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ABSTRACT

Power flow estimation plays a vital role in ensuring the stability and reliability of
electrical power systems, particularly in the context of growing network complex-
ities and renewable energy integration. However, existing studies often fail to ade-
quately address the unique characteristics of power systems, such as the sparsity of
network connections and the critical importance of the unique Slack node, which
poses significant challenges in achieving high-accuracy estimations. In this paper,
we present SenseFlow, a novel physics-informed and self-ensembling iterative
framework that integrates two main designs, the Physics-informed Power Flow
Network (PPFNet) and Self-ensembling Iterative Estimation (Selter), to carefully
address the unique properties of the power system and thereby enhance the power
flow estimation. Specifically, SenseFlow enforces the PPFNet to gradually predict
high-precision voltage magnitudes and phase angles through the iterative Selter
process. On the one hand, PPFNet employs the Virtual Node Attention and Slack-
Gated Feed-Forward modules to facilitate efficient global-local communication
in the face of network sparsity and amplify the influence of the Slack node on
angle predictions, respectively. On the other hand, Selter maintains an exponen-
tial moving average of PPFNet’s parameters to create an ensemble model that
refines power state predictions throughout the iterative fitting process. Experimen-
tal results demonstrate that SenseFlow outperforms existing methods, providing a
promising solution for high-accuracy power flow estimation across diverse grid
configuration

1 INTRODUCTION

Power flow estimation is a crucial task for maintaining the stable and reliable operations of electrical
power systems (Mhlangal [2023; [Khaloie et al., 2024)). In practical power systems, any disturbance
on a single bus can affect the overall balance of the system, necessitating a recalculation of the power
flow to preserve stability. This makes power flow estimation not only essential but also highly fre-
quent in operational contexts (Ngo et all 2024). As shown in Figure[I(a)l using the IEEE 39-bus
system as an example, the network typically consists of three types of buses: multiple PQ (Load Bus)
and PV (Generator Bus) nodes, and a single Slack node. The goal is to determine the voltage mag-
nitudes and phase angles at each bus, adhering to the fundamental laws of power system dynamics.
While traditional methods like Newton-Raphson (da Costa et al.| [1999) and Gauss-Seidel (Elta-
maly & Elghaffar, 2017) algorithms offer high accuracy, they face key challenges in modern power
grids. As power networks grow in scale and complexity, especially with the integration of renew-
ables, these mathematical solvers become computationally inefficient, particularly under large con-
tingency (e.g., N-K) analyses(Guo et al.|[2021). Additionally, their reliance on complete parameters
limits their applicability when critical information, such as nodes’ reactive power, is missing or not
measurable—an increasingly common issue in real-world scenarios (Hu et al., [2020).

In recent years, data-driven approaches, particularly deep learning techniques, have garnered signif-
icant attention for enhancing the accuracy and efficiency of power system analysis (Forootan et al.,
2022). Among these approaches, Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017)

!Code and logs are available in the supplementary materials.
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Figure 1: (a) Comparison of the number of nodes and edges across various IEEE standard systems
(IEEE 39-Bus, 118-Bus, and 300-Bus), which reveals two key points: 1) there is only one slack node
present in each system, and 2) the network exhibits relatively sparse connectivity. (b) Schematic dia-
gram of the IEEE 39-Bus system with typical three different types of nodes and edges. The diagram
also shows the parameters to be solved in the power flow calculation, including the phase angle of
PV nodes and the voltage and phase angle of PQ nodes, alongside the known values including the
voltage and phase angle of the slack node and the voltage of the PV nodes. (c) Tradeoff between the
estimation performance on phase angles and the N-2 contingency calculation time.

have emerged as a prominent solution due to their effectiveness in handling graph-structured data,
which aligns well with the inherent graph nature of power systems. However, despite their promise,
many existing studies (Lin et al.,[2024; Ngo et al., 2024} |Hu et al.,[2020) fall short of fully addressing
the unique characteristics of power systems. As depicted in Figure[I(b)} one of the key overlooked
features is the presence of only one single slack bus in any size system, whose phase angle is used
as a reference point for the entire system. The Slack bus is also the only node in the system that
has both the known voltage magnitude and phase angle. Furthermore, power grids are fundamen-
tally sparse networks: the number of edges typically scales linearly with the number of nodes (i.e.,
O(N)), which is considerably fewer than in fully connected graphs (i.e., O(N?)). Such sparse con-
nectivity limits information exchange between distant nodes, particularly concerning the Slack node,
thereby posing a significant challenge for most GCN architectures that rely on graph connections
for efficient node communication. To this end, we aim to employ physic-informed model designs
that carefully integrate these distinct features to enhance power flow estimation.

On the other hand, most GCN-based methods follow an end-to-end fitting fashion (Lin et al.| 2024;
Nellikkath & Chatzivasileiadis| 2022 [Falconer & Mones| 2022), which significantly enhances an-
alytical efficiency by directly mapping input graphs to desired flow estimations. As shown in Fig-
ure while this streamlined process enables rapid power flow analysis, such methods often
sacrifice accuracy, as these models may not adequately capture the intricate dependencies and dy-
namics. In contrast, traditional power flow analysis methods (da Costa et al.l [1999; |Chang et al.,
2007} [Tras, |2012) typically employ iterative fitting techniques. These approaches gradually refine
their predictions through successive approximations, improving the accuracy of voltage magnitudes
and phase angles with each iteration. To this end, we aim to incorporate an iterative process into the
GCN-based framework for a refined tradeoff between computational efficiency and high precision.

Inspired by these observed limitations, we propose a Physics-Informed and Self-Ensembling Itera-
tive Framework for Power Flow Estimation, dubbed as SenseFlow, which seamlessly integrates two
novel designs, the Physics-Informed Power Flow Network (PPFNet) and the Self-Ensembling Itera-
tive Estimation (Selter). PPFNet first adopts the Virtual Node Attention (VNA) module to aggregate
the features of all nodes into a virtual node and apply cross-attention to distribute global information
to individual PQ, PV, and Slack nodes. This facilitates efficient global-local communication without
altering the original graph structure, ensuring that each node benefits from system-wide context.
We also design the Slack-Gated Feed-Forward (SGF) module in PPFNet to emphasize the Slack
node’s significance by concatenating its features with PQ and PV nodes. A gated mechanism con-
trols the Slack node’s influence, while a residual connection preserves local node characteristics and
enhances the Slack node’s impact. Selter guides PPFNet to iteratively predict changes in voltage
magnitude and phase angle, gradually improving accuracy within each loop. During this process,
an exponential moving average (EMA) of PPFNet’s parameters maintains an ensemble model that
generates more stable outputs, mitigating noise and fluctuations inherent in iterative training. Its
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outputs are then fed into the next training loop, creating a self-ensembling cycle that progressively
refines the predictions. In each loop, PPFNet is trained using two losses: the ground-truth loss to
align predictions with actual voltage and phase values, and the equation loss to enforce adherence to
power balance equations. Our main contributions are summarized as follows,

* We propose a novel power flow estimation framework, SenseFlow, which integrates two
novel designs PPFNet and Selter to obtain high-accuracy power flow estimation iteratively.

* Our PPFNet carefully addresses the unique characteristics of power systems by designing
the Virtual Node Attention and Slack-Gated Feed-Forward modules, which enhance global-
local communication and optimize the Slack node’s influence effectively.

* Our Selter strategy, equipped with a more stable and accurate self-ensembling model, pro-
gressively refines predictions to push the estimation into a high-precision space.

* Benefiting from the physic-informed design and iterative fitting strategy, our SenseFlow
delivers leading performance in power flow estimation across different-size grid systems.

2 RELATED WORK

Power flow analysis is a fundamental task in electrical power systems that has been extensively re-
searched for decades (Albadi & Volkov, 2020). Traditional methods, such as the Newton-Raphson
Method (da Costa et al.,[1999), Gauss-Seidel Method (Eltamaly & Elghaffar, 2017), and Backward-
Forward Sweep (Chang et al.| [2007), provide promising estimation accuracy through iterative op-
timization procedures. However, these methods often struggle to scale effectively with larger and
more complex power systems, particularly those incorporating renewable energy sources (Ngo et al.}
2024). Consequently, research groups have increasingly shifted their focus towards data-driven ap-
proaches (Forootan et al.| [2022; Khaloie et al., 2024; [Goodfellow et al., |2016). Studies along this
line aim to fit the distribution of the collected historical data or simulated data for accurate and
efficient power flow approximation. Considering the collinearity of the training data and the nonlin-
earity of the power flow model, |Chen et al. (2021} proposes a piecewise linear regression algorithm
for model fitting. Similarly, Guo et al.| (2021)) converts the nonlinear relationship of flow calcula-
tion into a higher dimension state space based on the Koopman operator theory. However, most of
these works focused on the nonlinear fitting ability of the model and ignored the graph-structured
topology nature of power systems, leading to unsatisfying estimation performance.

Graph Convolutional Networks (GCNs) (Wu et al., |2020; [Zhang et al., |2020) are powerful models
designed to handle graph-structured data and have demonstrated significant potential in addressing
the graph topology in power systems(Liao et al. [2021; Falconer & Mones)| [2022; [Lopez-Garcia
& Dominguez-Navarro, 2023). The work by [Owerko et al.|(2020) highlights the promising capa-
bility of GCN to leverage the network structure of the data and approximates a specified optimal
solution through an imitation learning framework. Recent studies have incorporated the physical
constraints of power systems into the loss design, enhancing estimation accuracy and robustness to
the variations of typologies (Lin et al.l 2024;|Gao et al.,|2023} |Hu et al.,2020). For instance, Habib
et al.|(2023) adopts a weakly supervised learning method based on power flow equations, which re-
moves the requirement for labeled data but results in relatively lower accuracy than fully supervised
approaches. PowerFlowNet (Lin et al., 2024) introduces a joint modeling approach that simulta-
neously represents both buses and transmission lines, conceptualizing power flow estimation as a
GNN node-regression problem. However, none of these studies thoroughly examine the distinctive
characteristics of power systems, such as network sparsity and the critical role of the slack node.
Differently, we explore these features and deliberately incorporate them into our network designs.

3 SENSEFLOW

3.1 OVERVIEW

Given a power system network G with IV buses (nodes) and F transmission lines (edges), the objec-
tive of power flow estimation is to determine the voltage magnitudes V, ; and phase angles V/, ; at
each bus ¢ € {1,2,..., N}, subject to the power balance equations that govern active and reactive
power flows in the network. In terms of the training process, we have the active/reactive power for
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Figure 2: Tllustration of our Self-ensembling Iterative Estimation (Selter). (a) In the 7-th loop, the
trainable PPFNet () receives the input voltage magnitudes V;,,(n) and phase angles V,(n) from
the previous loop and the changes in active and reactive power AP and A() calculated by the power
balancing equations 1. The net is trained by two loss functions: the ground-truth loss, L4, which
aligns the predictions with the actual data, and the equation loss, L4, Which ensures the model
adheres to the physical laws governing the system. (b) The Self-Ensembling Inference module
prepares the updated data for the next loop. It leverages the self-ensembling teacher model (;) to
generate predictions, which serve as the input for the trainable model in the subsequent 7 + 1 loop,
where 0; is updated by the exponential moving averaging of 6.

PQ nodes, i.e., PP?/QP?, active power PPV and voltage magnitude V'V for PV nodes, and known
voltage V/3!*k and phase angle V314 for the Slack node, as well as the network topology encoded
in the admittance matrix. Giving the ground-truth information on the PQ and PV nodes, including
VFPQ VPQ VPV our goal is to obtain corresponding accurate predictions.

Our proposed SenseFlow framework addresses the power flow estimation problem by seam-
lessly integrating physics-informed modeling with a self-ensembling iterative learning process.
At its core, SenseFlow leverages both the unique structural features of power systems and the
iterative refinement capabilities of ensembling models. Specifically, SenseFlow trains the pro-
posed PPFNet via the Selter strategy. PPFNet process input data G(N, E') with known features,
PPQ QPQ), Py, VBV VSlack 'y/Slack 16 predict the unknown values on the PV and PQ nodes, i.e.,

the voltage magnitude V?Q and phase angle V/Q for the PQ nodes, and phase angle VFV for the
PV nodes. The training of PPFNet is guided by a ground-truth loss £,¢, and the power balancing
equation loss Leqy,

L =Ly + Mequ, (1)

where ) is a scalar hyper-parameter to adjust the equation loss weight. Similar to [Lopez-Garcia &
Dominguez-Navarro| (2023); |Hu et al.|(2020), we use L1 loss for the ground-truth supervision,
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where the calculations of AP and A( are involved in the Selter process. Through the Selter strat-
egy, SenseFlow refines its predictions by iteratively updating voltage magnitudes and phase angles.
A self-ensembling mechanism, maintained by exponential moving averages, ensures stability during
the iterative process, progressively pushing the predictions toward higher accuracy. We will detail
these two main designs in the following sections.

3.2 SELF-ENSEMBLING ITERATIVE ESTIMATION

The self-ensembling iterative estimation (Selter) diverges from conventional end-to-end learning ap-
proaches. Instead of directly fitting inputs to final voltage magnitudes and phase angles, Selter grad-
ually enforces the trainable module to approach the ground truth with the help of a self-ensembling
prediction. As shown in Figure the trainable model focuses on fitting the incremental changes
in voltage and phase angle, allowing for refined adjustments with each cycle. This iterative refine-
ment enables the model to achieve accuracy levels that end-to-end approaches may not reach.

In the Selter, each iteration, denoted as the 7th loop, involves a dual approach that focuses on both
training the PPFNet model and refining the estimates for voltage magnitude and phase angle for the
future loop. On the one hand, as shown in Figure the input data is first utilized to train the
PPFNet, parameterized by 65, by minimizing the ground truth loss L£,;. Second, the input data is
subjected to the power balance equations, which yield incremental changes in active power A P and
reactive power A(). The objective here is to minimize the equation loss L4, which is designed to
ensure that the total power variations approach zero. Let ¢(V,,, Vi, G) denote the Power balancing
equations, the active and reactive power changes A P; and AQ); at the bus i can be calculated by,

N
Apl =P — Z ‘Vm,iHVm,j‘(Gij COS(Va’i - Vayj) + Bij SiIl(Vayi - Va,j)), “)

Jj=1

N

i=1

|Vm,j|(Gij Sin(va,i - Va,j) - Bij COS(Va,i - ‘/(Jr,j))v (5

where G;; and B;; represent the conductance and susceptance of the line connecting buses 7 and j.

On the other hand, as shown in Figure[2(b)] the input data is processed through the Self-Ensembling
Inference module, which maintains an ensembling model, parameterized by 6;, updated by expo-
nential moving averaging (EMA) of the PPFNet parameters, i.e.,

9t «— a@t + (1 — Ck)gs, (6)

where « is a common momentum parameter. The ensembling model acts as a stable reference point,
providing an output that reflects the accumulated knowledge from the iterative training process. Its
output is further used as the input for the subsequent iteration, i.e., the (1 + 1)th loop. This self-
ensembling iterative estimation allows the trainable model to benefit from the progressively refined
outputs of the ensembling model, thereby enhancing its learning capabilities and improving the
overall convergence of the solution.

3.3 PHYSICS-INFORMED POWER FLOW NETWORK

As shown in Figure [3] our proposed PPFNet is built upon two fundamental modules: the Virtual
Node Attention (VNA) and Slack-Gated Feed-Forward (SGF). VNA enables each node to perceive
global changes without disrupting the underlying graph structure, while SGF enhances the influence
of the slack node on each PQ and PV node, fostering accurate phase angle predictions.

Virtual Node Attention. Our VNA is specifically designed to address the sparsity issue by providing
each node with the ability to sense and respond to global system variations. This design ensures
that each local node can dynamically adjust its state in response to changes in the overall system,
thus accurately capturing the interdependencies that are essential for maintaining the stability and
reliability of power systems. By incorporating the VNA, we enable a more comprehensive and
adaptive modeling of global interactions, ensuring that the system-wide impact of local changes is
appropriately reflected. Specifically, We obtain the virtual node representation by contacting all the
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Figure 3: Illustration of our proposed PPFNet, which mainly consists of two main modules, the
Virtual Node Attention (VNA) and Slack-Gated Feed-Forward (SGF). THe whole hetero-graph is
fed into the network. The VNA creates a virtual node by combining and pooling the features of all
nodes, then uses cross-attention to selectively communicate global information to each node type.
This enhances the interaction between global and local information, preserving the graph structure
while improving the model’s ability to capture system-wide dependencies. The SGF combines the
slack node’s features with each node’s features through a gated feed-forward network, enhancing
the slack node’s influence on other nodes while preserving the original node characteristics via a
residual connection. Best viewed on screen.

node features Fpq, Fpy, Fsiack Without breaking the graph structure,

Fituse = Linear(Concat(Fpq, Fpy, Fsiack)) @)
Fynode = Concat(AvgPool (Fyfyse ), Max Pool (Fypyse ) )

Meanwhile, we can obtain the updated node representation after the graph neural network,
F, = GCN(F,), * € {PQ, PV, Slack} )

where GCN denotes multi-layer graph convolutional network (e.g., GraphConv (Morris et al.,|2019),
GAT (Velickovic et al.l 2018)). Subsequently, we attend the global information to each type of the
power node via the cross attention,

F * " F \Z:iode
F, = LayerNorm(F, + softmax i Fynode) (10)
k

where dj, is the dimension of the Fy,ge Vectors. In this way, our VNA module preserves the orig-
inal graph structure and bridges the connection between each node and the whole system without
implicitly introducing auxiliary nodes and edges.

Slack-Gated Feed-Forward. Our SGA effectively enhances the influence of the slack node in power
system modeling by concatenating its feature representation with the feature representations of each
PQ or PV node. The combined features are then processed through a gated feed-forward network,
allowing the slack node’s influence to be dynamically adjusted based on the current state of the
node. Moreover, a residual connection is added, incorporating the original node features to ensure
that local characteristics are preserved while enhancing the model’s ability to accurately capture
phase angle relationships throughout the system. Taking the PV node as an example, we have,

Fiyse = Linear(Concat(Fpq, Fsiack)) @ o(Linear(Concat(Fpg, Fsiack))) (11)
Fpg = LayerNorm(Fpq + Linear( Fyfyse ) )- (12)
To construct the complete model, as shown in Figure 3] we stack K layers of these blocks, allowing

for deeper feature extraction and representation learning. In the end, the outputs from all blocks are
concatenated and then fed into a predictor module to predict the voltage and phase angles.
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Table 1: Performance comparison on the IEEE 39-Bus and IEEE 118-Bus system in terms of the root
mean squared error (RMSE), where lower values indicate better performance. “4-Selter” indicates
the application of our proposed self-ensembling iterative estimation process to the corresponding
method. The best results are highlighted in bold.

IEEE 39-Bus IEEE 118-Bus
Method
PQvm PQva PVva PQvm PQv, PVva

PowerGraph (Varbella et al.|[2024) 0.01390720 0.30019834 0.32490083 0.00822813 0.10501729 0.11086510
PowerflowNet (Lin et al.[[2024) 0.00700982 0.09310086 0.09836672 0.00188223 0.02760057 0.02899146
TGN (Lopez-Garcia & Dominguez-Navarro|[2023) 0.00489032 0.05125980 0.053372381 0.00138807 0.01697165 0.01895702
GraphConv 0.00724108 0.10125969 0.12637231 0.00192112 0.03769957 0.03597135
GINEConv 0.00768264 0.10450818 0.12893821 0.00194470 0.03934504 0.03760612
SageConv 0.00755344 0.10445687 0.12901593 0.00192444 0.04449241 0.04275129
ResGatedGraphConv 0.00694495 0.10085707 0.12677170 0.00130103 0.03659180 0.03513782
GatConv 0.00808900 0.10591513 0.13207403 0.00262339 0.04434326 0.04388360
TransformerConv 0.00722702 0.10429660 0.13010464 0.00147067 0.04356860 0.04153621
FlowNet (ours) 0.00453724 0.04653547 0.05373371 0.00115526 0.01273561 0.01269017
+ Selter (i.e., SenseFlow) 0.00078161 0.00608600 0.00609802 0.00009817 0.00102664 0.00103545

4 EXPERIMENT

4.1 DATASETS

We construct our dataset based on standard IEEE test cases (39-Bus, 118-Bus, and 300-Bus) using
Matpower (Zimmerman et al.,2010), following approaches similar to|Lopez-Garcia & Dominguez-
Navarro| (2023) and |Gao et al.| (2023). To simulate diverse scenarios, we introduce variations in
power injections, branch characteristics, and grid topology. Specifically, we apply uniform noise to
the active and reactive power loads (P and @), adjusting them to range between 50% and 150% of
their original values. Likewise, branch features are perturbed with uniform noise, ranging from 90%
to 110% of their baseline values. To examine different grid topologies, we randomly disconnect one
or two transmission lines in each sample. All load bus voltage magnitudes are initialized at 1 P.U.,
and phase angles are set relative to the slack bus reference angle. In this way, we generate 100,000
samples for the 39-Bus and 118-Bus systems, and 500,000 samples for the 300-Bus system. 20% of
the records are reserved as test sets, with strictly distinct grid topologies from the training data.

4.2 IMPLEMENTATION DETAILS

In our experiments, we utilized a batch size of 256 and employed the Adam optimizer with a learning
rate set at 0.001, which follows a cosine decay schedule down to le-5 over a total of 100 epochs.
Regarding feature embedding sizes, we set them to 128 for the IEEE 39-Bus and 118-Bus systems,
while a size of 256 was used for the IEEE 300-Bus system. To effectively integrate information,
we stacked a block that combines Virtual Node Attention and Slack-Gated Feed-Forward modules
a total of four times. Our models are trained and inferred using an iterative fitting approach with
8 loops to enhance the estimation accuracy. All code was implemented in PyTorch 2.1, and both
training and testing were conducted on the 40GB A100 GPU.

We evaluated our approach against recent studies like Powergraph (Varbella et al.l [2024) (with
the best transformer-based solution), PowerFlowNet (Lin et al., [2024), and TGN (Lopez-Garcia
& Dominguez-Navarro, 2023)), and also popular graph networks commonly used in power system
analysis, including GraphConv, GINEConv, SageConv, ResGatedGraphConv, GatConv, and Trans-
formerConv. The metrics for comparison focused on the root mean square error of voltage and phase
angle predictions for PQ nodes, as well as phase angle predictions for PV nodes.

4.3 ESTIMATION PERFORMANCE

Table 1| presents a performance comparison between our proposed method, SenseFlow (comprising
PPFNet and Selter), and other advanced approaches on the IEEE 39-Bus and IEEE 118-Bus systems.
The results demonstrate that SenseFlow significantly outperforms the other methods across both
systems. In the IEEE 39-Bus system, SenseFlow achieves the lowest root mean square error (RMSE)
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Table 2: Performance comparison on IEEE 300-Bus system. All notations are the same as in Table[T]

w/o Selter

w/ Selter

Method Param.
PQVm PQVa PVVa l:'QVm PQVa PVVa
GraphConv 0.00088801 0.01430215 0.01519640 0.00018706 0.00177910 0.00158296 8.422M
GINEConv 0.00086362 0.01507135 0.01591485 0.00022936 0.00213723 0.00190035 4.227M
SageConv 0.00091070 0.01600684 0.01706942 0.00025046 0.00243048 0.00223354 8.422M
ResGatedGraphConv 0.00051189 0.01318974 0.01419000 0.00013985 0.00147823 0.00124201 17.105M
GatConv 0.00291205 0.01372243 0.02828574 0.00039533 0.00292789 0.00362555 34.112M
TransformerConv 0.00053179 0.01439258 0.01582433 0.00016199 0.00206462 0.00216299 55.083M
SenseFlow (ours) 0.00093000 0.00417808 0.00473750 0.00010600 0.00086501 0.00077378 21.844M
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Figure 4: (a) we examine the impact of the iterative loop on the IEEE 39-Bus system. The number
of iterations is set to 8 by default, considering the increased inference effort with larger loops. (b)
we investigate the missing Q values settings on IEEE 39-Bus and 118-Bus. These settings, without
complete known information, cannot be addressed by conventional calculation methods. (c) we
compare the total calculation time of N-2 contingency analysis on IEEE standards.

for voltage predictions at PQ and PV nodes, with magnitude error at 0.0007816 and phase angle
errors at 0.00608600 and 0.00609802, showcasing its high-precision predictive capabilities. In the
IEEE 118-Bus system, SenseFlow also exhibits exceptional performance. While it may not be
the absolute best for magnitude predictions of PQ nodes, it remains very competitive and shows
remarkable superiority in the more challenging phase angle predictions compared to other methods.
Overall, the combination of the PPFNet architecture and the Selter strategy positions SenseFlow as
a highly effective approach for power system state estimation.

We investigate the estimation performance of our SenseFlow on the more complex and larger IEEE
300-Bus system in Table 2] We can clearly observe that our SenseFlow with Selter can obtain the
state-of-the-art (SOTA) performance, evidenced by consistently lower RMSE values across different
metrics. In the absence of our Selter strategy, we achieved a significant reduction in phase angle
prediction error from approximately 0.013 to around 0.004 compared to the second-best method,
ResGatedGraphConv. When Selter is incorporated, SenseFlow emerges as the only method capable
of reducing phase angle errors below le-3, showcasing its superior performance in this context.
These improvements highlight the effectiveness of our method in handling complex power system
scenarios and underscore its potential for real-world applications.

We reproduce recent studies like Powergraph on our more challenging datasets with larger pertur-
bations and varying topologies, and find they fail to handle such settings. Notably, our method
performs increasingly better on large 118 and 300-bus systems, since our test sets are built from N-
2/3 topology perturbations on IEEE systems, which affect the 39-bus most and make it the hardest.

4.4 ABLATION STUDY

Impact of different components of SenseFlow. The ablation studies in the Table [3] demonstrate the
effectiveness of the key components in our SenseFlow, including the self-ensembling iterative esti-
mation (Selter), block fusion, Virtual Node Attention (VNA), and Slack-Gated Feed-Forward (SGF).
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Table 3: Ablation studies on our SenseFlow. We examine the effectiveness of the self-ensembling
iterative estimation process (Selter) and the main components of our proposed FlowNet, including
the block fusion, Virtual Node Attention (VNA) and Slack-Gated Feed-Forward (SGF). Results are
reported on the IEEE 39-Bus. Improvements over the baseline are marked in blue.

S | FlowNet | RMSE |
elter
Base Fusion VNA SGF PQvm PQva PVy,
v 0.00914456 0.12542769 0.14066372 (0.0)
v v 0.00774126 0.10663362 0.12872563 (] 0.01193809)
v v v 0.00561620 0.05007443 0.05717816 (] 0.08348556)
v v v' 10.00658822 0.07125929 0.07577518 ({ 0.06488854)
v v v v' 10.00453724 0.04653547 0.05373371 ({ 0.08693001)
v v 0.00102207 0.01159813 0.01238586 (0.0)
v v v 0.00112893 0.01129249 0.01206334 (| 0.00032252)
v v v v 0.00098343 0.00697184 0.00771528 (J 0.00467058)
v v v v' 10.00100311 0.01011067 0.01089543 ({ 0.00149043)
v v v v v' 10.00078161 0.00608600 0.00609802 (| 0.00628784)

Without the Selter process, introducing the Fusion, VNA, and SGF results in RMSE reductions of
0.01193809, 0.08348556, and 0.06488854, respectively, for the phase angle predictions of PV nodes
compared to the baseline. When these components are combined, forming the complete PPFNet, the
RMSE is further reduced to 0.0537, an overall improvement of 0.0869. More notably, the addition
of Selter (with a default loop count of 8) significantly decreases all RMSE metrics by approximately
10-fold. As a result, our complete SenseFlow achieves an RMSE of less than le-3 for the voltage
magnitude estimation and less than 1e-2 for the phase angle estimation, demonstrating its substantial
improvements and overall effectiveness.

Scaling iterative loops. Figure [A(a)|investigate the effect of scaling iterative loops on the estimation
performance. Specifically, transitioning from a single loop to multiple loops significantly enhances
the accuracy of voltage magnitude and phase angle predictions, with up to 12 loops reducing the
phase angle error by nearly two orders of magnitude. As the number of loops increases, predic-
tion errors continue to decrease, highlighting the benefits of iterative refinement. However, this
improvement comes at the cost of increased training and inference costs. To balance accuracy and
computational efficiency, we adopt 8 loops as the default, which ensures a phase angle prediction
error below le-2 while minimizing computational overhead.

Comparison with mathematical methods. Calculation time. We compare the total time required
to perform full N-2 contingency simulations on three IEEE test systems using PyPower (a tradi-
tional solver) and our Senseflow ( on single GPU-A100-40G). While performance is similar for
small systems, as shown in Figure Senseflow achieves 3-5 speedup on larger networks. This
demonstrates the model’s superior scalability for high-volume, large-scale contingency analysis.
Estimation with incomplete inputs. SenseFlow is capable of accurately estimating voltage states
with missing parameters, a challenge that conventional methods cannot address due to incomplete
information. As shown in Figure with missing inactive power in PQ nodes, our method still
achieves estimation performance at the 10~ level, even when more than 10% of PQ nodes lack Q-
values on the 39-Bus system. Compared with TransformerConv and GatConv (Table ], SenseFlow
achieves lower errors on the 118-Bus system even with Q-value missing.

5 CONCLUSION

In this paper, we emphasize the importance of the unique features of power systems for power flow
analysis, specifically the sole phase angle-referencing Slack node and the sparse network structure.
To this end, we propose SenseFlow, a novel Physics-Informed and Self-Ensembling Iterative Frame-
work for power flow estimation. By integrating the proposed PPFNet and Selter strategy, SenseFlow
effectively addresses these characteristics and further enhances the prediction accuracy of voltage
magnitudes and phase angles through iterative refinement. Experimental results demonstrate that our
SenseFlow achieves leading performance in power flow estimation, and extensive ablation studies
validate the effectiveness of the proposed components and strategies.
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