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Abstract

Though online medical literature has made001
health information more available than ever, the002
barrier of complex medical jargon prevents the003
general public from understanding it. Though004
parallel and comparable corpora for Biomedi-005
cal Text Simplification have been introduced,006
these conflate the many syntactic and lexical007
operations involved in simplification. To en-008
able more targeted development and evalua-009
tion, we present a fine-grained lexical simplifi-010
cation task and dataset, Jargon Explanations for011
Biomedical Simplification (JEBS). The JEBS012
task involves identifying complex terms, clas-013
sifying how to replace them, and generating014
replacement text. The JEBS dataset contains015
21,595 replacements for 10,314 terms across016
400 biomedical abstracts and their manually017
simplified versions. Additionally, we provide018
baseline results for a variety of rule-based and019
transformer-based systems for the three sub-020
tasks. The JEBS task, data, and baseline results021
pave the way for development and rigorous022
evaluation of systems for replacing or explain-023
ing complex biomedical terms.024

1 Introduction025

Understanding medical concepts is critical when026

making informed healthcare decisions (Kindig027

et al., 2004). Patients that lack this understanding028

are at a disadvantage when making health-related029

choices, which can negatively affect health out-030

comes (King, 2010; Berkman et al., 2011). Web-031

sites such as PubMed (Wheeler et al., 2007) make032

the latest biomedical knowledge available to ev-033

eryone. However, because this information is not034

written for a general audience, attempting to read035

it without the relevant expertise may cause more036

harm than good (White and Horvitz, 2009).037

Manually curated resources, such as Medline-038

Plus (Miller et al., 2000) or UpToDate Patient Ed-039

ucation (Fox and Moawad, 2003), aim to rewrite040

biomedical knowledge for the public, thus provid- 041

ing a consumer-friendly alternative to resources 042

such as PubMed. However, these resources require 043

massive cost and effort to keep updated with the 044

latest research and are limited in the scope of their 045

topics. For example, UpToDate has more than ten 046

times as many articles written for healthcare practi- 047

tioners than it has in its Patient Education section. 048

Advances in artificial intelligence could help solve 049

this bottleneck by automatically ‘translating’ the 050

latest medical research into simpler language or by 051

providing real-time explanations as a reading aid. 052

Given the high stakes of the biomedical domain, 053

however, rigorous evaluation of such systems is 054

crucial. 055

Existing datasets proposed for training and 056

evaluating Biomedical Text Simplification sys- 057

tems take the form of parallel or comparable cor- 058

pora (Van den Bercken et al., 2019; Cao et al., 2020; 059

Devaraj et al., 2021; Guo et al., 2022; Attal et al., 060

2023). By not explicitly providing term replace- 061

ments, these datasets restrict the development to 062

end-to-end text simplification systems. The lack 063

of explicit term replacements also restricts auto- 064

matic evaluation to coarse n-gram or similarity- 065

based metrics, which conflate the many distinct 066

types of word- and sentence-level operations in- 067

volved in text simplification and can thus lead to 068

misleading results. (Alva-Manchego et al., 2021). 069

In this work, we take a step toward more tar- 070

geted training and evaluation of biomedical text 071

simplification by introducing a manually annotated, 072

fine-grained dataset of multiple lexical simplifica- 073

tion operations. We first break the task of lexical 074

simplification into three sub-tasks: (1) identifica- 075

tion of complex terms, (2) classification of how 076

best to replace the terms, and (3) generation of 077

replacements. Further, for the classification sub- 078

task, we review the literature on lexical simplifi- 079

cation to create a taxonomy of five term replace- 080

ment types: substitution, explanation, generaliza- 081
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Purpose: To find predictive markers for the visual 
potential in optical coherence tomography (OCT) 
one month after surgical repair of macula-

involving rhegmatogenous retinal detachment

(miRD) with and without internal limiting 
membrane (ILM) peeling.

Methods: This retrospective single-center, single-

surgeon cohort study included 74 patients who

underwent pars plana vitrectomy (PPV) for

primary miRD between January 2013 and August

2020 with follow-up examinations for at least 6
months.

Patients developing recurrent detachments, media

opacities, or with an axial length over 27 mm were

excluded from the analysis.

This study aimed to find out if vision can be 
predicted by diagnostic imaging one month after 
surgery to repair common retinal detachment (the 
damage to light-sensitive layer at the back of the 
eye (retina) when it is pulled away from its normal 
position). In some surgeries, the tissues next to 
retina were pulled to repair the detachment.

This study looked at past cases at a single health

care center, and that had surgery done by a single

surgeon.

Patients who had other retina detachments in the

past or media opacities (such as cataracts) were

not included in the study.

Source (PMID 35511781) Adaptation by Human Expert

Synonym Explanation

Substitution ExemplificationOmission

Generalization

Figure 1: Examples of the JEBS task. Expert terms identified in the source (left) are classified as substitutions,
explanations, generalizations, exemplifications, or omissions. For all types but omissions, the corresponding span in
the human expert adaptation is identified (right). Additionally, synonyms (left, red) are identified and linked to the
first mention of a term within a synonymous set.

tion, exemplification, and omission. We then manu-082

ally annotate expert terms and their replacements083

found in the PLABA parallel corpus (Attal et al.,084

2023), which contains PubMed abstracts paired085

with expert-written, sentence-by-sentence simpli-086

fications. This results in a high-quality dataset of087

10,314 in situ expert terms identified across 400088

original abstracts, and a total of 21,595 replace-089

ments for these terms found in simplified versions090

of these abstracts, each labeled with a replacement091

type. Examples of identified terms and replace-092

ments are shown in Figure 1.093

Finally, we demonstrate that the JEBS dataset094

can be used to train and evaluate a variety of rule-095

based and transformer-based systems to serve as096

baselines for future development. Transformer097

models explored included encoder-only models (in098

both fine-tuning and feature extraction settings),099

encoder-decoder models (in a fine-tuning setting),100

and instruction-tuned decoder-only models (in a101

one-shot, in-context learning setting). In summary,102

our contributions are as follows:103

• We define a new, fine-grained lexical simplifi-104

cation task for the biomedical domain.105

• We provide a manually annotated dataset of106

21,595 term replacements with labeled re-107

placement types.108

• We report performance of a variety of rule- 109

based and transformer-based baseline systems 110

for each subtask. 111

2 Background 112

Biomedical Simplification Corpora. Previous 113

datasets developed for biomedical text simplifica- 114

tion are mainly comparable (paragraph-level) cor- 115

pora (Phatak et al., 2022; Devaraj et al., 2021; Guo 116

et al., 2022) or parallel (sentence-level) corpora (At- 117

tal et al., 2023; Cao et al., 2020; Van den Bercken 118

et al., 2019). As specific edit operations are not 119

annotated in these datasets, they can only be used 120

to train and evaluate end-to-end sentence-level or 121

paragraph-level systems. While this approach has 122

its advantages, end-to-end neural systems have a 123

higher chance of losing important phrases or al- 124

tering the meaning of entire sentences during the 125

simplification process than term-focus lexical sim- 126

plification methods (Ondov et al., 2022). To max- 127

imize faithfulness to the original texts, we thus 128

focus on term-level text simplification, wherein in- 129

dividual expert terms are first identified in a text 130

before they are replaced or explained to make the 131

text more readable as a whole. Perhaps most simi- 132

lar to our work is the Med-EASi dataset (Basu et al., 133

2023), which similarly annotates deletions, elabora- 134
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tions, and replacements in two parallel biomedical135

corpora. JEBS improves on this in several ways.136

First, our dataset is much larger, totaling 21,595 re-137

placements, as opposed to 1,979. Second, our clas-138

sification subtask is finer-grained, distinguishing139

‘elaborations’ by whether they are explanations or140

exemplifications, and distinguishing ‘replacements’141

by whether they are substitutions or generaliza-142

tions. Third, our dataset comes from annotating143

a high-quality, manually written parallel corpus,144

as opposed to automatically extracted sentence or145

short passage pairs from larger comparable corpora.146

Finally, our term pairs are situated within the con-147

text of entire parallel documents, providing crucial148

context. This allows system development and eval-149

uation to consider crucial surrounding information,150

for example to disambiguate acronyms.151

Lexical Simplification Methods. Previous152

work in text simplification has explored various153

methods of term-level simplification. A common154

method involves the substitution of complex terms155

with simpler language (Basu et al., 2023; Zeng156

et al., 2005). We define two different types of sim-157

plification based off of this approach: substitution,158

where a close synonym is chosen as the replace-159

ment, and generalization, where a more general160

term is chosen instead.161

Another common form of simplification takes162

the form of explanations, where additional text is163

added to the original text to explain complex terms164

(Basu et al., 2023; Elhadad, 2006; Liu et al., 2021;165

Srikanth and Li, 2020). While some previous meth-166

ods generate explanations for terms in isolation, our167

dataset provides explanations specific to the con-168

text in which expert terms are appear in biomedical169

texts.170

One final form of simplification seen in the liter-171

ature is omission, where complex terms that are not172

fully relevant to a text are removed entirely (Basu173

et al., 2023; Dong et al., 2019). A drawback of174

previous methods is that their training data for the175

omission task included simplifications that used176

different forms of simplification, including adding177

words and replacing chunks of the original text. By178

constructing our dataset for simplification at the179

term level, we hope to isolate omission simplifica-180

tions for more focused training.181

Language Models. The simplest approaches182

to term-level simplification in the past involved183

rules-based systems that rely on plain language184

thesauri and knowledge bases such as the United185

Medical Language System (UMLS) (Bodenreider,186

2004) to substitute expert terms with lay language 187

(Kandula et al., 2010). While such systems demon- 188

strate promising results, they struggle to capture 189

the nuances of grammar, context, and ambiguity 190

that human simplification is able to achieve (Attal 191

et al., 2023). For that reason, most recent work 192

within this domain utilizes deep learning methods, 193

which have seen an explosion of development both 194

within and beyond the realm of text simplification 195

(Nisioi et al., 2017). In this paper, we evaluate the 196

performance of both rules-based models and neural 197

approaches on our newly-defined biomedical text 198

simplification task, with the intention of exploring 199

the full breadth of text simplification methods to 200

establish definitive benchmarks for our task. 201

3 Task Definition 202

3.1 Task Overview 203

The JEBS task is broken into three subtasks: 204

1. Identification. As the first stage in the term 205

simplification process, this sub-task involves 206

labeling terms in a given text as expert terms. 207

2. Simplification Classification. Following the 208

identification step of our simplification task, 209

terms are classified by which method should 210

be used to simplify it. 211

3. Simplification Generation. Once the simpli- 212

fication type is identified, appropriate text can 213

be generated to replace or clarify the term. 214

3.2 Simplification Types 215

Below, we explain each type of simplification. 216

3.2.1 Substitution 217

Models performing the substitution task generate 218

a simpler synonym for the term of interest, which 219

replaces the original term in the sentence where it 220

is used. The goal of substitution is to retain the 221

original meaning of the text without interrupting 222

the reading process. As such, the greatest challenge 223

for this method is finding a synonym that captures 224

the same meaning as the simplified term while also 225

being easier to understand. 226

3.2.2 Explanation 227

Explanation involves generating a definition for 228

the provided term, which is enclosed by parenthe- 229

ses and inserted into the original text immediately 230

following the explained term. With an accurate def- 231

inition inserted into the text, consumers can gain 232
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an accurate understanding of what they’re reading.233

However, these definitions may interrupt the flow234

of a sentence or introduce more complex jargon235

within the provided explanation.236

3.2.3 Generalization237

Similar to substitution, generalization entails re-238

placing a given expert term with a more general239

category that the term fits into. This method dif-240

fers from substitution by purposely attempting to241

subtract unimportant information from the original242

term to make the text as a whole more readable to243

lay consumers.244

While generalization is an ideal solution to sim-245

plifying overly specific terms, it may be fail to246

provide a faithful simplification when applied to247

expert terms that are already quite general or don’t248

fall into a well-defined category.249

3.2.4 Exemplification250

For exemplification, models generate a short list251

of examples of the provided expert term. These252

examples are then inserted into the original text253

after the term of interest in the same way as in254

the explanation method. Exemplification can be255

useful when examples can convey a concept better256

than a synonym (which may or may not exist) or257

an explanation (which may be long and/or com-258

plicated). However, for expert terms that are too259

specific and therefore lack useful examples, exem-260

plification may not be appropriate.261

3.2.5 Omission262

Models performing omission remove the term of263

interest from its sentence and attempt to restructure264

the resulting sentence to be grammatically correct.265

This method is most useful in cases when an expert266

term doesn’t add much necessary meaning to a sen-267

tence. However, it may cause passages to become268

confusing if too much information is removed or if269

terms are omitted in ways that leave the sentence270

grammatically incorrect.271

4 Dataset Creation272

The JEBS dataset is derived from 400 abstracts273

and their associated adaptations, as found in the274

PLABA dataset (Attal et al., 2023). Abstracts were275

aligned at the sentence level with their correspond-276

ing adaptations, then annotated by two authors us-277

ing the brat rapid annotation tool1 (Stenetorp et al.,278

2012), which involved selecting expert terms and279

1http://brat.nlplab.org

linking them with their respective simplifications, 280

as found in the PLABA adaptations. In total, the 281

JEBS dataset contains 10,314 expert terms (25.79 282

terms per abstract) and 21,595 simplifications. Ta- 283

ble 1 displays counts of each simplification type. 284

11.47% of all expert terms in the data appeared 285

alongside acronyms or other names. In the JEBS 286

dataset, expert terms are linked to the simplifica- 287

tions associated with their synonyms. Appendix A 288

describes how this linking was performed. 289

The annotations exhibit a moderate inter- 290

annotator agreement for both the identification task 291

(0.5203 F1) and the classification task (0.4577 F1). 292

Figure 2 shows an example of the brat interface 293

during annotation. 294

While performing annotations, the annotators 295

confirmed that there was no information naming 296

or uniquely identifying individual persons in the 297

PLABA dataset, nor was there any offensive con- 298

tent. The JEBS dataset therefore does not include 299

any such information. 300

5 Baseline Systems 301

Expert term identification, term classification, and 302

the five forms of simplification were divided into 303

separate sets of language models. All fine-tuned 304

transformer approaches used Hugging Face and 305

PyTorch for fine-tuning. Each of those models 306

underwent 3 epochs of fine-tuning. All fine-tuning 307

and evaluations of those models was performed on 308

a single NVIDIA A100 80GB GPU. 309

Prior to training our baseline models, the union 310

of both annotator’s annotations were preprocessed 311

into a JSON file, where each expert term in each ab- 312

stract was linked with its associated simplifications. 313

Each simplification takes the form of a tuple storing 314

both its type (substitution, explanation, generaliza- 315

tion, etc) and the contents of that simplification. 316

All data was split into train and evaluation sets ac- 317

cording to a 1:3 ratio. The split was performed 318

at the question-level. That is, data from abstracts 319

answering the same question within the PLABA 320

Simplification Type Count Proportion
Substitutions 13,966 0.6467
Explanations 4,161 0.1927
Omissions 1,963 0.0909

Generalizations 1,368 0.0633
Exemplifications 137 0.0063

Table 1: Count and Proportion of Simplification Types
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Figure 2: An example annotation of the PLABA dataset, as seen on brat. Line 20 is the original sentence from an
abstract; Lines 22 and 23 are from two PLABA simplifications. In each simplification, a replacement span has been
identified, in one case being labeled as a substitution, and in the other being labeled as an explanation.

dataset were kept together in either the train or eval-321

uation sets. Furthermore, neural models designed322

for the non-identification sub-tasks require the con-323

text in which terms were used to function. This324

data was obtained by splitting PLABA abstracts325

into individual sentences.326

In the following subsections, we summarize the327

baseline models for each sub-task, as well as the328

data preprocessing requirements for each model.329

5.1 Identification330

The rules-based identifier model uses MetaMapLite331

(Demner-Fushman et al., 2017), the Unified Med-332

ical Language System (UMLS) (Bodenreider,333

2004), and two term frequency datasets from334

Kaggle—one derived from the Google Web Trillion335

Word Corpus (Tatman, 2020) and the other derived336

from BookCorpus and a 2019 dump of Wikipedia337

(Cook, 2020)—to identify and filter expert terms.338

After the rules-based model, we fine-tuned a339

set of transformer-based identifier models using340

pretrained versions of BERT Large (340M parame-341

ters) (Devlin et al., 2018), BioBERT Large (340M342

parameters) (Lee et al., 2019), XLM RoBERTa343

Large (550M parameters) (Conneau et al., 2019),344

and DeBERTa Large (435M parameters) (He et al.,345

2021). For these models, we framed the sub-task as346

a named entity recognition (NER) problem (Bose347

et al., 2021). Abstracts were therefore preprocessed348

for the fine-tuned identifier models by labeling each349

sentence according to a Beginning-Inside-Outside350

labeling scheme. Because the goal of this sub-task351

was purely to identify expert terms, labeling was352

performed without consideration for the simplifica-353

tion types that could be assigned to each term.354

In addition, we evaluated Llama3 Instruct’s355

(8B parameters) (Dubey et al., 2024) performance 356

on this task, providing the following instruction 357

prompt to the LLM to perform the identification 358

task on a single sentence. After the instruction 359

prompt was provided, the sentence to operate on 360

was provided immediately afterwards. 361

Prompt: “Identify all non-consumer 362

biomedical terms in the user’s sentence 363

using a comma-separated list. Generate 364

no other text besides the list.” 365

Four different metrics were used to evaluate the 366

identification models. The first was the average F1 367

score, which was computed for a given model by 368

finding its F1 score against both annotator’s individ- 369

ual annotations, then averaging the results. Union 370

and intersection F1 scores were taken according to 371

the union and intersection of the two annotators’ 372

identified terms. Finally, models were evaluated 373

according to a Pyramid score (Nenkova and Pas- 374

sonneau, 2004), where points were given for each 375

expert term depending on how many annotators 376

identified it as an expert term, then normalized ac- 377

cording to the maximum score each model could 378

have attained. 379

Running the rules-based model on the JEBS test 380

data set for evaluation took 8 minutes and 34 sec- 381

onds to run on an Apple M1. Training the BERT- 382

based transformer models on the training data took 383

around 2 minutes and 58 seconds each. Running 384

those models for evaluation on the test data took 385

around 2 minutes and 26 seconds each. Finally, 386

Llama3 took 28 minutes and 57 seconds for the 387

identification task on the JEBS test data. 388
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5.2 Simplification Classification389

For the classification task, we divided our390

approaches into a frozen-weights transformer-391

based method and a fine-tuned transformer-based392

method.393

In the former, we preprocessed abstract sen-394

tences by indicating the expert terms within them395

using custom tokens <ext> and </ext>. Pre-396

processed sentences were embedded using BERT-397

Large and DeBERTa-Large before being used to398

train and evaluate two separate multi-label classi-399

fier models. These classifiers were build using Py-400

Torch neural networks. The BERT and DeBERTa401

multi-label classifier models took 20 seconds and402

24 seconds respectively to run for evaluation.403

For the second approach, we combined the iden-404

tification and classification sub-tasks by framing405

classification as a slightly more advanced NER406

problem. The data for this approach took the form407

of BIO-labeled sentences, where terms were la-408

beled with the simplification method assigned to409

them most often in the training data. Pretrained410

versions of BERT-Large and DeBERTa-Large were411

fine-tuned using the preprocessed data to distin-412

guish between non-expert terms and terms that413

should be simplified using one of each simplifica-414

tion method described in this paper. These model415

therefore performed both the identification and clas-416

sification sub-tasks at the same time. The BERT417

and DeBERTa NER models took 36 seconds and418

89 seconds respectively to run for evaluation.419

Outputs were evaluated according to two met-420

rics: average F1 score and union F1 score. These421

metrics were taken according the labels assigned to422

expert terms by both annotators separately, and the423

union of labels assigned to expert terms by both an-424

notators, respectively. Scores were macro-averaged425

across the five simplification methods to account426

for the class imbalance in our data.427

5.3 Simplification Generation428

We evaluated Llama3-8B Instruct’s performance429

on each simplification method. For all simplifica-430

tion methods, the input sequence took the form of a431

sentence with a single expert term highlighted via432

enclosing brackets. Sentences containing multiple433

expert terms are duplicated in our data with a dif-434

ferent expert term selected. With the exception of435

omission, Llama3 outputted sequences composed436

entirely of the generated simplification. In addition437

to the simplification instruction, we provided the438

LLM with an example simplification to leverage 439

in-context learning (Brown et al., 2020). Prompt- 440

ing is described with greater detail in Appendix B. 441

Running Llama3 on the JEBS test set took around 442

17 minutes for each simplification method. 443

Evaluations were performed by comparing 444

Llama3’s outputs to gold-standard adaptations 445

found in the PLABA dataset according to three 446

different metrics: ROUGE (Lin, 2004), BLEU (Pa- 447

pineni et al., 2002), and BERTScore (Zhang* et al., 448

2020). 449

5.3.1 Omission 450

In addition to Llama3, we fine-tuned two other 451

models for the omission task: a BART-based omis- 452

sion model (fine-tuned on the JEBS dataset) and 453

a T5-based (Raffel et al., 2020) grammar correc- 454

tion model (GCM; fine-tuned on the JHU FLuency- 455

Extended GUG (JFLEG) dataset (Napoles et al., 456

2017)). The former model was fine-tuned to re- 457

move expert terms from sentences and correct the 458

sentence’s grammar at the same time. The latter 459

model was fine-tuned specifically to correct gram- 460

mar, and was given sentences with their expert 461

terms removed as inputs. 462

6 Results 463

6.1 Identification 464

The transformer-based models outperformed the 465

rules-based model in the identification sub-task, 466

with the DeBERTa-based model achieving the high- 467

est score in all four metrics. Interestingly, despite 468

being pretrained on domain knowledge, BioBERT 469

fails to outperform the BERT-based identification 470

model. It seems that in the identification sub-task, 471

domain knowledge doesn’t enhance LLM perfor- 472

mance. 473

6.2 Simplification Classification 474

Among the frozen-weights transformer approaches, 475

the classifier trained on DeBERTa sentence embed- 476

dings performed better during evaluation, though 477

neither model was especially effective at classify- 478

ing expert terms. 479

The NER models outperformed the neural net- 480

works used for this task. However, their ability 481

to perform classification came at the cost of low- 482

ered overall term identification accuracy. Com- 483

pared to the identification models fine-tuned on the 484

same base models, the NER models fine-tuned for 485

this task under-performed when identifying expert 486
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Input Model Identified Terms

“Ring sutures induced cataract
more frequently than other
procedures.”

Gold Standard Ring sutures, cataract
Rule-based sutures, cataract

BERT-L Ring sutures, cataract
BioBERT-L Ring sutures, cataract

XLM RoBERTa-L Ring sutures, cataract
DeBERTa Ring, cataract
Llama3 sutures, cataract

Table 2: Example input sentence and terms identified by each identifier model.

Model Avg F1 ∪ F1 ∩ F1 Pyramid
Rule-based 0.2097 0.2487 0.1497 0.2916

BERT-L 0.3530 0.4260 0.2515 0.4891
BioBERT-L 0.3058 0.3898 0.2071 0.3938

XLM RoBERTa-L 0.3745 0.4596 0.2578 0.5147
DeBERTa-L 0.4317 0.5255 0.2976 0.6014

Llama3 0.3678 0.4085 0.3095 0.4692
BERT-Lcls 0.2785 0.3399 0.1955 0.3895

DeBERTa-Lcls 0.3448 0.4009 0.2628 0.4564

Table 3: Performance of each identifier model as well as the NER classification models.

Model Avg F1 ∪ F1
BERT Frozen 0.0337 0.0334

DeBERTa Frozen 0.1823 0.1856
BERT NER 0.3588 0.3413

DeBERTa NER 0.3300 0.3363

Table 4: Results on the simplification classification task.

Task ROUGE BLEU BERTScore
SUB 0.5730 0.3521 0.9249
EXP 0.5333 0.2857 0.9106
GEN 0.5333 0.3108 0.9146
EXE 0.5844 0.3419 0.9209

Table 5: Evaluation results of Llama3-8B Instruct on
each non-omission simplification method for the gener-
ation sub-task.

terms. The performance of the NER-based models487

can be found in Table 3.488

6.3 Simplification Generation489

6.3.1 Substitution490

For the substitution task, Llama3 consistently gen-491

erated helpful synonyms for expert terms in our492

dataset. That being said, it occasionally generated493

more text than was necessary (over 5 words), usu-494

ally rewriting the entire sentence in these cases,495

which occurred about 3.4% of the time.496

6.3.2 Explanation 497

The primary limitation of explanations is that they 498

can add confusion by increasing the length of the 499

original text. When Llama3 was tasked with gen- 500

erating explanation, the definitions it provided ex- 501

ceeded 15 words around 50% of the time. Such 502

explanations risk adding confusion to a text rather 503

than subtracting it. 504

6.3.3 Generalization 505

As with the substitution sub-task, Llama3 was usu- 506

ally able to provide helpful generalizations for ex- 507

pert terms, occasionally generating longer strings 508

of text instead. In the case of generalization, this 509

occurred 13.5% of the time. 510

6.3.4 Exemplification 511

In most cases, Llama3 was able to generate valid 512

examples for terms tagged for this form of sim- 513

plification. However, the model sometimes gener- 514

ated synonyms or repeated the original term. This 515

usually happened when Llama3 was tasked with 516

providing examples for more specific expert terms 517

(e.g. ‘placebo’). 518

6.3.5 Omission 519

Omission is a particularly challenging task, as it 520

requires the model to reshape the entire sentence 521

(as opposed to a single term) to remain grammat- 522

ically correct following the omission of the term 523
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Model ROUGE BLEU BERTScore
Llama3 0.5626 0.3393 0.9176
BART 0.9191 0.8198 0.9609

T5 GCM 0.8123 0.7156 0.9609

Table 6: Results on the omission generation task.

of interest. The BART omission model had a ten-524

dency to simply remove expert terms without per-525

forming further corrections, while the T5 grammar-526

correction model (GCM) often outputted text that527

was identical to the input sequence. Llama3 had528

more success with restructuring sentences after529

removing the term of interest, but just as often530

rewrote the original sentence with the expert term531

replaced with a synonym (thereby performing sub-532

stitution instead of omission). The results for the533

omission baseline models can be found in Table 6.534

7 Future Work535

There remains ample space for improving perfor-536

mance in all of the sub-tasks and methods defined537

in this paper. For example, it remains to be seen538

if LLMs can effectively perform the identification539

task. While Llama3-8B was unable to outperform540

most of the encoder-based models, more specific541

prompt engineering may unlock greater levels of542

performance.543

In the simplification classification sub-task, there544

exist multiple unexplored directions from which545

one could improve upon our baselines. For exam-546

ple, this task could be framed as a sequence-to-547

sequence problem for generative models to attempt.548

The issue of class imbalance in the data for this task549

(wherein the majority of expert terms can be sim-550

plified using substitution) must also be addressed,551

whether that be via class weights, oversampling, or552

using generative AI to synthesize additional exam-553

ple data.554

Finally, the omission task presents a unique chal-555

lenge in the form of grammar error correction,556

which we have yet to reliably solve. Grammar557

correction performance may be improved with bet-558

ter prompt engineering, fine-tuning methods, or559

alternate grammar correction datasets.560

8 Conclusion561

In this work, we introduced a new task of fine-562

grained biomedical lexical simplification and a cor-563

responding dataset called JEBS (Jargon Explana-564

tions for Biomedical Simplification). The JEBS565

task involves identifying expert terms, classifying 566

how best to replace them, and generating replace- 567

ment text. Unlike existing parallel or compara- 568

ble corpora for Biomedical Text Simplification, 569

JEBS allows targeted development and evaluation 570

of systems to directly provide replacement terms. 571

The JEBS dataset contains 21,595 replacements for 572

10,314 terms. These terms appear in the context 573

of 400 biomedical abstracts and their correspond- 574

ing manually written plain language adaptations 575

from the PLABA dataset. Finally, we have intro- 576

duced a suite of baseline models for identifying ex- 577

pert terms in biomedical texts, classifying them for 578

simplification, and generating consumer-friendly 579

simplifications for those terms. Using an array of 580

methods built atop the JEBS dataset, we achieved 581

promising results in all of our defined tasks. Finally, 582

we proposed avenues for future improvement of our 583

models. We imagine that our work will bridge the 584

gap between medical experts and patients, provid- 585

ing consumers with new tools to aid in healthcare 586

decision making. 587

9 Limitations 588

Within the JEBS dataset, there exists a class im- 589

balance between the five simplification types, with 590

substitutions making up a disproportionately large 591

percentage of the total simplifications. This imbal- 592

ance may limit the effectiveness of future models 593

fine-tuned for classifying terms as well as for gener- 594

ating text for the less common simplification types. 595

Exemplification is especially challenging to fine- 596

tune on, less than 1 percent of the simplifications 597

in the JEBS dataset are exemplifications. 598

A known limit of the automated metrics used 599

for evaluating the generation sub-task results are 600

their limited correlation with human evaluations 601

(Alva-Manchego et al., 2021). While the automated 602

metrics used in this paper provide a helpful notion 603

of Llama3-8B Instruct’s performance in each of 604

the simplification sub-tasks, they do no capture the 605

nuances that could be gained from human expert 606

evaluations, such as correctness of generated text 607

and its faithfulness to the original text. 608
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Generation Prompt
Substitution “Provide a simpler substitution to replace the highlighted term with. Generate no

other text besides the substitution. For example, if given the sentence ‘Patients
developing [recurrent detachments] were excluded from the analysis.’, you could
output ‘other retina detachments’.”

Explanation “Provide a concise definition to explain the highlighted term with. Generate no other
text besides the explanation. For example, if given the sentence ‘[Visual acuity]
had decreased in many patients.’, you could output ‘ability to see small details in a
standard vision test’.”

Generalization “Provide a simpler substitution to replace the highlighted term with. Generate no
other text besides the replacement term. For example, if given the sentence ‘Patients
underwent [pars plana vitrectomy] for primary miRD.’, you could output ‘surgery’.”

Exemplification “Provide one to three example terms to help explain the highlighted term. Generate
no other text besides the example(s). For example, if given the sentence ‘Patients
developing [media opacities] were excluded.’, you could output ‘cataracts’.”

Omission “Simplify the sentence in a way that omits the highlighted term. Generate no other
text. For example, if given the sentence ‘Recovery to the [preictal position] was
observed in 0.3 to 1 seconds’, you could output ‘Recovery was observed in 0.3 to 1
seconds’.”

Table 7: Prompts provided to LLama 3 for the generation subtask, by replacement type. Each prompt was directly
followed by the preprocessed source text to operate on.

B Generation Subtask Prompts813

Llama3-8B Instruct was provided with unique814

prompts for each simplification method used for815

the generation subtask. Each time the model was816

tasked with simplifying a given sentence, the in-817

struction prompt was given first, directly followed818

by the source text to operate on. The source text819

was preprocessed such that the term to be simplified820

was enclosed by brackets. Complete instruction821

prompts are shown in Table 7.822
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