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Abstract
Algorithms such as Differentially Private SGD
enable training machine learning models with for-
mal privacy guarantees. However, because these
guarantees hold with respect to unrealistic adver-
saries, the protection afforded against practical
attacks is typically much better. An emerging
strand of work empirically estimates the protec-
tion afforded by differentially private training as
a confidence interval for the privacy budget ε̂
spent with respect to specific threat models. Ex-
isting approaches derive confidence intervals for
ε̂ from confidence intervals for false positive and
false negative rates of membership inference at-
tacks, which requires training an impractically
large number of models to get intervals that can
be acted upon. We propose a novel, more efficient
Bayesian approach that brings privacy estimates
within the reach of practitioners. Our approach
reduces sample size by computing a posterior for
ε̂ (not just a confidence interval) from the joint
posterior of the false positive and false negative
rates of membership inference attacks. We imple-
ment an end-to-end system for privacy estimation
that integrates our approach and state-of-the-art
membership inference attacks, and evaluate it on
text and vision classification tasks. For the same
number of samples, we see a reduction in interval
width of up to 40% compared to prior work.

1. Introduction
The use of machine learning in industries such as healthcare
and finance requires strong and auditable safeguards against
leakage of sensitive training data. Differentially Private (DP)
training using algorithms such as DP-SGD (Abadi et al.,
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Figure 1. Comparison of the posterior PDF fε using our Bayesian
approach and the upper bound εth obtained from a state-of-the-art
DP accountant (Gopi et al., 2021) for a CNN trained on CIFAR-10
with δ of 10−5. Empirical evaluation suggests stronger privacy
than what can be proven using accountants. Below the plot, we
illustrate the reduction in uncertainty of the 90% credible interval
of our Bayesian approach over Clopper-Pearson intervals.

2016; Song et al., 2013) and PATE (Papernot et al., 2017)
partially addresses this concern by bounding the amount
of information that models can leak. However, there is a
gap between the degree of protection that DP training of-
fers in theory, and the protection it offers in practice. For
example, DP training with a privacy budget of ε = 4, a
common choice in practice (Desfontaines, 2022), cannot
rule out membership inference attacks (Humphries et al.,
2020). Nonetheless, DP training with such large budgets ef-
fectively defeats attacks in many practical scenarios (Carlini
et al., 2019; Jayaraman & Evans, 2019; Song & Shmatikov,
2019; Zanella-Béguelin et al., 2020). The reason for this
discrepancy is that provable DP bounds (Gopi et al., 2021)
hold up to extremely powerful threat models (e.g., in the
case of DP-SGD, adversaries that can observe and tamper
with intermediate model updates) and so overestimate the
privacy risks of weaker adversaries that matter in practice.

Without any information beyond provable DP bounds, prac-
titioners must either err on the side of caution and use un-
necessarily small privacy budgets, which hurt utility, or risk
using larger budgets based on a guess of the privacy they
provide. To resolve this conflict, an emerging strand of work
measures the empirical protection afforded by DP training
against specific adversaries by computing statistical esti-
mates for the privacy budget spent (Hyland & Tople, 2019;
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Jagielski et al., 2020; Malek et al., 2021; Nasr et al., 2021).
Existing approaches compute a confidence interval for the
privacy budget ε̂ spent by a training pipeline from estimates
of the false positive and false negative rates of membership
inference attacks against models trained using it. Practition-
ers can then make informed decisions based on ε̂ rather than
ε and adjust training hyperparameters accordingly.

However, existing approaches have statistical and computa-
tional limitations that prevent their broader applicability.

1. On the statistical side, current approaches bound the
false positive and false negative rates separately using
Clopper-Pearson (CP) confidence intervals. We show
that this largely underestimates coverage (see Figure 3)
and so requires a large sample size to draw high confi-
dence conclusions. In fact, for sample sizes considered
in prior work, confidence intervals for ε̂ derived from
CP intervals are often so wide that they include both 0
and provable upper bounds for DP models (Nasr et al.,
2021, Fig. 1), i.e., they do not support drawing more
informed conclusions.

2. On the computational side, the (typically thousands
of) samples required for statistical estimation need to
be drawn from independently trained models. This
makes it challenging to scale the approach to large
models, or to a large number of models, as required for
architecture search or hyperparameter tuning.

Bayesian Approach To overcome these limitations, we
propose a novel Bayesian approach that is more precise and
thus requires fewer samples to obtain meaningful estimates.
In line with prior art (Jagielski et al., 2020; Nasr et al., 2021),
we derive an estimate ε̂ from estimates of the false positive
and false negative rates of membership inference attacks.
Unlike previous approaches that derive estimates from sepa-
rate confidence intervals for each rate, we model their joint
distribution. Exploiting the hypothesis testing interpretation
of differential privacy, we use this joint distribution to com-
pute a posterior distribution for ε̂, from which we derive
significantly tighter credible intervals.

End-to-End System for Privacy Estimation To address
computational challenges we implement a modular end-to-
end system for privacy estimation that incorporates many
conveniences and optimizations, including 1. parallelization
of model training and attacks, 2. caching of models and
intermediate results including attack scores.

Given a training pipeline, membership inference attack, and
desired confidence level, the system selects challenge points
for membership inference, trains the required models in
parallel, runs the attack, and produces a confidence interval
for ε̂. We implement the system as an Azure ML pipeline,

allowing for an efficient utilization of large GPU clusters,
but the system can make use of more modest resources and
its design is generic enough to be ported to any other ML
framework. The design enables swapping modules, e.g.,
using a white-box rather than a black-box attack to reflect
a threat model where models are deployed on clients de-
vices rather than on the cloud. Plugging in our Bayesian
approach and state-of-the-art black-box membership infer-
ence attacks (Carlini et al., 2022) into this system brings
privacy estimation within the reach of practitioners.

Evaluation We first demonstrate the gains of our Bayesian
approach via a numerical simulation:

• We compare the sample size required for a desired confi-
dence. For this, we align equal-tailed credible intervals for
ε̂ obtained using the Bayesian approach with confidence in-
tervals derived from Clopper-Pearson and Jeffreys intervals
for false positive and false negative rates. The comparison
shows that a Bayesian approach enables us to draw conclu-
sions that are as significant as prior work with only a fraction
of the samples. For example, for an estimate within ±0.15
with 90% confidence, our approach reduces the number of
samples required from approximately 1500 to just 500.

• We compare confidence interval width varying attack ac-
curacy for a fixed sample size, showing that a Bayesian
approach provides the narrowest intervals for all FPR and
FNR combinations. For 1000 samples, our approach re-
duces the interval size by up to 32% compared to Jeffreys
and up to 52% compared to Clopper-Pearson intervals.

• We evaluate our system for privacy estimation on text
(SST-2) and vision (CIFAR-10) classification, where we
observe a reduction in interval width of up to 40% w.r.t.
prior work for a fixed (1000) number of samples. These
results confirm the gains observed using numeric simulation.
Figure 1 illustrates the gains for CIFAR-10 and εth = 10.

2. Preliminaries
In this section we introduce notation, recall the definition
of (ε, δ)-differential privacy and its hypothesis testing inter-
pretation, and overview membership inference attacks and
their relation to differential privacy.

2.1. Notation

We use calligraphic font for randomized algorithms (e.g., T )
and distributions (e.g., D), and uppercase serif font for lists
and sets (e.g., S). We use z ∼ D to denote an example z
drawn from D and S ∼ Dn to denote a list S of n examples
independently drawn fromD. b ∼ {0, 1} denotes a fair coin
flip, i.e., a bit b sampled uniformly from {0, 1}. Adversary
algorithms (e.g., A1,A2) are randomized procedures that
share mutable state, although for clarity we often include re-
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dundant arguments. We formalize probabilistic experiments
as sequential pseudocode and write Pr [Exp(· · · ) : A] for
the probability of event A in experiment Exp. Table 1 sum-
marizes the notation used throughout the paper.

Table 1. Summary of notation

Notation Description

T A stochastic training algorithm
D Distribution over samples
Dn Distribution of n independent samples from D
A, A1, A2 Adversary procedures sharing mutable state
z ∼ D Draw an example z from D
S ∼ Dn Draw n examples S independently from D
b ∼ {0, 1} Sample a bit b uniformly
y ← P(x⃗) Call P with arguments x⃗ and assign result to y

2.2. Approximate Differential Privacy

Definition 2.1 (Approximate Differential Privacy). Let ε >
0 and δ ∈ [0, 1]. A mechanism T : X → Y is (ε, δ)-
differentially private with respect to an adjacency relation
∼ on X if for any D0 ∼ D1 and any O ⊆ Y ,

Pr [T (D0) ∈ O] ≤ eε Pr [T (D1) ∈ O] + δ.

The mechanisms that we study are machine learning train-
ing algorithms T that stochastically map a dataset S of
examples from X to model weights θ. We refer to S as the
training dataset of θ, which is typically composed of i.i.d.
examples drawn from some underlying distribution D with
support X . We use the add/remove one adjacency relation:
two training datasets are adjacent if one can be obtained
from the other by adding or removing a single example.
This corresponds to unbounded differential privacy (Kifer
& Machanavajjhala, 2011).

2.3. Hypothesis Testing Characterization of DP

Consider a run of a mechanism T : X → Y that out-
puts some y ∈ Y when given one of two adjacent inputs
D0, D1. We can recast the differential privacy of T as a
hypothesis test where the null hypothesis is that the input
was D0 and the alternative hypothesis is that it was D1. A
deterministic test rejects the null hypothesis when y is in a
rejection region R. A Type-I error (false positive) occurs
when the null hypothesis is true but is rejected, with prob-
ability Pr [T (D0) ∈ R]. A Type-II error (false negative)
occurs when the null hypothesis is false but is not rejected,
with probability Pr

[
T (D1) ∈ R

]
.

The following theorem from (Kairouz et al., 2017) charac-
terizes (ε, δ)-differential privacy in terms of conditions on
the false positive and false negative rates of hypothesis tests.

0 1− δ 1FNR
0

1− δ

1

F
P

R R(ε, δ)

Figure 2. Privacy region R(ε, δ). The region grows with ε and
covers the unit square as ε tends towards ∞.

This extends an earlier result from (Hall et al., 2013) that
only shows that the conditions are necessary.

Theorem 2.2. A mechanism T : X → Y is (ε, δ)-
differentially private if and only if for all adjacent inputs
D0 ∼ D1 and all R ⊆ Y , the following conditions are met

Pr [T (D0) ∈ R] + eε Pr
[
T (D1) ∈ R

]
≥ 1− δ ,

Pr
[
T (D1) ∈ R

]
+ eε Pr [T (D0) ∈ R] ≥ 1− δ .

A distinguisher that observes the output of an (ε, δ)-
differentially private mechanism T and makes a guess as to
which hypothesis is true implicitly defines a rejection region.
The set of false positive and false negative rates achievable
by distinguishers, or equivalently, the set of Type-I and
Type-II errors for any rejection region must be included in
the privacy regionR(ε, δ), defined as follows:

R(ε, δ)={(x, y) |x+ eεy ≥ 1− δ ∧ y + eεx ≥ 1− δ ∧
y + eεx ≤ eε + δ ∧ x+ eεy ≤ eε + δ} .

Figure 2 illustrates the privacy region R(ε, δ). It is sym-
metric w.r.t. the FNR = 1− FPR line because if a rejection
region Y achieves (FNR,FPR), its complement Y achieves
(1− FNR, 1− FPR). It is symmetric w.r.t. the FNR = FPR
line because the adjacency relation is symmetric and so
positive and negative instances are interchangeable.

2.4. Privacy Estimates from Membership Inference

Membership inference attacks (MIA) try to determine
whether samples belong to the training dataset of a model.
Yeom et al. (2018) formalize membership inference with
balanced priors as a game equivalent to Experiment 1 below.
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Experiment 1: MIA
Input: T ,D, n,A
S ∼ Dn−1; z0, z1 ∼ D2

S0, S1 ← S ∪ {z0}, S ∪ {z1}
b ∼ {0, 1}
θ ← T (Sb)

b̃← A(T ,D, n, θ, z0)

Experiment 2 adapts this to the unbounded DP setting us-
ing the add/remove one adjacency relation, and considers
general DP distinguishers which choose the base training
dataset S and the challenge z.

Experiment 2: IND-MIA
Input: T ,D, n,A
S, z ← A1(T ,D, n) // |S| = n− 1
S0, S1 ← S, S ∪ {z}
b ∼ {0, 1}
θ ← T (Sb)

b̃← A2(T ,D, n, θ, S, z)

A MIA such as Experiment 2 defines a hypothesis test with
false negative and false positive rates

FNR := Pr
[
IND-MIA : b̃ = 0 | b = 1

]
,

FPR := Pr
[
IND-MIA : b̃ = 1 | b = 0

]
.

We use this interpretation to bound the empirical privacy
parameter ε̂ of a training algorithm for a fixed δ. The key
idea is that any pair (FNR, FPR) serves as a counterexample
for the training pipeline being (ε, δ)-differentially private
for any ε such that (FNR,FPR) ̸∈ R(ε, δ). So, a lower
bound for ε̂ is given by

ε̂− = inf{ε ∈ R+ | (FNR,FPR) ∈ R(ε, δ)}

Assuming FNR,FPR ̸= 0 and FNR,FPR ≤ 1− δ, this is

ε̂− = max

{
log

1− δ − FPR
FNR

, log
1− δ − FNR

FPR

}
(1)

2.5. Privacy Estimates from Confidence Intervals

Previous work (Carlini et al., 2021; Jagielski et al., 2020)
uses a Monte Carlo approach to estimate FPR and FNR with
Clopper-Pearson confidence intervals and then uses these
to estimate ε̂. Given samples {bi, b̃i} from runs of Experi-
ment 2, the first step is to obtain estimates and intervals for

FPR and FNR:

FPR =

∑m
i=1

[
b̃i ̸= bi ∧ bi = 0

]
∑m

i=1 [bi = 0]
∈ [FPR−,FPR+]

FNR =

∑m
i=1

[
b̃i ̸= bi ∧ bi = 1

]
∑m

i=1 [bi = 1]
∈ [FNR−,FNR+]

A lower bound for ε̂ can be computed minimizing Equa-
tion (1) over these confidence intervals (where the terms
are well-defined).1 An upper bound ε̂+ can be computed
analogously, but is less interesting since it does not bound
the privacy afforded by the training pipeline w.r.t. more
powerful adversaries.

From the union bound, the significance of the confidence
interval for ε̂ is double the significance of the confidence
intervals for FPR and FNR used to derive it. For instance,
when using 95% confidence intervals for FPR and FNR, the
derived confidence interval [ε̂−, ε̂+] has 90% confidence.

2.6. Clopper-Pearson Confidence Intervals

Sample false negative (FN) and false positive counts (FP)
can be modeled as the number of successes of two bino-
mial distributions with respective unknown success prob-
abilities FNR and FPR. Given k observed successes in
N trials, the lower and upper limits of the two-sided
100(1 − α)% Clopper-Pearson interval are respectively
the solutions p to the equations Pr [Bin(N, p) ≥ k] = α/2
and Pr [Bin(N, p) ≤ k] = α/2. The interval can be suc-
cinctly written in terms of quantiles of Beta distributions as
[B(α/2, k,N − k + 1),B(1− α/2, k + 1, N − k)], where
B(q, a, b) is the q quantile of Beta(a, b).

Clopper-Pearson intervals are guaranteed to reach nominal
coverage. However, they typically exceed it, which results
in privacy estimates that are overly conservative. We next
present a Bayesian approach that addresses this problem.2

3. A Bayesian Approach to Privacy Estimates
In this section we present a novel Bayesian approach to
privacy estimates that models false positive and false neg-
ative rates as independent binomial proportions with non-

1Carlini et al. (2021, Eq. 5) simply take the value at
(FNR+, FPR+), but special care should be taken when either
FNR− or FPR− is 0 as the minimum can occur at e.g., (FNR+, 0).
For example, when TP, FP, TN, FN = (90, 0, 100, 10) and
δ = 10−5 using 90% Clopper-Pearson intervals, the value of
Eq. (1) at (FNR+, FPR+) is 3.124, while the minimum 1.736
occurs at (FNR+, 0).

2An obvious improvement over the state-of-the-art approach to
lower bound ε̂ (Carlini et al., 2021) is to use one-sided Clopper-
Pearson intervals since ε̂− only depends on their upper-limit
(FPR− and FNR− are only 0 when FP or FN are exactly 0). This
effectively halves the significance of estimates.
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informative Jeffreys priors. We first present Jeffreys in-
tervals, derived from the same model, as an alternative to
Clopper-Pearson intervals. We then present a much more
precise method that directly computes credible intervals
from the posterior distribution of (FNR, FPR).

3.1. Jeffreys Intervals

Jeffreys intervals have roots in Bayesian analysis, achieve
good probability matching properties, and are particularly
recommended as one-sided intervals (Tony Cai, 2005, p.68).
Their Bayesian derivation uses a non-informative conjugate
prior for the binomial proportion p, resulting in the model

p ∼ Beta(1/2, 1/2)

k|p ∼ Bin(N, p)

p|k ∼ Beta(1/2 + k, 1/2 +N − k)

(2)

The upper-limit of the one-sided 100(1 − α)% Jeffreys
interval is the 1 − α quantile of the posterior p|k, that is
B(1 − α, 1/2 + k, 1/2 + N − k). When k = 0 the lower
limit is set to 0 and when k = N the upper limit is set to 1
to avoid the coverage tending to 0 as p tends to 0 or 1.

Using the techniques of Nasr et al. (2021), one-sided Jef-
freys intervals for FPR and FNR yield narrower confidence
intervals for ε̂ than previous approaches using two-sided
Clopper-Pearson intervals. For instance, an attack with per-
fect accuracy over 2000 trials with δ = 10−5 results in a
90% confidence ε̂− of 5.6 using two-sided CP intervals,
5.81 using one-sided CP intervals, and 6.25 using one-sided
Jeffreys intervals.3

3.2. Estimates from the Posterior Joint Distribution

We show how to improve estimates using the joint posterior
of (FNR, FPR) to derive a credible interval for ε̂.

Intuition Figure 3 provides an intuitive graphical expla-
nation in the (FNR,FPR) space of the advantage of using
the joint posterior for estimating ε̂. The blue rectangle is
given by Jeffreys confidence intervals for the false positive
and false negative rate of a membership inference attack.
This rectangle covers 1− α of the density of the joint dis-
tribution of (FNR,FPR), but it fits in-between two privacy
regions whose difference covers strictly more density. A
100(1 − α)% confidence interval for ε̂ derived using this
method will have larger than nominal coverage because the
additional density inR(ε̂′+, δ)\R(ε̂′−, δ) outside the rectan-
gle is unaccounted for. Instead, we integrate the probability
density f(FNR,FPR) over the exact area between regions and
derive a credible interval for ε̂ with nominal coverage.

3Carlini et al. (2021) report the first figure of 5.6 for 1000 trials,
but it clearly is only achievable with 2000 trials.

0 FNR− FNR+ 1− δ 1

FNR

0

FPR−

FPR+

1− δ
1

F
P

R

R(ε̂′+, δ) \ R(ε̂′−, δ)

R(ε̂+, δ) \ R(ε̂−, δ)

Figure 3. Graphical interpretation of intervals for ε̂ obtained using
a joint binomial model ([ε̂−, ε̂+]) and Jeffreys confidence intervals
([ε̂′−, ε̂′+]). The contour plot of the density f(FNR,FPR) and the
rectangle determined by Jeffreys intervals match closely.

Computation Given the probability density function
f(FNR,FPR) of the joint posterior of (FNR, FPR), we obtain
the cumulative distribution of ε̂.

Definition 3.1 (Cumulative Distribution Function of ε̂). Let
δ ∈ [0, 1] and f(FNR,FPR) be the density function of the
posterior joint distribution of (FNR, FPR) given observed
counts of FN,TP,FP,TN from Experiment 2. The value of
the cumulative distribution function of ε̂ at ε is the integral
of f(FNR,FPR) over the privacy regionR(ε, δ):

Fε̂(ε) = Pr [(FNR,FPR) ∈ R(ε, δ)]

=

∫∫
R(ε,δ)

f(FNR,FPR)(x, y) dx dy .
(3)

Equipped with Fε̂ we can compute the 100(1− α)% equal-
tailed credible interval [ε̂−, ε̂+] given by:

ε̂− = sup{ε | Fε̂(ε) ≤ α/2} , (4)
ε̂+ = inf{ε | Fε̂(ε) ≥ 1− α/2} . (5)

The Bayesian model we presented above in Equation (2)
gives us the densities of the posteriors FNR|FN and FPR|FP.
Since the populations of positive and negative instances
are independent, it is natural to model these posteriors as
independent, yielding a joint distribution we can plug into
Equation (3):

f(FNR,FPR)(x, y) := fFNR|FN,TP(x) fFPR|FP,TN(y) (6)

The resulting integral in Equation (3) cannot be expressed
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in analytical form so we approximate it numerically using
SciPy’s dblquad, based on QUADPACK’s qagse.

Example Suppose we run 200 times Experiment 2, col-
lecting samples {bi, b̃i} with a tally FN = 35,TP =
65,FP = 25,TN = 75. To derive a 95% credible interval
for ε̂ at δ = 0.05, we construct the cumulative distribu-
tion function of ε̂ by integrating f(FNR,FPR) and solve Equa-
tions (4) and (5), which yields the interval [0.522, 1.268].
In contrast, deriving a 95% confidence interval by tak-
ing the minimum and maximum of Equation (1) over the
rectangle defined by the two-sided Jeffreys intervals for
FNR and FPR yields a much larger interval [0.321, 1.456].
(Clopper-Pearson intervals will give an even larger interval
[0.295, 1.489].) In terms of Figure 3, the rectangle covers
96.3% of the density of f(FNR,FPR), but is enclosed in an
area in-between two privacy regions covering 99.8%. So,
the actual coverage of the interval computed from inde-
pendent Jeffreys intervals is much larger than desired. In
comparison, the smaller hatched area corresponding to the
Bayesian credible interval has 95% coverage by definition.

3.3. Summary

We discussed three ways to estimate ε̂− at significance α
from the confusion matrix (FN,TP,FP,TN) of an attack,
obtained from multiple runs of Experiment 2:

1. From Clopper-Pearson confidence intervals for FNR
and FPR (as proposed in prior work);

2. From Jeffreys confidence intervals for FNR and FPR
(as a drop-in replacement for CP intervals);

3. From the joint distribution of FNR and FPR.

Below we combine the various steps in self-contained ex-
pressions for ε̂− given δ using the first and third methods.

Estimation from Clopper-Pearson Intervals Ignoring
corner cases, the first method yields the following expres-
sion for ε̂− in terms of (FN,TP,FP,TN), α, and δ:

ε̂− = max


log

1− δ −B(1− α/2,FN + 1,TP)
B(1− α/2,FP + 1,TN)

,

log
1− δ −B(1− α/2,FP + 1,TN)

B(1− α/2,FN + 1,TP)


where B(q, a, b) is the percent point function of Beta(a, b)
(i.e., the inverse of its cdf). This expression is obtained
by evaluating Equation (1) at the upper limit of one-sided
Clopper-Pearson intervals for FPR and FNR with signifi-
cance α/2. The significance must be halved because one
needs to apply the union bound to combine the intervals.

Estimation from Joint Distribution The third method
yields ε̂− = F−1

ε̂ (α), where

Fε̂(ε) =

∫∫
R(ε,δ)

g(1/2 + FN, 1/2 + TP, x)
g(1/2 + FP, 1/2 + TN, x)

dx dy

and g(a, b, x) is the pdf of Beta(a, b). This expression is
obtained from Equation (3) by modelling the joint pdf of
FNR,FPR as in Equation (6) and the posteriors FNR|FN,TP
and FPR|FP,TN as in Equation (2).

About Closed Forms While the third method requires
computing an integral with no closed form, the first method
yields a closed form. However, this closed form expression
involves the inverse of the cdf of Beta distributions. This
requires evaluating the inverse of the regularized incomplete
Beta function, which must also be done numerically. An ana-
lytical comparison of both methods is a significant endeavor
which would require computing expansions and bounding
error terms. We provide below a numerical comparison.

3.4. Numeric Evaluation of the Bayesian Approach

We evaluate the performance of our Bayesian approach in
numeric simulations. For this, we compare equal-tailed
credible intervals for ε̂ obtained using our new Bayesian
approach with confidence intervals for ε̂ derived from two-
sided Clopper-Pearson and Jeffreys intervals.

Varying Number of Samples We assume a hypothetical
attack with a balanced accuracy of 60%, from which we de-
rive FPR and FNR. We evaluate the reduction in uncertainty
by comparing confidence interval sizes for ε̂ (assuming a
fixed δ) for different numbers of samples using Clopper-
Pearson intervals, Jeffreys intervals, and our Bayesian ap-
proach. We also quantify the improvement in computa-
tional cost by comparing the number of samples required
to achieve a given confidence interval (±0.15) using the
different methods.

Figure 4 shows the results of this comparison. Here we
are interested in an estimate for ε̂ within ±0.15 with a
significance level of α = 10%. The Clopper-Pearson ap-
proach requires approximately 1500 samples. Jeffreys inter-
vals marginally reduce the number of samples. Using our
Bayesian approach, we can significantly reduce the number
of samples to just over 500 thereby reducing the computa-
tional cost by 2/3.

Varying Attack Accuracy We assume a fixed number
of samples (1000) and a suite of hypothetical attacks with
varying attack accuracy, from which we derive FPR and
FNR. We evaluate the reduction in uncertainty by comparing
the confidence interval sizes for ε̂ (assuming a fixed δ).
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Figure 4. Interval endpoints as a function of number of samples.
We compare three estimation techniques at 90% confidence (α =
0.1) for an attack with FPR = FNR = 40%. For a given number of
samples, the distance between lower and upper endpoints illustrates
the reduction in interval width. For a given interval width (e.g., as
illustrated by the shaded area), the difference in the x-coordinates
at which the curves intersect with the shaded area illustrates the
reduction in the number of samples. The shaded area illustrates an
estimate ε̂ within ±0.15 with 90% confidence.

Compared to either Clopper-Pearson or Jeffreys intervals,
our Bayesian approach provides the narrowest interval for
all combinations of FPR and FNR. For each of the three
methods, Figure 5 shows the interval width as a function of
FPR and FNR. We observed the most prevalent differences
at the corners of the region (e.g. at low FPR and high FNR),
which is also the target area for recent membership inference
attacks (Carlini et al., 2022). For the FPR and FNR ranges
in Figure 5, our approach decreases interval width by 20%
to 32% compared to Jeffreys and 36% to 52% compared
to Clopper-Pearson intervals.

4. End-to-End Privacy Estimation
In this section, we present a modular end-to-end system for
estimating ε̂. Figure 6 illustrates how data flows through the
different components. We discuss next the key components
of the system and how they could be implemented. The ex-
perimental evaluation in Section 4.1 uses a particular imple-
mentation that plugs in our Bayesian estimation method and
a state-of-the-art black-box membership inference attack to
measure worst-case privacy of text and vision classifiers.
The implementation of the core Bayesian estimation method
used to produce the results reported in the paper can be
found at https://aka.ms/privacy-estimates.

Selecting Challenge Points Model training pipelines have
access to a limited amount of data that must be partitioned

to train, validate, and test models. Accordingly, we estimate
privacy w.r.t. to a specific dataset D, limiting the universe
of possible adjacent datasets in the definition of differential
privacy.4 Since we are mostly interested in measuring the
empirical DP budget spent by a pipeline w.r.t. to a given
attack, we select challenge points that maximize the attack
performance. To do this, we train M shadow models with
a random split of D. For each point z ∈ D and shadow
model θ, we compute the confidence score that the attack
assigns for z being a member of the training dataset of θ,
and aggregate these scores and the ground truth membership
information to obtain a weight for z (e.g. the accuracy of the
attack). Algorithm 3 in Appendix A.1 shows pseudocode
for this challenge point selection procedure.

Choosing a Membership Inference Attack The system
is parametric on the membership inference attack and can
be used together with both black-box and white-box attacks.
In practice, the attack module should be chosen based on the
relevant threat model. For example, if models are deployed
on the cloud behind an API, a black-box attack is appropri-
ate, while a white-box attack would be more appropriate
when models are deployed on untrusted devices.

Privacy Estimation To estimate ε̂ at a desired signifi-
cance α, we take as input the the ground truth membership
information (the challenge bits b in Experiment 2) and con-
fidence scores from the membership inference attack. With
these, we construct a ROC curve. For N samples, this curve
determines N + 1 decision thresholds for membership. We
compute a lower bound ε̂− using our Bayesian approach
according to Equation (4) for each of these thresholds and
select the one that yields the largest lower bound. This last
step can be easily adapted to use e.g. Jeffreys intervals rather
our Bayesian approach. We do this when comparing to prior
methods in our experimental evaluation.

4.1. Implementation and Evaluation

Choice of Attack We use the state of the art likelihood
ratio membership inference attack (LiRA) of Carlini et al.
(2022). This attack requires to collect loss statistics for each
training data point. In our experiments, we train 512 shadow
models on random splits of the training and validation sets.

We re-use the shadow models required for the LiRA attack
to find the most vulnerable training samples. We split the
512 shadow models using a train to test split of 80:20. We
then use the training samples where LiRA achieves the
highest accuracy on the test set as challenge points.

4Alternatively, one can introduce poisoned points as done by
Jagielski et al. if this reflects better the threat model.
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(a) Clopper-Pearson (b) Jeffreys (c) Our approach

Figure 5. Interval width (i.e., difference between ε̂ interval endpoints) as a function of FPR and FNR for 1000 samples.
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Figure 6. An end-to-end system for estimating privacy.

Parallelizing Model Training and Attack Execution We
implement the end-to-end pipeline depicted in Figure 6 in
Azure ML. Our pipeline requires training multiple models
for i) selection of challenge points and ii) gathering member-
ship inference guesses and, for LiRA, iii) training shadow
models. We do this efficiently using Azure ML pipelines,
but our original implementation used open-source libraries
(Ray Tune). Although not as costly, we similarly parallelize
the execution of attacks and the linear traversal over ROC
curve thresholds to estimate optimal lower bounds for ε̂.

4.2. Experiments on Text and Vision Classifiers

We evaluate the performance of the Bayesian approach on
vision (CIFAR-10) and text (SST-2) classifiers:

• CIFAR-10 (Krizhevsky, 2009) consists of 60 000 labeled
(50 000 training, 10 000 test) labeled images in 10 object
classes, with 6000 images per class. We use a 4-layer CNN
with 974K parameters and tanh activations with average
pooling and max pooling units, which we train for 50 epochs.
We reach 65% accuracy with ε = 8, δ = 10−5 compared
to 71% in the non-private baseline.

• SST 2 (Socher et al., 2013) is a binary sentiment text

classification dataset consisting of 67 349 training samples
and 1821 test samples. We fine-tune a RoBERTa base model
with a classification head for 3 epochs (Liu et al., 2021). We
reach 90% accuracy with ε = 8, δ = 10−5 compared to
93% in the non-private baseline.

Table 2 summarizes the results of this comparison on text
and vision tasks using 1024 samples. We compute the width
of confidence intervals using each method and the reduction
in interval width relative to the Clopper-Pearson method.
We observe reductions in width of between 40% to 48%
for the same number of samples. Importantly, our approach
is successful in computing meaningful confidence intervals
when other methods result in trivial (0,∞) intervals.

5. Related Work
Empirical Privacy Estimates Hyland & Tople (2019) es-
timate DP bounds based on an empirical estimate of the sen-
sitivity of SGD. Jagielski et al. (2020) derive estimates from
black-box membership inference attacks, using clipping-
aware poisoning attacks against DP-SGD. Nasr et al. (2021)
use similar techniques but consider a hierarchy of adver-
saries, ranging from black-box membership inference to

8
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Table 2. Comparison of intervals obtained from different estimation methods for text and vision models trained with and without DP
(δ = 10−5) using worst-case challenge points. For each method, the bounds and widths are for equal-tailed intervals at α = 0.1.

Clopper-Pearson Jeffreys Bayesian Approach

Interval Width Interval Width vs. CP Interval Width vs. CP

SST-2
No DP (0,∞) ∞ (3.57,∞) ∞ – (4.0, 9.2) 5.25 –
ε = 8 (0,∞) ∞ (0,∞) ∞ – (0.12, 8.5) 8.4 –

CIFAR-10
No DP (1.8, 5.3) 3.5 (1.9, 5.0) 3.1 -11% (2.2, 4.5) 2.3 -40%
ε = 8 (0.23, 7.7) 7.5 (0.43, 6.0) 5.6 -25% (1.1, 5.0) 3.9 -48%

distinguishers that craft worst-case datasets. Both works
derive estimates from Clopper-Pearson confidence intervals
of the false positive and false negative rates of attacks. Our
Bayesian approach is applicable in the same settings and
yields tighter estimates for the same number of samples.

DP Violations Several approaches (Bichsel et al., 2021;
Ding et al., 2018) find violations of DP by constructing
counterexamples (i.e., adjacent inputs together with a distin-
guishing test). These approaches aim to falsify a conjectured
guarantee, whereas we aim to estimate an unknown guar-
antee for a given threat model. More fundamentally, these
approaches are applicable to DP mechanisms beyond ML
training but require the search space to be sufficiently con-
strained for the counterexample search to succeed. In con-
trast, we compute estimates with respect to a given class of
parametrized distinguishers which allows us to run a much
more efficient search over relatively small parameter space.
Lu et al. (2022) build a general framework for auditing DP
training extending techniques from Bichsel et al. (2021) and
Jagielski et al. (2020); when applied to DP-SGD, results
are comparable with the ClipBKD method of Jagielski et al.
(2020).

Membership Inference Attacks Our approach is para-
metric on the choice of membership inference attack. Early
membership inference attacks relied on training shadow
models (Shokri et al., 2017). Threshold-based attacks were
introduced by Yeom et al. (2018). Ye et al. (2021) compare
different strategies to choose loss thresholds. In our evalua-
tion, we choose model-dependent thresholds as they offer
an attractive trade-off between accuracy and computational
cost. Carlini et al. (2022) challenge the use of attack ac-
curacy as a meaningful way to evaluate empirical privacy
and instead propose to measure false positive rates at low
false negative rates. Our evaluation shows that our Bayesian
approach performs particularly well in this regime. It also
obtains meaningful estimates where prior approaches would
result in intervals including 0 and the known theoretical
bound (see e.g., Table 2). Yaghini et al. (2022) show that

different cohorts of samples can exhibit disparate vulnera-
bility to membership inference and prove that differential
privacy bounds the magnitude of the disparity. It would
be interesting to study how this disparity correlates with
empirical estimates of differential privacy.

Provable DP Bounds Since the introduction of the Mo-
ments Accountant (Abadi et al., 2016), there have been
steady improvements in privacy accounting techniques, re-
sulting in tighter and tighter privacy budget accounting for
DP-SGD. However, this trend cannot continue as state-of-
the-art accountants are tight (Doroshenko et al.; Gopi et al.,
2021; Koskela et al., 2021). Further improvements require
different algorithms such as PATE (Papernot et al., 2017), or
the introduction of additional assumptions such as weaker
adversary models or convexity (Chourasia et al., 2021).

6. Conclusion
We propose a novel Bayesian approach that yields high-
confidence estimates of the differential privacy budget spent
by training pipelines w.r.t. a given class of attacks. We imple-
ment an efficient end-to-end system for privacy estimation
incorporating this approach in Azure ML. We demonstrate
on text and image classifiers that the system gives tighter
estimates than using prior approaches at a fraction of the
computational cost.

One interesting direction for future work is to further reduce
the computational cost of privacy estimation by utilizing
heuristics that reduce the number of samples required for
high-confidence estimates. For instance, Malek et al. (2021)
proposed an heuristic to evaluate label-only DP that draws
multiple samples from a single model. We found mixed re-
sults when attempting to adapt this heuristic to record-level
DP, and we could not yet identify conditions under which it
behaves consistently across datasets and attacks. Another
avenue for future research is extending statistical estimates
to other privacy metrics beyond ε̂, such as membership
inference advantage (Yeom et al., 2020).
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A. Appendix
A.1. Omitted algorithms

Algorithm 3: SelectWorst
Input: T , D, n, k,M,A
for i← 1 to M do

S+
i , S−

i ← Split(D,n)

θi ← T (S+
i )

foreach z ∈ D do
s[z][i]← Score(A, θi, z)
b[z][i]← z ∈ S+

i

end
end
foreach z ∈ D do

w[z]← AggregateWeight(s[z], b[z])
end
return {zi}k with largest k aggregate weights w

A.2. Probability Density Function of ε̂

We describe here how to derive a probability density function for ε̂. The derivative of the cumulative distribution function
Fε̂ is given by

f̂ε(ε) =
d
dε

Fε(ε) =
d
dε

∫∫
R(ε,δ)

f(FNR,FPR)(x, y)dxdy =

∮
∂R(ε,δ)

f(FNR,FPR)vε · ndL (7)

where we have used Reynolds transport theorem in the last equation.

The symbol vε denotes the derivative of the boundary with respect to ε and n is the outward pointing normal vector of a
boundary element.

In order to make this more concrete, let us parameterize the boundary of the privacy region using the following curves

RLO(ε, δ, x) :=

[
x

max {0, 1− δ − eεx, (1− δ − x)e−ε}

]
RHI(ε, δ, x) :=

[
x

min {1, (δ − x)e−ε, δ + (1− x)eε}

]
.

Note that ∂R(ε, δ) = RLO(ε, δ, [0, 1]) ∪RHI(ε, δ, [0, 1]).

Applying this to compute vε and n from Eq. (7) gives

vLO = ∂εRLO(ε, δ, x) , (8)

nLO =
Q∂xRLO(ε, δ, x)

∥∂xRLO(ε, δ, x)∥
, (9)

where Q denotes a rotation matrix performing a clockwise rotation by π/2. Similarly, we have

vHI = ∂εRHI(ε, δ, x) , (10)

nHI =
Q∂−xRHI(ε, δ, x)

∥∂xRLO(ε, δ, x)∥
. (11)

We can then plug this expression into Eq. (7)). Splitting the closed line integral into an integral over the upper and lower
path gives

f̂ε(ε) =

∫ 1

0

f(FNR,FPR)(RLO(ε, δ, x))vLO · nLOdx+

∫ 0

1

f(FNR,FPR)(RHI(ε, δ, x))vHI · nHIdx . (12)
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Note, however that f̂ε is not a probability density function since it is not normalized. The mass of the privacy region for
ε = 0 is missing:

∫∞
0

fε(ε)dε = 1 − Fε(0) ̸= 1. We can correct for that by adding a point mass at ε = 0 which gives a
final expression for the probability density of ε

fε(ε) = Fε(0)δ(ε) + f̂ε(ε) , (13)

where δ is the Dirac δ distribution.

A.3. Illustration of the Joint Posterior as N grows

For this illustration of the joint posterior as the number of samples N grows. For this illustration we find an interval of
possible values of ε in which the true ε lies with a given probability. For convenience, we define the two-sided privacy
region R̃ as follows

R̃(ε−, ε+, δ) := R(ε+, δ) \ R(ε−, δ) . (14)

The results are illustrated in Figure 7. Initially, we look at privacy regions after only 4 trials. As expected, the two-sided
privacy region is fairly large and covers almost the entire unit square. As we see more and more samples our confidence
increases and the two-sided privacy region shrinks.

(a) Pr
[
R̃(0.0051, 3.1, 0.01) = 0.95

]
(b) Pr

[
R̃(0.15, 3.5, 0.01) = 0.95

]

(c) Pr
[
R̃(0.59, 1.5, 0.01) = 0.95

]
(d) Pr

[
R̃(0.45, 0.80, 0.01) = 0.95

]
Figure 7. Convergence of the joint posterior f(FNR,FPR) as the number of samples grows.
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