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Abstract
Multiphysics simulation, which models the in-
teractions between multiple physical processes,
and multi-component simulation of complex
structures are critical in fields like nuclear and
aerospace engineering. Previous studies use nu-
merical solvers or ML-based surrogate models for
these simulations. However, multiphysics simu-
lations typically require integrating multiple spe-
cialized solvers—each for a specific physical pro-
cess—into a coupled program, which introduces
significant development challenges. Further-
more, existing numerical algorithms struggle with
highly complex large-scale structures in multi-
component simulations. Here we propose compo-
sitional Multiphysics and Multi-component PDE
Simulation with Diffusion models (M2PDE) to
overcome these challenges. During diffusion-
based training, M2PDE learns energy functions
modeling the conditional probability of one phys-
ical process/component conditioned on other pro-
cesses/components. In inference, M2PDE gener-
ates coupled multiphysics and multi-component
solutions by sampling from the joint probabil-
ity distribution. We evaluate M2PDE on two
multiphysics tasks—reaction-diffusion and nu-
clear thermal coupling—where it achieves more
accurate predictions than surrogate models in
challenging scenarios. We then apply it to a
multi-component prismatic fuel element problem,
demonstrating that M2PDE scales from single-
component training to a 64-component structure
and outperforms existing domain-decomposition
and graph-based approaches. The code is at
github.com/AI4Science-WestlakeU/M2PDE.
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1. Introduction
Multiphysics simulation involves the concurrent modeling
of multiple physical processes—such as heat conduction,
fluid flow, and structural mechanics—within a single sim-
ulation framework to accurately capture the coupling ef-
fects between different physical processes. Similarly, multi-
component simulation focuses on simulating complex struc-
tures composed of multiple similar components. Compo-
nent is defined as: a repeatable basic unit that makes up
a complete structure. For example, the reactor core typi-
cally consists of hundreds or thousands of fuel elements
arranged in a square or hexagonal pattern. These simula-
tions are essential across various scientific and engineering
disciplines, including nuclear engineering (Ma et al., 2022;
Chen et al., 2021), aerospace engineering (Candeo et al.,
2011; Wang et al., 2023a), civil engineering (Sun et al.,
2017; Meyer et al., 2022), and automotive industry (Ragone
et al., 2021). Despite their significance, both multiphysics
and multi-component partial differential equation (PDE)
simulations share a common challenge: while simulating
individual components or physical processes is relatively
straightforward, modeling the entire system with all its in-
teractions is vastly more complex.

Numerous numerical algorithms have been developed for
multiphysics simulation, which are broadly categorized into
loose coupling and tight coupling (Hales et al., 2015). Loose
coupling solves each physical process independently, itera-
tively transferring solutions until convergence, using meth-
ods like operator splitting (MacNamara & Strang, 2016)
and Picard iteration (Terlizzi & Kotlyar, 2022). Tight cou-
pling solves all processes simultaneously in a large system
(Knoll & Keyes, 2004), which can be more accurate but
faces challenges such as high computational costs, varying
spatial and temporal resolutions, and differing numerical
methods across physical processes. Thus, loose coupling is
more commonly used in engineering applications. In multi-
component simulation, directly simulating the overall struc-
ture requires high computational cost and may encounter
difficulties in convergence due to the increase in degrees of
freedom. Substructure methods have been used in fields like
nuclear engineering (Chen et al., 2021) and civil engineer-
ing (Sun et al., 2017) to reduce modeling and computational
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costs for repetitive components.

Despite advances in numerical algorithms, several signif-
icant challenges remain in engineering applications. In
multiphysics simulations, considerable time and effort are
required to develop programs that couple different special-
ized solvers. Furthermore, the complexity of the system
increases due to coupling, requiring more computing re-
sources. While some studies employ machine learning-
based surrogate models to accelerate simulations (Sobes
et al., 2021; Park et al., 2021), these models still depend on
coupled data for training, which necessitates the prior devel-
opment of coupled numerical solution programs. In the case
of multi-component simulations, the substructure method
has primarily been applied to mechanical problems, with no
widely applicable general method for multi-component sys-
tems. Consequently, current methods often rely on selecting
representative units for detailed analysis or introducing sim-
plifications to the overall structure, which may compromise
the accuracy and scope of the simulations.

To address these challenges in engineering applications, we
propose compositional Multiphysics and Multi-component
PDE Simulation with Diffusion models (M2PDE). The core
innovation of M2PDE is its treatment of multiphysics and
multi-component PDE simulations as generative probabilis-
tic modeling, where interactions between multiple physical
processes or components are captured through composing
learned energy functions conditioned on others in a struc-
tured way. In multiphysics simulation, M2PDE generates
coupled solutions (accounting for interactions between dif-
ferent physical processes) from decoupled data (assuming
other fields are known and focused on solving a single field)
by modeling the solutions of physical processes as a joint
probability distribution. The solution for each individual
process is treated as a conditional probability distribution,
based on Bayes’ theorem. By training diffusion models
(Ho et al., 2020) on decoupled data, we capture these condi-
tional distributions. During inference, the model combines
these distributions and performs reverse diffusion to produce
the coupled solution. For multi-component simulations,
M2PDE models each component’s solution as a conditional
probability distribution using the local Markov property,
conditioned on neighboring components. By training dif-
fusion models on small structures, we create conditional
models for individual components. During inference, re-
verse diffusion is applied iteratively across all components,
yielding the solution for the entire structure. We have math-
ematically derived the principles why M2PDE can obtain
coupled solutions and large structure solutions in Sections
3.1 and 3.2. A schematic of M2PDE is provided in Fig. 1.

We illustrate the promise of this approach through simplified
problems in practical engineering, both of which are impor-
tant in nuclear engineering and has widespread implications

across engineering. First, we demonstrate its capability for
multiphysics simulation by applying it to coupled reaction-
diffusion equations and nuclear thermal coupling combined
with conjugate heat transfer. Second, we verify its capa-
bility in multi-component simulation through thermal and
mechanical analysis of prismatic fuel elements.

Concretely, our contributions are threefold: (1) We intro-
duce a novel approach, M2PDE, for multiphysics and multi-
component PDE simulations, framing the problem in terms
of joint probabilistic modeling. By training on decoupled
(small structure) training data, it can generate coupled (large
structure) solutions. (2) We create and open-source bench-
mark datasets for both multiphysics and multi-component
PDE simulations, providing a valuable resource for future
research. (3) Our method demonstrates success in both
domains. For multiphysics simulation, M2PDE accurately
predicts coupled solutions in complex problems where surro-
gate models fail. In multi-component simulations, M2PDE,
trained on single components, accurately predicts larger
structures with up to 64 components.

2. Related Work
Multiphysics simulation. Most existing studies develop
unified surrogate models for all physical processes by cou-
pling solutions (Tang et al., 2024; Ren et al., 2020; Park
et al., 2021; Wang et al., 2023b). For complex problems,
programs for each physical process are typically indepen-
dent. It is often feasible to establish a surrogate model for
one specific physical process and then integrate it with other
numerical programs (El Haber et al., 2022; Han et al., 2019).
Alternatively, surrogate models can be constructed sepa-
rately for each physical processes and iteratively converged
through an iterative process (Sobes et al., 2021). Because
the purpose of our algorithm is to infer coupled solutions
through models trained with decoupled data, and establish-
ing the surrogate model for all physical processes requires
coupling solution training models, we adopt the method
of establishing surrogate models for each physical process
separately as the baseline to validate the proposed algorithm.

Multi-component simulation. To our knowledge, there do
not exist utilized machine learning methods specifically de-
signed for multi-component simulation. A relevant study is
the CoAE-MLSim algorithm (Ranade et al., 2021). This al-
gorithm combines neural networks with numerical iteration.
It first partitions the computational domain into multiple sub-
domains, and then trains a neural network to learn the flux
conversation between subdomains, similar to the domain
decomposition algorithm (Chan & Mathew, 1994). During
inference, the neural network with flux conservation is ap-
plied sequentially in each subdomain, looping until conver-
gence. We further extend this algorithm to multi-component
simulation and use it as a baseline. Besides, graph neural
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Figure 1. M2PDE schematic. Our proposed algorithm can use models trained with decoupled data to predict coupled solutions (top) and
use models trained with small structure to predict large structures (here 64 components)(bottom).

network (GNN) (Wu et al., 2020; Fan et al., 2024) can learn
on small graphs and inference on larger graphs (Xu et al.,
2019); Graph Transformer (Kreuzer et al., 2021) employs
the Laplacian matrix of a graph to characterize its structure,
and by leveraging the Transformer architecture, it achieves
learning on graphs. We also compare M2PDE with GNN
and Graph Transformer.

Compositional models. Recent research has extensively ex-
plored the compositional combination of generative models
for various applications, including image or video synthe-
sis (Du et al., 2020; 2023; Po & Wetzstein, 2024; Yang
et al., 2023), multimodal perception (Li et al., 2022), trajec-
tory planning (Du et al., 2019; Urain et al., 2023), inverse
design (Wu et al., 2024b), and data assimilation (Rozet
& Louppe, 2023). A particularly effective approach for
combining predictive distributions from local experts is the
product of experts framework (Hinton, 2002; Cohen et al.,
2020). Their focus is on how a single object is influenced
by multiple factors, such as generating images that meet
various requirements in image generation (Du et al., 2023)
or enhancing the lift-to-drag ratio under the influence of two
wings in inverse design (Wu et al., 2024b). However, our
problem involves multiple objects, such as multiple physical
processes and components, requiring the capture of interac-
tions between these fields or components. Existing research
is not applicable to multiphysics and multi-component PDE
simulation. To the best of our knowledge, we are the first
to introduce a compositional generative approach to multi-
physics and multi-component PDE simulations, demonstrat-
ing how this framework enables generalization to far more

complex simulation tasks than those encountered during
training.

3. Method
In this section, we introduce the principle of M2PDE solv-
ing multiphysics and multi-component PDE simulation in
section 3.1 and section 3.2, respectively.

3.1. Multiphysics simulation

Consider a complex multiphysics simulation that consists of
multiple physical processes : z = (z1, z2, . . . , zN ), each zi
represents the trajectory of one or more physical fields that
belong to that specific i-th physical process. For example,
the mechanics might contain both the stress and strain fields
in three directions over a given time interval [0, T ]. Each
process zi has its own governing equation which depends
on other processes , and solving equations for other pro-
cesses also requires that process. Therefore, all equations
must be solved simultaneously to achieve the most accurate
representation of the physical system.

Simulating all the processes z together can be challeng-
ing, while it will be simple if we simulate a single
process zi. By specifying the other processes z̸=i =
(z1, ..., zi−1, zi+1, ..., zN ) and the given outer inputs1

zi = f(z̸=i, C) (1)

1 In this paper, “outer inputs” refers to the inputs of the physical
system.
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where f is a numerical solver. Omitting the given condition
C, then: zi = f(z̸=i). Now we consider the results of mul-
tiple physical processes as a joint probability distribution:

(z1, z2, ..., zN ) ∼ p(z1, z2, ..., zN ) (2)

For each process, we consider it as a conditional distribution:
zi ∼ p(zi|z̸=i), which relates to the joint distribution via:

p(z1, z2, ..., zN ) = p(zi|z̸=i)p(z̸=i) (3)

Writing the probability distribution in the form of (learnable)
energy functions E(z) (Du et al., 2023; LeCun et al., 2006),
the energy functions relates to the joint probability of z, the
conditional probability of zi, and the marginal distribution
of z̸=i respectively by:



p(z) =
1

Z
e−E(z)

p(zi | z̸=i) =
1

Z(z̸=i)
e−E(zi|z ̸=i)

p(z̸=i) =
1

Z ̸=i
e−E(z ̸=i)

(4)

where Z, Z̸=i are normalization coefficients (constants).
Note that for p(zi|z ̸=i), since z ̸=i is the condition, the nor-
malization Z(z̸=i) depends on z̸=i. Substituting Eq. 4 into
Eq. 3, then taking logarithms of both sides, we have:

E(z) + logZ = [E(zi | z̸=i) + logZ(z̸=i)]

+ [E(z̸=i) + logZ ̸=i]
(5)

Taking the derivative w.r.t. zi on both sides, we have:

∇ziE(z1, z2, ..., zN ) = ∇ziE(zi|z̸=i) (6)

which uses the fact that logZ, logZ ̸=i, logZ(z̸=i), and
E(z̸=i) are all independent of zi.

Eq. 6 is the foundation of our compositional multiphysics
simulation method. We see that when sampling the joint
distribution p(z1, z2, ..., zN ), we can simply use the learned
conditional diffusion model to sample each zi, while us-
ing the estimated ze̸=i of other physical processes as condi-
tions. This means that to learn the multiphysics simulation
of multiple physical processes z1, z2, ..., zN , we no longer
need to develop a coupled algorithm that simultaneously
solves all physical processes. Instead, we can simply use
decoupled solvers (each physical process is solved inde-
pendently while treating the other physical processes as
known) to generate data, learn the conditional distributions
p(zi|z ̸=i) ∝ e−E(zi|z̸=i), and in the inference time, sample
from the joint distribution via Eq. 6, achieving multiphysics
simulation. During training, the energy E(zi|z̸=i) is implic-
itly learned via the diffusion objective below, which learns
the gradient of the energy:

LMSE = ||ϵ− ϵθ(
√
1− βszi +

√
βsϵ; z̸=i, s)||22 (7)

where the denoising network ϵθ(·) corresponds to the gra-
dient of the energy function ∇zEθ(·) (Du et al., 2023),
ϵ ∼ N (0, I). During inference, we sample from the joint
distribution p(z1, z2, ...zN ) via (Ho et al., 2020):

zi,s−1 =
1
√
αs

(
zi,s −

1− αs√
1− αs

ϵiθ(zi,s | ze̸=i, s)

)
+ σsw, w ∼ N (0, I)

(8)

zei =
1√
αs

(
zi,s −

√
1− αsϵ

i
θ(zi,s | ze̸=i, s)

)
(9)

for s = S, S − 1, ...1 and i = 1, 2, ...n. Here, zei rep-
resents the estimated value for the ith field zi, ze̸=i =
(ze1, ...z

e
i−1, z

e
i−1, ...z

e
n), and σs is the noise level, the su-

perscript e represents estimation.

This iterative method is similar to the Expectation-
Maximization (EM) algorithm (Moon, 1996), refining each
variable’s estimation based on current estimates of oth-
ers. An external loop can be added to repeat the diffusion
model’s inference, using the previous step’s physical fields
to improve the initial estimate. The ablation study about
hyperparameters K,λ and the estimation method are dis-
cussed in Appendix F. The algorithm is shown in Algorithm
1. Line 2 is the external loop, while lines 6 to 11 represent
the denoising cycle of the diffusion model. In each diffusion
step, the physical physical processes are updated sequen-
tially, with z̸=i using the estimated physical processes that
have already been updated at this diffusion step.

3.2. Multi-component simulation

Consider a complex structure that is composed of many com-
ponents: V = v1 ∪ v2 ∪ . . . ∪ vN , and the solution in each
component vi is zvi . It should be noted that vi represents an
entity here, and if there are multiple physical processes on
this entity, it is also a multiphysics problem. Each compo-
nent shares similarities and is arranged in a specific pattern,
like an array, to compose this complex structure. Simulating
the entire structure V can be challenging while simulating
an individual component vi is easier. By specifying the
boundary condition z∂vi

, the given outer inputs C, and the
geometry vi of component vi, we can compute zvi :

zvi = f(z∂vi
, C, vi) (10)

where f is a numerical solver. The outer inputs C and
geometry vi are given conditions, z∂vi is boundary condi-
tions. Omitting the given condition, then: zvi = f(z∂vi).
Then we divide the whole geometry V to three parts:
V = vi ∪ ∂vi ∪ vio, where vio represents other parts of
V except vi ∪ ∂vi. The solution of the whole geometry V
can be written as the following probability distribution:

(zvi , z∂vi , zvio) ∼ p(zvi , z∂vi , zvio) (11)
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Algorithm 1 Algorithm for multiphysics simulation by
M2PDE.
input Compositional set of diffusion model

ϵiθ(zi,s, C, s), i = 1, 2, ..., N , outer inputs C, dif-
fusion step S, number of external loops K, number of
physical processes N .

1: zei ∼ N (0, I) // initialize estimated fields zei
// An external loop to improve the estimated fields zei :

2: for k = 1, ...,K do
3: // initialize each physical fields zi, for i in 1, ..., N
4: ẑei ← zei // previous estimated fields ẑei
5: zei ∼ N (0, I) // current estimated fields zei
6: zi,S ∼ N (0, I) // intial physical fields zi

// denoising cycle of diffusion model:
7: for s = S, ..., 1 do
8: λ = 1− s

S if k > 1 else 1 // define the weights of
ẑei and zei
// loops for each physical process:

9: for i = 1, ..., N do
10: w ∼ N (0, I)

// use weighted estimated fields as conditions
for single step denoising:

11: zi,s−1 = 1√
αs

(zi,s − 1−αs√
1−αs

ϵiθ(zi,s | λze̸=i +

(1− λ)ẑe̸=i, C, s)) + σsw
// update the estimation of current field:

12: zei = 1√
αs

(zi,s−
√
1− αsϵ

i
θ(zi,s | λze̸=i+(1−

λ)ẑe̸=i, C, s))
13: end for
14: end for
15: end for
output z1,0, z2,0, ..., zN,0

Consider the complex structure as an undirected graph
G = (V,E), and the random variable zvi is the property of
component vi. The graph G satisfies the local Markov prop-
erty: A variable is conditionally independent of all other
variables given its neighbors. Thus, zvi satisfies

(zvi ⊥ zV \N [vi])|z∂vi (12)

Here ∂vi is the set of neighbors of vi, N [vi] = vi∪∂vi, and
V \N [vi] = vio. By using this property of Markov random
field, p(zvi , z∂vi

, zvio) can be written as:

p(zvi , z∂vi , zvio) = p(zvi |z∂vi)p(zvio |z∂vi)p(z∂vi) (13)

Writing the probability distribution in the form of energy,
and through the same derivation as in Section 3.1, we obtain:

∇zvi
E(zvi , z∂vi , zvio) = ∇zvi

E(zvi |z∂vi) (14)

Therefore, when sampling the joint distribution
p(zv1 , zv2 , ..., zvN ), we can simply use the learned
conditional diffusion model to sample each zvi , while using

the estimated ze∂vi
as conditions. The multi-component

simulation can be achieved using an algorithm similar to
multiphysics simulation. Since each zvi is inferred with
the same model, it can be processed together, improving
inference efficiency by eliminating the need for additional
loops for each physical process. We provide Alg. 2 in
Appendix A for multi-component simulation. Additionally,
we use the assumption of Markov random fields in the
derivation. The rationality of this assumption and the
application scenarios of the algorithm are discussed in
Appendix J.

Our proposed framework of multiphysics simulation in Sec-
tion 3.1 and multi-component simulation in Section 3.2, con-
stitute our full method of compositional Multiphysics and
Multi-component PDE Simulation with Diffusion models
(M2PDE). It circumvents the development of coupled pro-
grams that requires huge development efforts, and achieves
multiphysics and multi-component PDE simulation by com-
posing the learned conditional energy functions according
to the variable dependencies. Below, we test our method’s
capability in challenging engineering problems.

4. Experiments
In the experiments, we aim to answer the following ques-
tions: (1) Can M2PDE predict coupled solutions (account-
ing for interactions between different physical processes)
from models trained in decoupled data (assuming other pro-
cesses are known and focus on solving a single process)? (2)
Can M2PDE predict large structure solutions from a model
trained in small structure data? (3) Can M2PDE outperform
surrogate model2 in both tasks? To answer these questions,
we conduct experiments to assess our algorithm’s perfor-
mance on two problems across three scenarios. In Section
4.1, we solve the reaction-diffusion equation. While it’s not
a classic multiphysics coupling issue since both quantities
are part of concentration fields, we consider them as sepa-
rate physical processes to validate the capability of M2PDE
for multiphysics simulation. Section 4.2 explores a complex
nuclear engineering scenario, involving various types of cou-
pling: region, interface, strong, weak, unidirectional, and
bidirectional to further test the algorithm’s capacity to han-
dle multiphysics simulation. Section 4.3 simplifies actual
nuclear engineering problems to evaluate the algorithm’s
effectiveness with multi-component simulation. Each ex-

2The surrogate model in this article refers to a neural network
that directly maps system inputs to outputs in one step, unlike diffu-
sion models that generate outputs step-by-step through denoising.
For multiphysics problems, surrogate models are trained separately
for each physical field using decoupled data, and obtain coupled
solutions through iteration.. For multi-component problems, sur-
rogate models use domain decomposition concepts, predicting
each component iteratively based on surrounding components to
achieve convergence.
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Table 1. Relative L2 norm of error on reaction-diffusion equation for multiphysics simulation.

u v
method decoupled coupled decoupled coupled

surrogate + FNO 0.0669 0.0600 0.0080 0.0320
M2PDE (ours) + FNO 0.0270 0.0290 0.0102 0.0264

surrogate + U-Net 0.0152 0.0184 0.0039 0.0174
M2PDE (ours) + U-Net 0.0119 0.0141 0.0046 0.0174

periment uses two network architectures, training both with
their respective diffusion and surrogate models for compari-
son, employing consistent hyperparameters and settings to
ensure fairness. The computational domains of experiment
1 and experiment 2 are on regular meshes, using Fourier
neural operator (FNO) (Li et al., 2021; Lim et al., 2023)
and U-Net (Ronneberger et al., 2015) as network architec-
tures. The computational domain of experiment 3 is on a
finite element mesh, using Geo-FNO (Li et al., 2023) and
Transolver (Wu et al., 2024a) as the network architecture.
Additionally, in experiment 3, we also compare M2PDE
with graph neural networks GIN (Xu et al., 2019) Graph
transformer SAN (Kreuzer et al., 2021) and MeshGraphNet
(Pfaff et al., 2020).

To highlight the difference between training and testing data,
Appendix G calculates the Wasserstein distances between
decoupled and coupled data in multiphysics problems, as
well as between small and large structural data in multi-
component problem, and visualizes them. In Appendix
K, we conduct a comparison of our dataset with existing
scientific datasets (Takamoto et al., 2022). As another con-
tribution to the community, we also open-source the data at
here to facilitate future method development of multiphysics
and multi-component PDE simulations.

4.1. Reaction-diffusion

Reaction-diffusion (RD) equations have found wide applica-
tions in the analysis of pattern formation, including chemical
reactions. This experiment uses the 1D FitzHugh-Nagumo
reaction-diffusion equation (Rao et al., 2023), it has two
concentration fields: u, v, the governing equations are pre-
sented in Eq. 15. The objective is to predict the system’s
evolution under different initial conditions. The training
data consists of decoupled data, where other physical pro-
cesses are assumed and treated as inputs to solve the equa-
tions governing the current physical process . Gaussian
random field (Bardeen et al., 1986) is employed to gener-
ate the other physical processes and initial conditions, and
numerical algorithms are used to compute the solution of
the current physical process. The validation data similarly
consists of decoupled data not used during training. The test
data consists of coupled solutions obtained using fully cou-
pled algorithms. Further details on the datasets, equation,

network architecture, and training process are provided in
Appendix B.

∂u

∂t
= µu∆u+ u− u3 − v + α, x ∈ [0, 1], t ∈ [0, 5]

∂v

∂t
= µv∆v + (u− v)β, x ∈ [0, 1], t ∈ [0, 5]

[u, v] = [u0, v0], x ∈ [0, 1], t = 0
(15)

Table 1 presents the relative L2 norm (L2 norm of prediction
error divided by L2 norm of the ground-truth) in predictions
made by surrogate model and M2PDE on a validation set
of decoupled data and a test set of coupled data. For FNO,
the prediction error for u is comparable between M2PDE
and surrogate models on decoupled data; however, M2PDE
shows a significantly larger error in predicting v, which
is four times that of the surrogate model. As a result, the
error in predicting the coupled solution for v is greater than
that of the surrogate model, while the error for u is lower.
For U-Net, the prediction errors for u and v are similar
between M2PDE and surrogate models on decoupled data,
but M2PDE achieves a lower error for the coupled solution.

This straightforward experiment tests the correctness of
M2PDE but shows no significant advantages over the surro-
gate model. However, the surrogate model fails in solving
more complex problems, which will be discussed in the next
section.

4.2. Nuclear thermal coupling

This experiment evaluates M2PDE’s performance in han-
dling various physical processes and coupling modes, in-
cluding regional and interface coupling, strong and weak
coupling, and unidirectional and bidirectional coupling. The
focus is on nuclear-thermal coupling in transient conditions
for plate fuel elements, using a simplified pin cell analysis
with a transient disturbance modeled as a change in neutron
flux density at the boundary. This physical system requires
solving neutron physics, heat conduction, and flow heat
transfer equations, taking into account negative feedback
between neutron physics and temperature, unidirectional
coupling from fluid to neutron field, and strong interface
coupling between solid and fluid. The goal is to predict
the system’s evolution under different neutron boundary
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1

v

∂ϕ(x, y, t)

∂t
= D∆ϕ+ (vΣf − Σa(T ))ϕ, x ∈ [0, Ls + Lf ], y ∈ [0, Ly], t ∈ [0, 5]

ϕ(0, y, t) = f(y, t)

ϕ(Ls + Lf , y, t) = ϕ(x, 0, t) = ϕ(x, Ly, t) = 0

(16)


ρcpTs(x, y, t)

∂t
= ∇ks∇Ts +Aϕs, x ∈ [0, Ls], y ∈ [0, Ly], t ∈ [0, 5]

∂Ts(x, 0, t)

∂y
=

∂Ts(x, Ly, t)

∂y
= 0

Ts(Ls, y, t) = Tf (Ls, y, t)

(17)



∇ · u⃗ = 0, x ∈ [Ls, Ls + Lf ], y ∈ [0, Ly], t ∈ [0, 5]

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= −∇p+ µ∇2u⃗+ f⃗ , x ∈ [Ls, Ls + Lf ], y ∈ [0, Ly], t ∈ [0, 5]

ρcp

(
∂Tf

∂t
+ u⃗ · ∇Tf

)
= kf∇2T, x ∈ [Ls, Ls + Lf ], y ∈ [0, Ly], t ∈ [0, 5]

kf
∂Tf (Ls, y, t)

∂x
= ks

∂Ts(Ls, y, t)

∂x

(18)

conditions. The geometric and coupling relationships are
illustrated in Fig. 2. The governing equations for the cou-
pled evolution of neutron flux (ϕ), solid temperature (Ts),
and fluid temperature, pressure, and velocity (Tf , p, u⃗) are
presented in Eq. 16, Eq. 17, and Eq. 18, respectively.

Figure 2. Geometric structure (left); Coupling relationship be-
tween different physical processes (right).

Generating estimated physical fields in this two-dimensional
time series problem with three physical processes is chal-
lenging using Gaussian random fields. To address this, we
employ a pre-iteration method for data generation. The val-
idation dataset consists of decoupled data not used during
training, while the test dataset comprises coupled data. Cou-
pled data is computed using the operator splitting iterative
algorithm (MacNamara & Strang, 2016), which exchanges
information between physical processes at each time step.
Additional details on the datasets, network architecture, and
training process can be found in Appendix C.

Table 2 displays the relative prediction errors of surrogate
models and M2PDE on a validation set of decoupled data

(a) Solid temperature. (b) Fluid temperature.

Figure 3. Comparison of prediction results between M2PDE and
surrogate model. The surrogate model fails on the test set of the
coupled scenario.

and a test set of coupled data. In single physical process
prediction (decoupled data), surrogate models outperform
M2PDE. However, in predicting the coupled solution, all
surrogate models fail except for the neutron physics field,
with the predicted solid and fluid temperature fields shown
in Fig. 3 (for more visualizations, see Fig. 6). The neutron
physics field remains relatively accurate because the feed-
back from solid and fluid temperatures is weak and primarily
driven by external input boundary conditions. In contrast,
solid temperature and fluid fields are significantly influenced
by other physical processes, leading to non-physical predic-
tions due to the lack of iterative process data during train-
ing. In comparison, M2PDE more accurately captures the
morphology of coupled solutions and demonstrates higher
accuracy. In addition, we further use DDIM (Song et al.,
2021) to accelerate sampling and compare the operational
efficiency of different methods. M2PDE achieves an accel-
eration of up to 29-fold speedup, with detailed information
in Appendices H and I.
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(a) The structure used to generate training data. (b) Larger structure for testing.

Figure 4. In (a), the left figure shows the entire reactor. The right figure illustrates a portion of the reactor core. This structure composed
of 16 fuel elements is used to generate training data. (b) is a large structure composed of 64 elements used for testing.

Table 2. Relative L2 norm of prediction error on nuclear thermal coupling for multiphysics simulation. The unit is 1× 10−2.

neutron solid fluid
method decoupled coupled decoupled coupled decoupled coupled

surrogate + FNO 0.251 22.1 0.0445 31.8 0.106 10.2
M2PDE (ours) + FNO 0.738 8.42 0.175 9.72 0.615 7.31

surrogate + U-Net 0.181 4.45 0.0800 18.2 0.0927 8.03
M2PDE (ours) + U-Net 0.741 1.38 0.140 2.75 0.228 3.86

4.3. Prismatic fuel element

This experiment tests the ability of M2PDE to solve multi-
component simulation problems, focusing on the thermal
and mechanical analysis of prismatic fuel elements for a new
type of reactor (Ma et al., 2022). The reactor core consists
of three components: fuel, matrix, and heat pipe. Since
engineering focuses mainly on the matrix, we consider the
fuel and fluid as boundary conditions for analysis. Different
heat fluxes will be assigned to the fuel boundary to simulate
various heat release behaviors of the fuel rods. The aim is
to train a model that predicts its temperature T and strain
εx, εy based on the solutions of its three neighbors and its
heat flux.

The training data originate from a medium structure simu-
lation that includes 16 fuel elements; hence, a single sim-
ulation data point can generate 16 training data. The well-
trained model will be tested on two structures: one is the
medium structure used for data generation, and the other is
a large structure containing 64 fuel elements, as shown in
Fig. 4. Further details on the datasets, network architecture,
and training process are provided in Appendix D.

Table 3 presents the prediction relative errors of surrogate
model and M2PDE across three tasks: a single fuel element,
a medium structure of 16 fuel elements, and a large struc-

ture of 64 fuel elements. The average relative error of strain
εx, εy is denoted as ε. GIN, SAN, and MeshGraphNet learn
on small graphs with 16 components and test on large graphs
with 64 components. Due to the uniformity of graph struc-
tures in all training data and the fact that SAN learns a global
relationship, SAN fails to predict larger structures. GIN
and MeshGraphNet are capable of learning local relation-
ships, thereby successfully handling larger-scale structures.
Specifically, MeshGraphNet achieves the lowest error when
learning structures with 16 components. However, when ex-
trapolating to even larger structures, M2PDE exhibits lower
error than MeshGraphNet.

Subsequently, a comparative analysis between the surro-
gate model and M2PDE has been conducted. The surrogate
model performs better in predicting a single component,
but for medium structure, M2PDE outperforms it. It’s im-
portant to note that the surrogate model’s predictions occa-
sionally diverge, necessitating adjustments to the relaxation
factor to maintain stability. For the large structure, U-Net
in the surrogate model demonstrates better stability, while
the FNO model continues to diverge even after relaxation
factor adjustments. M2PDE is very stable and accurate,
and no divergence phenomenon has been observed. In term
of strain, the relative error of M2PDE has been reduced
by 41% Compared with the surrogate model. In addition,
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Table 3. Relative L2 norm of prediction error on prismatic fuel element experiment, for single-component and 16-component (medium)
and 64-component (large) simulations. The unit is 1× 10−2.

single 16-component 64-component
method T ε T ε T ε

GIN - - 1.96 3.18 4.63 7.02
SAN - - 0.114 16.5 1.00×102 1.18×104
MeshGraphNet - - 0.0583 0.427 1.28 2.40

surrogate + Geo-FNO 0.0883 0.195 0.337 2.59 divergent divergent
M2PDE (ours) + Geo-FNO 0.139 0.459 0.338 2.42 0.950 3.52

surrogate + Transolver 0.0764 0.251 0.314 1.13 1.25 3.31
M2PDE (ours) + Transolver 0.144 0.339 0.288 1.01 0.793 2.07

we further use DDIM to accelerate sampling and compare
the operational efficiency of different methods. M2PDE
achieves an acceleration of up to 41-fold speedup, with
detailed information in Appendices H and I.

5. Limitation and future work
There are also several limitations of our proposed M2PDE
that provide exciting opportunities for future work. Firstly,
in multiphysics simulation, although the M2PDE trained
on decoupled data can predict coupled solutions more accu-
rately than baseline surrogate models, the prediction errors
are still higher compared to single physical processes pre-
dictions. In addition, there is a certain gap in accuracy com-
pared to models trained through coupled data, as shown in
Appendix E. Future efforts can focus on improving dataset
generation, training methods, and incorporating physical
information to boost accuracy. Secondly, we plan to explore
additional accelerated sampling algorithms, aiming to sig-
nificantly improve efficiency while maintaining prediction
accuracy. Lastly, while the experiments in this paper have
simplified certain aspects of real-world engineering prob-
lems to focus on key issues and improve research efficiency,
future work will aim to apply this method to more com-
plex practical engineering problems to further validate its
effectiveness and practicality.

6. Conclusion
This work presents M2PDE as a novel method for multi-
physics and multi-component PDE simulations, driven by
the needs of real-world engineering applications. In mul-
tiphysics scenarios, models trained on decoupled data can
predict coupled solutions, while in multi-component simula-
tions, models trained on small structures can extrapolate to
larger ones. We develop three datasets to validate M2PDE
and compare it to the surrogate model method. Results
show that M2PDE effectively predicts coupled solutions in

multiphysics simulations where surrogate models fail, and
exhibits greater accuracy in predicting larger structures in
multi-component simulations. We believe this approach
provides a new approach to address multiphysics and multi-
component PDE simulations, important across science and
engineering.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Algorithm for multi-component simulation.
Multi-component simulation first requires training a diffusion model to predict the solution of the current component based
on the solutions of its neighboring components. Additionally, it is necessary to define the connectivity of all components
and the function f to update the surrounding components’ solutions for each component. The multi-component simulation
algorithm is presented in Algorithm 2. Lines 6 to 11 are the denoising cycle of the diffusion model, in each diffusion step,
the solutions of each component are updated together.

Algorithm 2 Algorithm for multi-component simulation by M2PDE

input A diffusion model ϵθ(z∂vi , C, s), outer inputs C, diffusion step S, number of external loops K, number of component
N , connectivity of all components adj, update function f(zv1 , ..., zvN , adj) of z∂v.

1: zevi ∼ N (0, I) // initialize estimated solution for each component vi
// Add an external loop to improve zevi :

2: for k = 1, ...,K do
3: // initialize each component zvi , for i in 1, ..., N
4: ẑevi ← zevi // update previous estimated solutions for each component ẑevi
5: zevi ∼ N (0, I) // initialize current estimated solutions for each component zei
6: zvi,S ∼ N (0, I) // initialize solutions for each component zvi

// denoising cycle of diffusion model:
7: for s = S, ..., 1 do
8: λ = 1− s

S if k > 1 else 1 // define the weights of ẑei and zei
9: z∂v = f(zev1 , ..., z

e
vN , adj) // update the solutions of surrounding components for each zvi

10: w ∼ N (0, I)
// use weighted estimated solutions as conditions for single step denoising,
// update all components together:

11: zvi,s−1 = 1√
αs

(zvi,s − 1−αs√
1−αs

ϵθ(zvi,s | λze∂vi
+ (1− λ)ẑe∂vi , C)) + σsw

// update the estimated solutions of all components together
12: zevi =

1√
αs

(zvi,s −
√
1− αsϵθ(zvi,s | λzevi

+ (1− λ)ẑe∂vi , C))

13: end for
14: end for
output zv1,0, zv2,0, ..., zvN ,0

B. Additional details for reaction-diffusion
This section provides additional details for Section 4.1.

Dataset. We employed the solve ivp function in Python to solve the reaction-diffusion equations. The coefficients µu, µv, α,
and β of Eq. 18 are set to 0.01, 0.05, 0.1, and 0.25, respectively. The spatial mesh consisted of nx = 20 points, the time step
is adaptively controlled by the algorithm, but only outputs the results of 10 time steps. To train the data for a single physical
process, it was necessary to assume the initial conditions of the other physical processes and the current field. For instance,
training u required assumptions about u0 and v. The dimension of u0 is [nx], which was generated using a one-dimensional
Gaussian random field, and v has dimensions [nt, nx], and was generated by sampling a one-dimensional Gaussian random
field nt times. Similarly, training v also requires preparation of v0 and u.

Model structure. The 2D U-Net and 2D FNO serve as both the surrogate and M2PDE. U-Net consists of modules: a
downsampling encoder, a middle module, and an upsampling decoder. The encoder and decoder comprise four layers, each
with three residual modules and downsampling/upsampling convolutions, with the third module incorporating attention
mechanisms. The middle module also contains three residual modules, with attention mechanisms included in the second
module. The input data is encoded into a hidden dimension before undergoing sequential downsampling and upsampling.
FNO consists of three modules: a lift-up encoder, n FNO layers, and a projector decoder. Each FNO layer includes a spectral
convolution, a spatial convolution, and a layer normalization. The surrogate model predicts the evolution of the current
physical process using its initial conditions and those of other physical processes. Its input dimension is [b, 1, 10, 20] and
output dimension is [b, 1, 10, 20]. The diffusion model has an input dimension of [b, 2, 10, 20] and an output dimension of
[b, 1, 10, 20], with b representing the batch size. The shape of initial condition of [b, 1, 1, 20] and will repeat to align the
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Algorithm 3 Surrogate model combination algorithm for multiphysics simulation.

input Compositional set of surrogate model ϵiθ(z̸=i, C), i = 1, 2, ..., N , outer inputs C, maximum number of iterations M ,
tolerance ϵmax, relaxation factor α.

1: Initialize constant fields zi, i = 1, ..., N , m = 0
2: while m < M and ϵ > ϵmax do
3: m = m+ 1
4: for i = 1, ..., N do
5: ẑi = zi
6: zi = αϵiθ(z̸=i, C) + (1− α)ẑi
7: end for
8: ϵ = L1(zi − ẑi), i = 1, ..., N
9: end while

output z1, z2, ..., zN

required shape. The diffusion step of the diffusion model is set to 250. More details are shown in Table 4.

Training. The surrogate model and M2PDE are trained similarly, with further details in Table 5.

Inference. The hyperparameter K is set to 2. The surrogate models’ combination algorithm in experiments 1 and 2 is
identical, as demonstrated in Alg 3. The relaxation factor α is set to 0.5.

Table 4. Hyperparameters of model architecture for reaction-diffusion task.
Hyperparameter name u v
Hyperparameters for U-Net architecture:
Channel expansion factor (1,2) (1,2)
Number of downsampling layers 2 2
Number of upsampling layers 2 2
Number of residual blocks for each layer 3 3
Hidden dimension 24 24
Hyperparameters for FNO architecture:
FNO width 24 24
number of FNO layer 4 4
FNO mode [6,12] [6,12]
padding [8,8] [8,8]

Table 5. Hyperparameters of training for reaction-diffusion task.
Hyperparameters for U-Net and FNO training u and v
Loss function MSE
Number of examples for training dataset 104

Total number of training steps (surrogate; diffusion) 105; 2× 105

Gradient accumulate every per epoch 2
learning rate 10−4

Batch size 256

C. Additional details for nuclear thermal coupling
This section provides additional details for Section 4.2.

Problem description. The goal of this problem is to predict the performance of plate-type fuel assembly under transient
conditions. A typical pin cell in JRR-3M fuel assembly (Gong et al., 2015) is adopted as the computational domain, as
shown in Fig. 2. For simplicity, the cladding in the fuel plate is omitted here without losing the representativeness of its
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multiphysics coupling feature. U-Zr alloy and lead-bismuth fluid are adopted as fuel and coolant materials, respectively.
Their physical property parameters can be found in the repository. We consider a single-group diffusion equation for the
neutron physics process and employ an incompressible fluid model for coolant modeling. Temperature fields in solid and
fluid can influence the macroscopic absorption cross-section in the neutron physics equation, while neutron flux affects the
heat source in the fuel domain. Conjugate heat transfer occurs at the interface between the fluid and solid domains. While
the feedback of temperature on neutrons is inherently complex, a linear negative feedback is assumed for simplicity. The
governing equations are presented in Eq. 16, Eq. 17, and Eq. 18.

Here v is neutrons / per fission, D is the diffusion coefficient of the neutron, Σf ,Σa are the fission and absorption cross-
section, respectively, and we only consider the feedback of temperature on the absorption cross-section Σa here. ks, kf are
the conductivity of solid and fluid, respectively, both being functions of T .

Dataset. We utilize the open-source finite element software MOOSE (Multiphysics Object-Oriented Simulation Environ-
ment) (Icenhour et al., 2018) to tackle the nuclear thermal coupling problem. The solid temperature field uses a mesh of [64,
8], the fluid fields have a mesh of [64, 12], and the neutron physics field employs a mesh of [64, 20]. The neutron physics
and solid temperature fields are calculated using the finite element method at mesh points, while the fluid domain uses the
finite volume method at mesh centers. Interpolation is applied to align the neutron physics and solid temperature values with
the fluid fields. The time step is adaptively controlled by the algorithm, but only outputs the results of 16 time steps. So the
input dimensions for the surrogate models of neutron physics field, solid temperature field, and fluid fields are [b, 2, 16, 64,
20], [b, 2, 16, 64, 8], and [b, 1, 16, 64, 12], respectively. The input dimensions for the diffusion model of the three fields are
[b, 3, 16, 64, 20], [b, 3, 16, 64, 8], and [b, 5, 16, 64, 12], respectively. The output dimensions of the three fields are [b, 1, 16,
64, 20], [b, 1, 16, 64, 8], and [b, 4, 16, 64, 12], respectively.

As noted, assuming the distribution of physical field data in high-dimensional problems is challenging. We recommend
a pre-iteration method for data generation. Initially, we assume constant values for all other physical fields and calculate
the current field. This process repeats until all fields are computed. If there are n physical fields, pre-iteration requires n -
1 calculations plus one iteration for data generation, totaling 2n - 1 calculations. To accelerate data generation, the most
time-consuming field can be excluded from pre-iteration. In this problem, the fluid fields’ computation time is approximately
three times that of the other fields, so it is excluded from pre-iteration. The process begins by assuming constant fluid
fields and solid temperatures to calculate the neutron physics field, followed by using the resulting neutron physics field
and assumed fluid fields’ temperature to calculate the solid temperature. The data generation proceeds sequentially with
calculations for the fluid fields, neutron physics field, and solid temperature field. Through this process, the input datasets
for all physical fields are not constant fields, but rather fields with distribution information after one iteration.

Model structure. The 3D U-Net and 3D FNO serve as both the surrogate model and M2PDE, using a layer design identical
to the 2D. For regional coupling, concatenation is directly applied to the channel dimension using the concat function. In
contrast, for interface coupling, dimensions must be replicated to align spatially before concatenation. The conditioning of
the diffusion step for FNO is operating in spectrum space (Gupta & Brandstetter, 2023), which is better than in the original
space for this problem. The diffusion step of the diffusion model is set to 250. More details are shown in Table 6.

Training. The surrogate model and M2PDE are trained similarly, but training neutron physics fields using M2PDE requires
more time to converge, with further details in Table 7.

Inference. The hyperparameter K is set to 2. The relaxation factor for surrogate model α is set to 0.5.

Detailed results. Fig. 5 llustrates how the relative errors are distributed along the x, y, t direction. Overall, the neutron field
exhibits a relatively uniform distribution of errors along all three directions. In x direction, the error in both the solid and the
fluid slightly increases near their interface, likely due to coupling effects in this region. Along the y direction, the solid
temperature error gradually increases with distance, whereas the fluid error shows the opposite trend, which may be related
to the distinct thermal and physical properties of the two media. Fig. 6 presents the results of predicting various physical
fields using the last time step surrogate model and M2PDE + U-Net on the final test data. The neutron physics field and solid
temperature field are represented by ϕ and Ts, respectively. The fluid fields include four physical quantities: Tf , P, ux, uy ,
totaling six quantities. Since the neutron physics field and the uy component of the fluid fields are less influenced by other
physical processes, the surrogate model can still make predictions, but the accuracy is lower than that of the M2PDE.
Besides, the surrogate model has failed to predict the other physical processes. In contrast, M2PDE continues to provide
relatively accurate predictions, although some distortions are observed in certain regions.
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Table 6. Hyperparameters of model architecture for nuclear thermal coupling task.
Hyperparameter name neutron solid fluid
Hyperparameters for U-Net architecture
Channel Expansion Factor (1,2,4) (1,2,4) (1,2,4)
Number of downsampling layers 3 3 3
Number of upsampling layers 3 3 3
Number of residual blocks for each layer 3 3 3
Hidden dimension 8 8 16
Hyperparameters for FNO architecture
FNO width 8 8 16
number of FNO layer 3 3 3
FNO mode [6,16,8] [6,16,4] [6,16,6]
padding [8,8,8] [8,8,8] [8,8,8]

Table 7. Hyperparameters of training for nuclear thermal coupling task.
Hyperparameters for U-Net and FNO training neutron&solid&fluid
Loss function MSE
Number of examples for training dataset 5× 103

Total number of training steps (surrogate; diffusion) 105; 2× 105

Gradient accumulate every per epoch 2
learning rate 10−4

Batch size 32

(a) t direction. (b) x direction. (c) y direction.
Figure 5. The distribution of errors along the x, y, and t directions.
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(a) ϕ. (b) Ts.

(c) Tf . (d) P .

(e) ux. (f) uy .

Figure 6. Comparison of surrogate model and M2PDE for predicting all physical fields.

D. Additional details for prismatic fuel element
This section provides additional details for Section 4.3.

Problem description. This problem aims to predict the thermal and mechanical performance of prismatic fuel elements in
heat pipe reactor (Ma et al., 2022) at different source power. The reactor core is stacked up using a hexagonal prism SiC
matrix, with multiple holes dispersed in the matrix for containing fuel elements and heat pipes as shown in Fig. 7. The
SiC matrix plays a role in locating the fuel and heat pipes at expected positions in the core. The entire structure consists of
two basic components, one oriented upwards and the other downwards, as illustrated in Fig. 8. Fission energy released in
fuel elements is dissipated using heat pipes. Both the fuel elements and heat pipes are considered as boundaries here, and
only the more concerned matrix behavior is analyzed in the demonstration. Only strain is predicted here since stress can be
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derived from the mechanical constitutive equation, and displacement is obtained through strain integration. The analysis
uses the plane strain assumption (εz = 0) and excludes irradiation effects, simplifying it to a steady-state problem.

Figure 7. Schematic of heat pipe reactor core structure. The left figure shows a partial structure of the entire reactor, with multiple holes
dispersed in the matrix for containing fuel elements and heat pipes. The right figure shows how to select a medium structure for analysis
from the overall structure.

Figure 8. Two basic components: one facing upwards (left) and the other facing downwards (right).

Dateset. We use MOOSE to calculate the thermal and mechanical problems. The training data comes from a medium
structure simulation with 16 fuel elements, allowing each simulation to generate 16 training data, as shown in Fig. 4. This
structure is chosen because a fundamental component, along with its neighboring components, is entirely contained within
the interior, which is where most components that need to be predicted in large structures are located. When generating
data, the heat flux density is uniformly sampled from the range [105, 106] W/m. A free boundary condition is randomly
assigned to one edge, while symmetric boundary conditions are applied to the remaining two edges. Each fundamental
component is uniformly meshed with 804 points, each requiring the prediction of three physical quantities. To predict the
central component, the heat flux density of this component and the coordinates of each mesh point are concatenated with
data from its three neighboring components, yielding an input dimension of [b, 804, 15] for the diffusion model and [b, 804,
12] for the surrogate model, where b is the batch size. The output dimension is [b, 804, 3]. The sequence of neighboring
elements is consistent, with the downward-facing center element being the upward-facing center element rotated by 180
degrees. This arrangement is illustrated in Fig. 8. Boundary conditions are considered only for symmetric and free types,
represented as [0, 1, 1] and [0, 0, 0], respectively, and are replicated to a dimension of [804, 3].
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Algorithm 4 Surrogate model combination algorithm for multi-component simulation.

input A surrogate model ϵθ(z∂v, C), outer inputs C, maximum number of iterations M , tolerance ϵmax, relaxation factor
α.

1: Initialize constant fields zvi , i = 1, ..., N , m = 0
2: while m < M and ϵ > ϵmax do
3: m = m+ 1
4: for i = 1, ..., N do
5: ẑvi = zvi
6: zvi = αϵθ(z∂vi , C) + (1− α)ẑvi
7: end for
8: ϵ = L1(z∂vi

− ẑ∂vi
), i = 1, ..., N

9: end while
output z∂v1

, z∂v2
, ..., z∂vN

Model structure. The Geo-FNO and Transolver serve as both the surrogate model and M2PDE. Geo-FNO enhances FNO
for irregular meshes using three modules: a geometry encoder that converts physical fields from irregular to latent uniform
meshes, FNO functioning in latent space, and a geometry decoder that transforms physical fields from the uniform mesh back
to the original irregular mesh. We utilize a 2D Geo-FNO that transforms into a 2D uniform mesh. Transolver is designed to
tackle complex structural simulation problems involving numerous mesh points by learning the intrinsic physical states of
the discretized domain. Given a mesh set with N points and C features per point, the network first assigns each mesh point
to M potential slices, transforming the shape from N × C to M ×N × C. It then applies spatially weighted aggregation,
resulting in a shape of M × C. Self-attention is used to capture intricate correlations among different slices, after which the
data is transformed back to the mesh points. The conditioning of diffusion step for Geo-FNO is also operating in spectrum
space (Gupta & Brandstetter, 2023). More details about the network can be found in (Wu et al., 2024a). The setting of
hyperparameters is shown in Table 8. The diffusion step of the diffusion model is set to 250.

Training. The surrogate model and M2PDE are trained similarly, but training M2PDE requires more time to converge, with
further details in Table 9.

Inference. This problem uses the same neural network to predict the performance of all elements, allowing for simultaneous
updates of the physical fields and enhancing inference speed. This method applies to both diffusion and surrogate models.
The surrogate models’ combination algorithm for mult-component simulation is demonstrated in Alg 4, the relaxation factor
α is set to 0.5. The hyperparameter K is set to 3.

Detailed results. Fig. 9 and Fig. 10 compares the results of predicting the large structure using the surrogate model and
M2PDE + Transolver. Because the surrogate model of FNO fails in predicting large structures, only the results of M2PDE +
FNO are provided in Fig. 11. The strain is only displayed in the x-direction due to its similarity in both x and y. The error
graph indicates that M2PDE offers more accurate predictions.

Graph neural network and Graph Transformer configuration. For GIN, SAN and MeshGraphNet, each component
is treated as a node in the graph, with training conducted on a small graph of 16-component, and ultimately tested on a
larger graph of 64-component. Compared with the surrogate model and M2PDE, they use only the system’s input as input
features. In contrast, the surrogate model and M2PDE enrich its input by incorporating the solutions from the surrounding
component, thereby improving accuracy, as demonstrated in Table 3. The input to the GIN, SAN and MeshGraphNet is the
heat flux density and boundary conditions of each component, and the output is the physical quantities at all grid points on
the component. GIN updates the nodes on the graph through the graph structure, whereas SAN captures graph structural
information by inputting the eigenvalues and eigenvectors of the graph Laplacian matrix into a transformer. The training
settings of GIN, SAN and MeshGraphNet are consistent with the M2PDE. We have adjusted the number of network layers
and the size of hidden layers to obtain the model with optimal performance.
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(a) Surrogate model when predicting T . (b) M2PDE when predicting T .

Figure 9. Comparison of surrogate models and M2PDE + Transolver for predicting the temperature of large structures.
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(a) Surrogate model when predicting εx. (b) M2PDE when predicting εx.

Figure 10. Comparison of surrogate models and M2PDE + Transolver for predicting the strain of large structures.
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(a) M2PDE when predicting T . (b) M2PDE when predicting εx.

Figure 11. The results of M2PDE + FNO for predicting large structure.
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Table 8. Hyperparameters of model architecture for prismatic fuel element task.
Hyperparameter name

Hyperparameters for Transolver
Number of layers 5
Number of head 8
Number of slice 16
Hidden dim 64
Hyperparameters for Geo-FNO
Uniform grid size [64, 64]
FNO width 5
FNO mode [8,8]
Number of FNO layer 3
Hidden dim 64

Table 9. Hyperparameters of training for prismatic fuel element task.
Hyperparameters for Transolver and Geo-FNO training
Loss function MSE
Number of examples for training dataset 16000
Total number of training steps(surrogate;diffusion) 105; 2× 105

Gradient accumulate every per epoch 2
learning rate 10−4

Batch size 256

E. Comparison of models trained using coupled and decoupled data.
To further investigate the model’s boundaries for multiphysics simulation, we utilize coupled data to train diffusion models
and compare them to models trained on decoupled data in experiments 1 and 2. The input of the diffusion model is the
external input of the physical system, while the output is the solution of the coupled physical fields. In experiment 1, the
input consists of the initial conditions of u and v, with the output being their trajectories. Since u and v are defined on
the same grid, a single network can be employed to predict u and v together. In experiment 2, the input is the variation
of neutron boundaries over time, and the output is the trajectories of the neutron field, solid temperature , and fluid fields.
Since that the three fields are defined in different computational domains, three separate networks are trained. Aside from
the differences in input and output dimensions, all other parameters remained consistent with those used in the decoupled
scenario. The coupled datasets for experiments 1 and 2 consist of 10,000 and 5,000 samples, respectively, which is consistent
with decoupled datasets. The model is evaluated using unseen coupling data during training.

The result is shown in Table 10, the accuracy of the model trained with decoupled data decreased by about 1 order of
magnitude.

Table 10. Comparison of models trained on coupled and decoupled data.
Coupled data model Decoupled data model

Reaction-diffusion
u 0.00151 0.0141
v 0.00185 0.0174
Nuclear thermal coupling
neutron 0.00512 0.0197
solid 0.00098 0.0287
fluid 0.00302 0.0391
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F. ABLATION STUDY
F.1. Method for calculating the estimated physical fields

We compare two methods for estimating physical fields: one using zei from Eq. 9 and the other using the current physical
field zi,s with noise. As shown in Table 11, zei provides significantly better results than zi,s, indicating that the estimate
from zei is more accurate.

Table 11. Comparison of methods for estimating physical fields.
zi,s zei (Eq.9)

Reaction-diffusion
u 0.0525 0.0141
v 0.0355 0.0174
Nuclear thermal coupling
neutron 0.0184 0.0197
solid 0.0913 0.0287
fluid 0.1000 0.0391
Prismatic fuel element
T 0.0289 0.0076
ε 0.0083 0.0194

F.2. Selection of Hyperparameter K

This section examines how hyperparameter K affects the predictive performance of multiphysics and multi-component
problems in experiments 2 and 3. As shown in Tables 12 and 13, setting K to 2 for multiphysics problems and K to 3 for
multi-component problems is adequate. The multiphysics algorithm updates physical fields at each diffusion time step,
leading to faster convergence. In contrast, the multi-component problem relies on the field estimated in the previous time
step for each diffusion iteration, resulting in slower convergence. Additionally, increasing K further has a negligible effect
on model performance.

Table 12. Hyperparameters of K for multiphysics simulation.
K neutron solid fluid
1 0.0199 0.0304 0.0524
2 0.0206 0.0287 0.0391
3 0.0203 0.0288 0.0395

Table 13. Hyperparameters of K for multi-component simulation.
K T ε
1 0.00907 0.0236
2 0.00833 0.0222
3 0.00785 0.0206
4 0.00772 0.0207
5 0.00750 0.0203

F.3. Selection of Hyperparameter of λ

The hyperparameters λ determine the weight of the current physical field, theoretically requiring a reliable estimate of 0 at
the beginning and gradually increasing to 1 as diffusion progresses to provide better estimates of the current results in the
later stage. We demonstrate this with experiment 3, which involves solving 64 components with slow convergence, making
it sensitive to hyperparameter λ. We set the values to 0, 1, 0.5, and a linear increase. When K is too large, result differences
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are minor, except when λ is 1; thus, K is set to 2. As shown in Table 14, employing a linearly increasing setting yields
superior performance, which is consistent with the analysis.

Table 14. Hyperparameters of λ for multi-component simulation.
λ T ε
0 0.00878 0.0228
1 0.00913 0.0237
0.5 0.00895 0.0233
linear increase 0.00816 0.0217

G. The difference between training dataset and testing dataset.
For multiphysics simulation, we train models for each physical process using decoupled data and combine them during
testing to predict coupled solutions; for multi-component simulation, we train a model to predict individual component,
then combine it during testing to predict the large structure composed of multiple components. To quantify the difference
between the model’s training and testing data, we calculate the Wasserstein distance (Feydy et al., 2019) between the training
and validation data, as well as between the training and testing data, with the training and validation data originating from
the same distribution. In addition, we also used the t-SNE (Van der Maaten & Hinton, 2008) algorithm to visualize this
difference.

The results are presented in Table 15. In experiment 1, there is a significant difference between the training and testing data,
as can be seen from Fig. 12, where only a small fraction of decoupled data points fall within the range of coupled data. In
experiment 2, the difference between the training and testing data for the neutron physics field is relatively small, likely due
to the weak coupling effect of other physical processes on the neutron physics field. For the solid temperature field and fluid
field, the difference between the training and testing data is also very pronounced, with almost no overlapping points in
the Fig. 13. In experiment 3, since the range of training data has been expanded during data generation to cover as many
potential scenarios of large structures as possible, the difference between the training and testing data is not as significant as
in the multiphysics problem, and the testing data are also within the range of the training data, as shown in the Fig. 14.

Table 15. Wasserstein distance of datasets.
Training and validation Training and testing

Reaction-diffusion
u 0.343 52.7
v 0.0435 20.3
Nuclear thermal coupling
neutron 42.4 31.3
solid 1.35 56.3
fluid 1.22 986
Prismatic fuel element
T 0.233 9.05
ε 0.625 12.5
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(a) u. (b) v.

Figure 12. Visualization of experiment 1 Dataset.

(a) Neutron. (b) Solid. (c) Fluid.

Figure 13. Visualization of experiment 2 Dataset.

(a) T . (b) ε.

Figure 14. Visualization of experiment 3 Dataset.

H. Sampling acceleration.
By employing the DDIM algorithm to expedite the sampling process of diffusion models, we have successfully enhanced
the efficiency of model inference. The DDIM algorithm encompasses two parameters: the number of time steps S and the
parameter η, which controls the noise (Song et al., 2021):

σt = η

√
1− αt−1

1− αt
βt (19)

where η ∈ [0, 1]. We conduct tests across various parameter combinations, including S = 10, 25, 50, and η = 0, 0.5, 1, with
a particular focus on the model’s performance in coupled and large structure prediction. These three experiments all use the
most accurate model, which is: U-Net, U-Net, Transolver. Table 16 indicates that in experiment 1, the setting of S = 25
closely mirrors the results of S = 50, with η having a relatively minor impact. Table 17 indicates that in experiment 2,
the setting of S = 25 also approximates the outcome of S = 50 but is more sensitive to η, with η = 1 yielding the best
performance. Table 18 indicates that in experiment 3, S = 50 is the optimal setting, and η = 0 provides the best results.

During the training of diffusion models, we uniformly set the number of time steps to 250. By employing accelerated
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sampling techniques, we achieved a 10-fold acceleration for multiphysics problems and a 5-fold acceleration for multi-
component problem while ensuring the maintenance of predictive accuracy.

Table 16. Relative L2 norm of error on reaction-diffusion equation for DDIM sampling.

u v
method decoupled coupled decoupled coupled

Original DDPM 0.0119 0.0141 0.0046 0.0174

S = 10, η = 0 0.0143 0.0170 0.0117 0.0215
S = 25, η = 0 0.0123 0.0151 0.0082 0.0190
S = 50, η = 0 0.0123 0.0147 0.0059 0.0179
S = 25, η = 0.5 0.0123 0.0152 0.0082 0.0191
S = 25, η = 1 0.0119 0.0151 0.0081 0.0192

Table 17. Relative L2 norm of prediction error on nuclear thermal coupling for DDIM sampling. The unit is 1× 10−2.

neutron solid fluid
method decoupled coupled decoupled coupled decoupled coupled

Original DDPM 0.487 1.97 0.108 2.87 0.303 3.91

S = 10, η = 1 0.638 1.89 0.261 4.45 0.478 4.42
S = 25, η = 1 0.552 2.03 0.142 3.64 0.343 4.08
S = 50, η = 1 0.533 1.96 0.138 3.21 0.346 4.02
S = 25, η = 0.5 2.82 2.78 0.793 5.28 0.970 4.70
S = 25, η = 0 10.9 10.3 2.99 14.4 1.82 8.20

Table 18. Relative L2 norm of prediction error on prismatic fuel element experiment for DDIM sampling. The unit is 1× 10−2.

single 16-component 64-component
method T ε T ε T ε

Original DDPM 0.107 0.303 0.213 1.03 0.759 1.94

S = 10, η = 0 0.207 0.425 1.69 3.81 1.89 4.13
S = 25, η = 0 0.166 0.353 0.952 2.55 1.30 3.26
S = 50, η = 0 0.158 0.337 0.669 1.87 0.865 2.31
S = 50, η = 0.5 0.150 0.352 0.586 1.69 0.954 2.61
S = 50, η = 1 0.130 0.322 0.553 1.62 1.05 2.80

I. Efficiency analysis.
This section compares the computational efficiency of M2PDE, surrogate model, and numerical programs. The time unit for
each experiment is defined as the time required for a single neural network inference. These three experiments all use the
most accurate model. Since the surrogate model and M2PDE both use the same network architecture and have consistent
network parameters, it is assumed that the time for a single inference using these two methods is equal. The numerical
programs are run on the CPU and have all been optimized to the best parallel count.

Let the number of physical processes be denoted by N , the number of iterations for the surrogate model by M , the number
of diffusion steps by S, and the number of outer loop iterations for the diffusion model by K. The computation time for
the surrogate model is M × N , while the diffusion model is K × S × N . The specific choices of N,M,S,K for each
experiment are presented in Table 19.
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The results are presented in Table 20. In experiment 1, the problem is relatively simple, and the numerical algorithm
achieves efficient solutions through explicit time stepping, while the introduction of M2PDE actually reduces efficiency.
However, in experiment 2, which addresses more complex problems, M2PDE achieves a 29-fold acceleration compared to
numerical programs. In experiment 3, comparing the results of 16 components with 64 components, it is observed that as
the computational scale increases, the acceleration effect of M2PDE becomes increasingly significant. Furthermore, when
dealing with multi-component problems, the surrogate model requires iteration to ensure the convergence of solutions across
all components. Due to the large number of components, the number of iterations needed significantly increases compared
to multiphysics problems, resulting in higher efficiency for M2PDE. In addition, we have only compared the efficiency of
single computations for all experiments. When dealing with multiple problems simultaneously, the acceleration provided by
M2PDE will be even more pronounced due to the parallel nature of GPU computing.

In general, the more complex the problem, the more pronounced the acceleration effect of M2PDE becomes. In fact, the
problems in experiment 2 and experiment 3 have been simplified to a certain extent, and the actual situations are even more
complex. Therefore, M2PDE holds significant value in solving real-world complex engineering problems.

Table 19. Values of K, N , M , and S for the three experiments.

experiment N M S K

Reaction-diffusion 2 27 25 2
Nuclear thermal coupling 3 21 25 2
Prismatic fuel element (16-component) 1 309 50 3
Prismatic fuel element (64-component) 1 324 50 3

Table 20. Comparison of running time.

Experiment Unit (s) Numerical program Surrogate model M2PDE Speedup

Reaction-diffusion 0.0115 6 54 100 0.064
Nuclear thermal coupling 0.0242 4368 63 150 29
Prismatic fuel element (16-component) 0.0067 834 309 150 5.6
Prismatic fuel element (64-component) 0.0256 6170 324 150 41

J. Application Scenarios for Multi-Component simulation.
In this section, we discuss the application scenarios of M2PDE for multi-component simulation from both theoretical and
practical perspectives.

From a theoretical perspective, in the derivation of Section 3.2, we make an assumption: the solution on a multi-component
structure is an undirected graph that satisfies the local Markov property, meaning that any two non-adjacent variables are
conditionally independent given all other variables. Using this property, we derived Eq. 14. We believe this assumption is
applicable to most problems because physical fields are continuous in space, and the information exchange between any two
points must be transmitted through the points in between. However, there is a class of problems to which current methods
cannot be directly applied, which is the PDE that requires determining eigenvalues:

Mϕ = λϕ (20)

Here M is the operator, λ is the eigenvalue, ϕ is the physical field to be solved. The λ varies with different systems, and the
relationships we learn on small structures may not be applicable to large structures. Solutions to these problems may be
similar to numerical algorithms, requiring the addition of an eigenvalue search process, which will be undertaken in future
work.

From a practical implementation perspective, for a complex structure, it is necessary to clearly determine its basic components
and the relationships between these components and their surrounding components, so that we can understand how the
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components are affected by their surrounding components. In addition, training data must encompass all possible scenarios
that each component in a large structure might encounter, such as all possible boundary conditions and the relationships
with surrounding components.

K. Datasets Description.
This section provides a concise description of the datasets utilized in the three experiments, with their detailed backgrounds
introduced in Appendix B, C, D. We outline the principal characteristics of these datasets and compare them with the
standard scientific datasets PDEbench (Takamoto et al., 2022). Comparison is shown in Table 21, where Nd is the spatial
dimension, Nf is the number of physical processes, and Nc is the number of components. Table 21 only lists some of the
datasets in PDEBench, but all of its datasets have Nf and Nc values of 1. The dataset of Experiment 1 in this paper exists in
the benchmark, but Experiments 2 and 3 are completely new datasets.

Table 21. Datasets Description.
PDE Nd Time Computational domain Nf Nc

Burgers’ 1 yes Line 1 1
compressible Navier-Stokes 3 yes Cube 1 1
incompressible Navier-Stokes 2 yes Rectangle 1 1
shallow-water 2 yes Rectangle 1 1
reaction-diffusion (Exp1) 1 yes Line 1 1
heat conduction + neutron diffusion +
incompressible Navier-Stokes (Exp2) 2 yes 3 Rectangle 3 1

heat conduction + mechanics (Exp3) 2 no Irregular domain 2 16 , 64
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