4–2.5.

Sufficiency. Given any locally Lipschitz target F on X, Theorem 2.4 ensures the existence of a
regular G whose fixed-point map equals F . Taking Q1,Q2 as both identity maps recovers the
sufficiency statement with globally Lipschitz Q1,Q2.

Necessity. Suppose G is regular and Q1,Q2 are globally Lipschitz. Then the composite update
G(z,Q1(x)) is still regular in z and x. By Theorem 2.5, for every x ∈ X, there is a unique
fixed point z∗(x) and the map x 7→ z∗(x) is locally Lipschitz on X. Finally, applying the globally
Lipschitz readout Q2 preserves local Lipschitz continuity, so x 7→ y∗ is locally Lipschitz as claimed.
The proof is finished.

C PROOFS OF THEOREMS FOR INVERSE PROBLEMS

This section proves that the target solution mappings, F1a and F1b, are single-valued and locally
Lipschitz on their domain, as stated in Theorems 3.3 and 3.4. Before the proofs, we first provide
some definitions that used in Assumption 3.1.
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Given a close subset M ⊂ Rn, its reach τ is defined in Federer (1959):

τ := sup{r > 0 :∀y ∈ Rn with dist(y,M) < r,

there exists a unique z ∈ M such that ∥y − z∥ = dist(y,M)}.

A set with positive reach is also called a “prox-regular” set in the literature (Poliquin et al., 2000).

The Bi-Lipschitz condition refers to: for some 0 < µ ≤ L < +∞, it holds that

µ∥y1 − y2∥ ≤ ∥Ay1 −Ay2∥ ≤ L∥y1 − y2∥ ∀y1,y2 ∈ M. (16)

According to the definition, it holds that 0 < µ ≤ L ≤ σmax < +∞. This condition ensures A
can be viewed as an injective mapping when restricted to M, which is important for the recovery
guarantee.

Remark for Assumption 3.1. The assumption that data (particularly images) lies on a smooth mani-
fold has a long and influential history (Roweis & Saul, 2000; Donoho & Grimes, 2005), and it is still
widely used in recent literature. The compactness of the data manifold can be achieved by standard
techniques like normalization. In addition, reach is an important concept for manifold to ensure the
uniqueness of its projection (Federer, 1959; Aamari et al., 2019). The overall assumptions on man-
ifolds, smoothness, compactness and positive reach, is typically used in recent literature regarding
image and signal processing (Tang & Yang, 2024; Potaptchik et al., 2024; Azangulov et al., 2024).
The on-manifold bi-Lipschitz condition does not require A to be globally invertible; it merely rules
out ill-posedness restricted to M. This is closely related to Johnson–Lindenstrauss (JL)–type em-
beddings in compressive sensing: e.g., Baraniuk & Wakin (2009) shows that random matrices are
bi-Lipschitz on low-dimensional manifolds with high probability, and JL-style conditions are widely
analyzed and used (Candes & Tao, 2006; Clarkson, 2008; Wakin, 2010; Iwen & Maggioni, 2013;
Hegde & Baraniuk, 2012).

Proof of Theorem 3.3. For simplicity, we first denote the objective functions in (3) as F1a(y):

F1a(y) :=
1

2
∥x−Ay∥2 + α

2
dist2(y,M)

Then we introduce some definitions that will be useful in our proof:

Ur(M) := {y ∈ Rn : dist(y,M) < r}, Ur(M) := {y ∈ Rn : dist(y,M) ≤ r}

Here, Ur(M) is an open tubular neighborhood of the manifold M and Ur(M) is its closure. As
r = τ , the open set Ur(M) is named as the reach tube of M, denoted as Uτ (M). As introduced in
Federer (1959), within the reach tube, some nice properties of the distance function and projection
mapping can be utilized. For any y ∈ Uτ (M) or any y ∈ Ur(M) with r < τ , the projection
mapping

p(y) := argmin
z∈M

∥z − y∥

is single valued and well defined, and dist(y,M) = ∥y − p(y)∥.

Step 1: Existence of minimizers of F1a. As x ∈ X, there must be an underlying y∗ ∈ M (hence
y∗ ∈ Ur(M)) and n such that ∥x−Ay∗∥ = ∥n∥. Therefore, it holds that

F1a(y∗) =
1

2
∥x−Ay∗∥2 +

α

2
dist2(y∗,M) =

1

2
∥n∥2 + 0 =

1

2
∥n∥2

In the other hand, for any point outside the tube: y ̸∈ Ur(M), the objective value is lower bounded
by:

F1a(y) ≥ 0 +
α

2
dist2(y,M) >

α

2
r2

As long as we have large enough α:

α ≥ ∥n∥2

r2
, (17)

we can ensure F1a(y) > F1a(y∗) for all y ̸∈ Ur(M), which implies infy∈Rn F1a(y) =

infy∈Ur(M) F1a(y). As M is compact, Ur(M) must be compact as well. Consequently, the infi-
mum of F is attainable, which concludes the existence of the minimizer of F1a, denoted by ŷ, and
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ŷ ∈ Ur(M). Finally, we have the conclusion: It holds for all r > 0 that, condition (17) ensures the
existence of ŷ and ŷ ∈ Ur(M).

Step 2: Bound of minimizers of F1a. For any y ∈ Uτ (M), the projection p(y) is uniquely defined,
hence we have∥∥∥Ay − x

∥∥∥ =
∥∥∥Ay −Ay∗ − n

∥∥∥ =
∥∥∥Ay −Ap(y) +Ap(y)−Ay∗ − n

∥∥∥
≥
∥∥∥Ap(y)−Ay∗

∥∥∥− ∥∥∥Ay −Ap(y)
∥∥∥− ∥n∥

≥µ∥p(y)− y∗∥ − σmax∥y − p(y)∥ − ∥n∥

According to the conclusion in Step 1, as long as

α ≥ ∥n∥2

r2
>

∥n∥2

τ2
, (18)

it holds that the minimizer ŷ exists and ŷ ∈ Ur(M) for some r < τ and hence ŷ ∈ Uτ (M), which
allows us to use the above inequalities at the beginning of Step 2. Now we aim to establish an upper
bound for ∥p(ŷ)− y∗∥ by contradiction. Suppose

µ∥p(ŷ)− y∗∥ > σmax∥ŷ − p(ŷ)∥+ 2∥n∥

we will obtain

∥Aŷ − x∥ ≥ µ∥p(ŷ)− y∗∥ − σmax∥ŷ − p(ŷ)∥ − ∥n∥ > ∥n∥,

which implies

F1a(ŷ) =
1

2
∥Aŷ − x∥2 + α

2
dist2(ŷ,M) >

1

2
∥n∥2 + 0 = F1a(y∗).

This contradicts with the definition of ŷ: the minimizer of function F1a. Therefore, we obtain:

µ∥p(ŷ)− y∗∥ ≤ σmax∥ŷ − p(ŷ)∥+ 2∥n∥ ≤ σmaxr + 2∥n∥

which is equivalent to

∥p(ŷ)− y∗∥ ≤ σmax

µ
r +

2

µ
∥n∥

and implies that

∥ŷ − y∗∥ ≤ ∥ŷ − p(ŷ)∥+ ∥p(ŷ)− y∗∥ ≤
(
1 +

σmax

µ

)
r +

2

µ
∥n∥ (19)

holds for all ŷ that minimizes F1a(y).

Step 3: Positive definiteness of the Hessian of F1a. To prove the uniqueness of the solution, we
will establish the strict convexity of the objective function F1a(y) within a neighborhood around
any point of M. To achieve this, we establish the positive definiteness of the Hessian of F1a(y) in
this step.

For any y ∈ Uτ (M), the projection mapping is single valued and the objective function can be
written as

F1a(y) =
1

2
∥x−Ay∥2︸ ︷︷ ︸

f(y)

+
α

2
∥y − p(y)∥2︸ ︷︷ ︸

g(y)

The smoothness of M implies the smoothness of g and of the projection mapping, and hence we can
take first and second orders of derivatives on g (Leobacher & Steinicke, 2021, Theorem 2). Thanks
to (Federer, 1959, Theorem 4.8), the gradient and Hessian of g are given by

∇g(y) = 2 (y − p(y)) , ∇2g(y) = 2 (I −Dp(y)) ,

where Dp denotes the Jacobian of the projection mapping. The overall Hessian of F1a is provided
by

∇2F1a(y) = A⊤A+ α (I −Dp(y)) . (20)
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To further present the properties of the above Hessian, we introduce a space decomposition accord-
ing to p(y):

Rn = Tp(y)(M)⊕ Np(y)(M)

where Tp(y)(M) denotes the tangent space of M at the point p(y) ∈ M, and Np(y)(M) represents
the normal space. According to (Leobacher & Steinicke, 2021, Theorem C and Definition 7), the
matrix Dp(y) is actually restricted to the tangent space. In other words, for any decomposition h
with h = hT + hN where hT ∈ Tp(y)(M) and hN ∈ Np(y)(M), it holds that

Dp(y)hN = 0, Dp(y)hT ∈ Tp(y)(M). (21)

In addition, function g(y) is ( s
τ−s )-weakly convex where τ is the reach of M and s = dist(y,M)

(Nacry & Thibault, 2022, Section 5), and hence the spectrum of ∇2g can be lower bounded by

⟨hT,∇2g(y)hT⟩ ≥ − 2s

τ − s
∥hT∥2, (22)

Now, let’s turn to the first term in the Hessian: A⊤A. It can be shown using the JL condition (16)
that, the spectrum of A⊤A restricted to the tangent space can also be lower bounded. In particular,
we pick an arbitrary tangent vector hT ∈ Tp(y)(M). According to the definition of tangent space,
there must be a curve γ : (−δ, δ) → M with δ > 0, γ(0) = p(y), and γ′(0) = hT. For any
0 ≤ t < δ, γ(t) ∈ M. By applying condition (16) with the pair (γ(t), γ(0)) and divide by t2, we
have

µ2 ∥γ(t)− γ(0)∥2

t2
≤ ∥Aγ(t)−Aγ(0)∥2

t2
≤ L2 ∥γ(t)− γ(0)∥2

t2

By differentiability and the continuity of the operator A, it holds that

lim
t→0

γ(t)− γ(0)

t
= hT, lim

t→0

Aγ(t)−Aγ(0)

t
= AhT

which implies
µ2∥hT∥2 ≤ ∥AhT∥2 ≤ L2∥hT∥2. (23)

Combining (20), (21), (22), and (23), we have

⟨h,∇2F1a(y)h⟩
= ⟨hT,A

⊤AhT⟩︸ ︷︷ ︸
≥µ2∥hT∥2

+2⟨hT,A
⊤AhN⟩+ ⟨hN,A

⊤AhN⟩︸ ︷︷ ︸
≥0

+ α ⟨hT, (I −Dp(y))hT⟩︸ ︷︷ ︸
≥− s

τ−s∥hT∥2

+2α ⟨hT, (I −Dp(y))hN⟩︸ ︷︷ ︸
=⟨hT,hN⟩=0

+α ⟨hN, (I −Dp(y))hN⟩︸ ︷︷ ︸
=∥hN∥2

≥
(
µ2 − α

s

τ − s

)
∥hT∥2 + α∥hN∥2 − 2∥AhT∥ · ∥AhN∥

≥
(
µ2 − α

s

τ − s

)
∥hT∥2 + α∥hN∥2 − 2L∥hT∥ · σmax∥hN∥

= [∥hT∥ ∥hN∥]
[
µ2 − α s

τ−s −σmaxL
−σmaxL α

] [
∥hT∥
∥hN∥

]
Therefore, to ensure ⟨h,∇2F1a(y)h⟩ > 0 for any h ̸= 0, it’s enough to ensure the 2× 2 matrix to
be positive definite:

µ2 − α
s

τ − s
> 0 and α

(
µ2 − α

s

τ − s

)
− σ2

maxL
2 > 0. (24)

In other words, (24) will guarantee the positive definiteness of ∇2F1a(y) for all y ∈ Us(M) and
any s < τ .

Step 4: Uniqueness of minimizers of F1a. In this step, we will combine the results from Steps 2 and
3. Then we are able to prove that the objective function F1a(y) is strictly convex in a neighborhood
of its minimizers, which implies the uniqueness of the minimizer. To achieve this, it’s enough to
ensure

∥ŷ − y∗∥ ≤ s (25)
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for all ŷ ∈ argminy F1a(y), where s satisfies (24). With this condition (25), it holds that

ŷ ∈ B(y∗, s) ⊂ Us(M).

Along with the fact that B(y∗, s) is convex and that ∇2F1a(y) is positive definite for all y ∈
Us(M), F1a is strictly convex within B(y∗, s) (Boyd & Vandenberghe, 2004, Section 3.1.4). As
all minimizers of the strict convex function belong to this convex set, B(y∗, s), the minimizer ŷ
must be unique.

Now the question is: How to guarantee (25)? According to (19), Condition (18) along with(
1 +

σmax

µ

)
r +

2

µ
∥n∥ ≤ s (26)

can guarantee (25). Finally, it’s enough to choose α, s, and r such that (18), (24), and (26) are
satisfied together. In particular, we choose

s =
4

µ
∥n∥, r =

1

σmax
∥n∥, α =

2σ2
maxL

2

µ2

where α merely depends on A and M but is independent of x. Such a parameter choice implies
(26): (

1 +
σmax

µ

)
r +

2

µ
∥n∥ ≤ 2

σmax

µ
r +

2

µ
∥n∥ =

2

µ
∥n∥+ 2

µ
∥n∥ = s.

As ∥n∥ < 1
20

µ5

σ2
maxL

2 τ , it holds that

s =
4

µ
∥n∥ < µ4

5σ2
maxL

2
τ =⇒ s

τ − s
<

µ4

5σ2
maxL

2 τ

τ − µ4

5σ2
maxL

2 τ
≤

µ4

5σ2
maxL

2 τ

τ − 1
5τ

=
µ4

4σ2
maxL

2

and therefore (24) is satisfied:

µ2 − α
s

τ − s
> µ2 − 2σ2

maxL
2

µ2

µ4

4σ2
maxL

2
=

1

2
µ2 > 0

and

α

(
µ2 − α

s

τ − s

)
>

2σ2
maxL

2

µ2
· 1
2
µ2 = σ2

maxL
2.

Finally, by choosing α as before, condition (18) is satisfied:

α = 2σ2
max ·

L2

µ2
≥ 2σ2

max =
2∥n∥2

r2
, r =

1

σmax
∥n∥ < 1

σmax
· 1

20

µ5

σ2
maxL

2
τ < τ,

which finishes the proof of the uniqueness of minimizers of F1a.

Step 5: Local Lipschitz continuity of F1a. Previous results from Steps 1-4 indicate that, for any
x ∈ X, there is a unique ŷ(x) that minimizes F1a, but the continuity of ŷ w.r.t. x has not been
established. In this step, we will show this continuity via the implicit function theorem. Firstly, as ŷ
minimizes F1a, by first-order optimality conditions for smooth minimization, it holds that

∇F1a(ŷ) = A⊤(Aŷ − x) + α(ŷ − p(ŷ))︸ ︷︷ ︸
=:H(x,ŷ)

= 0

Now, let’s pick a point x0 from X. Previous results from Steps 1-4 indicate that, operator H(x,y) is
continuously differentiable within a neighborhood of (x0, ŷ(x0)), and its Jacobian matrix w.r.t. y

DyH(x,y) = ∇2F1a(y)

is positive definite within that neighborhood of (x0, ŷ(x0)). Therefore, we are able to apply the
implicit function theorem (Folland, 2023, Theorem 3.9) and conclude that ŷ(x) is Lipschitz con-
tinuous within a neighborhood of x0. This argument applies for any points x0 in X. Therefore,
ŷ = F1a(x) is locally Lipschitz continuous on X.
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The proof line of Theorem 3.4 largely follows the proof of Theorem 3.3. Here we will highlight
the difference of proofs between the two theorems, so that Theorem 3.4 will be rigorously proved
without too much redundancy.

Proof of Theorem 3.4. For simplicity, we denote the objective function in (4) as F1b(y, z):

F1b(y, z) :=
1

2
∥x−Ay∥2 + α

2
dist2(z,M) +

β

2
∥z − y∥2,

and we will study its properties analogously to F1a.

Step 1: Existence of minimizers of F1b. For any r > 0, as

α ≥ ∥n∥2

r2
, β ≥ ∥n∥2

r2
,

it holds that
inf
y,z

F1b(y, z) = inf
(y,z): dist(z,M)≤r and ∥z−y∥≤r

F1b(y, z). (27)

This can be proved by contradiction: (I) Suppose F1b(ŷ, ẑ) is lower than the right-hand-side of (27)
and dist(ẑ,M) > r, we have

F1b(ŷ, ẑ) ≥ 0 +
∥n∥2

2r2
dist2(ẑ,M) + 0 >

1

2
∥n∥2 = F1b(y∗,y∗)

which contradicts with the hypothesis regarding (ŷ, ẑ). (II) Suppose F1b(ŷ, ẑ) is lower than the
right-hand-side of (27) and ∥ẑ − ŷ∥ > r, we have

F1b(ŷ, ẑ) ≥ 0 + 0 +
∥n∥2

2r2
∥ẑ − ŷ∥2 > 1

2
∥n∥2 = F1b(y∗,y∗)

which also derives a contradiction. Arguments in (I) and (II) together prove (27). Similar to the proof
of Theorem 3.3, (27) implies the existence of minimizers of F1b (i.e., minimizers are attainable.)

Step 2: Bound of minimizers of F1b. To extend the proof regarding F1a to F1b, we consider the
following inequality that holds for all y, z ∈ Uτ (M)

∥y − p(y)∥ ≤ ∥y − p(z)∥ ≤ ∥y − z∥+ ∥z − p(z)∥ = ∥y − z∥+ dist(z,M) ≤ 2r.

Therefore, we need 2r < τ and

α ≥ ∥n∥2

r2
>

4∥n∥2

τ2
, β ≥ ∥n∥2

r2
>

4∥n∥2

τ2
(28)

to ensure ŷ, ẑ ∈ Uτ (M). Following the same argument as the proof of Theorem 3.3, the above
condition (28) implies

∥p(ŷ)− y∗∥ ≤ σmax

µ
(2r) +

2

µ
∥n∥

and hence

∥ŷ − y∗∥ ≤ ∥ŷ − p(ŷ)∥+ ∥p(ŷ)− y∗∥ ≤ 2

(
1 +

σmax

µ

)
r +

2

µ
∥n∥ (29)

and

∥ẑ − y∗∥ ≤ ∥ẑ − ŷ∥+ ∥ŷ − y∗∥ ≤
(
3 + 2

σmax

µ

)
r +

2

µ
∥n∥ (30)

holds for all (ŷ, ẑ) that minimizes F1b(y, z).

Step 3: Positive definiteness of the Hessian of F1b. Function F1b(y, z)’s Hessian matrix is of size
2n× 2n and can be written as a 2× 2 block w.r.t. y and z:

∇2F1b(y, z) =

[
A⊤A 0
0 0

]
+ α

[
0 0
0 I −Dp(z)

]
+ β

[
I −I
−I I

]
For any h = [u⊤ v⊤]⊤ ∈ R2n, the quadratic form ⟨h,∇2F1b(y, z)h⟩ can be calculated through:

⟨h,∇2F1b(y, z)h⟩ = u⊤A⊤Au+ αv⊤(I −Dp(z))v + β∥u− v∥2
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Decompose u = uT + uN and v = vT + vN in Tp(z)(M)⊕ Np(z)(M). Using the same argument
as the proof of Theorem 3.3, we have

⟨h,∇2F1b(y, z)h⟩

≥
(
µ2∥uT∥2 − 2σmaxL∥uT∥∥uN∥

)
+ α

(
− s

τ − s
∥vT∥2 + ∥vN∥2

)
+ β∥u− v∥2

which implies

⟨h,∇2F1b(y, z)h⟩

≥
(
µ2∥uT∥2 − 2σmaxL∥uT∥∥uN∥

)
+ α

(
− s

τ − s
∥vT∥2 + ∥vN∥2

)
+ β

(
∥uT − vT∥2 + ∥uN − vN∥2

)
≥
(
µ2∥uT∥2 − 2σmaxL∥uT∥∥uN∥

)
+ α

(
− s

τ − s
∥vT∥2 + ∥vN∥2

)
+ β

(
(∥uT∥ − ∥vT∥)2 + (∥uN∥ − ∥vN∥)2

)

= [∥uT∥ ∥uN∥ ∥vT∥ ∥vN∥]

 µ
2 + β −σmaxL −β

−σmaxL β −β
−β β − α s

τ−s
−β α+ β


︸ ︷︷ ︸

=:B

∥uT∥
∥uN∥
∥vT∥
∥vN∥



To ensure the positive definiteness of ∇2F1b(y, z), it’s enough to ensure B ≻ 0. For simplicity, we
define

θ := α
s

τ − s
, B1 :=

[
µ2 + β −σmaxL
−σmaxL β

]
B2 :=

[
−β

−β

]
B3 :=

[
β − θ

α+ β

]
Then B =

[
B1 B2

B⊤
2 B3

]
is positive definite if and only if B3 and its Schur complement S are both

positive definite:
B3 ≻ 0, S = B1 −B2B

−1
3 B⊤

2 ≻ 0

As B2 and B3 are both diagonal, so B2B
−1
3 B⊤

2 is straight forward to calculate: B2B
−1
3 B⊤

2 =

diag
(

β2

β−θ ,
β2

α+β

)
. Then the Schur complement can be calculated:

S =

[
µ2 + β − β2

β−θ −σmaxL

−σmaxL β − β2

α+β

]
=

[
µ2 − βθ

β−θ −σmaxL

−σmaxL
αβ
α+β

]
Note that B3 ≻ 0 if.f β > θ. Therefore, B ≻ 0 if.f.

β > θ, µ2 >
βθ

β − θ
,

(
µ2 − βθ

β − θ

)
αβ

α+ β
> σ2

maxL
2, (31)

where θ = α s
τ−s . Finally, we obtain that (31) ensures ∇2F1b(y, z) ≻ 0 for all y ∈ Rn and all

z ∈ Us(M) with s < τ .

Step 4: Uniqueness of minimizers of F1b. Comparable to the Step 4 in Theorem 3.3, we need
∥ẑ − y∗∥ ≤ s for all (ŷ, ẑ) ∈ argminF1b(y, z). Based on (30), it’s enough to guarantee(

3 + 2
σmax

µ

)
r +

2

µ
∥n∥ ≤ s (32)

Now we choose
s =

4

µ
∥n∥, r =

2

5σmax
∥n∥
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which directly satisfies (32). As ∥n∥ < 1
76

µ5

σ2
maxL

2 τ , we have

s =
4

µ
∥n∥ < 1

19

µ4

σ2
maxL

2
τ,

s

τ − s
<

1
19

µ4

σ2
maxL

2 τ

τ − 1
19

µ4

σ2
maxL

2 τ
≤

1
19

µ4

σ2
maxL

2 τ

τ − 1
19τ

=
1

18

µ4

σ2
maxL

2

As long as we take

α =
9σ2

maxL
2

µ2
, β ≥ max

(
α,

3

2
µ2

)
it holds that

θ = α
s

τ − s
<

9σ2
maxL

2

µ2

1

18

µ4

σ2
maxL

2
=

1

2
µ2

which implies β > 3θ and hence β > θ. Moreover, we can verify the remaining part of (31):

βθ

β − θ
<

βθ

β − β/3
=

3

2
θ <

3

4
µ2 < µ2,(

µ2 − βθ

β − θ

)
αβ

α+ β
>

(
µ2 − 3

4
µ2

)
αβ

β + β
=

1

8
µ2α =

1

8
µ2 · 9σ

2
maxL

2

µ2
> σ2

maxL
2.

which finishes the proof of (31). Finally, it’s enough to verify (28):

2r ≤ ∥n∥
σmax

≤ 1

76

µ5

σ3
maxL

2
τ < τ,

∥n∥2

r2
=

25

4
σ2

max ≤ α ≤ β,

which finishes Step 4, and concludes the uniqueness of (ŷ, ẑ).

Step 5: Local Lipschitz continuity of F1b. By largely following Step 5 in the proof of Theorem 3.3
and changing ∇2F1a(y) to ∇2F1b(y, z), one can directly conclude that the mapping F1b is locally
Lipschitz continuous on X.

C.1 PROXIMAL OPERATOR NEAR A MANIFOLD

We collect here the definition and basic properties of the proximal map used in the main text and
relate them to the convergence condition proposed in Ryu et al. (2019).

Theorem C.1 (Contractivity of the proximal residual near a C2 manifold). Let M ⊂ Rn be a
compact C2 embedded submanifold with reach τ > 0. For σ > 0 define, for each z ∈ Uτ (M),

ϕσ(y, z) :=
σ

2
dist2(y,M) +

1

2
∥y − z∥2.

Then ϕσ must yield a unique minimizer, and hence we are able to define

proxσ(z) := argmin
y

ϕσ(y, z), Sσ(z) := proxσ(z)− z.

Then Sσ is a contractive operator within a tubular neighborhood of M. In particular, it holds that

∥Sσ(z)− Sσ(z
′)∥ ≤ σ

1 + σ
∥z − z′∥ (33)

for all z, z′ ∈ Ur(M) where r ≤ τ/4 and ∥z − z′∥ ≤ τ/4.

Relation to plug-and-play (PnP): Condition (A) of Ryu et al. (2019) assumes a (nearly) contractive
denoiser residual—precisely the kind of property (33) guarantees for the proximal residual proxσ−I
on a neighborhood of M. In practice, M is unknown; one therefore learns a parameterized operator
(e.g., a neural network) whose residual is constrained to be (nearly) σ-contractive and plugs it into
PGD/HQS in place of the exact proximal map. Whereas Ryu et al. (2019) posits Condition (A) to
ensure convergence, Theorem C.1 shows this condition arises naturally when the prior corresponds
to the manifold-penalty σ

2 dist2(·,M).
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Proof of Theorem C.1. We first note that, for any y, if ∥y − z∥ > ∥z − p(z)∥, then it holds that

ϕσ(p(z), z) = 0 +
1

2
∥z − p(z)∥2 < σ

2
dist2(y,M) +

1

2
∥y − z∥2 = ϕσ(y, z)

which implies
inf
y
ϕσ(y, z) = inf

y:∥y−z∥≤∥z−p(z)∥
ϕσ(y, z)

Let r = ∥z − p(z)∥. We further notice that, for any y with ∥y − z∥ = s ≤ r, we are able to define
ỹ

ỹ :=
r − s

r
z +

s

r
p(z)

which satisfies p(ỹ) = p(z) and hence it holds that

dist(ỹ,M) = ∥ỹ − p(z)∥ =∥z − p(z)∥ − ∥ỹ − z∥
<∥z − p(y)∥ − ∥ỹ − z∥
≤∥z − y∥+ ∥y − p(y)∥ − ∥ỹ − z∥
=s+ ∥y − p(y)∥ − s = ∥y − p(y)∥ = dist(y,M)

which implies

ϕσ(ỹ, z) =
σ

2
dist2(ỹ,M) +

1

2
∥ỹ − z∥2 < σ

2
dist2(y,M) +

1

2
∥y − z∥2 = ϕσ(y, z)

Consequently, we conclude that minimizing ϕσ is equal to minimizing it over the line segment
between z and its projection p(z):

inf
y
ϕσ(y, z) = inf

ξ∈[0,1]
ϕσ(ξz + (1− ξ)p(z), z).

Now define ψ(ξ) = ϕσ(ξz + (1− ξ)p(z), z). We have

ψ(ξ) =
σ

2

∥∥∥(ξz + (1− ξ)p(z)
)
− p(z)

∥∥∥2 + 1

2

∥∥∥(ξz + (1− ξ)p(z)
)
− z

∥∥∥2
=
σ

2
ξ2∥z − p(z)∥2 + 1

2
(1− ξ)2∥z − p(z)∥2

=
(
σξ2 + (1− ξ)2

)
· 1
2
∥z − p(z)∥2

Therefore, infξ∈[0,1] ψ(ξ) is attainable, and the minimizer is ξ∗ = 1
1+σ , which implies ϕσ must yield

a unique minimizer at

y∗ =
z + σp(z)

1 + σ
.

Consequently, we have

Sσ(z) = y∗ − z =
σ

1 + σ
(p(z)− z)

and hence
DSσ(z) =

σ

1 + σ
(Dp(z)− I).

According to (Leobacher & Steinicke, 2021, Theorem C),Dp(z) is actually restricted to the tangent
space Tp(z)(M):

Dp(z) =
(
ITp(z)(M)

− rLp(z),v

)−1

PTp(z)(M)

where r = ∥p(z) − z∥, v = (p(z) − z)/r, and Lp(z),v is the shape operator in direction v at
p(z). The shape operator’s eigenvalues κ1, · · · , κd (In this context, d means the dimension of the
tangent space) are the principal curvatures of M (Do Carmo, 2016), which implies the eigenvalues
of Dp(z), when restricted to the tangent space, are

1

1− rκ1
, · · · , 1

1− rκd
.
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All the curvatures are bounded by the reciprocal of the reach: |κi| ≤ 1/τ (Aamari et al., 2019).
Therefore, it holds that

τ

τ + r
I
∣∣∣
Tp(z)(M)

⪯ Dp(z)
∣∣∣
Tp(z)(M)

⪯ τ

τ − r
I
∣∣∣
Tp(z)(M)

.

Moreover, as Dp(z) is restricted to and acts only on the tangent space Tp(z)(M), we have 0 ⪯
Dp(z) ⪯ τ

τ−rI , which implies

−I ⪯ Dp(z)− I ⪯ r

τ − r
I.

For r ≤ τ/2, we have r
τ−r ≤ 1 and hence ∥DSσ(z)∥ ≤ σ

1+σ . As long as z, z′ ∈ Ur(M) where
r ≤ τ/4 and ∥z − z′∥ ≤ τ/4, the two points z,z′ can be included in a convex subset (actually a
ball) of Ur(M) with r = τ/2. By the mean value theorem, we finish the proof of (33).

C.2 DISCUSSIONS REGARDING PNP

Derivation of HQS. Consider (4):

min
y,z∈Rn

1

2
∥x−Ay∥2 +

α

2
dist2(z,M) +

β

2
∥y − z∥2.

A typically method to solve it is applying block coordinate descent on it, which is also named “Half-
quadratic-splitting (HQS)” in the literature (Yang, 1995):

yt+1 =argmin
y∈Rn

1

2
∥Ay − x∥2 + β

2
∥y − zt∥2 =

(
A⊤A+ βI

)−1
(
A⊤x+ βzt

)
zt+1 =argmin

z∈Rn

α

2
dist2(z,M) +

β

2
∥z − yt+1∥2 = proxσ(yt+1) (let σ = α/β)

Similarly, we can parameterize proxσ as a neural network Hθ,σ . Therefore, HQS suggests an implicit
model

GΘ(z,x) = Hθ,σ

((
A⊤A+ βI

)−1
(
A⊤x+ βz

))
where Θ = {θ, σ, β} includes all trainable parameters, which derives (6).

Bibliographical notes. Here we adopt the long-standing “plug-in denoiser” idea. It originated with
Plug-and-Play (PnP) ADMM, which replaces a proximal operator with an off-the-shelf denoiser in-
side ADMM (Venkatakrishnan et al., 2013). The framework has since been developed and analyzed
extensively—see, e.g., (Chan et al., 2016; Kamilov et al., 2017; Buzzard et al., 2018; Sun et al.,
2019) and the recent survey (Kamilov et al., 2023). In the PGD setting, one pretrains H for Gaus-
sian denoising and plugs it into (5) (Ryu et al., 2019; Gavaskar & Chaudhury, 2020; Liu et al., 2021;
Hurault et al., 2022b). The same plug-in idea applies to HQS via (6) (Zhang et al., 2021; Hurault
et al., 2022a; Rasti-Meymandi et al., 2023). In contrast to training a denoiser off-the-shelf and plug-
ging it in, one can train the entire GΘ via deep equilibrium methods for the target task (the approach
closest to this paper) in both PGD-style (Gilton et al., 2021; Winston & Kolter, 2020; Zou et al.,
2023; Yu & Dansereau, 2024; Daniele et al., 2025; Shenoy et al., 2025) and HQS-style (Gkillas
et al., 2023).

D PROOFS REGARDING NS EQUATIONS

To rigorously state and prove the theorems, we present some definitions here. First, We denote by
Hm(Ω) the Sobolev space of functions which are in L2(Ω) together with all their derivatives of
order ≤ m. Then Hm

p (Ω) ⊂ Hm(Ω) is the collection of functions in Hm(Ω) that satisfies the
periodic boundary condition on Ω with zero mean (ref. to (Temam, 1995, Remark 1.1)). Then, we
can define the spaces considered in this paper:

H :=
{
u ∈

{
H0

p(Ω)
}2

: ∇ · u = 0
}
, V :=

{
u ∈

{
H1

p(Ω)
}2

: ∇ · u = 0
}
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For the NS equation (7), we consider f ∈ H and u ∈ V. Moreover, we denote V′ as the dual space
of V and have

V ⊂ H ⊂ V′.

We then equip H with the standard L2 inner product and norm for vector fields:

⟨u, v⟩H :=

∫
Ω

⟨u(ξ), v(ξ)⟩dξ, ∥u∥H :=
√

⟨u, u⟩H =

(∫
Ω

∥u(ξ)∥2dξ
)1/2

= ∥u∥L2(Ω)

The space V is equipped with the L2 norm on the first-order derivatives of u. In particular,

⟨u, v⟩V :=

2∑
i=1

∫
Ω

〈
∂u

∂ξi
(ξ),

∂v

∂ξi
(ξ)

〉
dξ

∥u∥V :=
√

⟨u, u⟩V =

(
2∑

i=1

∫
Ω

∥∥∥∥ ∂u∂ξi (x)
∥∥∥∥2 dξ

)1/2

= ∥∇u∥L2(Ω)

and ∥ · ∥V′ is defined as the dual norm of ∥ · ∥V. By Poincare and Cauchy-Shwartz inequalities, we
have

∥v∥H ≤ c1∥v∥V, ∀v ∈ V
and

∥v∥V′ ≤ c2∥v∥H, ∀v ∈ H
where c1, c2 are constants depending on the domain Ω. The above definitions and results are standard
in the literature and we largely follow the notation in (Temam, 1995, Section 2).

Proof of Theorem 3.6. (Temam, 1995, Theorem 10.1) states that, for any f ∈ V′, if ∥f∥V′ ≤ c0ν
2

(with c0 > 0 depending only on Ω), then the steady NS problem (7) has a unique solution u∗. Since
H ⊂ V′ and ∥f∥V′ ≤ c2∥f∥H, this yields uniqueness on

H(1)
ν :=

{
f ∈ H : ∥f∥H ≤ c0

c2
ν2
}
.

Moreover, by (Temam, 1995, Theorem 10.4), there exists an open dense set H(2)
ν ⊂ H such that,

on each connected component of H(2)
ν , the solution u∗ depends C∞ on f ; in particular, f 7→ u∗

is locally Lipschitz there. Define Hν := H(1)
ν ∩ H(2)

ν . Since H(2)
ν is open and dense in H, the set

Hν is dense in H(1)
ν . On Hν the solution is unique and the map f 7→ u∗ is locally Lipschitz. This

completes the proof.

Before moving to Corollary 3.7, let’s reclarify lifting and projection operators: Let the lifting (or
extension) operator Eh : RNh×2 →

{
L2(Ω)

}2
be the piecewise–constant reconstruction Eh(x) :=∑

C∈Ωh
xC1C , and let P :

{
L2(Ω)

}2 → H be the orthogonal projection onto divergence–free,
zero–mean fields. Then we move on to Corollary 3.7.

Proof of Corollary 3.7. The mapping F2 : x 7→ y∗ can be viewed as a composition of multiple
mappings: We first map x ∈ RNh×2 to a continuous version f ∈ H by P ◦ Eh, then f can be
mapped to its corresponding solution u∗ by a Locally Lipschitz operator as stated in Theorem 3.6.
Here we denote this mapping by S : f 7→ u∗. Then u∗ is mapped to ω∗ by vorticity: ∇ × u∗, and
finally ω∗ can be mapped to y∗ by a restriction operator Rh:

F2 = Rh ◦ (∇×) ◦ S ◦ P ◦ Eh.
Then let’s analyze the norm of the above operators one by one. Firstly, the restriction operator Rh

has a norm no greater than 1 as:

∥Rh(ω)∥2ℓ2h =
∑

C∈Ωh

|C|
∣∣∣∣ 1

|C|

∫
C

ω(ξ)dξ

∣∣∣∣2
≤
∑

C∈Ωh

1

|C|

(∫
C

|ω(ξ)|dξ
)2

≤
∑

C∈Ωh

∫
C

|ω(ξ)|2dξ = ∥ω∥2L2(Ω)
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Note that Rh is a linear operator, hence its bounded norm immediately leads to its bounded Lipschitz
constant:

∥Rh(ω)−Rh(ω
′)∥2ℓ2h = ∥Rh(ω − ω′)∥2ℓ2h ≤ ∥ω − ω′∥2L2(Ω).

Second, the curl operator ∇× must be a bounded linear operator because the solution u∗ ∈ V, where
first-order derivatives must be L2. Third, the solution mapping S has been discussed in Theorem
3.6, it is a nonlinear operator, but it is locally Lipschitz continuous. Fourth, the projection operator
P must be linear and have a norm no greater than 1. Finally, the lifting operator is linear and has a
bounded norm as:

∥Eh(x)∥2L2(Ω) =
∑

C∈Ωh

|C| |xC |2 = ∥x∥2ℓ2h

Therefore, except for the nonlinear operator S, the other four operators are all linear and bounded
and hence are globally Lipschitz continuous. As long as we can show that the input of S must be
taken from the unique solution regime Hν , we will complete the proof that F2 is locally Lipschitz
everywhere on Xν,h. This can be proved because x ∈ Xν,h implies P(Eh(x)) ∈ Hν . Finally, by
applying Theorem 2.4, we conclude the existence of G described in Corollary 3.7, which finishes
the entire proof.

E PROOFS REGARDING LINEAR PROGRAMMING

Although Lipschitz continuity of LP solution maps has been studied (e.g., (Mangasarian & Shiau,
1987; Dontchev & Rockafellar, 2009)), we are not aware of a reference that states Theorem 3.8 in
the precise form needed here—particularly allowing perturbations of A (rather than treating A as
fixed). For completeness, we therefore include a self-contained discussion and proof.

To work with a standard form, we rewrite the general-form problem (8) in standard form. Suppose
there are p equality constraints and q inequality constraints. Without loss of generality, we assume
◦i equals to “=” for 1 ≤ i ≤ p and ◦i equals to “≤” for p+ 1 ≤ i ≤ m. Then we denote Ap as the
first p rows of matrix A and Aq as the remaining part:

Ap := A[1 : p, :], Aq := A[p+ 1 : m, :]

And therefore the general form LP (8) can be written as

min
y∈Rn

c⊤y, s.t. Apy = bp, Aqy ≤ bq, l ≤ y ≤ u.

Let ŷ := y − l, s := bq −Aqy, and t := u− y, the above problem can be transformed to

min
y∈Rn

c⊤ŷ, s.t.

[
Ap

Aq I
I I

][
ŷ
s
t

]
=

[
bp −Apl
bq −Aql
u− l

]
, ŷ ≥ 0, s ≥ 0, t ≥ 0

By letting

c̃ :=

[
c
0
0

]
, Ã :=

[
bp −Apl
bq −Aql
u− l

]
, b̃ :=

[
bp −Apl
bq −Aql
u− l

]
, ỹ :=

[
ŷ
s
t

]
The problem is equivalently expressed in standard form as

min
ỹ

c̃⊤ỹ, s.t. Ãỹ = b̃, ỹ ≥ 0.

In fact, every LP can be rewritten in an equivalent standard form. While concepts such as basic
feasible solutions, degeneracy, and complementary slackness are most naturally and cleanly stated
in standard form, each admits a closely related analogue (with minor adjustments) for the general
form. Accordingly—without loss of generality and to keep the focus on core ideas—we carry out
the proof in the standard-form setting:

min
y

c⊤y, s.t. Ay = b, y ≥ 0,

with dual
min
z

b⊤z, s.t. A⊤z ≤ c.
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Here, we follow the standard settings in the literature: y, c ∈ Rn, z, b ∈ Rm, A ∈ Rm×n,
rank(A) = m (ensured by preprocessing with removing redundant equalities), and m ≤ n. In
this context, we define the domain of LP that we work on:

X := {(A, b, c) : The resulting standard LP is feasible and bounded}

Note that, to match the rest of the paper, we reserve x for machine learning model inputs (in this
context, it is x = (A, b, c)) and hence write the primal LP variable as y and the dual LP variable as
z. This departs from the common (x,y) convention. Note also that in the main text the symbol z
denotes a latent variable; here, in the appendix regarding LP’s technical details, it denotes the dual
variable. These meanings are unrelated and should be clear from context.

Now let’s present some definitions used in this appendix. Fix a basis by selecting an index set
B ⊂ {1, 2, · · · , n} with |B| = m such that the m × m submatrix B := A[:, B] is nonsingular.
Let N = {1, 2, · · · , n}\B be the complement of the basis and let N := A[:, N ]. Then the equality
constraints read

ByB +NyN = b

Setting yN = 0 yields yB = B−1b. Such a y = [yB ,0] is called a basic solution. If additionally
yB ≥ 0, this basic solution is feasible, then it is called a basic feasible solution (BFS). On the dual
side, we define the slack variable s and its sub-vector restricted to B and N :

s := c−A⊤z, sB := cB −B⊤z, sN := cN −N⊤z.

A pair (y, z) is primal–dual optimal (i.e., satisfies KKT for LP) iff

Ay = b, c = A⊤z + s, y ⊙ s = 0, y ≥ 0, s ≥ 0 (34)

for some s ∈ Rn. If, in addition, there exists a basis B such that

yB ≥ 0, yN = 0, sB = 0, sN ≥ 0, (35)

then the tuple (y, z, s) is called an optimal BFS with a complementary dual. By the fundamental
theorem of linear programming, any feasible instance with finite optimal value (A, b, c) ∈ X admits
an optimal BFS with a complementary dual satisfying (34) and (35) together (Bertsimas & Tsitsiklis,
1997).

While conditions (34) and (35) are enough to ensure the existence of the optimal basic solutions,
they are not enough to ensure that the optimal solution is unique and local Lipschitz continuous w.r.t.
the inputs (A, b, c). To ensure these points, we present two additional conditions based on (34) and
(35):

yB > 0 (Non-degeneracy) (36)
sN > 0 (Strict complementary slackness) (37)

All the conditions together are enough to the uniquenss and local Lischitz continuity. Let’s introduce
a set consisting of all “good” LP instances:

Xsub := {(A, b, c) ∈ X : The LP yields a tuple (y, z, s) satisfying (34), (35), (36) and (37).}

With all the preparations, we can prove Theorem 3.8 now. Actually, proving Theorem 3.8 in the
context of standard-form LP is equivalent to proving the following two theorems.
Theorem E.1. For any LP (A, b, c) ∈ Xsub, it must yield a unique optimal solution y∗, and the
solution mapping (A, b, c) 7→ y∗ is locally Lipschitz continuous everywhere on Xsub.

Theorem E.2. Xsub is a dense subset of X.

Theorem E.1 follows from Dontchev & Rockafellar (1996), which develops Robinson’s notion of
strong regularity (Robinson, 1980) for nonlinear programs. For completeness—and to keep notation
consistent with linear programming—we restate the relevant lemma in an LP-adapted form and then
verify its hypotheses for LP. We begin by quoting the result from Dontchev & Rockafellar (1996).
Lemma E.3 (Dontchev & Rockafellar (1996)). Consider a parameteric nonlinear program:

min
y∈Rn

c⊤y + g0(w,y)
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s.t. gi(w,y) = ui, 1 ≤ i ≤ r

gi(w,y) ≤ ui, r + 1 ≤ i ≤ d

where gi(0 ≤ i ≤ d) are all C2 functions, and c,w and u = [u1, · · · , ud]⊤ are parameters to
describe the program, and consider its Lagrangian with multipliers λ = [λ1, · · · , λd] ∈ Rd given
by

L(w,y, λ) = g0(w,y) +

d∑
i=1

λigi(w,y).

Let (ȳ, λ̄) be a KKT point at (c̄, w̄, ū), and define the index sets at (ȳ, λ̄)

I1 =
{
r + 1 ≤ i ≤ d : gi(w̄, ȳ) = ui, λ̄i > 0

}
∪
{
1, · · · , r

}
,

I2 =
{
r + 1 ≤ i ≤ d : gi(w̄, ȳ) = ui, λ̄i = 0

}
,

I3 =
{
r + 1 ≤ i ≤ d : gi(w̄, ȳ) < ui, λ̄i = 0

}
.

If the following conditions hold:

• The constraint gradients ∇ygi(w̄, ȳ) for i ∈ I1 ∪ I2 are linearly independent; and

• It holds that
⟨y′,∇2

yyL(w̄, ȳ, λ̄)y
′⟩ > 0

for all y′ ̸= 0 in the subspace M =
{
y′ : y′ ⊥ ∇ygi(w̄, ȳ) for all i ∈ I1

}
,

then the KKT solution map (c,w,u) 7→ (y, λ) is locally single-valued and Lipschitz around
(c̄, w̄, ū, ȳ, λ̄).

Proof of Theorem E.1. Taking r = m and d = m+ n. Let a⊤
i be the i-th row of A in standard LP,

and let

gi(w,y) =

{
a⊤
i y, i = 1, . . . ,m,

− yi−m, i = m+ 1, . . . ,m+ n,
ui =

{
bi, i = 1, . . . ,m,

0, i = m+ 1, . . . ,m+ n,

with w collecting the coefficients of A. The Lagrangian in Lemma E.3 becomes

L(w,y, λ) = c⊤y +

m∑
i=1

λi a
⊤
i y +

n∑
j=1

λm+j(−yj).

Introduce the usual dual/primal–slack variables

z := −λ1:m ∈ Rm, s := λm+1:m+n ∈ Rn
≥0,

to rewrite stationarity as ∇yL = c − A⊤z − s = 0, i.e., s = c − A⊤z. Primal feasibility is
Ay = b, y ≥ 0; dual feasibility is s ≥ 0; and complementarity is y ⊙ s = 0. Thus the KKT
system in Lemma E.3 coincides with the standard LP KKT conditions.

Assume (A, b, c) ∈ Xsub, i.e., the LP admits a tuple (ȳ, z̄, s̄) satisfying (34), (35), (36) and (37)
(A nondegenerate and strict complementary basic point). In this context, the index sets I1, I2, I3 at
(ȳ, z̄, s̄) become:

I1 = {1, . . . ,m} ∪ {m+ j : ȳj = 0, s̄j > 0 },
I2 = {m+ j : ȳj = 0, s̄j = 0 },
I3 = {m+ j : ȳj > 0, s̄j = 0 }.

which implies:

• For each j, either ȳj > 0 or s̄j > 0, which implies I2 = ∅.

• I3 is substantially the basis set: I3 = {m+ j : j ∈ B}
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• I1 includes all the indices in the complement of basis: I1 = {1, . . . ,m} ∪ {m+j : j ∈ N}

To verify the hypotheses of Lemma E.3, we examine the gradients:

{∇ygi}i∈I1 = {ai}mi=1 ∪ {−ej}j∈N

In the context of standard LP, |N | = n−m. Hence, {∇ygi}i∈I1 consists of n vectors in Rn. Now
we create a matrix G by stacking these vectors as rows:

G :=


a⊤
1

· · ·
a⊤
m

e⊤j1
· · ·

e⊤jn−m


By properly permuting the columns of G, it becomes

G̃ =

[
B N
0 I

]
where I represents the identity matrix in Rn−m. Since B (the basis matrix) and I are both nonsin-
gular, G̃ (and hence G) must be nonsingular. Therefore, the rows of G are linearly independent,
i.e., {∇ygi}i∈I1 is linearly independent. With I2 = ∅, the first hypothesis of Lemma E.3 holds.
Moreover, because these gradients {∇ygi}i∈I1 span Rn, the M subspace must be trivial: M = {0}.
Therefore, the second hypothesis of Lemma E.3 is automatically satisfied.

By Lemma E.3, the KKT solution map is locally single-valued and Lipschitz around the given
point, which yields the desired local uniqueness and Lipschitz dependence of y∗ on (A, b, c) for
every (A, b, c) ∈ Xsub.

Theorem E.2 can be proved by fundamental concepts in real analysis.

Proof of Theorem E.2. To prove Xsub is dense in X, it’s enough to show that: For any (A, b, c) ∈ X,
one can always create a sequence of LP {(Ak, bk, ck)}k≥1 ⊂ Xsub such that

Ak → A, bk → b, ck → c.

Now let’s fix (A, b, c) ∈ X. As we previously discussed, there must be a tuple (y, z, s) satisfying
(34) and (35). Define:

yk := y +
1

k
eB , sk := s+

1

k
eN , zk := z

so that (yk, zk, sk) must satisfy the nondegeneracy and strict complementary slackness: (35), (36),
and (37). Accordingly, define

Ak := A, bk := Akyk, ck := A⊤
k zk + sk

Then one can verify that the tuple (y, z, s) satisfies (34), (35), (36) and (37) for the LP instance
(Ak, bk, ck), hence (Ak, bk, ck) ∈ Xsub for all k ≥ 1. Finally, such a perturbed LP instance can be
arbitrarily close to (A, b, c) as k → ∞:

∥Ak −A∥ =0

∥bk − b∥ =

∥∥∥∥A(1

k
eB

)∥∥∥∥ ≤ 1

k
∥A∥∥eB∥ =

√
m

k
∥A∥ → 0

∥ck − c∥ =

∥∥∥∥1keN
∥∥∥∥ =

√
n−m

k
→ 0

which finishes the proof.
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F TRAINING STRATEGIES

Unrolling vs implicit differentiation. There are two training strategies adopted in this paper. One
is named “unrolling” (minimizing ℓ(yT )):

min
θ
ℓ(yT ), yt+1 = Gθ(yt,x), t = 0, 1, 2, · · · , T − 1

and the other is named “implicit differentiation” (minimizing ℓ(y∗)):

min
θ
ℓ(y∗), y∗ = Gθ(y∗,x).

These two strategies are closely related. In particular,

• As established in prior literature, unrolled training is mathematically equivalent to a Neumann
series approximation of the implicit gradient (Geng et al., 2021). Specifically, implicit differ-
entiation requires inverting the Jacobian (I − JGθ

)−1; finite unrolling effectively approximates
this inverse via a Neumann series expansion. This is a widely adopted technique in the implicit
model community to avoid the instability and cost of exact inversion.

• Implicit training is simply the limit of unrolled training: as T → ∞, the gradient ∇θℓ(yT )
converges to the implicit gradient ∇θℓ(y∗) (Geng et al., 2021).

Overall, unrolling and root-finding are merely two numerical implementations for approximating
the same fixed point, y∗(x), and technically speaking, there is no significant gap or distinction
between the two. Theoretically, infinite unrolling converges exactly to y∗(x). In practice, unrolling
depth simply controls the trade-off between accuracy and computational cost: a dynamic strictly
analogous to setting the error tolerance in implicit root-finding solvers.

Particularly in our paper, for Case Studies 1 & 2, we employ implicit differentiation (minimizing
ℓ(y∗)) via root-finding; for Case Study 3, we adopt unrolling to train implicit GNNs, which serves
as a truncated Neumann approximation of the implicit GNN gradient; for Case Study 4, we directly
use the pretrained model from Geiping et al. (2025).

Guarantees of Regularity and the Expressivity Trade-off. While our experiments demonstrate
that standard training (either unrolling and implicit differentiation defined above) empirically results
in regular implicit operators, we do not explicitly enforce this property in the loss function. Designing
training mechanisms that theoretically guarantee regularity without sacrificing the model’s unique
expressive capabilities remains an open and interesting future topic.

Recall that regularity (Definition 2.3) comprises two conditions: the Lipschitz continuity of the
map x 7→ Gθ(y,x) and the contractivity of the map y 7→ Gθ(y,x). The first condition is largely
inherent to standard deep learning architectures; compositions of affine layers with bounded weights
and 1-Lipschitz activations (e.g., ReLU) naturally preserve Lipschitz continuity with respect to the
input Miyato et al. (2018); Virmaux & Scaman (2018). Therefore, the critical challenge lies in
guaranteeing the second condition: contractivity with respect to the state y.

A substantial body of literature has sought to enforce this contractivity by construction (e.g.,
El Ghaoui et al. (2021); Winston & Kolter (2020); Jafarpour et al. (2021); Revay et al. (2020);
Havens et al. (2023)). These approaches typically impose rigid structural constraints, such as pa-
rameterizing the model as a one-layer nonlinear MLP: Gθ(y,x) = σ(Ay + Bx + b) and strictly
bounding the spectral norm of A, or enforcing global monotonicity.

However, these methods generally enforce a uniform contraction modulus µ across the entire domain
x ∈ X. Our theoretical analysis suggests that such uniformity fundamentally undercuts the unique
expressive advantage of implicit models. As illustrated in Figure 1, for a sequence of continuous
iterates yt(x) to converge to a target F(x) that is discontinuous or has singularities, the conver-
gence cannot be uniform. This implies that the convergence rate—and consequently the operator’s
contraction modulus µ(x)—must be adaptive, varying with x to allow for slower convergence in
complex regions. Enforcing a globally uniform µ severs this adaptive capability, thereby severely
constraining the model’s expressive power.

Therefore, developing novel regularization techniques that can guarantee adaptive contractivity (en-
suring 0 < µ(x) < 1 locally while allowing it to vary over x) is a critical direction for future
research to balance theoretical stability with maximal expressivity.
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G EXPERIMENT DETAILS REGARDING IMAGE RECONSTRUCTION

This section complements the main text with additional implementation and dataset details for the
inverse-problem experiments.

Experiment settings. We consider an image deblurring task, x = A(y∗) + n, where A is the
blur operator and n is the Gaussian noise (σ = 0.03). We use a motion-blur operator, and the
blur kernel is the first of the eight kernels from Levin et al. (2009). Ground-truth images y∗ come
from BSDS500 (Martin et al., 2001). We follow the official splits (200 train / 100 validation / 200
test) and apply a random 128 × 128 crop to each image. For each y∗, we generate the correspond-
ing x by applying A and adding noise. The resulting pairs (x,y∗) form three datasets Dinv,train,
Dinv,val, and Dinv,test for training, validation, and testing, respectively. In both PGD and HQS style
parameterizations ((5) and (6)), the operator H is implemented with DRUNet (Zhang et al., 2021).

Training. We initialize H using pretrained weights from the Deepinv library (Tachella et al., 2025)
and then fine-tune the full implicit models on the BSDS500 training set for this deblurring task.
Training follows the vanilla Jacobian-based implicit differentiation and is implemented on top of the
official Deepinv framework. All models were trained with Adam (learning rate 10−4, batch size 3).
Explicit baselines were trained for 20 epochs, and the implicit models for 10 epochs. After each
epoch we evaluated on the validation set and saved the checkpoint; the final model used for testing
is the one with the lowest validation loss. These epoch budgets were sufficient for validation-loss
convergence.

PSNR. PSNR (Peak Signal-to-Noise Ratio) is defined between a reference y∗ and reconstructed
image y as

PSNR(y,y∗) := 10 log10

(
n · MAX2

∥y − y∗∥2

)
where n is the dimension of y and y∗, and MAX means the max possible pixel value (e.g., 255 for
8-bit, or 1 if images are in [0, 1]. In our context, it is 1. Higher PSNR means better (more accurate)
reconstruction.

Standard test set. Evaluation uses the 200 images from the official BSDS500 test split, randomly
cropped to 128× 128. Let Dinv,test = {(xi,y

∗
i )}200i=1, where

xi = A(y∗
i ) + ni, ni ∼ N (0, σ2I), σ = 0.03.

Here y∗
i denotes the clean (ground-truth) image and xi its corresponding blurred–noisy observation

under the forward model A.

Perturbed test set. To empirically validate our theory, we created a perturbed version of the test
set. To create a diverse and representative set of perturbations, we generate perturbations that cor-
respond to different frequency levels. Image frequencies represent different levels of detail, where
low frequencies capture smooth, large-scale areas, and high frequencies capture sharp edges and fine
textures. By probing the model with perturbations across this spectrum, we can comprehensively
evaluate its behavior.

Specifically, we construct each perturbation by targeting a singular vector of the forward operator
A. Because A is (circular) convolution, its singular vectors are Fourier modes. For each image
y∗
i and each frequency magnitude f ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we first identify the 2D discrete

Fourier frequencies and sort them by their geometric distance from the origin. We then select the
frequency coordinate (u, v) at the f -th percentile of this sorted list. A one-hot tensor is created in
the Fourier domain with a value of 1.0 at the chosen (u, v) position and zeros elsewhere. This sparse
frequency representation is transformed back into the image domain by applying the adjoint of the
blur operator, A⊤. These perturbations are visualized in Figure 9. Adding them to y∗

i respectively
yields perturbed clean images y∗

i,j (j = 1, . . . , 5); we then form the corresponding observation

xi,j = A(y∗
i,j) + ni, ni ∼ N (0, σ2I).

The perturbed evaluation set is

D′
inv,test =

{
(xi,j ,y

∗
i,j) : 1 ≤ i ≤ 200, 1 ≤ j ≤ 5

}
.

For convenience we also define the unperturbed index j = 0 by xi,0 := xi and y∗
i,0 := y∗

i .
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frequency=0.1 frequency=0.3 frequency=0.5 frequency=0.7 frequency=0.9

Figure 9: Visualized perturbations for inverse problems.

Table 3: Deeper explicit models vs implicit models for image deblurring (PGD architecture). “Exp
(×T )” represents an explicit model T times deeper than the implicit baseline. O/M denotes CUDA
Out of Memory during training.

Exp (×1) Exp (×2) Exp (×4) Exp (×8) Exp (×16) Exp (×32) Implicit
Params. 32.641 M 65.282 M 130.56 M 261.13 M 522.26 M 1044.5 M 32.641 M
PSNR 27.14 dB 27.64 dB 27.89 dB 28.11 dB 28.27 dB O/M 28.21 dB

Table 4: Deeper explicit models vs implicit models for image deblurring (HQS architecture). “Exp
(×T )” represents an explicit model T times deeper than the implicit baseline. O/M denotes CUDA
Out of Memory during training.

Exp (×1) Exp (×2) Exp (×4) Exp (×8) Exp (×16) Exp (×32) Implicit
Params. 32.641 M 65.282 M 130.56 M 261.13 M 522.26 M 1044.5 M 32.641 M
PSNR 26.94 dB 28.02 dB 28.35 dB 28.69 dB 28.87 dB O/M 29.18 dB

Platform. All experiments were run on a workstation with eight Quadro RTX 6000 GPUs.

Additional Experiments. Implicit models often excel on imaging tasks, but a natural question
is whether simply stacking more explicit layers (i.e., deepening the model) can close the gap. To
probe this, we construct explicit counterparts to implicit models by untying the parameters across
iterations:

min
Θ

Exℓ(yT ,y∗), s.t. yt = GΘ(t)(yt−1,x), t = 1, · · · , T

where each block GΘ(t) has the same architecture as in the implicit case (PGD or HQS), but Θ(t)

are separate for each t. This is equivalent to stacking T blocks to form a deeper explicit model with
more learnable parameters. Unlike implicit models (which can use different iteration counts at
train vs. test), these explicit models must use the same T for both training and testing. We evaluated
T ∈ {1, 2, 4, 8, 16, 32} to compare against the corresponding implicit models.

Tables 3 and 4 report results on image deblurring. Across both PGD and HQS settings, deepening
explicit models increases parameter counts massively (up to ∼ 1 billion) but yields diminishing
returns in PSNR. Crucially, the implicit models achieve performance comparable to or better than
explicit models that are 16× deeper, while using a fraction of the parameters (32.6 M vs. 522 M).
For instance, in the HQS setting, the implicit model (29.18 dB) outperforms the explicit model with
16 unrolled blocks (28.87 dB).

Furthermore, training extremely deep explicit models (e.g., T = 32) becomes infeasible due to
memory constraints (O/M). This highlights the distinct efficiency advantage of the weight-tied im-
plicit approach: it theoretically allows for infinite depth (realized here as 100 test-time iterations)
while maintaining constant parameter counts (32.6 M) and memory usage.

H EXPERIMENT DETAILS REGARDING SCIENTIFIC COMPUTING

Model structure and training. Given cell-averaged forces x ∈ RH×W×2 and vorticities y ∈
RH×W×1, where H means the height and W means the width, we learn

z∗ = GΘ

(
z∗, QΦ(x)

)
, y∗ = QΨ(z∗),
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where z∗∈RH×W×C is a latent field with C channels. At inference, we iterate

zt = GΘ

(
zt−1, QΦ(x)

)
,

for 1 ≤ t ≤ T and finally call yT = QΦ(zT ).

The projection QΦ is a pointwise linear encoder applied at each grid cell to lift into C channels. In
particular, g = QΦ(x) reads

g = W1x+ b1 ∈ RH×W×C

where Φ = (W1, b1) are learnable parameters.

The core map GΘ(z, g) stacks L identical FNO layers with input injection:

z(0) = z

z(l) = σ
(
g +W

(l)
2 z(l−1) + b

(l)
2 + IFFT(R(l) · FFT(z(l−1)))

)
, l = 1, 2, · · · , L,

GΘ(z, g) = z(L)

where Θ = {W (l)
2 , b

(l)
2 ,R(l)}Ll=1 are learnable parameters. Each layer: (i) performs a global spec-

tral convolution on z: take an FFT of the C-channel tensor, keep only a small set of low Fourier
modes. Suppose the number of retained Fourier modes is K ×K (2D FFT), FFT(z) ∈ CK×K×C .
For each retained mode (k1, k2) multiply theC-dimensional channel vector by a learnable dense ma-
trix R

(l)
k1,k2

∈ CC×C (mixing channels) and hence the overall matrix is of size R(l) ∈ CK×K×C×C ,
then apply an inverse FFT; (ii) adds a local pointwise transform, adds the injected encoder features
QΦ(x), and applies a nonlinearity. This realizes a resolution-invariant, globally receptive operator
that naturally respects periodic boundary conditions.

Finally, we decode with the pointwise readout QΨ (a small per-cell two-layer MLP) to produce
y ∈ RH×W×1 where Ψ are learnable parameters.

All samples use H = W = 128. Unless stated otherwise, we set the latent width C = 32, retain
K = 12 Fourier modes per dimension in the FNO blocks, and use L = 3 FNO layers inside GΘ.
Training differentiates implicitly through the fixed point, and the fixed-point solver uses Anderson
acceleration. We optimize with Adam (learning rate 5×10−3, batch size 16). For explicit baselines,
we train for 500 epochs, which suffices for the training loss to converge.

Perturbed data generation. In this paragraph, we describe how we generate perturbed samples
in D′

pde,test. We take the dataset of Marwah et al. (2023) as the unperturbed set Dpde,test and create
perturbations by linearizing the steady NS equation (7). Each sample (f, ω) comprises a forcing
term f and its vorticity solution ω. Directly prescribing f and solving for ω is computationally
costly; following Marwah et al. (2023), we instead prescribe ω and obtain the corresponding f by
evaluating the PDE operator (not by solving the PDE). In our setting, the base samples are given;
thus we first construct a solution perturbation δω and then compute the induced forcing perturbation
δf via the linearization, yielding the perturbed pair (f + δf, ω + δω).

Note that, while the dataset is discrete, we use the continuous notation f, ω, u in this section to ease
reading and to remain consistent with the PDE literature. In addition, we use ξ = (ξ1, ξ2) as the
special domain variable to keep consistent with our main text, and use k = (k1, k2) as the frequency
domain variable.

(Generate δω). Fix a target wavenumber k∗ ∈ N and a desired L2–magnitude η > 0. We construct
δω by

δω(ξ1, ξ2) = A sin
(
k∗ξ1 + k∗ξ2

)
, A chosen so that ∥δω∥L2(Ω) = η.

The wavenumber is selected from a user–specified frequency percentile pfreq relative to the maxi-
mum resolvable frequency kmax = H/2 =W/2, namely

k∗ = pfreq × kmax (rounded to the nearest integer mode).

In our code we set the grid size H =W = 128, the perturbation strength η = 0.01, and choose

pfreq ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99}.

Accordingly, each original sample yields 15 perturbed samples.
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Table 5: Implicit FNO vs deeper Explicit FNO. “Exp(×l)” denotes an explicit model that is l times
deeper than the implicit FNO. O/M indicates a CUDA out-of-memory error during training.

Exp(×1) Exp(×2) Exp(×4) Exp(×8) Exp(×16) Exp(×32) Implicit
Params. 2.376 M 4.155 M 7.713 M 14.83M 29.06M 57.52M 2.376 M
Rel. Err. 0.1787 0.1526 0.1410 0.1380 0.1360 O/M 0.0785

Table 6: Implicit FNO vs wider Explicit FNO. “Exp(×w)” denotes an explicit model that is w times
wider than the implicit FNO. O/M indicates a CUDA out-of-memory error during training.

Exp(×1) Exp(×2) Exp(×4) Exp(×8) Implicit
Params. 2.376 M 9.504 M 38.01 M 152.0M 2.376 M
Rel. Err. 0.1787 0.1555 0.1401 O/M 0.0785

(Generate velocity from vorticity). Given a scalar vorticity field ω (and its perturbation δω), we
recover the corresponding velocities u via a streamfunction ψ given by

u = (∂2ψ, −∂1ψ), ω = −∆ψ.

Hence ψ is obtained by solving the Poisson equation ∆ψ = −ω, after which we obtain u. On a
periodic grid, these operators are implemented efficiently in the Fourier domain.

(Linearization and the perturbed vorticity forcing δg). Applying the (scalar) curl “∇×” to both sides
of (7) yields the steady vorticity form

(u·∇)ω − ν∆ω = g, g = ∇× f = ∂1f2 − ∂2f1,

where f = (f1, f2) is the body force and g is its curl. Introducing perturbations (δu, δω, δg) and
expanding

(u+ δu)·∇ (ω + δω) − ν∆(ω + δω) = g + δg,

then subtracting the base equation and discarding higher–order terms gives the first–order relation

δg = (u·∇) δω + (δu·∇)ω − ν∆ δω.

Again, for numerical implementation on a periodic grid, the differential operators are applied effi-
ciently in the Fourier domain.

(Recover the vector force δf from its curl δg). We recover a periodic δf = (δf1, δf2) satisfying
∇× δf = δg by solving a Poisson equation for an auxiliary streamfunction ψ and obtain δf exactly
as in “Generate velocity from vorticity.”

Additional Experiments: Scaling Explicit Models. A natural question is whether the performance
gap between implicit and explicit models can be bridged simply by scaling up the explicit architec-
ture (i.e., stacking more layers or increasing channel width). To investigate this, we compared the
implicit FNO against explicit baselines scaled significantly in two dimensions: depth (up to 32×)
and width (up to 8×). The results, summarized in Table 5 and Table 6, demonstrate that while
scaling explicit models yields modest accuracy gains, it faces severe diminishing returns and com-
putational bottlenecks (eventually leading to CUDA Out-of-Memory errors). Crucially, the implicit
model achieves markedly better performance (lowest relative error of 0.0785) than even the largest
viable explicit models, despite the explicit counterparts using over 10× the number of parameters
(e.g., 29.06 M for Exp(×16) vs. 2.376 M for Implicit). This confirms that the implicit formulation
provides an expressive advantage that cannot be efficiently replicated by simply allocating more
capacity to an explicit solver.

Note: These findings are broadly consistent with Marwah et al. (2023). We follow their setup with
two minor deviations: we use a smaller training batch size (16) due to hardware limits, and while
we keep T = 24 training iterations for the implicit model, at inference we run T = 50, because we
observe that the trained implicit models remain stable and often benefit from additional fixed-point
iterations at test time.
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I EXPERIMENT DETAILS REGARDING LP

GNN model details. We implement (9):

z∗ = GΘ(z∗,QΦ(x)), y∗ = QΨ(z∗)

with an L-layer message-passing GNN (Scarselli et al., 2008; Xu et al., 2019) on the bipartite graph.
Let N (i) (resp. N (j)) be the neighbors of constraint node Wi (resp. variable node Vj). With shared
MLPs across all nodes and edges, the GNN structure is given by:

Input-embedding: W
(0)
i = MLPϕ1(bi, ◦i),

V
(0)
j = MLPϕ2

(cj , lj , uj , zin,j)

Message-passing (1 ≤ l ≤ L− 1) : W
(l)
i = MLP

θ
(l)
1

W (l)
i ,

∑
j∈N (i)

Aij · MLP
θ
(l)
2

(
V

(l−1)
j

) ,

V
(l)
j = MLP

θ
(l)
3

V (l)
j ,

∑
i∈N (j)

Aij · MLP
θ
(l)
4

(
W

(l−1)
i

)
Output-embedding: zout,j = MLPθ5

(
V

(L)
j

)
We write this compactly as follows.

zout = GΘ(zin,QΦ(x))

where Θ =
{
{θ(l)1 }L−1

l=1 , {θ
(l)
2 }L−1

l=1 , {θ
(l)
3 }L−1

l=1 , {θ
(l)
4 }L−1

l=1 , θ5

}
are trainable parameters in the GNN,

Φ = {ϕ1, ϕ2} includes the trainable parameters of the input embedding. The input x includes all
static information x := (A, b, c, ◦, l,u). Finally, the output embedding y = QΨ(z) is given by

yj = MLPΨ(zj)

for every variable node j. All MLPs in GΘ, QΦ, and QΨ use two layers with ReLU activations. We
sweep widths (or embedding sizes) in {4, 8, 16, 32} and report results in the main text.

Note that l is the layer index within the GNN structure, not the iteration number t. All parameters
in Θ are independent of the iteration number, so this GNN can be applied iteratively. x is the static
features and z is the dynamic feature. In addition, removing the dynamic input zin and decoding
directly to y recovers the standard (explicit) GNN baseline.

Dataset generation. We largely follow Chen et al. (2023) to construct the training set DLP,train and
test set DLP,test, drawing (A, b, c, ◦, l,u) i.i.d. from the same distribution. Each LP has 50 variables
and 10 constraints. The matrix A is sparse with 100 nonzeros whose locations are chosen uniformly
at random and whose values are sampled from a standard normal distribution. Entries of b and c are
sampled i.i.d. from Unif[−1, 1], after which c is scaled by 0.01. Variable bounds l,u are sampled
coordinatewise from N (0, 10); whenever lj > uj we swap them. Constraint types are sampled
independently with Pr(◦i = “ ≤ ”) = 0.7 and Pr(◦i = “ = ”) = 0.3. Under this generator, the
feasibility probability is approximately 0.53; we retain only feasible instances, yielding 2,500 LPs
for training and 1,000 for testing. Solutions are computed with scipy.optimize.

To build the perturbed datasets D(j)
LP,test, we perturb one component at a time while holding the others

fixed. For c, draw δc with i.i.d. standard normal entries, normalize, and scale to magnitude 10−4:

c′ = c+ 10−4 × δc

∥δc∥
.

We apply the same procedure to b, l, and u. For A, we perturb only existing nonzeros to preserve
the sparsity pattern: let S = {(ik, jk)}nnz(A)

k=1 be the nonzero locations and draw δa ∈ R|S| i.i.d.
standard normal; normalize and scale so ∥δa∥ = 10−4, then set

A′
ik,jk

= Aik,jk + (δa)k for (ik, jk) ∈ S, A′
i,j = Ai,j otherwise.
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This yields five perturbed versions (perturbing A, b, c, l, or u separately). We evaluate the estimated
Lipschitz constants Lt and relative errors Et on each version and report the results in the main text.

Training method. To train our implicit GNNs, we employ a two-stage curriculum strategy. The
model is trained by unrolling its iterative updates for a fixed number of steps, T, and minimizing the
loss on the final output:

min
Θ,Φ,Ψ

∑
(x,y∗)∈DLP,train

ℓ(yT ,y∗)

s.t. z0 = 0

zt = GΘ(zt−1,QΦ(x)), t = 1, 2, · · · , T
yT = QΨ(zT )

We set the final unroll horizon to T = 6, as we observed no significant improvements with longer
sequences. Training directly with T = 6 is inefficient, so we adopt a two-stage curriculum. This
approach is a standard practice in the Learning to Optimize field for training implicit or unrolled
models that solve optimization problems (Chen et al., 2022c). This approach begins with a shorter
unroll horizon and a larger learning rate, using the trained model to warm-start the subsequent stage
with a longer horizon and a reduced learning rate. This strategy is often described as “layerwise
training” (Chen et al., 2018; Liu et al., 2019) or “curriculum learning” (Chen et al., 2020). In our
settings: Stage 1 uses T = 3 with a learning rate 0.01; Stage 2 uses T = 6 with a learning rate 10−4.
Both stages use Adam optimizer.

For a fair comparison, the non-iterative explicit GNNs are trained using the same two-stage learn-
ing rate schedule. This regimen proved effective, as the training errors for our explicit baselines
surpassed those reported in prior work (Chen et al., 2023).

At the inference time, T can be chosen as the unroll length in the training stage, or moderately
longer. In our experiments, we use T = 8 at the inference time, as we do not observe significant
improvement with a larger number of iterations.

Remark. While we employ unrolled training rather than the vanilla Jacibian-based implicit differ-
entiation, we classify our approach as an “implicit model” because the underlying architecture, a
weight-tied update zt = GΘ(zt−1,QΦ(x)), remains identical. The distinction lies solely in the
numerical implementation: as established by Geng et al. (2021), unrolled training is mathemati-
cally equivalent to a Neumann series approximation of the implicit gradient. Thus, unrolling and
root-finding are simply two valid strategies for approximating the same fixed point, y∗(x). This
equivalence is widely recognized in the Implicit GNN literature, where Neumann approximations
are standard for scaling to large graphs (e.g., (Baker et al., 2023)). Since our focus is on expressiv-
ity rather than optimization mechanics, we treat both formulations as belonging to the same model
class.

J BROADER CONTEXTUAL DISCUSSIONS

While our work primarily establishes the expressive power of implicit models through the lens of
fixed-point iterations, we situate our contributions within the broader landscape of implicit model
theory in this section.

Universality and expressivity. Despite its foundational importance, a general and systematic theory
of expressive power for implicit models remains largely open. To our knowledge, existing results
address only specific facets of the problem. For example, while Bai et al. (2019) demonstrated that
an operator g exists such that its fixed point reproduces any explicit network f , this existence result
crucially does not guarantee that the fixed-point iteration (1) actually converges. Other works have
established universality within restricted domains, such as steady-state PDEs Marwah et al. (2023),
or proven separation results where implicit models outperform explicit counterparts in specific set-
tings Wu et al. (2024). While insightful, none of these studies provide a complete characterization
of the general function class representable by implicit models, nor do they directly address the fun-
damental questions (Q1) and (Q2) raised in our introduction.

Contrast with explicit models. First, consider the setting where the model is subject to a global
Lipschitz constraint (e.g., Lip(fθ) ≤ 1), which is common for robustness and stability. In this
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case, explicit feedforward networks are mathematically strictly limited to representing globally 1-
Lipschitz maps (Murari et al., 2025). Consequently, they are fundamentally incapable of express-
ing locally Lipschitz targets whose gradients become arbitrarily large (such as 1/x near zero). In
contrast, our work demonstrates that implicit models break this barrier: a simple, globally regular
operator (Lipschitz in x, contractive in y) can generate complex, locally Lipschitz fixed-point maps
via iteration. This “Simple Operator → Complex Fixed Point” mechanism is the core difference
claimed in our paper.

Second, if we remove constraints, Beneventano et al. (2021) have shown that deep ReLU networks
can indeed approximate locally Lipschitz functions on arbitrary compact sets. However, achieving
high precision for such complex targets requires the explicit model size (depth/width) to grow ar-
bitrarily large. Here lies the crucial distinction: explicit models scale expressivity with model size,
whereas implicit models are able to scale expressivity with test-time iterations. This allows implicit
models to represent increasingly complex functions dynamically without adding parameters.

Training Dynamics and Convergence. A significant body of work focuses on the optimization
mechanics of implicit models. Geng et al. (2021) rigorously established the equivalence between
unrolled training and implicit differentiation via Neumann series approximations, validating the
training methodologies used in our case studies. Ling et al. (2023); Truong (2025) provide global
convergence guarantees and rate analyses for the training in over-parameterized deep equilibrium
models. While these studies ensure that training algorithms can successfully minimize the loss,
our work addresses the fundamental antecedent question: whether a model exists that is capable of
representing the target function in the first place.

Generalization. Distinct from expressivity, Fung & Berkels (2024) derive generalization bounds for
families of implicit networks, characterizing their ability to perform on unseen data. Our analysis
focuses on approximation capacity—the ability to construct an operator that exactly reproduces a
target map—which is orthogonal to the sample complexity and generalization bounds discussed in
their work.

Infinite-Width Limits and Kernel Connections. Recent research has sought to bridge the gap
between implicit models, explicit deep networks, and kernel methods. Gao et al. (2022) extend the
over-parameterization theory of explicit networks to implicit models, establishing well-posedness
and convergence even in finite-width regimes where standard infinite-depth results do not directly
apply. In the infinite-width limit, Feng & Kolter (2023) formally derive the Neural Tangent Ker-
nel (NTK) for equilibrium models, characterizing their training dynamics in the linear regime. On
the architectural side, Ling et al. (2024) show that for high-dimensional Gaussian mixtures, deep
equilibrium models can be functionally equivalent to shallow explicit networks. In contrast to these
kernel-based or distribution-specific analyses, our work adopts a non-parametric function-space
perspective; we demonstrate that for general locally Lipschitz targets, the expressive power of im-
plicit models is not static but scales dynamically with test-time computation, a property distinct from
the linear regimes often studied in kernel theory.

K LLM USAGE STATEMENT

We used LLMs solely as a writing-polish assistant across all sections in the main text and appendix.
Its role was limited to grammar fixes, wording/flow improvements, and rephrasing of text that we
originally drafted. All model suggestions were reviewed, verified, and, when necessary, edited by
the authors to ensure accuracy. The authors take full responsibility for the final manuscript, including
any text influenced by LLM assistance.
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