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ABSTRACT

Recent advances in vision language models (VLMs) have enabled strong reason-
ing and generalization capabilities, but they remain computationally expensive,
primarily due to the quadratic complexity of Transformer self-attention and the
large number of visual tokens produced by high-resolution inputs. To address
this limitation, we propose a flexible plug-and-play framework for visual token
pruning that can be seamlessly integrated into existing VLMs without requiring
additional training or model modification. Our approach employs a two-stage
strategy. In the first stage, representation-level token merging is performed based
on spatial information density, which removes redundant visual features. In the
second stage, tokens with low cross-modal relevance are adaptively pruned during
language model prefilling, allowing the computation to focus on the most infor-
mative regions. This design substantially reduces the visual token budget, lead-
ing to improvements in both inference speed and memory efficiency while main-
taining strong task performance. Extensive experiments on widely used bench-
marks demonstrate that our method consistently achieves superior efficiency and
accuracy trade-offs, highlighting its potential for practical deployment of high-
resolution VLMs in real-world applications.

1 INTRODUCTION

Recent progress in large language models (LLMs) (Ding et al., 2022; Qin et al., 2023; Zhu et al.,
2023; Li et al., 2023a) has catalyzed rapid advances in vision language models (VLMs) (Bai et al.,
2025; Team et al., 2025; Zhu et al., 2025), which are now pervasive across a broad spectrum of
downstream applications, ranging from visual question answering to multimodal dialogue. A stan-
dard VLM architecture (Liu et al., 2024a; Lin et al., 2023; Zhang et al., 2025) is typically composed
of three principal modules: a visual encoder (e.g., CLIP or SigLIP) responsible for extracting visual
features from images or videos, a lightweight projector that maps these features into the semantic
embedding space of the language model, and a large language model that serves as the dominant
reasoning engine, generating responses in an auto regressive manner.

Although recent VLMs exhibit remarkable reasoning and generalization capabilities, their compu-
tational footprint remains prohibitively large (Liu et al., 2024c; Shang et al., 2024b; Huang et al.,
2024; Tong et al., 2025; Li et al., 2025a). The primary bottleneck arises from the quadratic com-
plexity of Transformer self attention, which is further exacerbated by the disproportionate number of
visual tokens. High resolution images can easily produce thousands of tokens, whereas text inputs
typically span only a few dozen (Zhang et al., 2024a; Chen et al., 2024a; Lin et al., 2025b; Huang
et al., 2024; Sun et al.). This imbalance introduces both inefficiency and memory strain, ultimately
hindering practical deployment in latency sensitive or resource constrained scenarios, such as edge
devices and real time interactive systems.

To alleviate this challenge, we introduce a novel plug and play token pruning framework tailored
for VLMs. Our approach integrates two complementary stages. First, we exploit the spatial dis-
tribution of features from the visual encoder to identify and merge tokens in regions characterized
by low information density, thereby reducing redundancy at the representation level. Second, dur-
ing LLM decoding, we adaptively prune visual tokens with weak query relevance, as measured by
cross modal attention dynamics. This two stage mechanism substantially reduces the visual token
budget, yielding notable improvements in both computational and memory efficiency. Importantly,
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our method operates entirely without fine tuning or additional training, making it directly applicable
to existing off the shelf VLMs. Extensive experiments on widely adopted benchmarks demonstrate
that our approach consistently delivers superior efficiency versus performance trade offs, achieving
significant inference acceleration while preserving competitive accuracy across diverse tasks.

Our main contriubutions can be summarized as follows:

• We introduce a new plug and play framework for visual token pruning in vision language
models. The method is model agnostic and requires no additional fine tuning, which allows
immediate application to existing systems.

• We design a two stage pruning strategy that first merges tokens in spatial regions with low
information density and then prunes tokens with weak text guided relevance during large
language model decoding.

• We conduct extensive experiments on widely used benchmarks and demonstrate that our
method achieves a favorable balance between efficiency and performance, outperforming
prior approaches.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

LLaVA (Liu et al., 2023) typically encodes a 336× 336 image into 576 tokens, while LLaVA-Next
(Liu et al., 2024b) adopts a hybrid strategy: it first resizes the image into a 336 × 336 global view
encoded as 576 tokens, and then selects the optimal resolution for the raw image, resizing and parti-
tioning it into up to four quadrants, which together yield up to 2880 tokens (Chen et al., 2024b; Lin
et al., 2025a; Shang et al., 2024a; Tong et al., 2025). A similar trend can be observed in the Qwen
family of models, where the number of visual tokens steadily increases from Qwen2-VL (Wang
et al., 2024) to Qwen2.5-VL in order to enhance visual understanding. However, since Transformer
self-attention scales quadratically with sequence length, the computational cost increases signifi-
cantly as more visual tokens are introduced.

2.2 VISUAL TOKEN PRUNING AND COMPRESSION

Recent studies explore pruning and compression to alleviate the high cost of visual token processing
(Ye et al., 2025; Lin et al., 2025a; Li et al., 2025b; Cai et al., 2024). FastV (Chen et al., 2024a) prunes
tokens at a fixed LLM layer based on attention scores, while VTW (Lin et al., 2025a) assumes early
absorption of visual information and drops all tokens after a certain layer. Encoder-level methods,
such as VisionZip (Yang et al., 2025), reveal that CLIP and SigLIP exhibit highly concentrated
attention, enabling pruning guided by [CLS]-based distributions. In contrast, SparseVLM (Zhang
et al., 2024b) introduces text-guided pruning that progressively removes tokens with low cross-
modal attention, achieving competitive accuracy but requiring all tokens to first pass through the
LLM, which limits efficiency for high-resolution inputs.

3 METHOD

3.1 OVERVIEW

Our approach consists of a two-stage framework to efficiently handle visual tokens in vision-
language models. In the first stage, sparse or redundant visual tokens are identified and merged
using an adaptive clustering algorithm that groups tokens based on feature similarity and local den-
sity. This produces a compressed representation that preserves critical visual information while
substantially reducing sequence length. In the second stage, the compressed tokens are dynamically
pruned during the LLM’s prefill process. We select semantically meaningful text tokens as raters
to evaluate cross-modal alignment, guiding the pruning of less informative visual tokens. This two-
stage mechanism effectively reduces computational overhead while maintaining high-quality visual
representations for downstream reasoning tasks. Figure 1 provides an overview of our proposed
method.
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Figure 1: Overview and Core Design of the Proposed Framework.

3.2 GLOBAL–LOCAL CONSOLIDATION OF SPARSE VISUAL EMBEDDINGS

Some studies (Liu et al., 2024c; Shang et al., 2024b; Huang et al., 2024; Tong et al., 2025; Li et al.,
2025a) have found that attention scores are crucial for evaluating the importance of tokens. We
leverage the attention scores produced by the model to quantitatively assess the importance of each
visual token. Specifically, tokens receiving higher attention weights are considered more informa-
tive and influential for downstream reasoning, whereas tokens with lower attention contributions are
deemed less critical and may be candidates for pruning or consolidation. This mechanism enables
a fine-grained, data-driven prioritization of tokens, allowing the model to focus computational re-
sources on the most salient regions of the input while maintaining representational fidelity. Based
on this observation, we propose a token consolidation strategy that merges tokens carrying sparse
or secondary information. The key intuition is that semantically similar tokens can be aggregated
with minimal information loss, thereby preserving essential content while reducing the token bud-
get. To this end, we introduce an adaptive clustering algorithm that groups tokens according to both
feature similarity and local density, and subsequently replaces each cluster with a representative
token. Formally, let the output of the visual encoder be denoted as X ∈ RN×C , where N is the
number of tokens and C is the feature dimension. The goal is to compress the sequence length from
N to K, yielding a compact representation X′ ∈ RK×C that maintains both semantic fidelity and
computational efficiency. Pairwise dissimilarities between tokens are quantified as follows:

Di,j =
1√
C

∥Xi,: −Xj,:∥2 (1)

or equivalently in matrix form

D =

√
1

C

(
diag(XX⊤)1⊤ + 1 diag(XX⊤)⊤ − 2XX⊤)1/2 (2)

Local density for token i is estimated using its Knn nearest neighbors

ρi = exp

(
− 1

Knn

Knn∑
k=1

D2
i,nk(i)

)
or equivalently as ρ = exp

(
− D2

nn

Knn

)
(3)

where Dnn is the N×Knn nearest-neighbor distance submatrix. This density can also be formulated
as a kernel density estimate over all tokens

ρi ∝
N∑
j=1

exp
(
−

D2
i,j

σ2

)
(4)

with bandwidth σ controlling the smoothness. To balance local density and global coverage, we
define a prominence score for token i

Si = ρi · δi δi = min
j:ρj>ρi

Di,j (5)
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Selecting the top-K scores yields cluster centers Ic. Each token is assigned to its nearest center,
inducing clusters Ck

Ai = argmin
j∈Ic

Di,j Ck = {i | Ai = k} (6)

Feature aggregation within each cluster is expressed as

X′
k,: =

1

|Ck|
∑
i∈Ck

Xi,: or equivalently in matrix form: X′ = MaggX (7)

where (Magg)k,i =
1

|Ck| if i ∈ Ck and 0 otherwise. We can further formulate this consolidation as
an optimization problem that minimizes intra-cluster distances while preserving density

X′ = arg min
Y∈RK×C

K∑
k=1

∑
i∈Ck

ρi∥Xi,: −Yk,:∥22 (8)

Through this approach, we effectively perform token merging, whereby the merged tokens are com-
bined with the high attention score retained tokens and fed into the LLM. This strategy substantially
enhances inference efficiency by reducing sequence length and increasing information density.

3.3 ADAPTIVE CROSS-MODAL VISUAL TOKEN PRUNING

Even after cluster consolidation, sequences can remain long, imposing substantial computation. To
address this, we propose a dynamic pruning mechanism guided by cross-modal relevance. Not
all text tokens provide meaningful guidance; punctuation or common function words may introduce
noise. We therefore select a subset of text tokens with strong alignment as raters Let V ∈ RNv×d be
visual token embeddings and T ∈ RNt×d be textual token embeddings. The cross-modal similarity
is computed via scaled dot-product

M = softmax
(VT⊤

√
d

)
(9)

where the softmax is applied along the text-token dimension. The mean alignment score for each
text token is

sj =
1

Nv

Nv∑
i=1

Mi,j s̄ =
1

Nt

Nt∑
j=1

sj (10)

and raters are selected as R = {j | sj > s̄}. The importance of each visual token is defined as its
average alignment with any rater

αi = Avgj∈RMi,j (11)

Pruning is applied according to a threshold τ , τ is the token score quantile computed according to
the pruning rate, represented as follows:

Vkept = {i | αi ≥ τ} Vpruned = {i | αi < τ} (12)

For pruned tokens, we apply the merging strategy described in Section 3.2 again to further enhance
information retention.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets For image-based multimodal evaluation, we conduct experiments on six widely adopted
benchmarks, including TextVQA (Singh et al., 2019), ScienceQA (SQA) (Saikh et al., 2022), POPE
(Li et al., 2023b), MME (Fu et al., 2023), GQA (Hudson & Manning, 2019), and VizWiz (Bigham
et al., 2010). These datasets collectively cover diverse capabilities such as visual question answering,
knowledge reasoning, and robustness to adversarial prompts, thereby providing a comprehensive
evaluation of model performance under different multimodal understanding scenarios.
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Models To demonstrate the effectiveness and versatility of our framework, we evaluate it on three
representative VLMs: LLaVA-v1.5 (7/13B) (Liu et al., 2023), LLaVA-NeXT (7/13B) (Liu et al.,
2024b),, and Qwen2-VL (7B) (Wang et al., 2024). For models such as LLaVA-v1.5 and LLaVA-
NEXT, whose visual encoders incorporate a [CLS] token, we exploit the attention distribution of the
[CLS] token to guide visual token pruning. In contrast, for Qwen2-VL, which does not employ a
[CLS] token in its visual encoder, we instead leverage the averaged attention scores across all visual
tokens. This unified design ensures that our approach remains broadly applicable across diverse
VLM architectures and visual encoding paradigms.

Implementation Deatils We conduct all experiments on machines equipped with four NVIDIA
A800 GPUs, implemented using the PyTorch framework. In the first stage, we prune visual tokens
according to their information distribution. For LLaVA and LLaVA-NeXT, the attention score of the
[CLS] token is used as a global indicator of semantic relevance, whereas Qwen2-VL, which does
not employ a [CLS] token, relies on the average attention score across all visual tokens. During
Pruning of Low-Density Visual Tokens, we retain approximately K = 2 times the target budget
to preserve potentially informative tokens. Tokens with sparse content are merged into compact
clusters, yielding a retained-to-merged ratio of about 5.4 : 1. In the second stage, the compressed
tokens are further pruned within the LLM during the prefill process. Pruning is applied at fixed
layers to maintain a consistent average number of visual tokens across the network. For LLaVA-
v1.5 (7B with 32 layers and 13B with 40 layers), pruning is performed at layers 3, 7, and 16. For
Qwen2-VL-7B-Instruct, pruning occurs at layers 3, 7, and 13.

Table 1: Performance comparison between baselines and Ours on LLaVA-v1.5-7B across budgets.

Token Budget Method Vizwiz SQA GQA TextVQA MME POPE (F1) Mean %
576 Vanilla 54.04 69.41 61.92 46.00 1864.84 85.85 100.00%

192

FastV 56.87 55.23 53.94 41.45 1556.45 79.33 89.65%
SparseVLMs 54.04 68.96 59.33 44.68 1781.43 85.41 97.89%

VisionZip 53.98 68.62 59.22 44.58 1769.02 85.29 97.58%
Ours 52.30 68.32 59.95 45.18 1772.17 85.47 97.47%

128

FastV 56.26 55.43 51.26 37.76 1490.22 72.52 85.54%
SparseVLMs 53.11 68.86 58.36 42.43 1743.33 84.70 96.02%

VisionZip 54.05 68.67 57.62 43.79 1768.73 82.89 96.44%
Ours 52.25 68.27 59.00 44.56 1780.38 85.02 96.95%

64

FastV 51.51 53.30 38.03 15.61 1045.11 17.70 57.35%
SparseVLMs 52.75 68.96 52.46 32.10 1601.96 76.17 87.68%

VisionZip 54.68 68.96 55.16 41.95 1716.93 76.97 93.76%
Ours 52.72 69.46 56.20 42.60 1734.67 81.79 94.88%

4.2 MAIN RESULTS

Results on LLaVA-v1.5 As shown in Tables 1 and 2, our method demonstrates strong robustness
across token budgets on both LLaVA-v1.5-7B and LLaVA-v1.5-13B. On LLaVA-v1.5-7B, Sparse-
VLM achieves the highest relative performance at 192 and 128 tokens (97.89% and 96.02%), while
our method remains competitive (97.47% and 96.95%). FastV degrades significantly (89.65% and
85.54%), whereas VisionZip is stable (97.58% and 96.44%). At 64 tokens, SparseVLM drops to
87.68%, VisionZip reaches 93.76%, and our method attains 94.88%, the highest robustness. A sim-
ilar trend appears on LLaVA-v1.5-13B: SparseVLM leads at 192/128 tokens (98.02% and 97.28%),
our method remains competitive (97.60% and 97.09%), FastV lags (96.24% and 91.70%), and Vi-
sionZip is comparable (97.25% and 96.10%). Under 64 tokens, FastV (73.52%) and SparseVLM
(87.84%) degrade sharply, while VisionZip (93.56%) and our method (95.25%) maintain strong per-
formance, with ours being the most robust. In summary, SparseVLM excels under moderate pruning,
but our method consistently outperforms all baselines under aggressive compression. FastV suffers
severe drops, and VisionZip, though stable, lags behind our approach at extreme token reduction.

Results on Qwen2-VL Unlike LLaVA-based models, Qwen2-VL employs a dynamic resolu-
tion encoder without a [CLS] token. By leveraging the average attention score across all visual
tokens, our method naturally adapts to this architecture. As shown in Table 3, our approach con-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison between baselines and ours on LLaVA-v1.5-13B across budgets.

Token Budget Method Vizwiz SQA GQA TextVQA MME POPE (F1) Mean %
576 Vanilla 56.18 72.78 63.29 48.77 1823.95 85.96 100.00%

192

FastV 60.97 68.52 59.26 45.52 1679.06 82.27 96.24%
SparseVLMs 55.08 73.18 60.06 47.62 1793.92 84.82 98.02%

VisionZip 54.99 73.53 59.12 46.97 1749.59 85.04 97.25%
Ours 54.86 73.57 59.46 47.19 1759.19 85.68 97.60%

128

FastV 60.11 68.47 56.65 40.42 1614.04 75.88 91.70%
SparseVLMs 54.67 73.87 58.59 45.79 1840.54 83.81 97.28%

VisionZip 54.64 74.12 57.76 46.44 1739.74 82.22 96.10%
Ours 54.65 73.48 59.10 46.54 1773.50 84.47 97.09%

64

FastV 54.45 67.28 46.57 23.70 1326.20 48.89 73.52%
SparseVLMs 54.39 72.53 54.40 34.96 1620.02 72.31 87.84%

VisionZip 55.95 74.22 56.03 44.10 1686.40 76.00 93.56%
Ours 54.96 73.48 57.55 45.14 1748.98 80.22 95.25%

sistently surpasses VisionZip across all token budgets, with particularly large improvements un-
der moderate pruning where VisionZip suffers substantial degradation. Specifically, our method
achieves 95.07% and 92.91% mean retention at 192 and 128 tokens, respectively, compared to only
83.86% for VisionZip at both settings. Even under the aggressive 64-token budget, our method
attains 85.63%, outperforming VisionZip (83.77%). The gains are especially pronounced on tasks
requiring fine-grained reasoning and visual-text alignment, where VisionZip often collapses. These
results demonstrate that our method not only preserves robustness under aggressive pruning but also
scales effectively to heterogeneous VLM architectures beyond the LLaVA family.

Table 3: Performance comparison between baselines and ours on Qwen2-VL-7B-Instruct across
budgets.

Token Budget Method Vizwiz SQA GQA TextVQA MME POPE (F1) Mean %
Full Vanilla 68.84 84.98 62.39 81.27 2295.23 87.76 100.00

192 VisionZip 61.83 77.00 57.39 37.65 1963.69 86.76 83.86
Ours 66.87 81.66 61.09 66.59 2242.49 87.43 95.07

128 VisionZip 61.82 77.19 57.49 37.75 1955.99 86.65 83.86
Ours 65.51 82.05 60.13 58.57 2255.20 86.92 92.91

64 VisionZip 61.83 77.00 57.39 37.61 1954.01 86.70 83.77
Ours 61.89 78.24 56.82 41.17 2113.52 86.00 85.63

4.3 EFFICIENCY

As shown in Table 4, the majority of efficiency gains arise in the prefill stage, where the quadratic
complexity of self-attention with respect to sequence length renders visual token pruning particularly
effective. On LLaVA-v1.5-7B, VisionZip achieves the fastest prefill time (24.10 ms) with a 2.28×
speedup, while our proposed method also reduces prefill latency to 32.44 ms, corresponding to a
1.70× improvement. In contrast, the decode stage exhibits only minor differences across methods.
On the LLaVA-NEXT-7B, the benefits of pruning are further amplified due to the substantially
higher initial token budget: VisionZip reaches an 8.80× overall speedup, while ours achieves a
6.70× acceleration, confirming the effectiveness of our two-stage pruning strategy in mitigating
prefill overhead while maintaining stable decoding efficiency.

As shown in Table 4, the majority of efficiency gains arise in the prefill stage, where the quadratic
complexity of self-attention with respect to sequence length makes visual token pruning partic-
ularly effective. On LLaVA-v1.5-7B, VisionZip achieves the fastest prefill time (24.10 ms) with a
2.28× speedup, while our method also reduces prefill latency to 32.44 ms, corresponding to a 1.70×
improvement. For LLaVA-NEXT-7B, the benefits of pruning are further amplified due to its sub-
stantially larger initial token budget: VisionZip reaches an 8.80× overall speedup, while our method

6
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achieves a 6.70× acceleration, confirming the effectiveness of our strategy in mitigating prefill over-
head while maintaining stable decoding efficiency. The superior acceleration of VisionZip primarily
stems from its design, where all visual tokens are pruned down to the target budget before being fed
into the LLM, thereby directly shortening the sequence length in prefill computation. In contrast,
our two-stage approach retains richer visual information during the initial encoding and adaptively
prunes tokens in the prefill stage based on text–visual relevance, resulting in slightly lower raw
speedup but offering more favorable accuracy–efficiency trade-offs.

Table 4: Prefill and Decode Time Comparison (ms) and Speedup for Different Methods.

Model Method Budget Time (ms) Speedup
Prefill Decode

LLaVA-v1.5-7B

Vanilla 576 55.05 21.20 1.00×
SparseVLM 64 36.40 26.69 1.51×
VisionZip 64 24.10 21.31 2.28×

Ours 64 32.44 21.76 1.70×

LLaVA-NEXT-7B
Vanilla 2880 248.02 22.49 1.00×

VisionZip 160 28.19 21.31 8.80×
Ours 160 37.02 22.63 6.70×

4.4 PERFORMANCE UNDER DIFFERENT PRUNING BUDGETS

Figures 2a, 2b, 2c, and 2d report the results of different methods on GQA, MME, POPE, and
TextVQA under varying visual token budgets. Our approach (denoted as Ours) consistently achieves
strong performance across all tasks and budget levels, demonstrating robustness under aggressive
pruning while remaining competitive when more tokens are preserved. In contrast, FastV suffers
severe degradation, particularly under low-token budgets, indicating that pruning solely based on
CLS-token attention is unreliable as it often discards tokens critical for downstream reasoning. Spar-
seVLM performs competitively under moderate and large budgets, but its performance drops sharply
when tokens are extremely limited, suggesting that the absence of explicit filtering for visually un-
informative tokens leads to misleading pruning signals. VisionZip exhibits stronger resilience under
extreme pruning, sometimes surpassing both FastV and SparseVLM at very low budgets. How-
ever, its advantage diminishes as the budget increases, where it falls behind both SparseVLM and
our method. Overall, our method provides the most stable efficiency–accuracy trade-off. At high
budgets (192 and 256 tokens), Ours matches or surpasses SparseVLM and VisionZip across all
benchmarks. At low budgets (32 and 64 tokens), it achieves substantially higher accuracy than
FastV and remains competitive with VisionZip, while avoiding the sharp degradation observed in
SparseVLM. These results highlight the effectiveness of our two-stage framework redundancy re-
duction and cross-modal guided pruning—which together enable robust performance across a wide
range of pruning scenarios.

4.5 HYPERPARAMETER ANALYSIS

In our framework, the hyperparameter K controls the degree of redundancy retained after the first-
stage pruning based on visual information distribution. Specifically, we initially preserve K times
the target visual token budget before applying the second-stage text-guided pruning, ensuring that
the average number of visual tokens across LLM layers matches the final budget. A smaller K
implies that more pruning is performed purely at the representation level, which risks discarding
tokens that may contain task-relevant fine-grained details.When K = 1, the framework essentially
relies solely on text-guided pruning. Conversely, a larger K retains more tokens after the first stage,
shifting the burden of pruning to the second stage, where cross-modal attention dynamics determine
their utility with respect to the input query. Thus, K essentially balances spatial redundancy removal
against text-guided adaptivity.

Table 5 reports results on LLaVA-v1.5-7B across four benchmarks (GQA, TextVQA, MME, and
POPE). At the 128-token budget, K = 1 performs the worst (93.95%), indicating that exclusive
reliance on text-guided pruning is suboptimal. Increasing K improves performance, with K = 2

7
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Figure 2: Performance comparison across different budgets and methods on four benchmarks.

achieving the best mean score (96.66%). Beyond this point, larger K values (e.g., 2.5 or 3) slightly
degrade results, likely due to excessive reliance on text-guided pruning, which dilutes spatial redun-
dancy removal and reduces robustness on visually demanding tasks. Under the 64-token budget,
the best result is observed at K = 2.5 (93.12%), but the overall trend is consistent: moderate re-
dundancy retention in the first stage is critical, while both overly small (K = 1) and overly large
(K = 3) values lead to performance drops. These findings suggest that K = 2 offers a robust default
choice across different budgets, striking a favorable balance between efficiency and accuracy.

4.6 ABLATION STUDY

We conduct ablations on LLaVA-v1.5-7B across GQA, TextVQA, MME, and POPE to assess the
contribution of each module. Two variants are considered: ablation1, which removes Cross-Modal
Guided Token Pruning, and ablation2, which removes Pruning of Low-Density Visual Tokens. As
shown in Table 6, both ablations consistently underperform the full model. Our method achieves
the highest relative scores across all token budgets, retaining 97.41% of baseline accuracy at 192
tokens and maintaining robustness under aggressive pruning (92.92% at 64 tokens). These results
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Table 5: Performance comparison of different K values on LLaVA-v1.5-7B under fixed token bud-
gets.

Budget K GQA TextVQA MME POPE (F1) Mean %
576 - 61.92 46.00 1864.84 85.85 100.00%

128

1 58.33 42.40 1719.43 83.47 93.95%
1.5 58.79 44.35 1764.12 85.33 96.34%
2 59.00 44.56 1780.38 85.02 96.66%

2.5 59.17 44.09 1762.54 84.88 96.20%
3 58.53 42.62 1772.28 84.37 95.12%

64

1.5 56.08 42.45 1697.62 81.16 92.10%
2 56.20 42.60 1734.67 81.79 92.92%

2.5 56.54 41.69 1755.58 82.75 93.12%
3 55.75 38.87 1742.08 83.02 91.16%

demonstrate that the two modules are complementary, and their integration is crucial for achieving
superior efficiency–accuracy trade-off.

Table 6: Ablation study on LLaVA-v1.5-7B. Removing either Cross-Modal Guided Token Pruning
or Pruning degrades performance, confirming that both modules are complementary.

Token Budget Method GQA TextVQA MME POPE (F1) Mean %
576 Vanilla 61.92 46.00 1864.84 85.85 100.00%

192
ablation1 59.35 44.63 1773.24 85.76 96.96%
ablation2 59.16 44.57 1774.68 85.11 96.68%

Ours 59.95 45.18 1772.17 85.47 97.41%

128
ablation1 57.70 43.89 1758.08 84.47 95.32%
ablation2 58.33 42.40 1719.43 83.47 93.95%

Ours 59.00 44.56 1780.38 85.02 96.66%

64 ablation1 55.18 41.83 1675.53 77.38 90.00%
Ours 56.20 42.60 1734.67 81.79 92.92%

5 CONCLUSION

We introduce a versatile plug-and-play framework for visual token pruning that can be directly
incorporated into existing vision–language models (VLMs) without additional training or struc-
tural modification. The framework adopts a two-stage procedure. First, representation-level token
merging guided by spatial information density removes redundant visual features. Second, during
language decoding, tokens with low cross-modal relevance are adaptively pruned, enabling compu-
tation to concentrate on the most informative regions. This design markedly reduces the visual to-
ken budget, thereby improving inference speed and memory efficiency while preserving strong task
performance. Extensive experiments on standard benchmarks verify that our method consistently
attains superior efficiency–accuracy trade-offs, underscoring its potential for practical deployment
of high-resolution VLMs in real-world scenarios.
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A RESULTS ON LLAVA-NEXT

SparseVLM feeds all visual tokens to the LLM without filtering based on their information distri-
bution. This design becomes less effective for LLaVA-NeXT, which supports high-resolution inputs
and thus generates a substantially larger number of visual tokens. As a result, SparseVLM struggles
to sustain performance under low-token budgets, and we omit its results in this setting. FastV also
faces difficulties with LLaVA-NeXT due to its reliance on token merging, which leads to degraded
performance under high-resolution conditions. As shown in Table 7 and 8, we report results under
token budgets of 640, 320, and 160. On both LLaVA-NeXT-7B and LLaVA-NeXT-13B, our method
consistently outperforms VisionZip across all budgets, highlighting its robustness and adaptability
to models with high-resolution visual encoders.

Table 7: Performance comparison between baselines and ours on LLaVA-NEXT-7B across budgets.

Budget Method Vizwiz SQA GQA TextVQA MME POPE (F1) Mean %
2880 Vanilla 60.70 70.25 64.26 64.80 1849.30 86.43 100.00%

640
FastV 58.86 56.37 57.51 55.80 1685.20 83.51 90.09%

VisionZip 60.80 67.67 61.35 61.31 1800.80 86.12 97.26%
Ours 59.84 68.57 62.38 61.51 1815.64 86.76 97.79%

320
FastV 55.41 55.68 49.56 37.29 1405.70 64.75 76.03%

VisionZip 59.80 67.63 59.06 58.33 1734.48 82.44 94.32%
Ours 60.01 67.87 60.78 59.16 1809.23 83.72 96.01%

160 VisionZip 60.02 68.02 55.41 52.45 1622.37 75.11 89.58%
Ours 59.34 67.77 58.17 55.49 1687.10 78.83 92.14%

Table 8: Performance comparison between baselines and ours on LLaVA-NEXT-13B across bud-
gets.

Budget Method Vizwiz SQA GQA TextVQA MME POPE (F1) Mean %
2880 Vanilla 63.27 73.57 65.38 67.04 1901.01 86.18 100.00%

640
FastV 59.96 68.27 61.85 60.90 1687.83 83.24 93.06%

VisionZip 60.57 71.89 63.04 63.88 1886.87 85.70 97.31%
Ours 61.12 72.29 63.94 63.42 1892.13 85.82 97.73%

320
FastV 56.74 66.48 55.11 44.56 1558.11 71.88 82.70%

VisionZip 58.82 70.55 60.84 59.57 1813.33 82.24 93.60%
Ours 59.67 71.44 62.08 60.68 1914.55 84.63 95.96%

160 VisionZip 56.63 69.66 57.86 53.99 1740.87 76.47 88.92%
Ours 58.50 71.19 60.30 56.61 1825.64 79.47 92.36%

B CLS ATTENTION SCORE DISTRIBUTION

Figure 3 and 4 illustrates an example image together with the attention score distribution of the
[CLS] token across different regions in each layer of LLaVA-v1.5 visual encoder (CLIP-ViT-L/14-
336). We observe that in the penultimate layer (layer 23), the [CLS] token’s attention becomes
highly concentrated on a small subset of tokens, whereas in the early layers the attention is more
broadly dispersed. This pattern is not an isolated case but a consistent trend across inputs.

To further validate this observation, we sampled multiple images from TextVQA and visualized the
[CLS] token attention distribution in the penultimate layer , as shown in Figure 4. Consistent with
the earlier example, the attention scores exhibit strong concentration on a limited number of tokens.
These results highlight the substantial redundancy present in visual tokens encoded by the VLM’s
visual backbone. More importantly, the pronounced concentration of [CLS] attention provides em-
pirical support for our proposed global–local consolidation strategy, which leverages these attention
patterns to merge redundant tokens into compact yet semantically informative representations.
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Figure 3: Attention score distribution of the [CLS] token across layers in the visual encoder of
LLaVA-v1.5 (CLIP-ViT-L/14-336). In the early layers, attention is broadly dispersed, whereas in
the later layers—particularly the penultimate one—it becomes highly concentrated on a small subset
of tokens.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models (LLMs) only to polish the writing, including grammar, clarity, and
readability. The research ideas, technical framework, theoretical analyses, experimental design, and
conclusions are entirely developed by the authors. The LLMs only improve the fluency and style of
the manuscript and do not influence the originality, novelty, or scientific content of the work.
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Figure 4: Visualization of the [CLS] token attention distribution in the penultimate layer across
multiple images from TextVQA. The attention consistently concentrates on a limited number of
visual tokens, revealing redundancy in the encoded representations.

15


	Introduction
	Related work
	Vision-Language Models
	Visual Token Pruning and Compression

	Method
	Overview
	Global–Local Consolidation of Sparse Visual Embeddings
	Adaptive Cross-Modal Visual Token Pruning

	Experiments
	Experimental Setup
	Main Results
	Efficiency
	Performance under Different Pruning Budgets
	Hyperparameter Analysis
	Ablation Study

	Conclusion
	Results on LLaVA-NeXT
	CLS Attention Score Distribution
	The Use of Large Language Models (LLMs)

