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Abstract

Document-level Event Argument Extraction001
(EAE) faces two challenges due to increased002
input length: 1) difficulty in distinguishing003
semantic boundaries between events, and 2)004
interference from redundant information. To005
address these issues, we propose two meth-006
ods. The first method introduces the Co and007
Structure Event Argument Extraction model008
(CsEAE) based on Small Language Models009
(SLMs). CsEAE includes a co-occurrences-010
aware module, which integrates information011
about all events present in the current input012
through context labeling and co-occurrences013
event prompts extraction. Additionally, CsEAE014
includes a structure-aware module that reduces015
interference from redundant information by es-016
tablishing structural relationships between the017
sentence containing the trigger and other sen-018
tences in the document. The second method019
introduces new prompts to transform the ex-020
traction task into a generative task suitable021
for Large Language Models (LLMs), address-022
ing gaps in EAE performance using LLMs023
under Supervised Fine-Tuning (SFT) condi-024
tions. We also fine-tuned multiple datasets to025
develop an LLM that performs better across026
most datasets. Finally, we applied insights027
from CsEAE to LLMs, achieving further per-028
formance improvements. This suggests that029
reliable insights validated on SLMs are also ap-030
plicable to LLMs. We tested our models on the031
Rams, WikiEvents, and MLEE datasets. The032
CsEAE model achieved improvements of 2.1%,033
2.3%, and 3.2% in the Arg-C F1 metric com-034
pared to the baseline, PAIE (Ma et al., 2022).035
For LLMs, we demonstrated that their perfor-036
mance on document-level datasets is compara-037
ble to that of SLMs.038

1 Introduction039

Event Argument Extraction (EAE) aims to extract040

structured event information composed of argu-041

ments corresponding to event roles from text (Peng042

 

[3] Police say there are an unspecified number of casualties including police 
officers in a " terrorist incident " close to the British parliament in London .

[4] Eyewitnesses say a car crashed into pedestrians on nearby Westminster

 bridge before an assailant stabbed a policeman and was shot by police 

outside the parliament building . Two people were killed , according to Sky 

News , including a police officer .

[5] March 18 , 2017 - A man attempts to snatch gun from female soldier on 
patrol at Orly airport south of Paris ; man , who interior ministry spokesman 
says had earlier fired a potshot at police during an identity check before 
fleeing , is shot dead in the Orly incident by other members of soldier patrol 
unit .

...
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Figure 1: An EAE instance from the WikiEvents dataset.

et al., 2024). As shown in Figure 1, given a trigger 043

and event type, along with a predefined list of roles 044

for the event type, the model needs to extract the 045

corresponding token spans as arguments for each 046

role. This structured information can enhance the 047

performance of downstream tasks such as dialogue 048

systems (Zhang et al., 2020) and recommendation 049

systems (Han et al., 2025). 050

As the length of document-level input texts in- 051

creases, document-level EAE faces two critical 052

challenges: (1) difficulty in distinguishing seman- 053

tic boundaries between events (He et al., 2023). As 054

shown in Figure 1, the four trigger words crashed, 055

stabbed, shot, and killed, each trigger four events. 056

The argument distribution of these events is ex- 057

tremely dense, and different events can share the 058

same token span as arguments corresponding to 059

different roles. These dense and overlapping events 060

make the semantic boundaries between them blurry. 061

(2) The volume of information received by the 062

model increases significantly; however, this infor- 063

mation includes not only useful data for the ex- 064

traction task but also a large amount of redundant 065

information that interferes with the task (Xu et al., 066

2022). For example, in the sentence [5], the pres- 067

ence of person nouns such as man, female and 068

soldier can mislead the extraction of the Victim 069

role for the Life.Die.Unspecified event triggered by 070
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killed. However, previous work has not simulta-071

neously addressed both of these issues (Ma et al.,072

2022; Xu et al., 2022; He et al., 2023; Liu et al.,073

2024).074

To address these issues, we proposed two meth-075

ods, with the first being the co and structure EAE076

model (CsEAE) based on Small Language Models077

(SLMs). CsEAE enhances the boundaries of the078

model’s focus from both event and sentence per-079

spectives. From the event perspective, to help the080

model capture semantic boundaries between events,081

we introduced a co-occurrence-aware module. This082

module identifies all co-occurring events in the083

input by marking triggers and encoding related084

prompts. From the sentence perspective, while085

event mentions are document-level, event informa-086

tion is often within a single sentence. For instance,087

in the WikiEvents dataset, over 94% of arguments088

are in the same sentence as the trigger; in the Rams089

dataset, over 82%; and in the MLEE dataset, over090

99%. This highlights the importance of the infor-091

mation in the trigger sentence for the extraction092

task. To emphasize this, we structured the knowl-093

edge around the trigger sentence and its relation-094

ship with other sentences in the document. This095

approach helps the model selectively gather rele-096

vant information from other sentences, reducing097

distractions from redundant information.098

Additionally, we proposed a second method099

based on Large Language Models (LLMs). We de-100

signed prompts tailored to LLMs for each dataset101

and performed Supervised Fine-Tuning (SFT) on102

the LLMs. This approach addresses a gap in the103

EAE field, which previously lacked fine-tuned104

LLMs (Ma et al., 2023; Chen et al., 2024; Zhou105

et al., 2023). Inspired by the use of large-scale high-106

quality data for continuous pretraining (Yang et al.,107

2024), we attempted multi-dataset fine-tuning to108

make the LLMs more familiar with event extraction109

tasks. On this basis, we also conducted enhanced110

training on the LLMs using additional datasets.111

Finally, inspired by CsEAE, where co-112

occurrence- and structure-aware interactions113

enhance the model’s ability to capture event114

boundaries and reduce interference from redundant115

information, we applied these insights to LLMs.116

This led to further performance improvements117

and introduced a novel perspective: the reliable118

insights validated on SLMs are also applicable to119

LLMs.Our contributions are summarized below:120

• We propose the CsEAE model, which incor-121

porates a co-occurrences-aware module to capture122

semantic boundaries between events. Additionally, 123

it uses a structure-aware module to build structured 124

perception information, allowing the model to min- 125

imize interference from redundant information. 126

• We designed different prompts for various 127

datasets and further used SFT to enhance the per- 128

formance of LLMs. Additionally, we proposed 129

multiple datasets SFT and supplementary dataset 130

enhancement training, which led to even better per- 131

formance. 132

• We applied insights from SLMs to LLMs, re- 133

sulting in further performance improvements. This 134

shows that reliable insights validated on SLMs are 135

also effective for LLMs. 136

2 CsEAE Model 137

In this section, we will provide a detailed introduc- 138

tion to each component of CsEAE. 139

2.1 Basic Architecture 140

In the Figure 2, given the input D and the prompt 141

pen corresponding to the event type to be extracted, 142

we fed D into an encoder with a structure-aware 143

prefix, resulting in Henc
D . Then, Henc

D is passed 144

through a decoder with a co-occurrences-aware 145

prefix to obtain the contextual representation of 146

D, referred to as the event-oriented context rep- 147

resentation HD. This process can be formulated 148

as: 149
Henc

D = EncoderSap(D),

HD = DecoderCap(H
enc
D , Henc

D ).
(1) 150

Where Sap represents structure-aware prefix, 151

Cap represents co-occurrences-aware prefix. 152

To create the span selector θ, we need to interac- 153

tively encode each token representation of D with 154

pen at a deep level. Specifically, we will inputHenc
D 155

and pen together into the Decoder after concatenat- 156

ing with the structure-aware prefix, obtaining its 157

context-oriented prompt representation Hpt. We 158

formalize it as: 159

Hpt = DecoderSap(H
enc
D , pen). (2) 160

2.2 Co-occurrences-aware Module 161

Co-occurrences-aware module introduces event co- 162

occurrences-aware interaction through three as- 163

pects: context labeling, prompt extraction and co- 164

occurrences prefix. 165

2.2.1 Context Labeling 166

Given the input of the model D = {t1, t2, . . . , tn}, 167

where ti represents the i-th token in the input. 168
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Figure 2: Overview of CsEAE. The yellow attention represents the concatenation of co-occurrences-aware module,
while the blue attention represents the concatenation of structure-aware module.

Given E = {e0, e1, . . . , el}, where ei represents169

one event appearing in D, and l represents the num-170

ber of events appearing in D. Given all the triggers171

T = {et0, et1, . . . , etl}, where eti represents the trig-172

ger corresponding to event ei, and eti corresponds173

one-to-one with ei. We will annotate all token174

spans corresponding to triggers in D according175

to the order in which the triggers eti appear in D.176

Specifically, for the trigger etn corresponding to the177

event en being extracted, we will annotate its ap-178

pearance in D using special characters <t- -1>and179

</t- -1>.180

For triggers etj corresponding to other events181

existing in D, we will annotate them according182

to the order of appearance in D using <t-k>and183

</t-k>, where k is calculated starting from 0 and184

incremented by 1.185

2.2.2 Prompt Extraction186

Given Pe = {pe1 , pe2 , . . . , pel}, where pei repre-187

sents the prompt corresponding to event ei. Notice188

that pei , e
t
i and ei are uniquely paired. In this paper,189

we utilize prompts proposed in PAIE (Ma et al.,190

2022) for the Rams and WikiEvents datasets and191

those in TabEAE (He et al., 2023) for the MLEE192

dataset. To fully utilize the semantic information193

provided by the prompts, we first concatenate all194

prompts Pe corresponding to events mentioned in195

D. Then, we encode them into the SLMs to ob-196

tain dense vector representations WC for all co-197

occurring event prompts. Finally, the information198

of WC is integrated into the prefixes.199

2.2.3 Co-occurrences Prefix200

After constructing the co-occurrences-aware matrix201

WC for the current event mention D, we condense202

WC into prefixes (Li and Liang, 2021; Hsu et al., 203

2023b), which then participate in the model’s gen- 204

eration. As shown in the Figure 2. Firstly, we intro- 205

duce a learnable vector of length len, which serves 206

as the Q vector for multi-head attention, where len 207

is a tunable hyperparameter controlling the final 208

length of the prefixes to be fed into the SLMs, we 209

set it as 40. Then, WC is used as the K and V vec- 210

tors in multi-head attention computation, which is 211

computed with the Q vector. After multi-head at- 212

tention computation, we obtain a set of compressed 213

dense vector P , which then undergoes a series of 214

linear layers. Finally, P is evenly split into c seg- 215

ments P = {P1,P2, . . . ,Pc}, each with a length 216

of len, where c is the number of transformer layers 217

in the SLMs. This results in prefixes that can be 218

concatenated into the SLMs for computation. 219

2.3 Structure-aware Module 220

structure-aware module introduces structure-aware 221

interaction through two aspects: structural relation- 222

ship and structure prefix. 223

2.3.1 Structural Relationship 224

For different document inputs, as shown in Fig- 225

ure 2 (blue part on the right), we designed a 226

structure-aware self-attention mask Ms, which 227

treats sentences as units and trains the model to 228

be structure-aware across the entire document. 229

Specifically, given the document-level input D = 230

{S1, S2, . . . , Sm}, where Si represents the i-th sen- 231

tence in D, and given the trigger etn of the current 232

event to be extracted, located in sentence Sn, Ms 233

restricts the receptive field of all sentences except 234

Sn, allowing these sentences to focus only on them- 235

selves and Sn. In contrast, Sn can attend to all 236
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sentences.237

We can obtain the structure-aware dense vec-238

tor representation WS for the event mention D as239

follows:240

WS = Decoder(Encoder(D,Ms)). (3)241

2.3.2 Structure Prefix242

Finally, following the same approach as described243

in Section Co-occurrences-aware Prefix, the infor-244

mation from WS is integrated into the prefixes and245

participates in the model’s generation.246

2.4 Span Selection247

After obtaining Hpt, we extract the slot representa-248

tion ψk corresponding to the pre-defined roles from249

Hpt, where k represents the k-th slot. Then, we250

convert ψk into a span selector specific to that slot251

θk (Ma et al., 2022; Du and Cardie, 2020a). Next,252

apply the span selector θk directly to the event-253

oriented context representation HD to determine254

the argument’s token span [p
(start)
k ; p

(end)
k ].255

ψ
(start)
k = ψk ◦ w(start) ∈ Rh,

ψ
(end)
k = ψk ◦ w(end) ∈ Rh,

logit
(start)
k = ψ

(start)
k HD ∈ RL,

logit
(end)
k = ψ

(end)
k HD ∈ RL,

p
(start)
k = Softmax(logit(start)k ) ∈ RL,

p
(end)
k = Softmax(logit(end)k ) ∈ RL.

(4)256

Where θ = [w(start);w(end)] ∈ Rh×2 is a257

learnable parameter matrix shared by all span se-258

lectors, ◦ represents element-wise multiplication.259

θk = [ψ
(start)
k ;ψ

(end)
k ] is the span selector specific260

to the slot corresponding to the role, L demotes the261

context lengrth.262

We define the loss function L as follows:263

Lk(D) = −(log p
(start)
k (sk) + log p

(end)
k (ek)),

L =
∑
D∈B

∑
k

Lk(D).

(5)264

Where B ranges over all context in dataset and265

k ranges over all slots in prompt pen for D, and266

(sk, ek) represents the token span of the most likely267

argument corresponding to the role in HD.268

During the inference phase, we predefine spans269

C that cover all possible spans within a predefined270

length and include a special span (0, 0) to represent271

the absence of any corresponding argument. Then,272

we utilize the span selector θk to compute scores 273

for all spans using the following method: 274

scorek(i, j) = logit
(start)
k (i) + logit

(end)
k (j). (6) 275

Where i and j represent the start and end indices 276

of each span in the set of spans. 277

Based on the scores, we determine the predicted 278

final span by selecting the span with the highest 279

score: (ŝk, êk) = argmax(i,j)∈C scorek(i, j). 280

For the issue of multiple arguments of the same 281

role, we utilize the Hungarian algorithm (Kuhn, 282

1955; Ma et al., 2022). For the problem of allocat- 283

ing multiple slots corresponding to a single role, 284

we employ Bipartite Matching (Carion et al., 2020; 285

Yang et al., 2021; Ma et al., 2022). 286

3 Generalization in LLMs 287

In this section, we will provide a detailed expla- 288

nation of how to use LLMs for EAE and further 289

improvements. 290

You will perform event argument extraction tasks in the news domain. Please follow the steps 
below to identify the arguments corresponding to the given roles in the document marked by 
<doc>. If a role does not have a corresponding argument, strictly output None.  In step 4, I will 
provide you with an example marked by <eg>.

1 - The trigger word 'explosion' marked with <t> triggers a Conflict.Attack.DetonateExplode event 
and all trigger words that trigger other events are marked by <T>. Additionally, you need to pay 
close attention to the sentence marked by <s> in the document.
2 - The event 'Conflict.Attack.DetonateExplode' corresponds to the list of roles: Attacker, Target, 
Instrument, ExplosiveDevice, Place. 

3 - Please output the role names and their corresponding arguments in JSON format.
4 - I will give you an example as follows: 
<eg> Given a document: ... 
Denis Broliquier , the city ' s district mayor , told press that " the charge was too small to kill , " 
and a government source told AFP news agency it had been a " relatively weak explosive charge 
" ... 
You need to output: {"Attacker": "Jihadist", "ExplosiveDevice": "bomb", "Instrument": "gun", 

"Target": "people", "Place": "France"} <eg>.

Document: <doc> ...  a senior defense official said . <s> " We have information that 126 people have 
been <T> killed <T> in the <t> explosion <t> inside the military training center , eight special 
commandoes are among the dead , " said a senior official in the defense ministry in Kabul , 
speaking on condition of anonymity . <s> The official said the assault began on Monday morning 
when the attackers rammed a car full ... <doc>

Figure 3: Prompt for LLMs on WikiEvents. The blue
parts represent I, the yellow parts represent E , the
green parts represent Q and the red parts represent co-
occurrences- and structure-aware interactions.

3.1 Prompt Design 291

Given the input D, we designed a corresponding 292

prompt PL(D) for LLMs. As shown in the Figure 293

3, the prompt PL(D) is divided into three parts: 294

PL(D) = [I; E ;Q]. (7) 295

The first part is the instruction I, which de- 296

scribes the task and provides basic information 297

such as the trigger, roles, and output format. The 298

second part is the example E , which provides a sin- 299

gle example (one-shot) to the LLMs. We identified 300

corresponding examples for each event type from 301

the training set and the example should include as 302

many arguments as possible from the input. The 303
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third part is the question Q. We use <doc>for input304

to separate the Q from other components in the305

prompt.306

3.2 Supervised Fine-Tuning307

SFT is the critical stage that endows the model308

with high-quality extraction capabilities. Through309

training data, the model can effectively leverage the310

latent knowledge accumulated during pre-training311

to understand and respond to extraction instructions312

(Yang et al., 2024).313

A high-quality pre-training corpus can signifi-314

cantly enhance the performance of LLMs, even315

to the extent of breaking through scaling laws316

(Gunasekar et al., 2023). Inspired by this, and317

considering the complexity of the EAE domain318

(Ma et al., 2023), we sequentially merged multi-319

ple datasets and fine-tuned the LLMs using the320

combined dataset. To further exploit the improve-321

ments from multiple dataset SFT and enhance the322

model’s sensitivity to extraction tasks, we incorpo-323

rated additional datasets into the multiple dataset324

SFT, conducting enhanced training on the LLMs.325

3.3 CsLLMs326

In CsEAE, we optimized the model using event327

co-occurrences- and structure-aware interactions328

of the document. This brings up an important ques-329

tion: does insights that has been validated to be330

effective for extraction in SLMs also work effec-331

tively in LLMs?332

We believe this is a crucial question, as it can333

bridge future developments on LLMs with the ex-334

tensive work previously done on SLMs. Therefore,335

we also incorporated event co-occurrences- and336

structure-aware interactions into the prompt. In337

the Figure 3, the changes are highlighted in red.338

Specifically, we introduced co-occurrences-aware339

interaction in the Q by marking the triggers and340

introduced structure-aware interaction by marking341

the sentence containing the trigger. Additionally,342

we guided the model in the I to pay attention to343

these marked pieces of information. We refer to the344

fine-tuned LLMs, which integrate the information345

mentioned above, as CsLLMs.346

4 Experiments347

4.1 Experimental Setup348

4.1.1 Datasets349

We used the three most commonly employed350

datasets for document-level event argument extrac-351

tion (EAE): Rams (Ebner et al., 2020), WikiEvents 352

(Li et al., 2021), and MLEE (Pyysalo et al., 2012). 353

We preprocessed the data following previous meth- 354

ods (Trieu et al., 2020; Ma et al., 2022; He et al., 355

2023). To further enhance model training, we also 356

incorporated sentence-level EAE datasets, specifi- 357

cally ACE (Doddington et al., 2004) and GENEVA 358

(Parekh et al., 2023), applying preprocessing tech- 359

niques from prior research (Hsu et al., 2022, 2023b; 360

Parekh et al., 2023). Additionally, to more compre- 361

hensively validate the effectiveness of CsEAE, we 362

applied the data processing methods used in Tex- 363

tEE (Huang et al., 2024) to WikiEvents and Rams. 364

These methods included standardization of data as- 365

sumptions, normalization of data processing steps, 366

and standardization of dataset splits (5 times). We 367

leave the dataset details in Appendix B. 368

4.1.2 Implementation Details 369

Please refer to Appendix C for details. 370

4.1.3 Evaluation Metrics 371

Fllowed by previous works (Ma et al., 2022; He 372

et al., 2023), We used the Arg-I F1 and Arg-C F1 373

metrics to evaluate the model’s performance on 374

the argument identification and argument classifi- 375

cation. It should be noted that all experiments in 376

this paper, Arg-I and Arg-C is equivalent to Arg-I+ 377

and Arg-C+ as defined in TextEE. More details in 378

Appendix D 379

4.1.4 Baselines 380

For SLMs, we categorized the baseline models 381

into two groups: (1) Classification-based mod- 382

els: EEQA (Du and Cardie, 2020b), TSAR (Xu 383

et al., 2022), TagPrime-C and TagPrime-CR (Hsu 384

et al., 2023a); and (2) Generation-based models: 385

Bart-Gen (Li et al., 2021), PAIE (Ma et al., 2022), 386

TabEAE (He et al., 2023), DEEIA (Liu et al., 2024). 387

For LLMs, we categorized the baseline models into 388

two groups too: (1) Open-AI: Chat-GPT 1, GPT- 389

4o, GPT-4o-mini; and (2) Open-source: Llama3- 390

8B (Touvron et al., 2023), Llama3-8B-Instruct 2. 391

More details are provided in the Appendix E. 392

4.2 Main Results 393

4.2.1 CsEAE 394

We evaluate the proposed model CsEAE and base- 395

line methods under all benchmarks. In the Table 1, 396

1The versions of model we use are: gpt-3.5-turbo-0125
2https://huggingface.co/meta-llama
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Model
Rams WikiEvents MLEE

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
EEQA∗ 51.9 47.5 60.4 57.2 70.3 68.7
TSAR∗ 57.0 52.1 71.1 65.8 72.6 71.5
BART-Gen∗ 51.2 47.1 66.8 62.4 71.0 69.8
DEEIA 55.9 51.3 69.7 64.5 73.5 72.5
TabEAE-m2s 56.2 51.4 69.7 64.9 - -
TabEAE-m2m 55.9 50.9 70.3 64.6 74.0 72.9
PAIE 55.3 51.0 68.9 64.2 71.3 70.1
CsEAE 57.5 53.1 70.9 66.5 74.3 73.3

Table 1: Overall performance of CsEAE and baselines. ∗ means the value from the TabEAE’s paper. All experiments
utilized a large-scale PLM. The highest scores are underlined.

Model
Rams WikiEvents

Arg-I Arg-C Arg-I Arg-C
TagPrime-C∗ 54.4 48.3 68.6 64.0
TagPrime-CR∗ 54.1 49.7 68.4 65.5
EEQA∗ 48.9 44.7 48.4 46.1
BART-Gen∗ 50.4 45.4 68.1 63.9
PAIE 56.4 51.9 68.5 64.5
CsEAE 56.8 52.3 69.3 65.7

Table 2: All experiments in the table above used the
data processing methods described in TextEE, and the
results are averaged over five data splits. * means the
value from the TextEE’s paper.

our model outperformed all baselines on the Rams397

and MLEE datasets.398

Compared to the baseline model PAIE (Ma et al.,399

2022), CsEAE achieves improvements on the Rams400

dataset, with increases of 2.2% and 2.1%, respec-401

tively. On the WikiEvents dataset, CsEAE shows402

improvements of 2.0% in Arg-I and 2.3% in Arg-C403

metrics. Similarly, on the MLEE dataset, CsEAE404

achieves improvements of 3.0% in Arg-I and 3.2%405

in Arg-C metrics. The consistent improvements406

of 2% or more across all datasets demonstrate the407

effectiveness of the structure- and co-occurrences-408

aware modules in document-level EAE tasks.409

We also utilized the data preprocessing method410

provided by TextEE. The final results, shown in the411

Table 2, represent the average performance across412

these five splits. Even under such stringent con-413

ditions, CsEAE consistently outperforms all base-414

lines, demonstrating its superior effectiveness. In415

the Appendix G, we provide a detailed performance416

breakdown of PAIE and CSEAE across five splits.417

4.2.2 CsLLMs 418

We present the performance of various models un- 419

der the ICL setting in the Appendix F. 420

As shown in the Table 3, after SFT, the extrac- 421

tion capabilities of the LLMs improved signifi- 422

cantly. Further improvements were observed when 423

the model was fine-tuned using multiple datasets, 424

demonstrating that the LLMs robust memory ca- 425

pacity can handle diverse datasets simultaneously 426

and learn common extraction-enhancing abilities 427

from them. Additionally, after incorporating two 428

extra sentence-level datasets for enhanced training, 429

the model achieved better performance. 430

Moreover, incorporating co-occurrences- and 431

structure-aware interactions into the prompts led to 432

additional performance gains compared to models 433

fine-tuned on single datasets without such enhance- 434

ments. This indicates that beneficial extraction- 435

related insights identified in SLMs is also applica- 436

ble and effective in LLMs. 437

We attribute the lower performance of CsLLMs 438

(ALL) on Rams compared to CsEAE to the in- 439

complete integration of structure-aware elements 440

in the prompt. While structure-aware interaction 441

has been proven to be the most effective module for 442

improving Rams performance in CsEAE (analysis 443

on ablation studies), but we are unable to fully con- 444

strain the model’s focus through the prompt alone. 445

In the Appendix I, we present more detailed exper- 446

iments, including generalization experiments for 447

LLMs and analysis experiments on the LLMs. 448

5 Analysis 449

5.1 Ablation Studies 450

The Table 4 show that even a single type of interac- 451

tion can enhance the model’s performance across 452

all datasets, with each interaction type providing 453

6



Model
WikiEvents Rams MLEE

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
Supervised Fine-tuning
Llama3 65.82 60.68 37.00 33.26 72.63 71.09
Llama3-Instruct 65.88 60.54 55.06 49.82 70.85 69.76
CsLLMs 66.33 62.80 55.35 50.25 74.80 73.87
Multiple Datasets Supervised Fine-tuning
Doc 66.73 62.99 55.76 50.74 73.35 71.96
CsLLMs (Doc) 69.92 65.66 56.14 50.99 75.34 74.10
Multiple Datasets Supervised Fine-tuning using additional datasets
News 69.12 63.70 56.12 51.32 - -
News+MLEE 68.92 65.12 54.96 50.82 70.83 69.58
News+GENEVA 57.85 54.54 44.12 41.04 - -
ALL 68.27 63.96 56.83 51.62 72.04 70.87
CsLLMs (ALL) 70.89 66.53 57.19 51.84 75.93 74.89

Table 3: Overall performance of LLMs. Doc represents training using the WikiEvents, Rams, and MLEE (since they
are all document-level datasets); News represents training using the ACE, Rams, and WikiEvents (since they are all
datasets from the news domain). ALL signifies that all five datasets were used for training. During the multiple
dataset SFT, we used Llama3-Instruct as the LLMs.

Model
Rams WikiEvents MLEE

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
w/o str&occur 55.3 51.0 68.9 64.2 71.3 70.1
add str 55.8 52.0 70.5 64.8 72.0 70.9
add occur 55.9 51.6 70.5 65.9 73.9 72.9
CsEAE 57.5 53.1 70.9 66.5 74.3 73.3

Table 4: Ablation study on all benchmarks, str: structure-aware interaction, occur: co-occurrences-aware interaction.

Model

WikiEvents MLEE
N_O (296) Overlap (69) N_O (734) Overlap (1460)

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
TabEAE 70.7 65.4 66.1 63.0 78.0 77.0 68.9 67.6
PAIE 68.8 63.9 68.9 65.0 76.8 75.7 64.8 63.4
CsEAE 71.0 66.0 70.6 68.4 78.7 77.8 69.0 67.9

Table 5: The performance in extracting the arguments of overlapping events. The numbers in parentheses represent
the quantity of the corresponding data type within the dataset.

varying levels of improvement. The structure-454

aware module significantly improves performance455

on the Rams dataset, increasing the Arg-C met-456

ric by 1%. Conversely, the co-occurrence-aware457

module significantly boosts performance on the458

WikiEvents and MLEE datasets, increasing the459

Arg-C metric by 1.7% and 2.8%, respectively. We460

analyzed that the significant improvement in Rams461

by structure-aware module is due to its stable sen-462

tence structure, where each document consists of463

five sentences, allowing the model to learn more464

consistent structural information. The notable465

improvement of the co-occurrences-aware mod- 466

ule on the WikiEvents and MLEE datasets is at- 467

tributed to the higher number of events in instances, 468

where the auxiliary information provided by the co- 469

occurrences-aware module leads to a greater perfor- 470

mance boost in complex event scenarios. CsEAE 471

not only retains the benefits of individual interac- 472

tion features but also integrates multiple types of 473

interaction without causing interference. 474

5.2 Capturing the Event Semantic Boundary 475

Following TabEAE, we analyzed CsEAE’s abil- 476

ity to capture event semantic boundaries on the 477

7



WikiEvents and MLEE datasets from two perspec-478

tives: inter-event and intra-event semantics. We479

also analyze the performance of the models when480

handling multiple event inputs in the Appendix H.481

5.2.1 Inter-event semantics482

We divided the both datasets based on the over-483

lap, where overlap indicates instances where differ-484

ent events use the same token span as arguments,485

and N_O denotes instances without event overlap.486

As observed from the Table 5, CsEAE achieved487

overall improvements across all metrics on both488

datasets and performed particularly well in han-489

dling instances with overlap.490

5.2.2 Inner-event semantics491

We divided the roles in the both datasets based on492

their distance from the trigger. Specifically, we493

defined the argument distance as the value obtained494

by subtracting the index of the argument’s head495

word from the index of its corresponding trigger’s496

head word. Since the model predicts all arguments497

corresponding to a role at once, we defined the498

distance between a role and the trigger, D, as the499

maximum argument distance among all arguments500

for that role. As shown in the Figure 4, where nega-501

tive values indicate the argument is to the left of the502

trigger and positive values indicate the argument is503

to the right. The results show that CsEAE achieved504

the best performance across multiple ranges on505

both datasets and demonstrated a trend where the506

improvement increased with greater distances.507

Figure 4: Performance of different models in extracting
arguments at different distances from the triggers.

5.3 Structure-aware Interaction508

To analyze the effectiveness of the model in per-509

forming extraction centered around the sentence510

containing the trigger word, we conducted an anal-511

ysis on Rams, which has the highest number of512

cross-sentence arguments. We defined the distance513

D between a role and the trigger as the maximum ar-514

gument distance among all arguments for that role.515

When the trigger and the maximum argument are in516

the same sentence, D=0; when they are not, D̸=0.517

In the Table 6, CsEAE achieved a 3.23% improve- 518

ment in the Arg-C metric compared to PAIE when 519

D=0. This improvement significantly contributed 520

to CsEAE’s overall lead over PAIE in all datasets. 521

The substantial improvement at D=0 also demon- 522

strates that the model’s approach of centering the 523

document structure around the trigger’s sentence 524

effectively helps focus attention on the core con- 525

tent of the sentence, reducing the distraction from 526

redundant information. 527

Model
Rams (Arg-C F1)

D=0 D̸=0 Overall
PAIE 58.7 35.3 51.0
TabEAE 61.2 31.8 51.4
CsEAE 61.9 35.5 53.1

Table 6: Performance on cross-sentence arguments.

5.4 Case Study 528

CsEAE:
Giver - Ukrainian businessman
Beneficiary - Yanukovych 's pro - Russia political party

Recipient - Yanukovych 's pro - Russia political party

   This is not the first time Manafort has been accused of trying to take 
advantage of Ukraine 's corrupt political environment for financial gain . 
Manafort also attempted to set up an offshore real - estate partnership 
with Dmitry Firtash , a notorious Ukrainian businessman who donated 
to Yanukovych 's pro - Russia political party , according to documents 
uncovered in 2014 ...
PAIE:

Place – Ukraine Giver - Dmitry Firtash , a notorious Ukrainian businessman
Beneficiary - Yanukovych 's pro - Russia political party
Recipient - Yanukovych 's pro - Russia political party

beneficiaryrecipient

giver

Wrong prediction

... Colombia has asked Cuba to hand over the rebels affiliated with 
National Liberation Army ( ELN ) , who were in Havana for peace talks , 
after a deadly car bombing in Bogota was blamed on the group . 
Conservative President Ivan Duque urged Communist - ruled Cuba ... 

Event type: Conflict.Attack.DetonateExplode
PAIE: Attacker - group     ExplosiveDevice - car     Place - Bogota

CsEAE:     Attacker - National Liberation Army     Place - Bogota

Event type: Contact.RequestCommand.Unspecified

PAIE: Communicator – Ivan Duque     Recipient - Cuba

CsEAE:     Communicator – Ivan Duque     Recipient - Cuba

Wrong prediction

Attacker

Place

Recipient
Communicator

Figure 5: Two test cases from Rams and WikiEvents.

In the first case in the Figure 5, PAIE incorrectly 529

predicts Ukraine from the previous sentence as 530

the argument for role Place, while CsEAE avoids 531

this interference. In the second example, PAIE 532

incorrectly identifies car as the argument for Ex- 533

plosiveDevice, whereas CsEAE, by incorporating 534

more event information, avoids this mistake. 535

6 Conclusion 536

We proposed CsEAE, enhancing event semantic 537

boundary detection via co-occurring events inter- 538

action and structural relationships to reduce redun- 539

dancy. Additionally, we fine-tuned LLMs on multi- 540

ple datasets, bridging EAE gaps. Lastly, we offer 541

a new perspective: reliable insights validated on 542

SLMs are also applicable to LLMs. 543

8



7 Ethics544

We use a generative approach for argument extrac-545

tion, which may occasionally produce offensive546

content during the extraction process (though the547

probability is very low and did not occur in our548

experiments). Therefore, we recommend that users549

thoroughly review the generated content before550

practical application.551

8 Limitation552

For the generation of LLMs, we have only designed553

basic prompts, and there are many methods that can554

enhance the information contained in the prompts555

to improve model performance, such as example556

selection, among others.557

Furthermore, the powerful memory of LLMs558

may allow us to move beyond focusing solely on559

EAE as a task and explore the potential for LLMs560

to handle most tasks in the information extraction561

domain.562
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A Related Works812

A.1 Document-level Event Argument813

Extraction814

With the capability to extract events across multi-815

ple sentences, document-level EAE has garnered816

significant research interest. Some studies incor-817

porate abstract meaning representation into the ex-818

traction task (Xu et al., 2022; Yang et al., 2023;819

Hsu et al., 2023b). BART-Gen (Li et al., 2021) uti-820

lizes a prompt-based generative approach to gener-821

ate event arguments end-to-end, and subsequently,822

PAIE (Ma et al., 2022) introduces more effective 823

manually crafted prompts, using slot prompts to 824

extract arguments by filling slots. TabEAE (He 825

et al., 2023) defines EAE as a table-filling prob- 826

lem, enabling the extraction of all events present 827

in the input simultaneously. However, the afore- 828

mentioned models did not simultaneously address 829

capturing the semantic boundaries between events 830

and As shown in the Figure 2, CsEAE explicitly 831

addresses both of the issues by incorporating co- 832

occurrences- and structure-aware modules. 833

A.2 Large Language Models for Event 834

Argument Extraction 835

The success of LLMs (Touvron et al., 2023) has 836

been widely recognized, and in recent years, there 837

has been increasing research on the development 838

of LLMs in the field of event extraction. Such 839

as (Ma et al., 2023; Zhou et al., 2023; Ma et al., 840

2024; Chen et al., 2024) have explored the perfor- 841

mance of LLMs in event extraction tasks. However, 842

these studies typically rely on In-context Learning 843

(ICL). While this approach significantly conserves 844

computational resources, it often results in less sat- 845

isfactory outcomes compared to SLMs. In this 846

paper, we move beyond the limitations of ICL and 847

employ SFT, enabling LLMs to learn how to per- 848

form event extraction more effectively. We also 849

found that multiple dataset SFT can improve the 850

extraction capabilities of LLMs. Building on this, 851

we introduced supplementary dataset enhancement 852

training. Finally, we incorporated the insights de- 853

rived from CsEAE into LLMs, achieving further 854

improvements. 855

B Datasets 856

We used three of the most commonly used 857

datasets for document-level Event Argument Ex- 858

traction (EAE), namely Rams (Ebner et al., 2020), 859

WikiEvents (Li et al., 2021), and MLEE (Pyysalo 860

et al., 2012). All three datasets are in English, and 861

we followed previous methods to preprocess the 862

data (Ma et al., 2022; Li et al., 2021; He et al., 863

2023; Pyysalo et al., 2012; Xu et al., 2022; Yang 864

et al., 2023). 865

B.1 Rams 866

This dataset contains 9124 annotated events from 867

English online news articles, defining 39 event 868

types and 65 roles. Each document data consists of 869

five sentences and is commonly used in research in 870
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the field of document-level EE/EAE. Since the orig-871

inal dataset is stored on an event-by-event basis, to872

accommodate the co-occurrence-aware, we merged873

all events appearing in the same document. Unlike874

previous preprocessing methods, to facilitate the875

structure-aware, we retained the ’sents’ field, which876

records the sentence-level segmentation of the cur-877

rent document.878

B.2 WikiEvents879

It consists of events recorded in English Wikipedia880

along with news articles mentioning these events.881

It provides 246 document-level data, containing882

50 event types and 59 predefined roles. It is com-883

monly used in research on document-level event884

extraction. The number of sentences composing885

each document data varies.886

B.3 MLEE887

This dataset consists of abstracts from biomedical888

publications, defining 23 event types. Since the889

original dataset does not have a separate validation890

set, we followed previous work and used the train-891

ing set as the validation set to prevent data leakage892

(He et al., 2023). The final results were evaluated893

on the test set. All performance metrics of the mod-894

els on the MLEE dataset in this paper are based on895

their performance on the test set (He et al., 2023).896

Detailed statistics of the above datasets are listed897

in Table 7.898

Dataset Rams WikiEvents MLEE
Event types 139 50 23
Args per event 2.33 1.40 1.29
Events per text 1.25 1.78 3.32
Events
Train 7329 3241 4442
Dev 924 345 -
Test 871 365 2200

Table 7: The table above shows the basic information
for the all datasets, where Args stands for Arguments.

We classified the data from the three document-899

level datasets based on the number of events oc-900

curring, as shown in the Figure 6. There are sig-901

nificantly more instances with multiple events in902

MLEE compared to WikiEvents and Rams.903

Additionally, We used two sentence-level904

datasets for enhanced training: ACE(Doddington905

et al., 2004) and GENEVA (Parekh et al., 2023).906

ACE was chosen due to its extensive use in907

sentence-level event extraction, EAE, and event 908

detection tasks, as well as its relevance to the news 909

domain, which aligns with Rams and WikiEvents. 910

GENEVA was selected because of its broad range 911

of covered domains. 912

B.4 ACE 913

It is a widely used dataset in the field of informa- 914

tion extraction, consisting of newswire, broadcast 915

news and telephone conversations. The dataset 916

includes three languages: Arabic, Chinese and En- 917

glish. We used the English part of the dataset. We 918

preprocessed the data using the same data process- 919

ing method as previous works (Wadden et al., 2019; 920

Ma et al., 2022; Hsu et al., 2023b). 921

B.5 GENAVA 922

This dataset is a widely used dataset in the EAE 923

field, consisting of English data from genaral fields. 924

We preprocessed the data using the same data pro- 925

cessing method as in previous work (Parekh et al., 926

2023; Ma et al., 2022; Hsu et al., 2023b). 927

C Implementation Details 928

We used PyTorch and a single NVIDIA A40 Tensor 929

Core GPU with 45GB to train all models and repro- 930

duce experiments of other models. We used BART 931

(Lewis et al., 2020) as the backbone for CsEAE. 932

During model training the learning rate was set to 933

2e-5. We used the methods provided by LLama- 934

Factory 3 for model’s SFT, employing LoRA-based 935

(Hu et al., 2021) fine-tuning with a rank r of 8 and 936

a dropout rate of 0.1. The batch size was set to 4, 937

and training was conducted for 3 epochs. 938

D Evaluation Metrics 939

Following the same evaluation metrics as in prior 940

works (Li et al., 2021; Hsu et al., 2022; Ma et al., 941

2022; Yang et al., 2023; He et al., 2023; Xu et al., 942

2022) for all datasets, we used the Arg-I F1 score 943

and Arg-C F1 score to evaluate the model’s perfor- 944

mance on Argument Identification and Argument 945

Classification tasks, respectively. 946

We considered TP as true positives, FN as false 947

negatives, and FP as false positives. Recall (R) can 948

be calculated using TP / (TP + FP), and precision 949

(P) can be calculated using TP / (TP + FN). The F1 950

score combines both recall and precision, defined 951

as F1 = 2 * P * R / (P + R). 952

3https://github.com/hiyouga/LLaMA-Factory
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Model
WikiEvents Rams MLEE

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
In-Context Learning (ICL)
GPT-3.5 18.12 16.04 34.30 27.64 21.16 15.46
GPT4o-mini 20.42 17.99 35.47 30.04 25,85 22.34
GPT4o 25.58 23.37 41.58 35.70 28.04 24.92
Llama3 10.34 9.50 23.05 18.79 0.07 0.07
Llama3-Instruct 0.00 0.00 0.00 0.00 0.00 0.00

Table 8: The performance of various models under the ICL settings.

Model
WikiEvents

split1 split2 split3 split4 split5
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

PAIE 56.78 51.95 55.07 50.48 57.32 52.62 56.92 52.13 56.14 52.48
CsEAE 56.33 52.01 55.85 51.68 58.80 53.18 56.50 52.02 56.52 52.64

Model
Rams

split1 split2 split3 split4 split5
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

PAIE 71.47 67.37 70.31 64.94 64.46 61.14 65.87 62.76 70.61 66.72
CsEAE 71.38 67.98 69.09 64.31 67.10 63.28 67.99 65.41 70.94 67.45

Table 9: The performance of CsEAE and PAIE across all five splits on TextEE benchmark.

• Arg-I: an argument is correctly identified from953

event mention.954

• Arg-C: an argument is correctly classified if its955

offset and the role’s label both match the ground956

truth.957

Since the Arg-C score reflects whether the model958

extracts the correct arguments and associates them959

with the appropriate roles to generate the correct960

structured events, the EAE task places more em-961

phasis on the Arg-C F1 score.962

E Baselines963

We compared CsEAE with a series of strong base-964

lines, which are categorized into classification-965

based models and generation-based models.966

The classification-based models include:967

• EEQA (Du and Cardie, 2020b): the model re-968

defines the EE task as a question-answering task,969

extracting event parameters in an end-to-end man-970

ner.971

• TSAR (Xu et al., 2022): the model utilizes972

the Two-Stream Abstract meaning Representation973

enhanced span-based event argument extraction974

model.975

• TagPrime (Hsu et al., 2023a): the model is a se-976

quence labeling model that enhances its suitability977

for extracting relational information under specific978

conditions by appending prompt words containing 979

information about given conditions to the input 980

text. 981

Generation-based models include: 982

• PAIE (Ma et al., 2022): the model utilizes 983

a span selector for decoding and extracting argu- 984

ments. 985

• TabEAE (He et al., 2023): the model ex- 986

tends the PAIE into a non-autoregressive gen- 987

eration framework. TabEAE(m2s) means the 988

use of a Multi-Single Training-inference Scheme, 989

TabEAE(m2m) means the use of a Multi-Multi 990

Training-inference Scheme. In all analysis experi- 991

ments, the TabEAE metric used on the WikiEvents 992

and Rams datasets was the m2s model, while the 993

metric used on the MLEE dataset was the m2m 994

model. 995

• DEEIA (Liu et al., 2024) 4: the model adopts 996

a multi-event prompt mechanism that can simulta- 997

neously extract arguments from all events within a 998

document. 999

4We used six seeds provided by the authors to train the
model. The reported results for RAMS and MLEE are the
average of the six models. However, due to the extremely
poor performance of the model on the WikiEvents dataset
when seed=22 (Arg-I=61.07, Arg-C=55.57), we excluded the
model corresponding to this seed when calculating DEEIA’s
performance on WikiEvents. Instead, we used the average of
the models corresponding to the remaining five seeds.

13



Model

MLEE
Arg-I Arg-C

Event=1 Event=2 Event=3 Event>=4 Event=1 Event=2 Event=3 Event>=4
175 312 342 1371 175 312 342 1371

PAIE 81.6 79.4 73.6 68.2 81.4 78.2 72.4 67.0
TabEAE 81.3 81.4 77.3 71.2 81.3 80.1 76.5 70.0
CsEAE 80.8 81.0 78.4 71.5 80.8 80.3 77.3 70.4

Table 10: The table above compares the performance of EAE models based on Small Language Models (SLMs) on
event mentions with different numbers of events in the MLEE datasets. "Event=1" indicates that there is only one
triggered event in the event mention, and the number below represents the quantity of such event mentions in the
corresponding dataset’s test set. "Event>=4" indicates that the event mention has four or more triggered events.

Model

MLEE
Arg-I Arg-C

Event=1 Event=2 Event=3 Event>=4 Event=1 Event=2 Event=3 Event>=4
175 312 342 1371 175 312 342 1371

Base 79.3 76.1 74.6 70.1 78.7 75.2 72.7 69.0
CsLLMs 81.4 78.6 78.3 73.0 81.4 77.1 77.2 72.0

Table 11: The table above compares the performance of EAE models based on LLMs on event mentions with
different numbers of events in the MLEE datasets. The Base model refers to Llama3-Instruct fine-tuned using all
five datasets, but it does not incorporate the co-occurrence-aware and structure-aware prompts.

F In-Context Learning with LLMs1000

As shown in the Table 8, in the ICL setting, the1001

Open-AI series models demonstrated superior per-1002

formance compared to the Open-resource models.1003

Notably, instruct-type models have shown rela-1004

tively poor performance during ICL. However, af-1005

ter fine-tuning, they outperformed base models on1006

some datasets.1007

G CsEAE and PAIE on TextEE1008

Benchmark1009

We tested our model using the TextEE Benchmark,1010

dividing the dataset into five subsets while allowing1011

for multi-word triggers, accounting for overlapping1012

argument spans, and retaining all instances without1013

filtering. As shown in the Table 9, the performance1014

of CsEAE and PAIE is compared across all five1015

splits of the dataset. CsEAE consistently outper-1016

forms PAIE in the Arg-C metric across most splits.1017

This demonstrates that the improvements achieved1018

by CsEAE are not coincidental but rather the result1019

of the genuine enhancements in extraction perfor-1020

mance brought by the incorporation of structure-1021

aware and co-occurrences-aware mechanisms.1022

H Analysis of CsEAE1023

In this section, we will conduct an additional exper-1024

iment on CsEAE to demonstrate that it can achieve1025

better performance than other models when faced 1026

with complex event types. 1027

H.1 Multiple Event Extraction 1028

We categorized the data from the three datasets 1029

based on the number of events occurring, as shown 1030

in the Figure 6. It is evident that there are sig- 1031

nificantly more instances with multiple events in 1032

MLEE compared to WikiEvents and Rams. To an- 1033

alyze the performance of CsEAE when facing an 1034

increase in the number of events in documents, we 1035

conducted experiments on the MLEE dataset. 1036

Figure 6: The figure above illustrates the distribution
of the number of events per instance across the three
datasets. The horizontal axis represents the number of
events, while the vertical axis represents the number of
instances.

The Table 10 show that compared to PAIE, 1037

CsEAE achieves improvements in handling in- 1038

stances with multiple events. Specifically, in cases 1039

where the number of events is greater than or equal 1040

to four (Event >= 4), CsEAE achieves improve- 1041
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Model

WikiEvents MLEE
N_O (296) Overlap (69) N_O (734) Overlap (1460)

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
Base 70.3 66.0 61.6 58.0 75.8 74.9 65.6 64.2
CsLLMs 73.5 68.2 68.1 66.4 80.6 79.6 70.4 69.2

Table 12: The performance of LLMs in extracting the arguments of overlapping events.

ments of 3.3% in Arg-I and 3.4% in Arg-C metrics1042

on the MLEE dataset. Furthermore, it also ex-1043

hibits slightly superior performance compared to1044

TabEAE in handling instances with multiple events.1045

This indicates the superiority of CsEAE in handling1046

instances with multiple events.1047

I Analysis of CsLLMs1048

In this section, we will conduct a comprehensive1049

analysis of CsLLMs.1050

I.1 Multiple event Extraction1051

Similar to CsEAE, as shown in the Table 11, we1052

evaluated the performance of CsLLMs in handling1053

multi-event instances on the MLEE dataset. As1054

shown in the table, the model achieved signifi-1055

cant improvements in all cases after adding co-1056

occurrences-aware information.1057

I.2 Capturing the Event Semantic Boundary1058

Similar to CsEAE, we evaluated the model’s ability1059

to capture the event semantic boundaries on the1060

WikiEvents and MLEE datasets from two aspects:1061

Inter-event semantics and Inner-event semantics.1062

Inter-event semantics. As shown in the Table1063

12, in the Overlap scenarios on the MLEE dataset,1064

CsLLMs outperformed the base model by 5.1%1065

and 6.6% in Arg-I and Arg-C metrics, respectively.1066

This indicates a significant improvement in the1067

model’s ability to capture Inter-event semantics.1068

Inner-event semantics. As shown in the Figure1069

7, the comprehensive improvement of the model1070

across multiple different d indicates an enhanced1071

ability to capture inner-event semantics.1072

Figure 7: The performance of different LLMs in extract-
ing arguments at different distances from the triggers.

I.3 Structure-aware Interaction for Document 1073

As shown in the Table 13, the improvement of 1074

CsLLMs compared to the base model demonstrates 1075

the effectiveness of introducing structure-aware. 1076

Model
Rams (Arg-C)

D=0 D̸=0 All
Base 61.8 26.7 51.6
CsLLMs 61.7 27.7 51.8

Table 13: "All" refers to all the data in the test set.

GENEVA
Model Arg-I Arg-C
In-Context Learning (ICL)
GPT-3.5 33.07 27.97
GPT4o-mini 35.17 31.06
GPT4o 42.98 39.55
Llama3 4.70 3.61
Llama3-Instruct 0.35 0.29
Supervised Fine-tuning
Llama3 28.98 27.88
Llama3-Instruct 66.07 62.42
News+GENEVA 64.22 61.06
ALL 63.91 61.03
CsLLMs (ALL) 67.99 64.71

Table 14: Overall performance of LLMs on GENEVA.

I.4 Generalization of LLMs 1077

To analyze the generalization challenges of LLMs 1078

in broader domains and their applicability in real- 1079

world scenarios, we conducted extensive experi- 1080

ments on the GENEVA dataset, which includes 115 1081

event types and 220 distinct roles across general- 1082

domain, sentence-level data. The experimental re- 1083

sults are presented in the table 14. Surprisingly, 1084

unlike in domain-specific document-level datasets, 1085

multiple datasets SFT does not enhance model per- 1086

formance on GENEVA. However, incorporating 1087

co-occurrences- and structure-aware interactions 1088

into the prompt improves the model’s performance 1089
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on document-level datasets, allowing for better ex-1090

traction on GENEVA. This indicates that the model1091

learns to capture co-occurrences- and structure-1092

aware information from the three document-level1093

datasets, such that, even though sentence-level1094

datasets cannot directly embed structure-aware in-1095

formation in prompt construction, the model can1096

leverage what it learned from document-level data1097

to assist in extraction. Additionally, it becomes1098

evident that LLMs do not perform well on general-1099

domain datasets like GENEVA. Its best perfor-1100

mance, an Arg-C score of 64.71, falls short com-1101

pared to best results of SLMs (Huang et al., 2024).1102

We attribute this to the fact that many event types1103

in GENEVA are quite similar, and fine-tuning an1104

8B-parameter model using prompt + LoRA strug-1105

gles to discern numerous labels and their subtle1106

interactions during extraction (Ma et al., 2023).1107
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