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Abstract: Imitation learning is a paradigm to address complex motion planning
problems by learning a policy to imitate an expert’s behavior. However, relying
solely on the expert’s data might lead to unsafe actions when the robot deviates from
the demonstrated trajectories. Stability guarantees have previously been provided
utilizing nonlinear dynamical systems, acting as high-level motion planners, in
conjunction with the Lyapunov stability theorem. Yet, these methods are prone to
inaccurate policies, high computational cost, sample inefficiency, or quasi stability
when replicating complex and highly nonlinear trajectories. To mitigate this
problem, we present an approach for learning a globally stable nonlinear dynamical
system as a motion planning policy. We model the nonlinear dynamical system
as a parametric polynomial and learn the polynomial’s coefficients jointly with a
Lyapunov candidate. To showcase its success, we compare our method against the
state of the art in simulation and conduct real-world experiments with the Kinova
Gen3 Lite manipulator arm. Our experiments demonstrate the sample efficiency
and reproduction accuracy of our method for various expert trajectories, while
remaining stable in the face of perturbations.

Keywords: Imitation learning, Safe learning, Motion planning, Dynamical system,
Semidefinite programming, Robotic manipulation

1 Introduction

Motion planning for robotic systems is generally regarded as a decomposition of a desired motion
into a series of configurations that potentially satisfy a set of constraints [1]. Imitation learning tackles
motion planning by imitating an expert’s behavior to learn a planning policy [2]. To this day, only a
handful of imitation learning methods provide mathematical stability guarantees for their resultant
policy. Stability is a critical factor when deploying imitation policies in environments exposed
to external perturbations. Therefore, unpredictable environments require a policy that reasonably
responds in unexplored regions of state space, away from original demonstrations.

Researchers have turned to autonomous dynamical systems (DS) as a means to learn stable motion
planning policies [3, 4, 5]. Essentially, a parametric time-invariant DS is optimized to provide an
action (velocity) given the current state (position), while adhering to constraints that attain global
Lyapunov stability. This approach leads to safety and predictability of planned trajectories, even
in areas of state space without expert demonstrations. However, previous work is mostly confined
to basic Lyapunov functions that adversely impact the reproduction accuracy, and require sufficiently
large set of demonstrations. Others have proposed approaches focused on diffeomorphism and
Riemannian geometry [6, 7, 8] and contraction theory [9], that are prone to quasi-stability, increased
computational time, or restricted hypothesis class.

We propose a method to simultaneously learn a polynomial dynamical system (PLYDS) and a poly-
nomial Lyapunov candidate to generate globally stable imitation policies. Polynomials, depending on
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Figure 1: Overview of the stable policy learning framework. Policy learning (left) optimizes a stable
polynomial DS from expert’s demonstration data. This policy is then deployed (right) to plan globally
stable and predictable trajectories in the entire state space.

the degree, possess an expressive power to approximate highly nonlinear systems, and polynomial
regression can empirically compete with neural networks on challenging tasks [10, 11]. Unlike most
neural policies, global stability can be naturally expressed with polynomials. Polynomials also enable
us to utilize efficient semi-definite programming [12, 13] and sum-of-squares (SOS) optimization
techniques [14, 15], and offer adaptability to expert’s demonstrations.

Our main contribution is twofold. We propose a polynomial representation of the planning policy
and Lyapunov candidate function, coupled with concrete mathematical stability certification for
precise and safe replication of the expert’s demonstrations, as depicted in Figure 1. Then, we
define a regularized semi-definite optimization problem to jointly learn the DS and the Lyapunov
candidate with higher flexibility and precision. We compare the reproduction accuracy of PLYDS with
alternatives in the literature and evaluate the performance in both simulation and real robotic systems.

2 Background and Notation

Consider a system operating in a state-space X ⊂ Rn, e.g., a robot in its task- or configuration-space.
The system can execute actions in A ⊂ Rn, for instance, velocity or torque commands, leading to
state evolution. We denote the state variable with x ≜ [x1 x2 . . . xn]

T ∈ X , and consider the action
variable to be the state’s derivative ẋ ∈ A. Within this space, our goal is to learn an imitation policy
through a dataset of experts’ state-action pairs, referred to as trajectories.

Let Nd ∈ N be the number of trajectories demonstrated by the expert. Each trajectory contains
Ns ∈ N state-action pairs. The dataset of expert trajectories stacks all state-action pairs, defined as:

D ≜
{(

xd(s), ẋd(s)
) ∣∣ d ∈ {1, . . . , Nd}, s ∈ {1, . . . , Ns}

}
, (1)

where (xd(s), ẋd(s)) is the dataset entry corresponding to the s-th sample of the d-th demonstrated
trajectory. The dataset D holds Nt = NdNs samples. We assume that the trajectories contain the
same sample size (Ns), share a common target (x∗ ∈ X ), and have zero velocity at the target, i.e.,
xd(Ns) = x∗ and ẋd(Ns) = 0 for all trajectories d ∈ {1, . . . , Nd}.

Definition 2.1. (Dynamical Systems). The mapping between the state and the action in each sample
can be modelled with a time-invariant autonomous dynamical system (DS), denoted by:

ẋ = f(x) + ϵ = f̂(x), f, f̂ : X −→ A. (2)

In Equation (2), f is an ordinary differential equation for the true underlying DS. The term ϵ ∈ Rn

captures measurement and recording noise of expert’s demonstrations. We assume that ϵ is embedded
in the estimated DS, f̂ , and eliminate the need for modeling its distribution. Following [3], we aim at
learning a noise-free estimation of f(x), denoted by f̂(x). One can view f̂(x) in Equation (2) as a
policy that maps states to actions for reproducing the demonstrated trajectories in the state-space. For
instance, when the robot is located in x0 ∈ X , the policy yields an action ẋ0 = f̂(x0), which can be
passed to the robot’s velocity controller.
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The estimated DS in Equation (2), f̂(x), is globally asymptotically stable (GAS) around an equilib-
rium point xe, if and only if for every initial state, x → xe as the system evolves and time goes to
infinity [16]. A popular tool to study the GAS property of a DS is the Lyapunov stability theorem.
According to this theorem, a DS exhibits GAS if there exists a positive-definite function v : X −→ R,
known as Lyapunov potential function (LPF), such that v̇(x) < 0 for all x ̸= xe and v̇(xe) = 0. To
ensure GAS for f̂(x), we simultaneously learn the policy, f̂ , and the LPF, v.

3 Related work

Extensive research is conducted on imitation learning and its applications in robotic motion planning
for a variety of tasks. Existing efforts can be divided into the following predominant research tracks.

Dynamical systems for motion planning. Dynamical systems have proved to effectively counter
autonomous motion planning problems by proposing a time-invariant policy [17]. Traditional methods
of encoding trajectories are based on spline decomposition [18], Gaussian process regression [19],
or unstable dynamical systems [20, 21]. They either lack robustness because of time-variance or
fail to provide GAS. SEDS [3] is the first attempt to learn stable planning policies. However, its
performance declines when applied to highly nonlinear expert trajectories. Most notably, it suffers
from trajectories where the distance to the target is not monotonically decreasing. The intrinsic
limitation of SEDS comes from the choice of a simple Lyapunov function. Follow-up research
introduces more complex Lyapunov candidates to stably mimic nonlinear trajectories [4, 22], but are
still restricted in representing the Lyapunov candidate. Others have tried to tackle SEDS limitations
through diffeomorphic transformations and Riemannian geometry [6, 8, 7] that yield quasi-stable
planners for some trajectories, and contraction theory [9] that restricts the class of metrics to make
the optimization tractable. Lastly, most improvements to the original SEDS still use the Gaussian
mixture model formulation, that is vulnerable in presence of limited expert demonstrations.

Imitation learning. Recent imitation learning developments can be applied to motion planning tasks
with minimal modifications, since motion planning can be achieved by finding a (not necessarily
stable) policy in the robot’s task-space from the expert’s behavior. For instance, GAIL [23] introduces
an adversarial imitation learning approach that directly optimizes the expert’s policy, but requires
a large set of expert’s data (low sample efficiency) and extensive training iterations. The growing
interest in neural policies has also led to the development of end-to-end autonomous driving [24] and
behavioral cloning [25, 26, 27] methods. Nevertheless, they generally lack GAS, and it is unclear
whether the robot can recover from perturbations. The same drawbacks exist with apprenticeship
learning approaches, such as Abbeel and Ng [28] and inverse reinforcement learning, such as Ziebart
et al. [29], and the computational demand is even higher for the latter.

Stability in neural dynamical systems. Methods such as [30, 31] represent the dynamics with a
Neural Network, and propose the joint training of dynamics and a Lyapunov function to guarantee the
stability. Though theoretically sound, these methods have only been applied to rather simple settings
and require large demonstration sets. Neural Lyapunov methods [32, 33, 34] promise a data driven
and potentially stable approach to control and model nonlinear dynamics, but lack global stability.
Methods such as [35] are also not stable-by-design and the dynamical system lacks autonomy.

4 Methodology

We instantiate the policy and the corresponding LPF candidate, f̂ and v, with two polynomials in
Section 4.1 and Section 4.2, respectively. This allows us to accurately imitate an expert’s behavior,
while providing formal GAS guarantees. Subsequently, we formulate a tractable optimization problem
for jointly learning the policy and the LPF in Section 4.3.

4.1 Dynamical system policy formulation

We need to approximate the unknown underlying DS in Equation (2) to discover the mapping
between states and actions from expert’s behavior. To this end, we opt to model the policy with a
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parametric polynomial. The representative power of polynomials was originally established through
the Weierstrass approximation theorem, stating that every continuous function defined on a closed
interval can be approximated with desired precision by a polynomial. This idea is fortified by recent
studies, such as [10, 11], that compare polynomials to neural networks on a variety of tasks.

Definition 4.1. (Polynomial Dynamical Systems). A Polynomial Dynamical System (PLYDS) is a
polynomial approximation of the policy in Equation (2), and is expressed as,

ẋ = f̂(x; P) ≜
[
bT
x,αP1bx,α bT

x,αP2bx,α . . . bT
x,αPnbx,α

]T
, (3)

where bx,α ≜ [1 (xT )◦1 (xT )◦2 . . . (xT )◦α]T is the polynomial basis of degree α ∈ N, and
(xT )◦k is the element-wise k-th power of xT . Every row i of f̂ is a polynomial of degree 2α,
f̂i(x; Pi) = bT

x,αPibx,α, where Pi ∈ Sαn+1 and Sk ≜ {S ∈ Rk×k|ST = S}. The matrix
P ∈ Sαn2+n encapsulates the block-diagonal form of all Pi matrices.

Below, we present an example to show how PLYDS, as defined in Definition 4.1, captures nonlinear
time-invariant policies. One can further complicate the policy by increasing α, which in turn produces
a larger basis vector and a more flexible polynomial.

Example 4.1.1. A second-order polynomial representation of a one-dimensional DS is:

ẋ = f̂(x; P) =
[
bT
x,α P1 bx,α

]
= [1 x]

[
p00 p01
p01 p11

] [
1
x

]
= p00x

2 + (p01 + p10)x+ p00,

where α = 1,bx,α = [1 x]T . Note how P can be symmetric without loss of generality.

4.2 Global stability guarantees for polynomial dynamical systems

As explained in Section 4.1, a polynomial policy allows for accurately imitating the expert’s demon-
strations. Yet, there is no formal GAS guarantee that the robot will ultimately converge to the target in
the face of perturbations, deflecting it from the expert’s trajectories. Owing to the Lyapunov stability
theorem, finding an LPF that meets the criteria in Section 2 ensures the desired stability [36].

The major challenge lies in learning an LPF, v, which is a positive definite function with negative
gradient. We tackle this by confining to the class of polynomial LPF candidates.

Definition 4.2. (Polynomial Lyapunov Candidate). A multidimensional polynomial LPF is given by,

v(x; Q) ≜
[
bT
x,βQ1bx,β bT

x,βQ2bx,β . . . bT
x,βQnbx,β

]T
, v : X → Rn, (4)

where β ∈ N is the polynomial basis degree. Each row is defined by vi(x; Qi) = bT
x,βQibx,β , vi :

X −→ R, and can be viewed as a scalar Lyapunov function. The parameters matrix, Q ∈ Sβn2+n, is
a block-diagonal of all Qi ∈ Sβn+1 matrices.

Definition 4.2 introduces a non-conventional LPF candidate. Rather than considering a single LPF,
we designate a distinct polynomial LPF for each dimension of the state space and stack them into
v(x; Q). This characterization, known as a vector Lyapunov function [37], is less restrictive and
enables the policy and LPF to be learned moreindependently for each dimension of the state space.

We highlight that the GAS of the policy in each dimension, f̂i(x; Pi), implies the GAS of the entire
policy, f̂(x; P). Proposition 4.3 establishes a link between the policy stability in each row and the
global stability of the multidimensional policy.

Proposition 4.3. Assuming each pair (f̂i(x; Pi), vi(x; Qi)) individually satisfies the GAS condi-
tions. Then, the sum v̂ =

∑n
i=1 vi(x; Qi) yields a valid standard Lyapunov function for f̂(x; P),

proving that the policy satisfies GAS conditions. The proof is given in Appendix A.1.

The formulation of the policy and the LPF as multidimensional polynomials empowers us to leverage
tools from sum-of-squares (SOS) [15, 38]. The SOS approach boils the Lyapunov GAS conditions
down to verifying positive-definiteness of a set of specified matrices. The next two lemmas illustrate
the SOS formulation of Lyapunov stability conditions.
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Lemma 4.4. The first Lyapunov stability criterion, vi(x; Qi) ⪰ 0, is satisfied for each i ∈
{1, . . . , n} if Qi ⪰ 0 and Qi ∈ Sβn+1. The proof is outlined in Appendix A.2.
Lemma 4.5. The second Lyapunov criterion, ∂

∂tvi(x; Qi) ≺ 0, is fulfilled for each i ∈ {1, . . . , n}
if there exists a symmetric matrix Gi ≺ 0 and Gi ∈ S(α+β)n+1 such that:

∂

∂t
vi(x; Qi) =

∂vi(x; Qi)

∂x

∂x

∂t
=

∂vi(x; Qi)

∂x
f̂(x; P) = bT

x,α+βGibx,α+β , (5)

where α+ β is the basis degree. The matrix Gi is acquired by polynomial coefficient matching, and
depends on P and Qi. We summarize this dependence with the function G(P,Q) = G, where G
symbolizes the block-diagonal form of all Gi matrices. The proof is outlined in Appendix A.3.

Finally, with the necessary tools at our disposal, we can establish the connection between the global
stability of the policy and finding SOS polynomials in Theorem 4.6. This theorem serves as the
fundamental basis for the subsequent policy optimization process.
Theorem 4.6. A polynomial DS policy, f̂(x; P), is GAS if the following conditions are satisfied:

(a) Q ⪰ 0, (b) G ≺ 0, (c) G(P,Q) = G. (6)

The proof is straightforward and is sketched in Appendix A.4.

4.3 Joint optimization problem

At this stage, we have established polynomial representations for both the policy and the LPF, along
with a firm connection that confirms global stability. Now, we develop an objective function using
the Mean-Squared Error (MSE) cost with the Elastic Net Regularization [39]. The MSE is calculated
between the policy output and the expert’s actions across demonstrated trajectories, and it solely
depends on the policy parameters. Essentially, this problem entails regularized polynomial regression
to minimize the imitation MSE to expert’s demonstrations, subject to the existence of an LPF that
satisfies the Lyapunov conditions. The optimization problem is framed as:

min
Q,G,P

J(P) =
1

2Nt

Nd∑
d=1

Ns∑
s=1

(f̂(xd(s); P)− ẋd(s))2 + λ1∥P∥1 + λ2∥P∥2F ,

s.t. (a) Q ⪰ 0 (b) G ≺ 0 (c) G(P,Q) = G (d) Q = QT , G = GT , P = PT ,

(7)

where ∥.∥1 and ∥.∥2F denote the first and Frobenius norms, and λ1, λ2 ∈ R+ represent the regulariza-
tion coefficients. Equation 7 is a semi-definite programming with nonlinear cost function [40, 38], and
can be solved using standard semi-definite solvers [41, 42]. Semi-definite programming facilitates
optimization over the convex cone of symmetric, positive semi-definite matrices or its affine subsets.
Note that (c) can cause the optimization to become non-convex. To alleviate this, we employ SDP
relaxations [12], iterative methods based on an initial guess of the Q matrix, and ultimately sequential
quadratic programming (SQP) [43].

Notice that the negative-definite constraints can be transformed to a semi-definite constraints by a
constant shift. Furthermore, the Lyapunov conditions restrict the gradient to nonzero values away
from the origin. The restriction ensures that the LPF has only one global minimum at the target.

5 Experiments

We employ two motion planning datasets for experiments. Our primary data comes from the widely
recognized LASA Handwriting Motion Dataset [44], which comprises data recorded from handwritten
trajectories. The second dataset contains expert demonstrations collected through teleoperating a
robotic arm on realistic manipulation tasks. Details about both datasets can be found in Appendix B.1.

5.1 Evaluation

For evaluation purposes, we apply PLYDS and the baselines to the dataset (Figure 2a) and evaluate
the performance of policy rollouts in PyBullet simulation (Figure 2b) before deploying safe policies
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(a) (b) (c)

Figure 2: Overview of the evaluation sequence: (a) learning from demonstrated data, (b) numerical
evaluation in simulation and (c) deployed in real-world Gen3 Lite manipulator.

(a) (b)

Figure 3: Comparison of (a) mean and standard deviation of reproduction MSE and (b) computation
time to designated imitation learning methods. PLYDS performs reasonably well in terms of accuracy
and is even more promising in terms of computational cost.

onto a manipulator (Figure 2c). In all experiments, we randomly split the demonstrated trajectories in
the dataset into train and test sets. The policy learning stage, introduced in Equation (7), is carried out
on the training data. The learned policy is subsequently evaluated by calculating the MSE between
the policy predictions and the ground truth in the test data, 1

2Ntest
d Ns

∑Ntest
d

d=1

∑Ns

s=1(f̂(x
d(s); P)−

ẋd(s))2. Recall that the policy output, ẋ, is the velocity passed to the robot’s low-level controller. We
repeat this procedure over 20 different random seeds, and report the average and standard deviation.

We compare the accuracy of our approach to existing baselines. Primarily, we compare against
Stable Estimator of Dynamical Systems (SEDS) [3], Linear Parameter Varying Dynamical Systems
(LPV-DS) [22], and Stable Dynamical System learning using Euclideanizing Flows (SDS-EF) as
methods that ensure GAS. We also compare our method to Behavioral Cloning (BC) [26], and
Generative Adversarial Imitation Learning (GAIL) [23] to highlight the importance of global stability.
Note that among these, BC and GAIL do not provide mathematical stability guarantees, but the results
could provide further comparison ground for the accuracy and computation time. The implementation
details, hyperparameters and architecture are discussed in Appendix B.2 and Appendix B.3.

5.2 Handwriting dataset

We compare the learned policies of PLYDS to the baselines on eight designated motions. The outcome
of these experiments is reported in Figure 3. Despite stability guarantees, the overall accuracy is
better among stable imitation learning methods compared to unstable neural approaches.

To analyze GAS, we visualize the learned policies of all methods as streamlines. Figure 4 illustrates
the policy rollouts for N-Shaped motion of the handwriting dataset. Each sub-figure represents a
trained policy illustrated with gray streamlines. It is evident that SEDS and PLYDS maintain GAS,
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SDS-EFGAIL

X1

SEDSPLYDS

X
2

Figure 4: Policy rollout for N-Shaped motion of the handwriting dataset. Each figure represents a
trained policy (gray) and rollouts (red) learned from demonstrations (blue). Note the stability issues
with GAIL and SDS-EF, where some streamlines fail to reliably converge to the target.

SEDS SDS-EF LPV-DS

X1

X
2

PLYDS

Figure 5: Policy rollout for Sine-Shaped motion (blue) of the handwriting dataset, with access to only
one expert demonstration. Each figure represents a trained policy (gray) and one rollout (red) learned
from one demonstration (blue). Methods requiring large datasets for clustering, such as SEDS and
LPV-DS, exhibit inaccurate and unsteady performance.

while GAIL and SDS-EF fail to demonstrate converging trajectories for the entire state space. The
same pattern persists for other motions as depicted in Appendix C.1.

Finally, we examine the sample efficiency of our method by reducing the input data to one demon-
strated trajectory. From Figure 5, we can see that PLYDS learns a stable policy with such limited
training samples, while the baselines generate trajectories which diverges from expert data.

So far in this section, the policy and the LPF polynomial degrees were set to α = 6 and β = 2. To
understand the way in which the complexity of polynomials affects the overall performance, we
repeated the same experiments with degrees of α = 4, 6, and 8, and present the result in Appendix C.2.
We observe that a higher complexity leads to improved precision, if not halted by overfitting or
stability sacrifice. Moreover, we study different LPF complexities in Appendix C.3, evaluate the
performance of PLYDS with noisy demonstrations in Appendix C.4, and further investigate the
computational times in Appendix C.5.

5.3 Manipulation tasks

To conduct real-world trials, we collect a second set of expert demonstrations through teleoperating
Kinova Gen3 Lite, a manipulator arm with six degrees of freedom. This new dataset holds three
distinct motions: (a) root-parabola, (b) standard pick and place, and (c) prolonged-sine, which
represent exemplary nonlinear trajectories (Figure 6). Additional details are available in Appendix B.

The performance of all methods is summarized in Table 1, where PLYDS often outperforms other
baselines. Next, the learned policy of PLYDS is transferred to the physical arm (Figure 6) and
successfully imitates the introduced manipulation tasks. We also start the robot at regions that are
further away from the demonstrations and introduce perturbations by randomly pushing the robot to
reveal the inherent GAS of PLYDS. As expected, PLYDS manage to successfully recover to the goal.
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(a) (b) (c)

Figure 6: Manipulation tasks: (a) root-parabola, (b) standard pick and place, and (c) prolonged-sine.

Expert Motion Prolonged Sine Root Parabola Pick-and-Place Computational Time

SEDS [3] 0.234± 0.015 0.152± 0.023 0.094± 0.012 277.02± 13.60
BC [26] 1.650± 0.133 0.931± 0.078 0.725± 0.133 38.93± 9.11

GAIL [23] 2.322± 0.098 1.322± 0.094 0.663± 0.098 143.15± 8.68
SDS-EF [8] 0.234± 0.015 0.152± 0.023 0.094± 0.012 715.62± 18.79

LPV-DS + P-QLF [22] 0.234± 0.015 0.152± 0.023 0.094± 0.012 334.55± 25.74
PLYDS (ours) 0.111± 0.007 0.176± 0.015 0.021± 0.003 21.37± 1.52

Table 1: Policy rollout reproduction MSE and computational time in PyBullet.

6 Conclusion and Limitations

We introduced an approach that aims to learn globally stable nonlinear policies represented by
polynomial dynamical systems. We employ the learned policies for motion planning based on
imitating expert demonstrations. Our approach jointly learns a polynomial policy along with a
parametric Lyapunov candidate that verifies global asymptotic stability by design. The resulting
DS is utilized as a motion planning policy, guiding robots to stably imitate the expert’s behavior. A
comprehensive experimental evaluation is presented in real-world and simulation, where the method
is compared against prominent imitation learning baselines.

Limitations. A limitation of SOS is that the set of non-negative polynomials is larger than the ones ex-
pressed as SOS [45]. Though rare in motion planning tasks, this implies that finding a Lyapunov candi-
date could be difficult, especially with simultaneous search for a suitable dynamical system. Lasserre
hierarchy and SOS extensions [46] can search in a broader class of LPF candidates and tackle this is-
sue. Another limitation occurs when finding highly complex policies that lead to a violation of stability
guarantees. This often happens when the regularization coefficients or the optimization tolerance are
not set properly. We discuss this trade-off between stability and accuracy in Appendix C.2. Further, the
computation complexity of PLYDS is feasible with a reasonable choice of polynomial degrees. Higher
degrees are computationally demanding, but are often unnecessary in normal motion planning tasks.

Future work. Future work includes incorporating more elaborate safety criteria, such as control bar-
rier functions [47] or real-time obstacle avoidance, into our learning objectives. Plus, applications of
our method in SE(3) planning, or other higher-dimensional spaces, such as configuration space of ma-
nipulator robots, may be further investigated. Vector Lyapunov functions and adaptable complexity of
polynomials can pave the way for such applications, as they assuage major computational challenges.

7 Video, Codebase, and Reproducibility

The codebase, video supplements, etc. related to this project are available on our Git repository 1.
Reproducing the experiments is as straightforward as installing dependent software packages, and
running a Unix commands in README files.

1github.com/aminabyaneh/stable-imitation-policy
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A Mathematical Proofs

Due to space limitations and to maintain coherency, proofs for propositions, lemmas, and theorems
are presented in this section in the order in which they appeared in the main text.

A.1 Proof of Proposition 4.3

Assuming each pair (f̂i(x; Pi), vi(x; Qi)) individually satisfies the GAS conditions. Then, the sum
v̂ =

∑n
i=1 vi(x; Qi) yields a valid standard Lyapunov function for f̂(x; P), proving that the policy

satisfies GAS conditions.

Proof. As vi(x; Qi) is an LPF candidate for f̂i(x; Pi), both the first and second Lyapunov
conditions must be satisfied, i.e., ∀i ∈ {1, . . . , n}:

(a) vi(x; Qi) ⪰ 0, ∀x ∈ X , (b)
∂vi(x; Qi)

∂t
≺ 0, ∀x ∈ X .

Define the sum of elements v̂(x; Q) =
∑n

i=1 vi(x; Qi). We show that v̂(x; Q) satisfies both
Lyapunov global stability conditions:

(i) vi(x; Qi) ⪰ 0 (a) ⇒ v1(x; Q1) + . . .+ vn(x; Qn) = v̂(x; Q) ⪰ 0,

(ii)
∂v̂(x; Q)

∂t
=

∂
∑n

i=1 vi(x; Qi)

∂t
=

n∑
i=1

∂vi(x; Qi)

∂t
,

∂vi(x; Qi)

∂t
≺ 0 (b). □

A.2 Proof of Lemma 4.4

The first Lyapunov stability criterion, vi(x; Qi) ⪰ 0, is satisfied for each i ∈ {1, . . . , n} if Qi ⪰ 0
and Qi ∈ Sβn+1.

Proof. Considering that vi(x; Qi) = bT
x,βQibx,β and Qi is not singular, we can perform a Cholesky

factorization on the parameters’ matrix Qi. The result is Qi = LT
i Li, and the positivity of vi(x; Qi)

comes from,

vi(x; Qi) = bT
x,βQibx,β = bT

x,βL
T
i Libx,β = (Libx,β)

T (Libx,β) = ||Libx,β ||2 ⪰ 0,

that represents vi(x; Qi) as an SOS and therefore achieves the first Lyapunov condition. □

A.3 Proof of Lemma 4.5

The second Lyapunov criterion, ∂
∂tvi(x; Qi) ≺ 0, is fulfilled for each i ∈ {1, . . . , n} if there exists a

symmetric matrix Gi ≺ 0 and Gi ∈ S(α+β)n+1 such that:

∂

∂t
vi(x; Qi) =

∂vi(x; Qi)

∂x

∂x

∂t
=

∂vi(x; Qi)

∂x
f̂(x; P) = bT

x,α+βGibx,α+β , (8)

where α + β is the basis degree. The matrix Gi is acquired by polynomial coefficient matching,
and depends on P and Qi. We summarize this dependence for all i ∈ {1, . . . , n} with the function
G(P,Q) = G, where G symbolizes the block-diagonal form of all Gi matrices.

Proof. We know that LPF rows are denoted by vi(x; Qi) = bT
x,βQibx,β . Hence, we write the

second Lyapunov condition by taking the derivative of each row:

∂vi(x; Qi)

∂t
=

∂vi(x; Qi)

∂x1

∂x1

∂t
+

∂vi(x; Qi)

∂x2

∂x2

∂t
+ . . .+

∂vi(x; Qi)

∂xn

∂xn

∂t

∂xj

∂t
= f̂j(x; Pj) ⇒

∂vi(x; Qi)

∂t
=

n∑
j=1

∂vi(x; Qi)

∂xj
f̂j(x; Pj)

=

n∑
j=1

∂[bT
x,βQibx,β ]

∂xj
[bT

x,αPjbx,α]
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Within the last summation, both the derivative of Lyapunov function and the policy are polynomials.
The idea is that their multiplication could also be written as an SOS polynomial if the parameters Pi

and Qi are chosen carefully. For this polynomial, we define a new basis bx,α+β and Gi ∈ S(α+β)n+1.
Note that the degree of this basis is calculated by 1

2 [(2β − 1) + (2α) + 1], which is the rounded-up
degree of the above multiplication term.

Next, we match polynomial coefficients on both sides, yielding Gi parameters as a function of both
P and Gi, i.e.,

bT
x,α+βGibx,α+β

Matching⇐========⇒
Coefficients

n∑
j=1

∂[bT
x,βQibx,β ]

∂xj
[bT

x,αPjbx,α]

⇒ Gi = Gi(P,Qi)

We summarize the same relationship for all Gi matrices, and call the resulting function G. Hence,
the second condition can be represented by G = G(P,Q) and G ≺ 0, and be viewed as SOS. □

A.4 Proof of Theorem 4.6

Assuming the polynomial representation of a nonlinear autonomous dynamical system (Defini-
tion 4.1),

f̂(x; P) = [bT
x,αP1bx,α bT

x,αP2bx,α ... bT
x,αPnbx,α]

T ,

the existence of a corresponding polynomial Lyapunov function (Definition 4.2),

v(x; Q) = [bT
x,βQ1bx,β bT

x,βQ2bx,β ... bT
x,βQnbx,β ]

T

guarantees the asymptotic global stability of the policy, if the following conditions are satisfied:

(a) Q ⪰ 0, (b) G ≺ 0, (c) G(P,Q) = G.

Proof. The proof is straightforward and follows both Lemma 4.4 and Lemma 4.5. We know that
each partial DS f̂i(x; Pi) is stable if the corresponding parameterized LPF satisfies (a), (b), and
(c), where G is an affine function found in Lemma 4.5 by polynomial coefficient matching. Since
each f̂i(x; Pi) explains the derivative along one of the orthogonal basis of f̂(x; P), their individual
global stability is equivalent to the stability of the entire system. In other words,

∀xi ∈ D{f̂i(x; Pi)}, lim
t→∞

xi = x∗
i

⇒ lim
t→∞

x = [ lim
t→∞

x1 lim
t→∞

x2 ... lim
t→∞

xn]
T = x∗

Another proof can be provided using the LPF introduced in Proposition 4.3 as a Lyapunov candidate
for the whole system. Both proofs equally validate the stability of the polynomial DS. □

B Experiment Setup and Details

Enclosed in this section are detailed descriptions of our experiment setup, main software packages,
and datasets. Due to space limitations, crucial details from the experiments are explained here. Even
though reading the section is not necessary to understand the paper, it provides useful insight into our
setup and can aid reproducibility and future research.

B.1 Datasets

Handwriting dataset. The LASA Handwriting Dataset, partly depicted in Figure 7, is a collection
of 2D handwriting motions recorded from a Tablet-PC and by user’s input. The dataset includes 30
human handwriting motions, where each motion represents a desired pattern. For each pattern, there
are seven demonstrations recorded, with each demonstration starting from a slightly different (but
fairly close) initial position but ending at the same final point. These demonstrations may intersect
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Figure 7: Plots of handwriting dataset motions used in our experiments. We select a representative
subset of motions for baselining to keep the experiments computationally feasible. Each plot shows 7
demonstrations with 1000 recorded samples per each. Notice that the time indexing is included in the
dataset, but it is irrelevant to our work as we learn time-invariant policies.

with each other. Out of the 30 motions, 26 correspond to a single pattern, while the remaining four
motions include multiple patterns, referred to as Multi Models. In all the handwriting motions, the
target position is defined as (0, 0), without loss of generality. The dataset provides the following
features:

• Position (2 × 1000) representing the motion in 2D space. The first row corresponds to the
x-axis, and the second row corresponds to the y-axis in Cartesian coordinates.

• Time (1 × 1000) being the time-stamp for each data point in the motion. We do not use this
property, as our proposed method generates time-invariant policies.

• Velocity (2 × 1000) representing the velocity corresponding to each position. We use this
feature as a label and form our MSE cost function to calculate the difference between the
predicted velocity and this data.

• Acceleration (2 × 1000) matrix representing the acceleration. Not applicable to our research,
but could potentially be utilized for future research.

We will not experiment on the entire dataset of 30 motions due to computational unfeasibility. Instead,
we select a representative set of motions with (8 × 5 × 2 × 1000) samples in total. The experiments
are mainly conducted with this designated set, but since the set is chosen to be representative, we
expect the results to generalize to other motions as well.

Velocity normalization. Moreover, for some experiments, we opt to normalize the velocity values,
such as in Figure 8, to avoid large cost values. This can cause a loss of generality, since the policy
actions are now restricted to the direction of the action vector, and will not try to replicate its size.
The size of this arrow might be important in scenarios where parts of the motion need to be carried
out at a different pace. PLYDS can handle the dataset with or without velocity normalization. The
dataset is also referenced and provided as a part of our reproducibility efforts.

Real-world collected dataset. We collect data by teleoperating the Kinova Gen3 Lite Arm. Tele-
operation involves employing human agents to operate a robotic device or system, recording their
actions as expert demonstrations. The teleoperated actions are then recorded and utilized as training
data for algorithmic learning. We have two options for teleoperation. First, a human expert can
manually control the robot arm using a joystick or keyboard. This process results in natural but
non-smooth trajectories. The second approach employs the robot’s internal control systems and
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Figure 8: Speed profile for the sine motion, normalized vs. natural. When we normalize the speed,
policies fail to capture the difference in the speed vector’s magnitude along the trajectories. PLYDS
works with both normalized and regular velocities, but we mostly opt for normalized velocities for
baselining and comparisons, especially when plotting the policy streamlines for visual verification.

Figure 9: Plots of the dataset collected using Kinova Gen3 Lite and teleoperation. The robot is
operated to complete the following trajectories multiple times, while the position and velocity data
are recorded in real-time. Expert’s demonstrations can also come from robot’s low-level controllers,
which leads to faster data gathering process. We tried to keep the scale of these trajectories aligned
with the handwriting dataset to achieve consistency.

trajectory planning systems to perform as an expert and execute some patterns. This leads to a
smoother data collection process with higher reliability. Please keep in mind that planners only
connect a series of few points, with no guarantee of stability, and are time-dependent. Consequently,
the role of policies generated by PLYDS will not be obsolete.

We gather an open-source dataset holding three distinct motions: the prolonged sine, root parabola,
and pick-and-place (Figure 9). Each motion is represented by 50 demonstrations in a 3-dimensional
world. Each demonstration contains a state (position) vector (3 × 1000) and a corresponding action
(velocity) vector (3 × 1000). Note that orientation is not recorded in the dataset, as we assume
the robot’s gripper will always face downwards. There will not be any loss of generality because
controlling the orientation with PLYDS can be done in parallel, and in the exact same way as the
end-effector’s position. The dataset is provided as a part of our reproducibility efforts in Section 7.

B.2 SDP Optimization

We primarily use the commercially available MOSEK [42] optimization software that provides
solutions for numerous types of optimization issues, including nonlinear semidefinite programming.
The flexibility and high-performance capabilities of MOSEK make it ideal for challenging opti-
mization tasks in both commercial and academic settings. We currently use the MOSEK under an
academic license, which can be obtained free of charge with an academic domain email. SCS [48]
is another solver specifically designed for solving semidefinite complementarity problems, which
include nonlinear SDP as a special case. SCS employs an augmented Lagrangian method combined
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with the Fischer-Burmeister function to handle the complementarity conditions in the SDP. At this
time, we do not have any solid comparison between the efficiency of these solvers for our setup, but
commercial software products often perform more efficient than open-source products.

We also use SciPy [49], an open-source scientific computing library for Python that has many modules
for numerical optimization. SciPy can handle a wide range of optimization problems, including
nonlinear programming with semidefinite constraints, even though it may not provide specialized
solvers for nonlinear SDP. Our software still supports SciPy; however, it is not as efficient in solving
nonlinear SDP problems as MOSEK and SCS.

B.3 Hyperparameters and architecture.

We provide a summary of parameters related to each baseline we used in the paper. Note that we
accelerate the computation of GAIL, BC, and SDS-EF with an NVIDIA GeForce RTX 3060 GPU,
but SEDS, LPV-DS, and PLYDS use only a Core-i7 Gen8 CPU for optimization. a

PLYDS. For our experiments, we primarily utilize parameters α = 3 and β = 1, which have
proven effective in most cases. However, we also explore higher degrees to cover a broader range
of settings. Additionally, to strike a balance between stability and accuracy, we occasionally adjust
the tolerance level from 10−4 to 10−9. This allows us to trade off precision for stability when
necessary. For the Lyapunov candidate to maintain non-zero gradient beyond the quadratic form,
we opt for only square elements in the LPF basis vector. This ensures stability and reliability in
our system. Although it is possible to enforce a positive Hessian for the Lyapunov function, it
incurs additional computational time while further limiting flexibility in stability conditions. More
information about the parameters and architecture of PLYDS can be found on our GitHub repository:
github.com/aminabyaneh/stable-imitation-policy.

GAIL. The discriminator network takes as input the state-action pairs or observations generated by
the policy network and expert demonstrations. Hidden Layers: The network may consist of two or
three hidden layers, each with 256 or 512 units. Activation Function: Rectified Linear Unit (ReLU)
activation function is commonly used between the layers. Output: The discriminator produces a
single output value, representing the probability of the input being from the expert or the generated
policy. Hyperparameters: Learning Rate: 0.0001, Number of Discriminator Updates per Generator
Update: 1 or 2, Discount Factor (for reinforcement learning algorithm): 0.99, Batch Size: 64 or
128, Number of Training Iterations: 1000. We use the imitation package for GAIL’s implementation:
imitation.readthedocs.io/en/latest/algorithms/gail.html.

BC. The behavioral cloning network takes the state-action pairs as input. Hidden Layers: The net-
work may have two or three hidden layers, each consisting of 128 or 256 units. Activation Function:
Rectified Linear Unit (ReLU), Output: The output layer of the network corresponds to the action space
dimensionality, producing the predicted action. Hyperparameters: Learning Rate: 0.0001, Number
of Training Iterations: 5000, Batch Size: 64, Regularization Strength (L2 regularization): 0.001, Opti-
mizer: Adam, Loss Function: Mean Squared Error (MSE). Same as with GAIL, we use the imitation
package to access BC’s implementation: imitation.readthedocs.io/en/latest/algorithms/bc.html.

SEDS. Takes position-velocity pairs as input (or state-action pairs in general). Number of Gaussian
Components: Typically ranges from 3 to 10, depending on the complexity of the motion being learned.
Gaussian Mixture Model (GMM) Parameters: Covariance Type: Diagonal covariance is commonly
used for efficiency and simplicity, Regularization Weight: Often set to a small value, such as 1e-6,
to avoid singularities and overfitting, Maximum Number of Iterations: 100 iterations. Convergence
Tolerance: 1e-6 or 1e-7. We have implemented SEDS in Python using the SciPy optimization library,
and the original MATLAB code is not used in our comparisons to remain consistent with other
baselines, particularly in terms of computational time. Our implementation of SEDS can be found on
github.com/aminabyaneh/stable-imitation-policy.
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LPV-DS. We mainly use the original implementation of LPV-DS available on:
github.com/nbfigueroa/ds-opt and developed in Matlab. The parameters of the method re-
main the same as the original repository, and we only change the number of demonstrations if
required for comparison purposes.

SDS-EF. We also provide an implementation of this baseline on our GitHub repository. The
coupling layers are set with the following parameters: base network = ’rffn’, activation func-
tion = ’elu’, and sigma=0.45. The main architecture uses 10 blocks and hidden layers’ size
are set to 200. All these parameters are the same as SDS-EF’s original implementation on
github.com/mrana6/euclideanizing flows, but we omit the preprocessing step found in the origi-
nal implementation, to be able to fairly, and effectively compare the results to other baselines.

C Supplemental Results

We present a comprehensive set of additional experiments aimed at putting the proposed framework
to test from a variety of angles including access to fewer demonstrations, demonstrating the variety
of LPFs, more baseline policy rollouts, additive noise, and lastly, we conduct an ablation study by
removing the stability guarantee, and present computation times in comparison with the baselines.

C.1 Baseline policy rollouts

In Figure 10, we plot policy rollouts optimized with PLYDS in comparison to the baselines: SEDS,
GAIL, and SDS-EF. We extend these results to LPV-DS in Figure 11. All the portrayed policies are
optimized on a set of motions from the handwriting dataset, namely, G-Shaped, Angle, C-Shaped,
and P-Shaped demonstrations. The key takeaway is the pattern of instability among neural based
imitation learning methods for unknown areas of state space, and inaccuracies visible across the
baselines. Hence, the same patterns as the plots in the main text continue to emerge.
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Figure 10: Policy rollout for Angle, C-Shaped, G-Shaped, and P-Shaped demonstrations in hand-
writing dataset. PLYDS is visually compared to the baselines in terms of reproduction accuracy and
global stability. Note the inaccuracies and unstable reproductions in other baselines.

X1

X
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Figure 11: Additional rollouts generated with the LPV-DS’s source code in Matlab. These plots serve
to complement the results acquired in Figure 10.

C.2 Ablation study: stability vs. accuracy

When working with DS policies, there is a dilemma known as the stability-accuracy trade-off [22].
This means that a balance must be struck between the reliability and robustness of generated policies
to guarantee global convergence to the target (referred to as stability), and minimizing errors to obtain
precise solutions (referred to as accuracy). It is important to find a compromise between these two
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Figure 12: Policy rollouts under utilizing PLYDS, both with and without the imposition of stability
constraints, reveal a significant difference in policy behavior. The absence of enforced stability
constraints, combined with the utilization of a complex polynomial and a preference for accuracy
over stability embedded in the tolerance parameter, results in system instability.
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Figure 13: We delve into PLYDS policy rollouts, each employing distinct polynomial complexities.
As evident from the plot, the use of increasingly complex polynomials results in more intricate
trajectories that better mimic the expert’s behavior, but generate more complex trajectories further
from the demonstration data. This heightened complexity poses a challenge in ensuring and validating
the stability of the system.

factors, as more stable algorithms may not be as accurate, while more accurate algorithms may be
sensitive to instabilities.

The higher the degree of the polynomial, the more accurate imitation of expert behavior. Hence,
in theory, any nonlinearity may be approximated by our DS formulation. However, in practice, we
introduce regularization and tolerance parameters in the code. The tolerance can be used to choose in
the favor of accuracy or stability (see Figure 12). Another way to balance this equation is to start with
lower-degree polynomials, and increase the policy’s complexity when the accuracy is insufficient.
Figure 13 serves as an illustration for this process.

C.3 Complexity of Lyapunov functions

Figure 14 demonstrates the complexity of the Lyapunov function affects trajectory planning in the
state space in various ways, such as optimization efficiency, trajectory smoothness, obstacle avoidance,
robustness to perturbations, and planning accuracy. If the Lyapunov function is more complex, it may
increase computational costs but in turn result in more complex and nonlinear trajectories. On the
other hand, simpler Lyapunov functions may offer faster computations, smoother trajectories, and
satisfactory planning accuracy, but they may not be adaptable to complex expert demonstrations.

When deciding on the complexity of the Lyapunov function, it is necessary to consider the feasibility
of computations, and the desired smoothness and accuracy of planned trajectories and always start
with the most simple: quadratic distance function. Figure 14 illustrates this by showing both stable
and unstable Lyapunov possibilities gauged across various LPF complexities.
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Figure 14: During our policy optimization, we obtain LPF samples such as the ones depicted above.
Even though variation in complexity notably affects the computation time, employing more complex
Lyapunov functions (polynomials of higher degrees) appears necessary to achieve stable and precise
policies in some cases. Currently, we manually determine the complexity of the Lyapunov function
and shift to higher complexities only if the optimization fails to deliver satisfactory results.

(a) (b)

Figure 15: Performance of PLYDS in the face of uniform additive noise (a) and a sample of a noisy
trajectory with noise-level set to 2 (b). Noise levels are in centimeters, therefore, a noise-level of 4
means each reading could be deviated from its true value by ±4cm.

C.4 Performance with additive noise

Noise in imitation learning significantly impacts the learning process and resulting policies. Excessive
noise levels can destabilize the algorithm, preventing it from converging to an optimal policy. To
assess PLYDS performance while exposed to noisy measurements, we apply uniform additive noise,
distributing samples evenly across a specified interval. We vary the size of this interval, expanding it
symmetrically around zero for positions, while also accounting for its effect on velocities within the
expert dataset. The results in Figure 15 demonstrate a moderate level of noise-robustness that can be
further improved in future studies. Noisy data also increases the error bands, leading to increased
uncertainty in the outcome of policy optimization.

C.5 Computation times

We performed all experiments on a machine equipped with a Core i7 8th Gen CPU, an NVIDIA
GeForce RTX 3060 GPU, and 32 GB DDR2 RAM. Among the methods included in our experiments,
GAIL, BC, and SDS-EF utilize the GPU to expedite neural network computations. On the other hand,
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Figure 16: Total computation times averaged over 20 trials for PLYDS compared to other baselines
(a) and with different dataset sizes (b). It is noteworthy that GAIL and BC are utilizing a GPU to
accelerate their processing power.

(a) (b) (c)

Figure 17: Accuracy (MSE) and policy rollouts for vectorized (left) vs. scalar (right) Lyapunov function. For
policy rollout, we picked the N-Shaped motion, where the non-vectorized Lyapunov functions results in a visible
reduction in reproduction accuracy. However, the accuracy comparison shows that the extent of improvements
caused by vector Lyapunov functions (marked by vec.) depend on the shape of each motion, and may not be
verified visually for all motions.

PLYDS, SEDS, and LPV-DS solely rely on the CPU for policy optimization. Despite this variance in
computational resources, we provide a comparison of computation times in Figure 16.

C.6 Ablation study: vector Lyapunov functions

Vector Lyapunov functions [37], extend the concept of Lyapunov stability to systems where state
variables are represented as vectors rather than scalars. This extension is particularly valuable when
dealing with interconnected or multidimensional systems. Instead of relying on a scalar function, our
approach utilizes a vector-valued Lyapunov function to assign a vector to each point in the state space.
The properties of this vector-valued function are leveraged to analyze the stability and convergence
behavior of system trajectories.

We employ this technique known to enhance the flexibility of the optimization process, as discussed
in [50]. Moreover, our observations indicate accuracy improvements over the non-vectorized version
for certain motion scenarios. In Figure 17, we present the results of an ablation study focusing on
vector Lyapunov functions, highlighting their essential role as a small yet critical component of our
method. It is also known that Vectorizing the Lyapunov function yields a higher flexibility during
optimization, can potentially lower the computational cost for higher order polynomials.

21


	Introduction
	Background and Notation
	Related work
	Methodology
	Dynamical system policy formulation
	Global stability guarantees for polynomial dynamical systems
	Joint optimization problem

	Experiments
	Evaluation
	Handwriting dataset
	Manipulation tasks

	Conclusion and Limitations
	Video, Codebase, and Reproducibility
	Mathematical Proofs
	Proof of Proposition 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6

	Experiment Setup and Details
	Datasets
	SDP Optimization
	Hyperparameters and architecture. 

	Supplemental Results
	Baseline policy rollouts
	Ablation study: stability vs. accuracy
	Complexity of Lyapunov functions
	Performance with additive noise
	Computation times
	Ablation study: vector Lyapunov functions


