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Abstract

Though online medical literature has made
health information more available than ever, the
barrier of complex medical jargon prevents the
general public from understanding it. Though
parallel and comparable corpora for Biomedi-
cal Text Simplification have been introduced,
these conflate the many syntactic and lexical
operations involved in simplification. To en-
able more targeted development and evalua-
tion, we present a fine-grained lexical simplifi-
cation task and dataset, Jargon Explanations for
Biomedical Simplification (JEBS). The JEBS
task involves identifying complex terms, clas-
sifying how to replace them, and generating
replacement text. The JEBS dataset contains
21,595 replacements for 10,314 terms across
400 biomedical abstracts and their manually
simplified versions. Additionally, we provide
baseline results for a variety of rule-based and
transformer-based systems for the three sub-
tasks. The JEBS task, data, and baseline results
pave the way for development and rigorous
evaluation of systems for replacing or explain-
ing complex biomedical terms.

1 Introduction

Understanding medical concepts is critical when
making informed healthcare decisions (Kindig
et al., 2004). Patients that lack this understanding
are at a disadvantage when making health-related
choices, which can negatively affect health out-
comes (King, 2010; Berkman et al., 2011). Web-
sites such as PubMed (Wheeler et al., 2007) make
the latest biomedical knowledge available to ev-
eryone. However, because this information is not
written for a general audience, attempting to read
it without the relevant expertise may cause more
harm than good (White and Horvitz, 2009).
Manually curated resources, such as Medline-
Plus (Miller et al., 2000) or UpToDate Patient Ed-
ucation (Fox and Moawad, 2003), aim to rewrite

biomedical knowledge for the public, thus provid-
ing a consumer-friendly alternative to resources
such as PubMed. However, these resources require
massive cost and effort to keep updated with the
latest research and are limited in the scope of their
topics. For example, UpToDate has more than ten
times as many articles written for healthcare practi-
tioners than it has in its Patient Education section.
Advances in artificial intelligence could help solve
this bottleneck by automatically ‘translating’ the
latest medical research into simpler language or by
providing real-time explanations as a reading aid.
Given the high stakes of the biomedical domain,
however, rigorous evaluation of such systems is
crucial.

Existing datasets proposed for training and
evaluating Biomedical Text Simplification sys-
tems take the form of parallel or comparable cor-
pora (Van den Bercken et al., 2019; Cao et al., 2020;
Devaraj et al., 2021; Guo et al., 2022; Attal et al.,
2023). By not explicitly providing term replace-
ments, these datasets restrict the development to
end-to-end text simplification systems. The lack
of explicit term replacements also restricts auto-
matic evaluation to coarse n-gram or similarity-
based metrics, which conflate the many distinct
types of word- and sentence-level operations in-
volved in text simplification and can thus lead to
misleading results. (Alva-Manchego et al., 2021).

In this work, we take a step toward more tar-
geted training and evaluation of biomedical text
simplification by introducing a manually annotated,
fine-grained dataset of multiple lexical simplifica-
tion operations. We first break the task of lexical
simplification into three sub-tasks: (1) identifica-
tion of complex terms, (2) classification of how
best to replace the terms, and (3) generation of
replacements. Further, for the classification sub-
task, we review the literature on lexical simplifi-
cation to create a taxonomy of five term replace-
ment types: substitution, explanation, generaliza-



Synonym
Source (PMID 35511781)

Purpose: To find predictive markers for the visu\%{l
potential in optical coherence tomography (OCT)
one month after surgical repair of macula-
involving rhegmatogenous retinal detachment
(miRD) with and without internal limiting
membrane (ILM) peeling.

Methods: This retrospective single-center, single-
surgeon cohort study included 74 patients who
underwent pars plana vitrectomy (PPV) for
primary miRD between January 2013 and August
2020 with follow-up examinations for at least 6
months.

Patients developing recurrent detachments,
, or with an axial length over 27 mm were
excluded from the analysis. /|

Omission

Explanation
Adaptation by Human Expert

This study aimed to find out if vision can be
predicted by diagnostic imaging one month after
surgery to repair common retinal detachment (the
damage to light-sensitive layer at the back of the
eye (retina) when it is pulled away from its normal
position). In some surgeries, the tissues next to
retina were pulled to repair the detachment.

This study looked at past cases at a single health
care center, and that had surgery done by a single

surgeon.
Generalization

Patients who had other retina detachments in the
past or media cities (such as ) were
not included,ify'the study. N\

Substitution Exemplification

Figure 1: Examples of the JEBS task. Expert terms identified in the source (left) are classified as substitutions,
explanations, generalizations, exemplifications, or omissions. For all types but omissions, the corresponding span in
the human expert adaptation is identified (right). Additionally, synonyms (left, red) are identified and linked to the

first mention of a term within a synonymous set.

tion, exemplification, and omission. We then manu-
ally annotate expert terms and their replacements
found in the PLABA parallel corpus (Attal et al.,
2023), which contains PubMed abstracts paired
with expert-written, sentence-by-sentence simpli-
fications. This results in a high-quality dataset of
10,314 in situ expert terms identified across 400
original abstracts, and a total of 21,595 replace-
ments for these terms found in simplified versions
of these abstracts, each labeled with a replacement
type. Examples of identified terms and replace-
ments are shown in Figure 1.

Finally, we demonstrate that the JEBS dataset
can be used to train and evaluate a variety of rule-
based and transformer-based systems to serve as
baselines for future development. Transformer
models explored included encoder-only models (in
both fine-tuning and feature extraction settings),
encoder-decoder models (in a fine-tuning setting),
and instruction-tuned decoder-only models (in a
one-shot, in-context learning setting). In summary,
our contributions are as follows:

* We define a new, fine-grained lexical simplifi-
cation task for the biomedical domain.

* We provide a manually annotated dataset of
21,595 term replacements with labeled re-
placement types.

* We report performance of a variety of rule-
based and transformer-based baseline systems
for each subtask.

2 Background

Biomedical Simplification Corpora. Previous
datasets developed for biomedical text simplifica-
tion are mainly comparable (paragraph-level) cor-
pora (Phatak et al., 2022; Devaraj et al., 2021; Guo
et al., 2022) or parallel (sentence-level) corpora (At-
tal et al., 2023; Cao et al., 2020; Van den Bercken
et al., 2019). As specific edit operations are not
annotated in these datasets, they can only be used
to train and evaluate end-to-end sentence-level or
paragraph-level systems. While this approach has
its advantages, end-to-end neural systems have a
higher chance of losing important phrases or al-
tering the meaning of entire sentences during the
simplification process than term-focus lexical sim-
plification methods (Ondov et al., 2022). To max-
imize faithfulness to the original texts, we thus
focus on term-level text simplification, wherein in-
dividual expert terms are first identified in a text
before they are replaced or explained to make the
text more readable as a whole. Perhaps most simi-
lar to our work is the Med-EASi dataset (Basu et al.,
2023), which similarly annotates deletions, elabora-



tions, and replacements in two parallel biomedical
corpora. JEBS improves on this in several ways.
First, our dataset is much larger, totaling 21,595 re-
placements, as opposed to 1,979. Second, our clas-
sification subtask is finer-grained, distinguishing
‘elaborations’ by whether they are explanations or
exemplifications, and distinguishing ‘replacements’
by whether they are substitutions or generaliza-
tions. Third, our dataset comes from annotating
a high-quality, manually written parallel corpus,
as opposed to automatically extracted sentence or
short passage pairs from larger comparable corpora.
Finally, our term pairs are situated within the con-
text of entire parallel documents, providing crucial
context. This allows system development and eval-
uation to consider crucial surrounding information,
for example to disambiguate acronyms.

Lexical Simplification Methods. Previous
work in text simplification has explored various
methods of term-level simplification. A common
method involves the substitution of complex terms
with simpler language (Basu et al., 2023; Zeng
et al., 2005). We define two different types of sim-
plification based off of this approach: substitution,
where a close synonym is chosen as the replace-
ment, and generalization, where a more general
term is chosen instead.

Another common form of simplification takes
the form of explanations, where additional text is
added to the original text to explain complex terms
(Basu et al., 2023; Elhadad, 2006; Liu et al., 2021;
Srikanth and Li, 2020). While some previous meth-
ods generate explanations for terms in isolation, our
dataset provides explanations specific to the con-
text in which expert terms are appear in biomedical
texts.

One final form of simplification seen in the liter-
ature is omission, where complex terms that are not
fully relevant to a text are removed entirely (Basu
et al., 2023; Dong et al., 2019). A drawback of
previous methods is that their training data for the
omission task included simplifications that used
different forms of simplification, including adding
words and replacing chunks of the original text. By
constructing our dataset for simplification at the
term level, we hope to isolate omission simplifica-
tions for more focused training.

Language Models. The simplest approaches
to term-level simplification in the past involved
rules-based systems that rely on plain language
thesauri and knowledge bases such as the United
Medical Language System (UMLS) (Bodenreider,

2004) to substitute expert terms with lay language
(Kandula et al., 2010). While such systems demon-
strate promising results, they struggle to capture
the nuances of grammar, context, and ambiguity
that human simplification is able to achieve (Attal
et al., 2023). For that reason, most recent work
within this domain utilizes deep learning methods,
which have seen an explosion of development both
within and beyond the realm of text simplification
(Nisioi et al., 2017). In this paper, we evaluate the
performance of both rules-based models and neural
approaches on our newly-defined biomedical text
simplification task, with the intention of exploring
the full breadth of text simplification methods to
establish definitive benchmarks for our task.

3 Task Definition

3.1 Task Overview

The JEBS task is broken into three subtasks:

1. Identification. As the first stage in the term
simplification process, this sub-task involves
labeling terms in a given text as expert terms.

2. Simplification Classification. Following the
identification step of our simplification task,
terms are classified by which method should
be used to simplify it.

3. Simplification Generation. Once the simpli-
fication type is identified, appropriate text can
be generated to replace or clarify the term.

3.2 Simplification Types

Below, we explain each type of simplification.

3.2.1 Substitution

Models performing the substitution task generate
a simpler synonym for the term of interest, which
replaces the original term in the sentence where it
is used. The goal of substitution is to retain the
original meaning of the text without interrupting
the reading process. As such, the greatest challenge
for this method is finding a synonym that captures
the same meaning as the simplified term while also
being easier to understand.

3.2.2 Explanation

Explanation involves generating a definition for
the provided term, which is enclosed by parenthe-
ses and inserted into the original text immediately
following the explained term. With an accurate def-
inition inserted into the text, consumers can gain



an accurate understanding of what they’re reading.
However, these definitions may interrupt the flow
of a sentence or introduce more complex jargon
within the provided explanation.

3.2.3 Generalization

Similar to substitution, generalization entails re-
placing a given expert term with a more general
category that the term fits into. This method dif-
fers from substitution by purposely attempting to
subtract unimportant information from the original
term to make the text as a whole more readable to
lay consumers.

While generalization is an ideal solution to sim-
plifying overly specific terms, it may be fail to
provide a faithful simplification when applied to
expert terms that are already quite general or don’t
fall into a well-defined category.

3.24 Exemplification

For exemplification, models generate a short list
of examples of the provided expert term. These
examples are then inserted into the original text
after the term of interest in the same way as in
the explanation method. Exemplification can be
useful when examples can convey a concept better
than a synonym (which may or may not exist) or
an explanation (which may be long and/or com-
plicated). However, for expert terms that are too
specific and therefore lack useful examples, exem-
plification may not be appropriate.

3.2.5 Omission

Models performing omission remove the term of
interest from its sentence and attempt to restructure
the resulting sentence to be grammatically correct.
This method is most useful in cases when an expert
term doesn’t add much necessary meaning to a sen-
tence. However, it may cause passages to become
confusing if too much information is removed or if
terms are omitted in ways that leave the sentence
grammatically incorrect.

4 Dataset Creation

The JEBS dataset is derived from 400 abstracts
and their associated adaptations, as found in the
PLABA dataset (Attal et al., 2023). Abstracts were
aligned at the sentence level with their correspond-
ing adaptations, then annotated by two authors us-
ing the brat rapid annotation tool! (Stenetorp et al.,
2012), which involved selecting expert terms and

"http://brat.nlplab.org

linking them with their respective simplifications,
as found in the PLABA adaptations. In total, the
JEBS dataset contains 10,314 expert terms (25.79
terms per abstract) and 21,595 simplifications. Ta-
ble 1 displays counts of each simplification type.

11.47% of all expert terms in the data appeared
alongside acronyms or other names. In the JEBS
dataset, expert terms are linked to the simplifica-
tions associated with their synonyms. Appendix A
describes how this linking was performed.

The annotations exhibit a moderate inter-
annotator agreement for both the identification task
(0.5203 F1) and the classification task (0.4577 F1).
Figure 2 shows an example of the brat interface
during annotation.

While performing annotations, the annotators
confirmed that there was no information naming
or uniquely identifying individual persons in the
PLABA dataset, nor was there any offensive con-
tent. The JEBS dataset therefore does not include
any such information.

5 Baseline Systems

Expert term identification, term classification, and
the five forms of simplification were divided into
separate sets of language models. All fine-tuned
transformer approaches used Hugging Face and
PyTorch for fine-tuning. Each of those models
underwent 3 epochs of fine-tuning. All fine-tuning
and evaluations of those models was performed on
a single NVIDIA A100 80GB GPU.

Prior to training our baseline models, the union
of both annotator’s annotations were preprocessed
into a JSON file, where each expert term in each ab-
stract was linked with its associated simplifications.
Each simplification takes the form of a tuple storing
both its type (substitution, explanation, generaliza-
tion, etc) and the contents of that simplification.
All data was split into train and evaluation sets ac-
cording to a 1:3 ratio. The split was performed
at the question-level. That is, data from abstracts
answering the same question within the PLABA

Simplification Type Count Proportion
Substitutions 13,966 0.6467
Explanations 4,161 0.1927

Omissions 1,963 0.0909
Generalizations 1,368 0.0633
Exemplifications 137 0.0063

Table 1: Count and Proportion of Simplification Types
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[Sentence 3]

term

term

The visual acuit§ had decreased in many patients.

term

term
term

term
ﬁSUBS/‘I’ITUTES

The clarity of many of the patients’ eyesight had gotten worse.

term

term

EXPLAINS

The visual acuity (abﬁy to see small details in a standard vision tegt) had decreased in many patients.

Figure 2: An example annotation of the PLABA dataset, as seen on brat. Line 20 is the original sentence from an
abstract; Lines 22 and 23 are from two PLABA simplifications. In each simplification, a replacement span has been
identified, in one case being labeled as a substitution, and in the other being labeled as an explanation.

dataset were kept together in either the train or eval-
uation sets. Furthermore, neural models designed
for the non-identification sub-tasks require the con-
text in which terms were used to function. This
data was obtained by splitting PLABA abstracts
into individual sentences.

In the following subsections, we summarize the
baseline models for each sub-task, as well as the
data preprocessing requirements for each model.

5.1 Identification

The rules-based identifier model uses MetaMapLite
(Demner-Fushman et al., 2017), the Unified Med-
ical Language System (UMLS) (Bodenreider,
2004), and two term frequency datasets from
Kaggle—one derived from the Google Web Trillion
Word Corpus (Tatman, 2020) and the other derived
from BookCorpus and a 2019 dump of Wikipedia
(Cook, 2020)—to identify and filter expert terms.

After the rules-based model, we fine-tuned a
set of transformer-based identifier models using
pretrained versions of BERT Large (340M parame-
ters) (Devlin et al., 2018), BioBERT Large (340M
parameters) (Lee et al., 2019), XLM RoBERTa
Large (550M parameters) (Conneau et al., 2019),
and DeBERTa Large (435M parameters) (He et al.,
2021). For these models, we framed the sub-task as
a named entity recognition (NER) problem (Bose
etal.,, 2021). Abstracts were therefore preprocessed
for the fine-tuned identifier models by labeling each
sentence according to a Beginning-Inside-Outside
labeling scheme. Because the goal of this sub-task
was purely to identify expert terms, labeling was
performed without consideration for the simplifica-
tion types that could be assigned to each term.

In addition, we evaluated Llama3 Instruct’s

(8B parameters) (Dubey et al., 2024) performance
on this task, providing the following instruction
prompt to the LLM to perform the identification
task on a single sentence. After the instruction
prompt was provided, the sentence to operate on
was provided immediately afterwards.

Prompt: “Identify all non-consumer
biomedical terms in the user’s sentence
using a comma-separated list. Generate
no other text besides the list.”

Four different metrics were used to evaluate the
identification models. The first was the average F1
score, which was computed for a given model by
finding its F1 score against both annotator’s individ-
ual annotations, then averaging the results. Union
and intersection F1 scores were taken according to
the union and intersection of the two annotators’
identified terms. Finally, models were evaluated
according to a Pyramid score (Nenkova and Pas-
sonneau, 2004), where points were given for each
expert term depending on how many annotators
identified it as an expert term, then normalized ac-
cording to the maximum score each model could
have attained.

Running the rules-based model on the JEBS test
data set for evaluation took 8 minutes and 34 sec-
onds to run on an Apple M1. Training the BERT-
based transformer models on the training data took
around 2 minutes and 58 seconds each. Running
those models for evaluation on the test data took
around 2 minutes and 26 seconds each. Finally,
Llama3 took 28 minutes and 57 seconds for the
identification task on the JEBS test data.



5.2 Simplification Classification

For the classification task, we divided our
approaches into a frozen-weights transformer-
based method and a fine-tuned transformer-based
method.

In the former, we preprocessed abstract sen-
tences by indicating the expert terms within them
using custom tokens <ext> and </ext>. Pre-
processed sentences were embedded using BERT-
Large and DeBERTa-Large before being used to
train and evaluate two separate multi-label classi-
fier models. These classifiers were build using Py-
Torch neural networks. The BERT and DeBERTa
multi-label classifier models took 20 seconds and
24 seconds respectively to run for evaluation.

For the second approach, we combined the iden-
tification and classification sub-tasks by framing
classification as a slightly more advanced NER
problem. The data for this approach took the form
of BIO-labeled sentences, where terms were la-
beled with the simplification method assigned to
them most often in the training data. Pretrained
versions of BERT-Large and DeBERTa-Large were
fine-tuned using the preprocessed data to distin-
guish between non-expert terms and terms that
should be simplified using one of each simplifica-
tion method described in this paper. These model
therefore performed both the identification and clas-
sification sub-tasks at the same time. The BERT
and DeBERTa NER models took 36 seconds and
89 seconds respectively to run for evaluation.

Outputs were evaluated according to two met-
rics: average F1 score and union F1 score. These
metrics were taken according the labels assigned to
expert terms by both annotators separately, and the
union of labels assigned to expert terms by both an-
notators, respectively. Scores were macro-averaged
across the five simplification methods to account
for the class imbalance in our data.

5.3 Simplification Generation

We evaluated Llama3-8B Instruct’s performance
on each simplification method. For all simplifica-
tion methods, the input sequence took the form of a
sentence with a single expert term highlighted via
enclosing brackets. Sentences containing multiple
expert terms are duplicated in our data with a dif-
ferent expert term selected. With the exception of
omission, Llama3 outputted sequences composed
entirely of the generated simplification. In addition
to the simplification instruction, we provided the

LLM with an example simplification to leverage
in-context learning (Brown et al., 2020). Prompt-
ing is described with greater detail in Appendix B.
Running Llama3 on the JEBS test set took around
17 minutes for each simplification method.

Evaluations were performed by comparing
Llama3’s outputs to gold-standard adaptations
found in the PLABA dataset according to three
different metrics: ROUGE (Lin, 2004), BLEU (Pa-
pineni et al., 2002), and BERTScore (Zhang* et al.,
2020).

5.3.1 Omission

In addition to Llama3, we fine-tuned two other
models for the omission task: a BART-based omis-
sion model (fine-tuned on the JEBS dataset) and
a T5-based (Raffel et al., 2020) grammar correc-
tion model (GCM; fine-tuned on the JHU FLuency-
Extended GUG (JFLEG) dataset (Napoles et al.,
2017)). The former model was fine-tuned to re-
move expert terms from sentences and correct the
sentence’s grammar at the same time. The latter
model was fine-tuned specifically to correct gram-
mar, and was given sentences with their expert
terms removed as inputs.

6 Results

6.1 Identification

The transformer-based models outperformed the
rules-based model in the identification sub-task,
with the DeBERTa-based model achieving the high-
est score in all four metrics. Interestingly, despite
being pretrained on domain knowledge, BioBERT
fails to outperform the BERT-based identification
model. It seems that in the identification sub-task,
domain knowledge doesn’t enhance LLM perfor-
mance.

6.2 Simplification Classification

Among the frozen-weights transformer approaches,
the classifier trained on DeBERTa sentence embed-
dings performed better during evaluation, though
neither model was especially effective at classify-
ing expert terms.

The NER models outperformed the neural net-
works used for this task. However, their ability
to perform classification came at the cost of low-
ered overall term identification accuracy. Com-
pared to the identification models fine-tuned on the
same base models, the NER models fine-tuned for
this task under-performed when identifying expert



Input Model Identified Terms
Gold Standard Ring sutures, cataract
Rule-based sutures, cataract
“Ring sutures induced cataract BERT-L Ring sutures, cataract
more frequently than other BioBERT-L. Ring sutures, cataract
procedures.” XLM RoBERTa-L | Ring sutures, cataract
DeBERTa Ring, cataract
Llama3 sutures, cataract

Table 2: Example input sentence and terms identified by each identifier model.

Model AvgFl1 UF1 NF1 Pyramid
Rule-based 0.2097 0.2487 0.1497  0.2916
BERT-L 0.3530 0.4260 0.2515  0.4891
BioBERT-L 0.3058 0.3898 0.2071  0.3938
XLM RoBERTa-L.  0.3745 0.4596 0.2578  0.5147
DeBERTa-L 0.4317 0.5255 0.2976  0.6014
Llama3 0.3678 0.4085 0.3095  0.4692
BERT-L 4 0.2785 0.3399 0.1955  0.3895
DeBERTa-L 0.3448 0.4009 0.2628  0.4564

Table 3: Performance of each identifier model as well as the NER classification models.

Model AvgFl1 UF1
BERT Frozen 0.0337 0.0334
DeBERTa Frozen 0.1823 0.1856
BERT NER 0.3588 0.3413
DeBERTa NER  0.3300 0.3363

Table 4: Results on the simplification classification task.

Task ROUGE BLEU BERTScore
SUB 05730 0.3521 0.9249
EXP 05333  0.2857 0.9106
GEN 0.5333  0.3108 0.9146
EXE 05844 0.3419 0.9209

Table 5: Evaluation results of Llama3-8B Instruct on
each non-omission simplification method for the gener-
ation sub-task.

terms. The performance of the NER-based models
can be found in Table 3.

6.3 Simplification Generation

6.3.1 Substitution

For the substitution task, Llama3 consistently gen-
erated helpful synonyms for expert terms in our
dataset. That being said, it occasionally generated
more text than was necessary (over 5 words), usu-
ally rewriting the entire sentence in these cases,
which occurred about 3.4% of the time.

6.3.2 Explanation

The primary limitation of explanations is that they
can add confusion by increasing the length of the
original text. When Llama3 was tasked with gen-
erating explanation, the definitions it provided ex-
ceeded 15 words around 50% of the time. Such
explanations risk adding confusion to a text rather
than subtracting it.

6.3.3 Generalization

As with the substitution sub-task, Llama3 was usu-
ally able to provide helpful generalizations for ex-
pert terms, occasionally generating longer strings
of text instead. In the case of generalization, this
occurred 13.5% of the time.

6.3.4 Exemplification

In most cases, Llama3 was able to generate valid
examples for terms tagged for this form of sim-
plification. However, the model sometimes gener-
ated synonyms or repeated the original term. This
usually happened when Llama3 was tasked with
providing examples for more specific expert terms
(e.g. ‘placebo’).

6.3.5 Omission

Omission is a particularly challenging task, as it
requires the model to reshape the entire sentence
(as opposed to a single term) to remain grammat-
ically correct following the omission of the term



Model ROUGE BLEU BERTScore
Llama3 0.5626  0.3393 0.9176
BART 0.9191  0.8198 0.9609
T5SGCM  0.8123 0.7156 0.9609

Table 6: Results on the omission generation task.

of interest. The BART omission model had a ten-
dency to simply remove expert terms without per-
forming further corrections, while the TS grammar-
correction model (GCM) often outputted text that
was identical to the input sequence. Llama3 had
more success with restructuring sentences after
removing the term of interest, but just as often
rewrote the original sentence with the expert term
replaced with a synonym (thereby performing sub-
stitution instead of omission). The results for the
omission baseline models can be found in Table 6.

7 Future Work

There remains ample space for improving perfor-
mance in all of the sub-tasks and methods defined
in this paper. For example, it remains to be seen
if LLMs can effectively perform the identification
task. While Llama3-8B was unable to outperform
most of the encoder-based models, more specific
prompt engineering may unlock greater levels of
performance.

In the simplification classification sub-task, there
exist multiple unexplored directions from which
one could improve upon our baselines. For exam-
ple, this task could be framed as a sequence-to-
sequence problem for generative models to attempt.
The issue of class imbalance in the data for this task
(wherein the majority of expert terms can be sim-
plified using substitution) must also be addressed,
whether that be via class weights, oversampling, or
using generative Al to synthesize additional exam-
ple data.

Finally, the omission task presents a unique chal-
lenge in the form of grammar error correction,
which we have yet to reliably solve. Grammar
correction performance may be improved with bet-
ter prompt engineering, fine-tuning methods, or
alternate grammar correction datasets.

8 Conclusion

In this work, we introduced a new task of fine-
grained biomedical lexical simplification and a cor-
responding dataset called JEBS (Jargon Explana-
tions for Biomedical Simplification). The JEBS

task involves identifying expert terms, classifying
how best to replace them, and generating replace-
ment text. Unlike existing parallel or compara-
ble corpora for Biomedical Text Simplification,
JEBS allows targeted development and evaluation
of systems to directly provide replacement terms.
The JEBS dataset contains 21,595 replacements for
10,314 terms. These terms appear in the context
of 400 biomedical abstracts and their correspond-
ing manually written plain language adaptations
from the PLABA dataset. Finally, we have intro-
duced a suite of baseline models for identifying ex-
pert terms in biomedical texts, classifying them for
simplification, and generating consumer-friendly
simplifications for those terms. Using an array of
methods built atop the JEBS dataset, we achieved
promising results in all of our defined tasks. Finally,
we proposed avenues for future improvement of our
models. We imagine that our work will bridge the
gap between medical experts and patients, provid-
ing consumers with new tools to aid in healthcare
decision making.

9 Limitations

Within the JEBS dataset, there exists a class im-
balance between the five simplification types, with
substitutions making up a disproportionately large
percentage of the total simplifications. This imbal-
ance may limit the effectiveness of future models
fine-tuned for classifying terms as well as for gener-
ating text for the less common simplification types.
Exemplification is especially challenging to fine-
tune on, less than 1 percent of the simplifications
in the JEBS dataset are exemplifications.

A known limit of the automated metrics used
for evaluating the generation sub-task results are
their limited correlation with human evaluations
(Alva-Manchego et al., 2021). While the automated
metrics used in this paper provide a helpful notion
of Llama3-8B Instruct’s performance in each of
the simplification sub-tasks, they do no capture the
nuances that could be gained from human expert
evaluations, such as correctness of generated text
and its faithfulness to the original text.
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Generation Prompt

Substitution “Provide a simpler substitution to replace the highlighted term with. Generate no
other text besides the substitution. For example, if given the sentence ‘Patients
developing [recurrent detachments] were excluded from the analysis.’, you could

99

output ‘other retina detachments’.

Explanation “Provide a concise definition to explain the highlighted term with. Generate no other
text besides the explanation. For example, if given the sentence ‘[Visual acuity]
had decreased in many patients.’, you could output ‘ability to see small details in a

59

standard vision test’.

Generalization | “Provide a simpler substitution to replace the highlighted term with. Generate no
other text besides the replacement term. For example, if given the sentence ‘Patients

599

underwent [pars plana vitrectomy] for primary miRD.’, you could output ‘surgery’.

Exemplification | “Provide one to three example terms to help explain the highlighted term. Generate
no other text besides the example(s). For example, if given the sentence ‘Patients

59

developing [media opacities] were excluded.’, you could output ‘cataracts’.

Omission “Simplify the sentence in a way that omits the highlighted term. Generate no other
text. For example, if given the sentence ‘Recovery to the [preictal position] was
observed in 0.3 to 1 seconds’, you could output ‘Recovery was observed in 0.3 to 1

59

seconds’.

Table 7: Prompts provided to LLama 3 for the generation subtask, by replacement type. Each prompt was directly
followed by the preprocessed source text to operate on.

B Generation Subtask Prompts

Llama3-8B Instruct was provided with unique
prompts for each simplification method used for
the generation subtask. Each time the model was
tasked with simplifying a given sentence, the in-
struction prompt was given first, directly followed
by the source text to operate on. The source text
was preprocessed such that the term to be simplified
was enclosed by brackets. Complete instruction
prompts are shown in Table 7.
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