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ABSTRACT

Visual projector plays a crucial role in bridging the visual model and the large
language model (LLM) in modern multimodal LLM. Most mllms use a simple
MLP to project all visual features into visual tokens, causing a heavy computational
burden and redundant visual tokens. In order to solve this problem, some efficient
visual projectors, e.g., the resampler or the adaptive pooling, are developed to
reduce the visual tokens. However, they only reduce the visual tokens based on
the image feature, leading to the feature misalignment between visual tokens and
text tokens. In this paper, we present a novel Language-guidance Visual Projector
(LVP), where the text feature serves as a guide to selecting the important visual
tokens. Specially, we first adopt a lightweight text encoder to extract the text
feature. Then, a lightweight cross-modal feature enhancement module is proposed
to enhance the cross-modal feature alignment. Finally, we select the important
visual tokens according to the feature similarity between visual tokens and text
tokens and apply a deformable attention module to integrate the visual features
from the visual encoder into the selected visual tokens. We further propose a
multi-level language-guidance visual projector, which selects the visual tokens
from different stages of the visual encoder. Extensive experiments demonstrate that
our LVP compresses the visual tokens by more than 75% while achieving the best
performance among the existing visual projectors. For instance, LLaVA1.5-LVP
with Qwen2.5-14B obtains 72.4% accuracy on VQAT, realizing the state-of-the-art
result. The code and the model will be released.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., [2023bjaj |Achiam et al., 2023} Bai et al., [2023a)
have made significant progress in recent years, promoting the rapid development of Multimodal
Large Language Models (MLLMs). The main idea for MLLMs is to employ a visual projector to
bridge the visual model and the LLM and train the visual projector using multimodel data while
keeping the parameters of the visual model and LLM. Such a simple paradigm enables MLLMs to
preserve and utilize the pre-training knowledge of visual model and LLM, making MLLMs show
a strong capability in vision-language reasoning (Liu et al.| 2024b)), understanding (Alayrac et al.,
2022), and interaction capabilities (You et al.|[2023).

The efficiency of MLLM gains more and more attention due to the limit of compute resource in
the practical use. The recent works (Li et al., 2023c} |2024c) show that LLM dominates the major
computational resource and the number of input tokens directly affects the efficiency of LLM.
Meanwhile, the number of visual tokens is much more than the number of text tokens in MLLMs.
Reducing the number of visual tokens outputted by the visual projector is an effective way to improve
efficiency. Besides, the quality of visual tokens affects the overall performance of MLLMs. Therefore,
a visual projector, generating fewer but better visual tokens, is important for efficient MLLM.

Current research on the visual projector can be summarized into two lines: learnable query-based and
linear projector-based. As for the learnable query-based methods, Q-Former (Li et al.||2023c)) and
resampler (Bai et al.| 2023b) are the typical work. Both of them utilize learnable queries to squeeze
and extract the visual features. However, DeCo (Yao et al.; 2024a)) demonstrates the training efficiency
of the resampler and Q-former is low when training data is limited. As for the linear projector-based
methods, such as MLP, they map the visual contexts into visual tokens without squeezing the visual
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Figure 1: Visual projector comparison. (a) Linear projector, e.g., MLP. (b) Resampler. (c) Convention-
based or transformer-based projector such as LDP and TokenPacker. (d) Our LVP. LVP adopts the
language knowledge to select the important visual tokens, but existing visual projectors only depend
on image features to reduce the visual tokens.

(c)

features. Nevertheless, this way generates numerous visual tokens, leading to a heavy computational
burden. In order to squeeze the visual features while keeping visual information. Recent studies, e.g.
LDP (Chu et al.,|2023), Abstract (Cha et al., [2024), and DeCo (Yao et al.,[2024a), use the convolution
or average pooling to reduce the visual tokens and enhance the local feature. These methods inevitably
lose the finer detailed features. Mini-Gemini (L1 et al.l [2024d) and TokenPacker (Li et al., 2024c))
adopt the transformer or the cross-attention module to enrich the detailed visual information. As
depicted in Figure[T] existing visual projectors focus on generating representative visual tokens only
by the image feature, ignoring that inputting the visual tokens aligned with text tokens into LLM can
help MLLM learn multimodal features better.

In this paper, we present a novel visual projector, named Language-guide Visual Projector (LVP). The
main idea for LVP is utilizing the text feature as an guidance to decide which visual tokens should be
input into LLM. Specifically, LVP employs a lightweight text encoder to extract the text feature. Then,
we design a cross-modal feature enhancement module, including image-to-text and text-to-image
attention, to improve the cross-modal feature alignment. Finally, LVP uses the text feature to select
the important visual tokens and applies a deformable attention module to integrate the key visual
features into the selected visual tokens. Such the visual token selection guided by text feature not
only aligns the visual tokens with text tokens but also prompts the computational efficiency during
the text generation phase of MLLM. Furthermore, to obtain fine-grained visual features, we propose
a multi-level language-guide visual projector to select important visual tokens from different stages
of the visual encoder. Extensive experiments are conducted across various multimodal benchmarks to
evaluate the effectiveness of our approach. Notably, LLaVA1.5 with our LVP only uses 25% visual
tokens (144 vs. 576) and achieves state-of-the-art performance (see Table |I[)

Our main contributions are summarized as follows: 1) We present a novel Language-guide Visual
Projector (LVP) to select the visual tokens by the text feature, effectively aligning the visual tokens
and text tokens. To the best of our knowledge, we are the first to adopt the language knowledge
to reduce the number of visual tokens. 2) We further propose a multi-level language-guide visual
projector to generate the visual tokens from different stages of the encoder, which can capture
fine-grained and global features at the same time. 3) Experimental results demonstrate that LVP
significantly reduces the visual tokens and obtains consistent performance improvement.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Early efforts (Li et al., 2021} Tan & Bansall 2019) construct a series of architectures for Multimodal
Large Language Models (MLLMs), consisting of a visual encoder and a language model. With the
rapid development of LLM (Touvron et al.;2023bza; [Bai et al.,[2023a}; [Achiam et al.| 2023 Bi et al.}
2024), many studies (Li et al.,[2024a;, [Bai et al., 2023b; |Chen et al.,[2023a) focus on infusing visual
features into LLM with a visual projector. LLaVA (Li et al.| [2024a) feeds all visual tokens into
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LLM and trains the model via visual instruction tuning, enabling the LLM to comprehend the image
features and generate the correct response. MobileVLMV2 (Chu et al 2024) proposes a 1B/3B
model to benefit the resource-constrained scenarios. Qwen-VL (Bai et al., pretrains the model
with a large-scale dataset, effectively scaling up the MLLMs. Recent MLLMs, e.g., InternVL
[2024b) and MiniCPMV [2024b)), adopt an effective visual projector to enhance the

model efficiency, indicating the visual projector is a significant topic to be investigated.

2.2  VISUAL PROJECTOR IN MLLMS

Modern MLLMs adopt the visual projector to connect the visual encoder and LLM. Early works,
such as the linear projector in LLaVA and MiniGPT?2 (Chen et al| [20234), preserve
all visual features and map them into the language space via the fully connected layer. This approach
significantly increases the computational burden due to the generation of numerous visual tokens.
To reduce training resources, some efficient visual projectors have been proposed. Q-former
and resampler utilize a group of learnable queries to squeeze the
visual features. Although such a learnable architecture reduces training resources, it underperforms in
scenarios with limited training data. An alternative research direction uses convolution or pooling to
reduce visual tokens. Abstractor and LDP leverage convolution
layers to extract visual features and output compressed visual tokens. DeCo (Yao et al.| 2024a))
demonstrates the adaptive average pooling layer is an efficient way to compress the visual token.
However, these methods neglect the fine-grained information, hurting the visual reasoning capabilities
of MLLMs. TokenPacker and MiniGemini [2024d)) address this by
employing cross-attention layers to inject fine-grained information from high-resolution images into
compressed visual tokens. Nevertheless, their approaches focus on local regions, overlooking the
global information, leading to suboptimal performance in learning global semantic features. Other
approaches, such as Pixel-Shuffle (Chen et al.},[2024a)) and nearby concatenation (Dong et al.,[2024b),
directly permute the length dimension and the channel dimension, distorting intrinsic characteristics.
In contrast to the existing methodologies, our LVP treats the text feature as an effective guide to select
the important visual tokens.

3 METHOD

3.1 OVERVIEW

The goal of the Multimodal Large Language Model (MLLM) is to generate the response corresponding
to the input instruction. In this paper, MLLM receives the image and text (instruction) as the inputs
and outputs the text (response) in an autoregressive manner. Formally, the multimodal input token
consists of two types: image token X;,,, and text token X;.,;. Then, the large language model
(LLM) generates the response Y = { gi}le conditioned on the X;,,, and X, where L is the
number of tokens in the response. The process of multimodal generation can be formulated by

L
p(Y|Ximg7Xtezt) = Hp(gi‘Ximgtheztag<i)- (1)

i=1

where p denotes the conditional probability.

Model architecture. The architecture of MLLM is composed of three parts: visual encoder, visual
projector, and LLM. The visual encoder outputs a sequence of image features. The visual projector
translates the image features into a sequence of image tokens that LLM can interpret. LLM processes
the text token and image token and generates the response autoregressively. In MLLM, the efficiency
is mainly affected by the number of visual tokens fed into LLM. To improve the efficiency of MLLM,
effective visual projectors are developed to reduce the visual tokens.

3.2 MOTIVATION

The role of the visual projector is to bridge the visual encoder and LLM. As described in
[2023c} [Cha et all, [2024} [Li et all, [2024c)), the number of visual tokens affects the overall efficiency
of MLLM. Considering the scenarios of processing multiple images and large images, numerous
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Figure 2: Comparison of attention map of different visual projectors. We visualize the attention map
of input visual tokens of LLM. The implementation of attention map visualization is presented in

Appendix [A.T}

visual tokens are unbearable for MLLM. Improving the efficiency and scalability of MLLM is highly
required. This requirement makes recent MLLM (Bai et al.}, [2023b} [Zhu et al, 2023} Xue et all,[2024)

prefer to adopt the resampler or convolution-based projector instead of the linear projector.

As shown in Figure/I} existing methods reduce the visual tokens only depending on the image feature.
However, we argue that visual tokens fed into LLM should align with the text tokens. To verify
this point, we visualize the attention map of visual tokens outputted by different visual projectors in
Figure[2] We can observe that resampler and LDPv2 [2023) only focus
on the feature of the surfer, ignoring the feature of the wave. From the attention map of the linear
projector, we can see that the features of both wave and surfer should be considered. The reason can
be attributed to the fact that the pre-training task of the visual encoder usually focuses on learning
the features of foreground objects in the image, such as the surfer in this picture, but this causes the
visual projector to ignore the important background information contained in the text (instruction),
resulting in misalignment between the visual tokens and the text tokens.

Stemming from the above analysis, we propose a novel Language-guide Visual Projector (LVP)
to align the visual tokens and text tokens. LVP follows two key principles: 1) effective alignment
between visual tokens and text tokens. 2) flexibility over the number of visual tokens. Our LVP
can not only determine the number of the visual tokens fed into LLM flexibly to improve the
computational efficiency but also boost the overall performance of MLLM by aligning the visual
tokens and text tokens.

3.3 LANGUAGE-GUIDE VISUAL PROJECTOR

Architecture. The overall architecture of our MLLM is shown in Figure[3] LVP consists of three
parts: text encoder, cross-modal feature enhancement, and language-guide visual token selection.
Specifically, given an input text (instruction) and an image, the visual encoder outputs the image
feature X; € RN %P where N; and D denote the number of image tokens and dimension of
X7. Text encoder is composed of two transformer layers and each transformer layer contains a
self-attention layer and a feed-forward network (FFN). Experimental results (see Table@ in the
Appendix) demonstrate that such a lightweight text encoder is enough for text feature extraction.

Cross-modal feature enhancement. Inspired by GLIP (Li et al.,[2022), LXMERT (Tan & Bansall
2019), and Grounding-DINO (Liu et al., 2023b)), we introduce a lightweight Cross-modal Feature

Enhancement module (CFE) to prompt the efficiency of cross-modal feature learning. CFE includes
an image-to-text attention module and a text-to-image attention module. As depicted in Figure[3] the
process of the image-to-text attention module can be formulated by X, = Attention(X;, X1, Xr),
where X, is the enhanced text feature, X7 € RNT*D is the text feature from the text encoder,
Nr is the number of text tokens, and Attention(Query, Key, Value) represents a standard cross-
attention module. In the same way, the process of the text-to-image attention module can be expressed
by X, = Attention(Xyo, X1, X71), where X;, € RN1*D stands for the enhanced image feature.
LXMERT adopts a similar cross-modal encoder to enhance cross-modal feature learning. Our CFE
differs from it in two aspects: 1) Image-to-text attention and Text-to-image attention in LXMERT
are parallel, while our CFE is a sequential structure. 2) The cross-modality encoder in the LXMERT
structure is much heavier than CFE. Experimental results (see Table [A4]in the Appendix) show
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Figure 3: The overall framework of the MLLM with our LVP as the visual projector. LVP consists of
three components: the lightweight text encoder to extract the text feature, the cross-modal feature
enhancement module, including image-to-text attention and text-to-image attention, to enhance the
cross-modal feature, and the language-guide visual token selection to reduce the visual tokens.

that such a lightweight structure is enough for our metohd, since LLM is mainly responsible for
cross-modal feature interaction in MLLM.

Language-guide visual token selection. Our Language-guide visual token selection contains two
components: visual token selection and a deformable attention module. The process of visual token
selection is

X0 XT
My, = Topy (Max™!(——2-10_ ). ()
! ’ oAl R
where Top N, denotes the operation to select the top N, visual tokens. The operation Max !
represents the Max operation along the —1 dimension, || - || is the L2 norm, and the symbol T

stands for the matrix transposition. Directly inputting the selected visual tokens causes the loss of
visual features, we adopt a deformable attention module to enrich the feature representation of the
selected visual tokens. Specifically, we take the selected visual tokens My, as the query and X,
as the key and value. Then we input them into a deformable attention module (Zhu et al., [2020) to
integrate the key visual features into the selected visual tokens. This process can be formulated by
Ximg = DeformAttn(X;,, Mn,, My, ). Here, De formAttn(Query, Key, Value) denotes the
deformable attention.

Comparison with token selection in Grounding-DINO. Grounding-DINO adopts a similar
language-guidance token selection module to determine the number of object queries. Our method
differs from is in two folds: 1) our language-guidance visual projector is much lighter than that in
Grounding-DINO; 2) we employ the deformable attention to integrate the key visual feature into
visual tokens but Grounding-DINO adopts a heavy cross-modal decoder to achieve feature interaction.
Experimental results (see Table[7) show that such a simple and lightweight module achieves a similar
performance compared to the heavy structure in Grounding-DINO.

3.4 MULTI-LEVEL LANGUAGE-GUIDANCE VISUAL PROJECTOR

To further improve the performance of MLLM, we propose a multi-level language-guide visual
projector. Visual features from different stages of the visual encoder represent different visual
information, e.g., visual features from the shallow stage contain rich detailed features while visual
features from the deep stage tend to represent the global semantic feature. Specifically, we first divide
the layers of the visual encoder into four stages following TokenPacker (Li et al.,|2024c). Then, for
each stage, we select the top N, visual tokens as Eq.[2| The total number of visual tokens fed into
LLMis N, x 4. Finally, all selected visual tokens are concatenated along the feature dimension. In
this way, the visual tokens include both detailed features and global semantic features. The overall
pipeline of the multi-level language-guide visual projector is shown in Figure {]
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Figure 4: The pipeline of multi-level language-guide visual projector.
4 EXPERIMENTS
4.1 DATASETS

We evaluate our language-guide visual projector under the normal resolution and high resolution
settings. The training process is divided into two stages. For the normal resolution, we train our
model on LAION-CC-SBU-558K to achieve modal alignment in the first stage. In the second stage,
we utilize 656K mixture dataset for visual instruction tuning. For the high resolution setting, we
employ 1.2M training samples for the first stage and 1.5M training samples for the second stage,
following Mini-Gemini (Li et al., 2024d). The evaluation dataset is composed of: VQA"?
2017), GQA (Hudson & Manning| [2019), VizWiz (Gurari et al., [2018)) for General visual
question answering; TextVQA (VQAT) (Singh et al., 2019), OCRBench (OCRB) (Liu et al.[, 2023d),
and DocmentVQA (DocVQA) (Mathew et al} [2021)) for the OCR task; 3. POPE [2023d)
for the Hallucination; 4. MMBench (MMB) [2023c), MM- Vet [2023), and
MMMU 2024).

In order to further evaluate the effectiveness of our method, we conduct the experiments in the
scenario of multi-round conversations and video. For the multi-round conversations, we train our
model on MMDU-45K 2024c)), containing 45K high-quality conversation data for the
training and 110 multi-turn dialogues with more than 1600 questions for the test. Following LLaVA-
OneVision (OV) [20244), we adopt 4.6M high-quality knowledge data and 4.8M visual
instruction data for the training. We evaluate the video performance of LVP on ActivityNet-QA (Yu
et al| 2019), EgoSchema (Mangalam et al.} 2023), MLVU (Zhou et al} [2024), MVBench (Li et al.
2024b)), NextQA (Xiao et al.,[2021)), PerceptionTest (Patraucean et al.,[2024), SeedBench (Li et al.
2023b), VideoChatGPT (Maaz et al.| [2023), VideoDetailCaption (L1 et al., 2024a), VideoMME (Fu|

et al.l[2024), and LoneVideoBench (Wu et al.l [2024).

4.2 IMPLEMENTATION DETAILS

In this paper, we adopt CLIP-ViT-L/14-336px (Radford et al, 2021) as the image encoder with
336 x 336 resolution and employ Vicuna-7B/13B (Zheng et al., 2024) as the LLM. Following
LLaVAL.5, we train the model in two stages, i.e., the first stage for pretraining and the second stage
for visual instruction tuning. The image encoder is frozen during the training. The number of layers
of four stages in the multi-level language-guide visual projector are 12, 16, 22, and 23, respectively.
We initialize the weight of the text enncoder using the first two layers of Bert and
adopt the tokenizer of bert as the tokenizer of text encoder. We train the model for one epoch and all
experiments are conducted on 8 Ascend 910B GPUs with 65 GB memory.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Normal Resolution. We first perform the comparison under the normal resolution setting. As shown
in Table in the OCR-related benchmarks (e.g., VQAT, OCRB, and DocVQA), our LVP achieves
better performance than the peers. For example, in DocVQA, LLaVA-LVP utilizes only 25% (144
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Table 1: Comparison with state-of-the-art methods on zero-shot benchmarks. Our LVP compresses
the visual tokens from 576 to 144, 64, or 36 following TokenPacker (Li et al.l 2024c). * denotes
reproduction results on Ascend 910B and ? represents the multi-level language-guide visual projector.

Method LLM Res. #Token TPS|VQAT OCRB DocVQA[MMB MMMU MME MM-Vet|VQA" VizWiz GQA [POPE
MobileVLM V2 (Chu et al.}|2024] MLLaMA-2.7B 336 144 26.7| 57.5 - - 577 - 1441/- - - - 61.1 | 84.7
Shikra (Chen et al.{2023b} Vicuna-13B 224 256 27| - - - 58.8 - - - 774 - - -
Qwen-VL|Bai et al.|(2023b] Qwen-7B 448 256 12.5| - - 65.1 382 - - - 788 352 593| -
TokenPacker (Li et al.||2024c) Vicuna-7B 336 144 254| 569 286 592 65.1 31.7 1478/- 33.0 779 520 619 870
DeCo (Yao et al.[[2024a} Vicuna-7B 336 144 28.3| 56.2 - - - - 1373/- - 740 49.7 541 | 859
Qwen-VL-Chat|Bai et al. (2023b} Qwen-7B 448 256 12.5| - - 62.6 60.6 - 1488/- - 782 389 575| -
LLaVAL.5 (Liu et al.|[2023a}* Vicuna-7B 336 576 49| 573 291 58.7 67.7 303 1370/294 322 784 500 620 87.3
LLaVA1.5-LVP* Vicuna-7B 336 144 24.2| 58.9 317 59.7 673  30.6 1495304 34.5 792 531 62.5| 88.0
LLaVAL.5 (Liu et al.||2023a}* Vicuna-13B 336 576 1.8 | 59.7 320 60.0 683 310 1475310 36.5 814 549 643 | 87.0
LLaVA1.5-LVP* Vicuna-13B 336 144 83| 60.0 327 60.5 68.6 315 1480/305 35.3 816 562 652 | 879
Fewer Tokens Setting
InstructBLIP (Dai et al.{2023)} Vicuna-7B 224 64 28.8| 50.1 - - 36.0 - - 26.2 - 345 492 -
InstructBLIP (Dai et al.|2023} Vicuna-13B 224 64 129] 50.7 - - - - - 25.6 - 334 495| -
TokenPacker (Li et al.||2024c) Vicuna-7B 336 64 25.3| 554 269 58.0 64.1 30.5 1435/- 317 772 507 61.1] 86.3
TokenPacker (Li et al.||2024c) Vicuna-13B 336 64 117 572 292 59.5 662 320 1500/- 342 781 529 620 873
LLaVAL.5-LVP* Vicuna-7B 336 64 249| 560 275 582 657 302 1452/300 329 779 522 618 872
LLaVA1.5-LVP* Vicuna-7B 336 64 249| 57.8 306 59.0 67.0 314 1477/303 344 79.2 538 63.6 | 87.5
LLaVA-PruMerge (Shang et al.}|2024} ~ Vicuna-7B 336 32  38.8| 56.0 - - 60.9 - 1350/— - 72.0 - - 1763
LLaVA-PruMerge (Shang et al.{2024)  Vicuna-13B 336 32 16.7| 584 - - 623 - 1428/ - 72.8 - - 78.5
TokenPacker (Li et al.||2024c) Vicuna-7B 336 36 39.0| 537 249 56.3 628 289 1377/~ 29.6 750 502 59.6 | 862
TokenPacker (Li et al.|2024c} Vicuna-13B 336 36 16.4| 57.0 284 58.6 662 315 1446/ 34.1 763 539 60.7| 86.5
LLaVA1.5-LVP* Vicuna-7B 336 36 36.4| 540 255 57.0 63.6 294 1400/290 31.0 759 516 60.6 | 86.5
LLaVA1.5-LVP* Vicuna-13B 336 36 15.8| 57.8 298 59.3 669 314 1473/299 343 787 535 61.8| 874

vs. 576) visual tokens but improves the performance by 1% (59.7% vs. 58.7%) and 0.5% (60.5%
vs. 60.0%) compared to the vanilla LLaVA. Compared with the latest method DeCo (Yao et al.}
20244) and TokenPacker (Li et al.l 2024c), our LVP achieves 2.7% (58.9% vs. 56.2%) and 2% (58.9%
vs. 56.9%) improvements on VQAT, demonstrating the effectiveness of our LVP. LLaVA-LVP also
achieves the promising results on the comprehensive benchmarks. For instance, LLaVA-LVP-7B gains
the performance improvements by 2.3% (34.5% vs. 32.2%) on MM-Vet 3.1% (53.1% vs. 50.0%)
on VizWiz, 2.5% (62.5% vs. 62.0%) on GQA, and 0.7% (88.0% vs. 87.3%) on POPE compared to
vanilla LLaVA-7B. As for the 13B model, LLaVA-LVP obtains the following improvements against
LLaVA: 0.3% (68.6% vs. 68.3%) on MMB, 1.3% (56.2% vs. 54.9%) on VizWiz, 0.2% (81.6% vs.
81.4%) on VQA"2, 0.9% (65.2% vs. 64.3%) on GQA, 0.9% (87.9% vs. 87.0%) on POPE. The reason
for the above results is the visual tokens outputted by the linear projector in vanilla LLaVA1.5 are
redundant, causing inefficient learning on important visual features. Our LLaVA-LVP directly inputs
the important visual tokens aligned with the text tokens into LLM, which can naturally improve
learning efficiency. Moreover, LLaVA1.5-LVP surpasses the previous methods, e.g., Qwen-VL and
DeCo. LLaVA1.5-LVP exceeds the Qwen-VL-Chat on four benchmarks with fewer visual tokens and
each benckmark all gains over 2% performance improvement. Compared to the recent method DeCo,
LLaVA1.5-LVP displays significant performance advantages. For instance, LLaVA1.5-LVP enhances
the performance metrics by 3.4% (53.1% vs. 49.7%) on VizWiz and 5% (62.5% vs. 57.5%) on GQA.
It should be noted that Qwen-VL and DeCo utilize more training data than LLaVA1.5-LVP.

Fewer visual tokens comparison. To further verify the effectiveness of our method, we compare
LLaVA1.5-LVP with the previous leading methods under the fewer visual tokens setting. Results are
shown in Table[I] Our LLaVA1.5-LVP achieves the best performance across all benchmarks. For
example, for the 7B model, we achieve better performance by a large margin than the TokenPacker,
which is the latest leading method, on MMB (65.7% vs. 64.1%) and VizWiz (52.5% vs. 50.7%)
datasets with 64 visual tokens. When adopting 36 visual tokens, LLaVA1.5-LVP-7B gets a significant
performance improvement over LLaVA-PruMerge-7B on MMB (63.6% vs. 60.9%) and VQA?
(75.9% vs. 72.0%) datasets. the above methods all focus on selecting the important visual tokens.
However, their visual token selection strategy only depends on the image feature, leading to feature
misalignment between the visual tokens and text tokens. Our LLaVA1.5-LVP chooses the important
visual tokens based on both image and text features, effectively aligning the tokens of two modalities.
The results demonstrate that an effective visual token selection strategy should generate the visual
tokens correlated to text tokens.

High-Resolution. We further evaluate the performance of LVP under the high-resolution setting
and results are shown in Table |Zl Following TokenPacker (Li et al. |2024c), we set the input
resolution to 10881088 and 1344 x 1344. We compare our LVP against the latest MLLM with high
resolution, including OtterHD (L1 et al., |2023a), Sphinx-2k (Lin et al., |2023)), Monkey (L1 et al.,
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Table 2: Performance comparisons with high-resolution approaches on nine benchmarks. The best
results are bold and the second-best results are underlined. * denotes the reproduction results on
Ascend 910B and  represents the multi-level language-guide visual projector. ¥, 7, and * denotes
the scaling factor s = 2, 3, 4 in TokenPacker, respectively. ~ means approximately equal to.

Method LLM Max Res. #Token TPS|VQAT OCRB DocVQA|MMB MMMU MME MM-Vet|VQA" VizWiz GQA [POPE

OtterHD (Li et al.}|2023a) Fuyu-8B  1024x1024 - 0.8 - - - 58.3 - 1294/- 26.3 - - - 86.0
SPHINX-2k (Lin et al.|[2023] LLaMA-13B  762x762 2890 0.4 | 61.2 - - 65.9 - 1471/- 40.2 80.7 449 63.1| 872

UReader (Ye et al.[2023} LLaMA-13B  896x1120 - 0.08] 57.6 - 65.4 - - - - - - - -
Monkey (Li et al.|[2024¢) QWen-7B 896x1344 1792 1.1 - 514 - - - - - 803 612 60.7 | 67.6
TextHawk (Yu et al.|2024) InternLM-7B 1344x1344  — 0.2 - - 76.4 74.6 - 1500/- - - - 64.6 -

LLaVA-UHD (Xu et al.}[2024b]  Vicuna-13B  672x 1008 - 0.1| 67.7 - - 68.0 - 1535/- - 81.7 561 652 89.1
LLaVA-NeXT (Liu et al.{2024a} ~ Vicuna-7B  672x672 2880 0.9 | 64.9 - - 674 358 1519/332 - 81.8 576 - 86.5
LLaVA-NeXT (Liu et al.{2024a)  Vicuna-13B 672x672 2880 0.5 | 67.1 - - 70.0 362 1575/326 - 828  60.5 - 86.2
Mini-Genimi-HD (Li et al.}2024d}  Vicuna-7B  1536x1536 2880 1.0 | 68.4 456*  65.0% | 65.8 36.8  1546/319 41.7% | 80.3* 54.6* - | 86.8*
Mini-Genimi-HD (Li et al.{2024d} Vicuna-13B 1536x1536 2880 0.6 | 70.2 501*  70.0% | 68.6 373 1575/326  51.0% | 81.5% 57.2% - | 87.0%
TokenPacker (Li et al.}[2024c] Vicuna-7B  1088x 1088 ~954% 2.0 | 68.0 452 60.2 674 354 1489/338 42.5% 81.2 547 64.8%| 88.2
TokenPacker (Li et al.}[2024c] Vicuna-13B 1088x 1088 ~954* 13| 69.3 498 63.0 69.5 38.8  1595/356 45.0% 82.0 592 659%| 88.1
TokenPacker (Li et al.}[2024c] Vicuna-13B  1344x 1344 ~1393% 09 | 70.6 521 70.0 68.7 374 1574/350 45.8* 81.7 57.0 65.5%| 88.0
TokenPacker (Li et al.}[2024c] Vicuna-13B 1344x 1344 ~619Y 1.5 | 68.8 470 63.0 69.9 38.2  1577/353 44.2% 81.7 61.0 64.9*%| 87.6
TokenPacker (Li et al.}[2024c] Vicuna-13B  1344x1344 ~347% 20| 684 447 58.0 68.3 369 1577/332 43.9% 812 581 64.0%| 88.0
LLaVAL.5-LVP? Vicuna-7B  1088x1088 954 19| 688 503 61.0 684 362 1582/350 43.1 819 559 652 | 882
LLaVA1.5-LVP* Vicuna-13B 1088x1088 954 13| 69.7 519 64.9 69.9 398 1600/367 45.7 825 604 664 | 88.2
LLaVA1.5-LVP? Qwen2.5-7B 1088x1088 954 2.1 | 71.3 527 68.0 703 403 1633/371 46.4 829 608 669 | 88.3
LLaVA1.5-LVP* Vicuna-13B  1344x1344 1393 10| 71.8 526 72.4 69.5 392 1592/367 46.6 822 603 66.7 | 88.3
LLaVA1.5-LVP* Vicuna-13B  1344x1344 619 14| 692 512 64.5 70.3 395 1595/361 45.2 822 610 66.0| 88.1
LLaVAL.5-LVP? Vicuna-13B  1344x1344 347 23| 69.0 509 61.2 68.5 36.8 1598/349 443 82.0 593 646 | 882
LLaVAL.5-LVP? Qwen2.5-14B 1344x1344 1393 1.1 | 724 533 73.0 715 403 1652/374 47.0 827 613 67.0 | 83

Table 3: Evaluation results of different methods on MMDU. We report the metrics of Creativity (C), Richness (R),
Visual Perception (VP), Logical Coherence (LC), Answer Accuracy (AA), Image Relationship Understanding
(IRU), and the averaged (Avg.) results. Param represents the size of LLM.

Models Param C R VP LC AA IRU Avg.
LLaVal.5-7B (Liu et al.l [2023al) 7B 27.8 28.0 332 430 354 317, 322
Qwen-VL-7B (Bai et al., [2023b) 7B 334 33.6 392 538 43.1 38.1 | 39.3
InternLM-XC2 (Dong et al.|[2024a) 7B 29.7 295 36.2 501 403 352 | 35.6
MiniCPM-v-2.5 (Yao et al.,|2024bl) 8B 270 264 332 489 38.6 322 | 33.0
Deepseek-VL (Lu et al.L[2024) 8B 273 277 312 387 332 300 | 30.8
InternVL-Chat-VT.5 (Chen et al.,|2024al) 26B 312 315 374 526 417 36.1 | 374
LLaVal.5 + MMDU-45k 7B 343 345 367 472 385 355 | 372
LLaVA1.5-LVP + MMDU-45k 7B 347 350 378 49.0 40.0 36.0 ﬁS
InternLM-XC2 + MMDU-45k 7B 456 439 499 64.1 530 487 | 50.1
InternLM-XC2-LVP + MMDU-45k 7B 46.0 444 51.0 65.7 538 49.0 | 51.7

2024¢), Texthawk (Yu et al., [2024), UReader (Ye et al.| 2023)), LLaVA-UHD (Xu et al.| 2024b)),
LLaVA-Next (Liu et al., 2024al), and Mini-Gemini-HD (L1 et al.| 2024d)). Eleven benchmarks, i.e.,
OCR-related VQAT, OCRB, and DocVQA, and comprehensive MMB, MMMU, MME, MM-Vet,
VQAY2, VizWiz, GQA, and POPE, are utilized to perform the overall evaluation. With 619 visual
tokens, our method gets the second-best performance on MMB, MMMU, and VizWiz, superior to
the methods with many visual tokens (e.g. TokenPacker. Mini-Genimi-HD, and LLaVA-NeXT). For
the OCR tasks, our LLaVA1.5-LVP with Qwen2.5-14B achieves state-of-the-art performance on
OCR-related VQAT (72.4%). LLaVA1.5-LVP with Vicuna 13B surpasses the second-base method
TokenPacker by 1.2% (71.8% vs. 70.6%). These results demonstrate that selecting the important
visual tokens effectively is more meaningful than the number of visual tokens for the high-resolution
setting. On the other hand, our approach obtains the best performance at a lower resolution (<
1088 1088). The experimental results validate the effectiveness of our LLaVA1.5-LVP.

Multi-round conversations. We evaluate LVP in the scenario of multi-round conversations and
results are shown in Table 3l InternLM-XC2-LVP establishes the new state-of-the-art results on
each metric. It can be seen that LVP gains 1.6% improvement for LLaVA1.5 (38.8% vs. 37.2%)
and InternLM-XC2 (51.7% vs. 50.1%). LVP improves performance by over 1% in terms of
visual perception and logical coherence. The results demonstrate that LVP works for multi-round
conversations.

Video Benchmarks. We evaluate the effectiveness of LVP under the video task. LVP improves the
model performance on all 11 benchmarks, showing its advantages in the video tasks. LVP gains 1.2%
(47.0% vs. 45.8%) and 1.4% (57.8% vs. 56.4%) for the 0.5B and 7B model on LongVideoBench,
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Table 4: LLaVA-OneVision-LVP performance on video benchmarks. We report the score out of 5
for VideoDetailCaption (VideoDC), VideoChatGPT while other results are reported in accuracy. All
results are reported as 0-shot accuracy. The number of visual tokens fed into LLM in LLaVA-OV
is Zx 196, where Z is the sampled frame per video. The number of visual tokens fed into LLM in
LLaVA-OV-LVP is Zx98.
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VILA-40B |Lin et al.|(2024) 58.0 58.0 - - 679  54.0 - 336 337 60.1/61.1 -

PLLaVA-34B Xu et al.|(2024a) 60.9 - - 58.1 - - - 3.48 - - -
LLaVA-N-Video-34B|Liu et al.|(2024a) | 58.8  49.3 - - 702 51.6 - 334 348 52.0/54.9 50.5

IXC-2.5-7B [Zhang et al. |(2024) 52.8 - 373 69.1 710 344 - 346 373 55.8/58.8 -

LLaVA-N-Video-32B|Liu et al.|(2024a) | 54.3  60.9 65.5 - 713 594 - 359 384 60.2/63.0 -
LLaVA-OV-0.5B 505 268 50.3 455 572 492 442 312 355 44.0/43.5 45.8
LLaVA-OV-LVP-0.5B 51.0 28.0 51.0 463 579 503 44.9 355  3.77 45.9/44.7 47.0
LLaVA-OV-7B 56.6  60.1 64.7 567 794 571 56.9 351 375 58.2/61.5 56.4
LLaVA-OV-LVP-7B 573 610 65.8 57.8 803 583 57.6 370  3.88 59.9/63.0 57.8

Table 5: Evaluation results on different visual projectors. The resolution of the input image is
336x336 and the base model is LLaVA1.5 with Vicuna-7B. We adopt token per second (TPS) to
evaluate the throughput of LLM during inference, measured by a single Ascend 910B. ¥ stands for
the multi-level language-guide visual projector.

Projector #Token TPS | MMB MM-Vet VQA'> GQA POPE VizWiz | Avg.
MLP|Liu et al.[(2023a) 576 49 | 67.7 32.2 78.4 62.0 873 50.0 | 62.9
Average-Pooling 144 283 | 64.6 26.9 76.5 60.2 86.4 51.5 | 61.0
Resampler (Bai et al.,|[2023b) 144 249 63.1 28.9 75.3 58.6 84.8 525 |60.5
C-Abstractor (Cha et al.|[2024) 144 245 65.1 31.8 75.7 60.0 85.1 49.7 | 61.2
Pixel-Shuffle (Chen et al.|[2024a) 144 256| 64.2 29.6 76.5 60.6 853 49.2 | 60.9
LDPv2 (Chu et al.|[2024) 144 255 65.7 28.9 77.8 62.1 86.0 479 | 614
TokenPacker (Li et al.||2024c) 144 254 | 65.1 33.0 71.9 61.8 87.0 52.0 | 62.8
LVP 144 253 | 66.2 333 78.5 62.0 87.8 527 | 634
LVP! 144 242 | 673 34.5 79.2 62,5 88.0 53.1 | 64.1
Average-Pooling 64 29.5| 62.3 27.3 72.9 59.0 85.6 48.2 | 59.2
Resampler (Bai et al.{[2023b) 64 272 | 63.4 29.5 74.0 58.0 83.9 53.2 | 60.3
C-Abstractor (Cha et al.|[2024) 64 269 | 629 29.2 74.4 59.0 85.3 452 | 593
Pixel-Shuffle (Chen et al.|[2024a) 64 28.0 | 63.4 28.3 75.0 594  85.0 47.6 | 59.7
LDPv2 (Chu et al.|[2024) 64 27.5| 64.0 30.8 75.2 60.1 85.8 49.6 | 60.9
TokenPacker (Li et al.|[2024c) 64 253 | 64.1 31.7 71.2 61.1 86.3 50.7 | 619
LVP 64 257 | 649 323 77.2 614 86.8 514 | 623
LVP! 64 249 | 65.7 329 779 618 872 52.2 | 63.0

demonstrating its strength in long video understanding. Besides, LLaVA-OV-LVP-7B achieves better
LLaVA-N-Video-32B on ActNet-QA, EgoSchema, MLVU, NextQA, VideoChatGPT, VideoDC, and
LoneVideoBench, indicating that our LVP is an effective visual projector for video tasks.

4.4 ABLATION STUDY

In this section, we validate the effectiveness of each component of the proposed LVP. All experiments
are conducted on the data as those in LLaVA1.5 and Vicuna-7B are utilized as LLM.

Comparison of visual projectors. We first conduct the comparison experiments between the existing
visual projectors and our LVP. To analyze the inference speed, we adopt the token per second (TPS)
to evaluate the throughput. We adopt the adaptive average pooling as the visual token reduction
operation for the average-pooling. We just replace the MLP layers in LLaVA1.5 with the above visual
projectors for a fair comparison. To analyze the inference speed, we adopt the token per second
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(TPS) to measure the throughput of MLLM. From Table 5] it can be seen that our LVP achieves the
best performance on all benchmarks. For example, when input visual tokens are 144, LVP without
multi-level feature outperforms the latest method TokenPacker on various benchmarks, such as 1.1%
(66.2% vs. 65.1%) performance improvement on MMB and 0.6% (78.5% vs. 77.9%) enhancement
on VQAY2. Compared with the convolution-based method, i.e., Average Pooling, LDPv2, and C-
Abstractor, LVP shows obvious performance advantages, e.g. 2.4% (63.4% vs. 61.0%), 2.0% (63.4%
vs. 61.4%), and 2.2% (63.4% vs. 61.2%) average performance improvement against Average Pooling,
LDPv2, and C-Abstractor. Equipped with multi-level features, our LVP further obtains 64.1% average
performance, superior to the MLP projector, which is the first visual projector that exceeds MLP.
We conclude the reason why LVP surpasses MLP is that the visual tokens outputted by MLP are
redundant, making the model require more training epochs to learn the important features, but our
LVP selects the important visual tokens by the text feature, reducing the useless visual tokens and
improving the learning efficiency. When input visual tokens are 64, our LVP with multi-level feature
obtains 63.0% average performance, on par with MLP (63.0% vs. 62.9%), further indicating the
effectiveness of our visual token selection approach. In terms of TPS, all visual projectors achieve
significant inference speed improvement against MLP. Our LVP achieves the competitive performance
compared to other visual projectors on inference speed.

Integrating into different MLLMs. We
further integrate the proposed LVP into dif-

Table 6: Results of integrating LVP into different
MLLM:s. The input resolution is 336x336.

ferent MLLMs to evaluate the effectiveness Method #Token|VQA™ GQA VQAT OCRB
of our LVP. We conduct the experiments on ~ MiniCPMV-2.6 (Yao etal [2024b}[144 | 83.6 67.3 580 539
MiniCPMV-2.6 Qwen—VL—Chat and Mo- MiniCPMV-2.6-LVP 144 842 689 587 564
. b £ . g

. Qwen-VL-Chat (Bai et al[2023b) [ 144 | 782 566 528 302
bileVLMV?2 and LLM for thre@ models are  Gyen Vi Chat LvP 144 | 792 583 539 326
LLaMA3-8B, Qwen-7B, and Vicuna-7B, re-  MobileVLMv2 (Chu et al.|2024) |144 774 626 437 337
spectively. Results are shown in Table[6] We ~— MobileVEMv2-LVP 1| Y @9 S0

can observe that our LVP achieves a consistent improvement on different MLLMs. For instance, LVP
enhances the performance by 0.6%, 1.6%, 0.7%, and 25 on VQA'?, GQA, VQAT, and OCRB for the
latest MiniCPMV-2.6. The results manifest that LVP can be a versatile visual projector to reduce the
visual tokens while improving the model performance.

Comparison with the peer in Grounding-
DINO. We compare our LVP against the peer
in Grounding-DINO and adopt Vicuna-7B
as LLM to perform the experiment. From
Table [7] it can be seen that LVP achieves

Table 7: Comparison between the peer in Grounding-
DINO and LVP. The input resolution is 336 x336 and
the number of visual tokens fed into LLM is 144.
represents the multi-level language-guide visual pro-
jector.

competitive performance on different bench-  Vemoa TPS[VQA” GQA VQA™ OCRB
marks when compared with the visual pro-  Grounding-DINO (Liu etal.[2023b) [18.7] 783 620 577 300
jector in Grounding-DINO. However, LVP VP : ) S @) B

. . . Grounding-DINO? (Liu et al.|[2023b)|12.1] 79.2 63.1 592 314
gains much faster TPS than the visual projec-  [yp: 22| 192 625 589 317

tor in Grounding-DINO. When applying the
multi-level feature, the gap between two visual projectors in TPS is further widened, demonstrating
that our LVP is better than the visual projector in Grounding-DINO for efficient MLLM. Reasons we
conclude may be that: 1) the deformable attention module integrates the key feature into the visual
tokens, which significantly reduces the redundant feature aggregation as that in the Grounding-DINO.
2) LLM are mainly responsible for the feature interaction between visual features and text features in
MLLMs, weakening the role of the heavy cross-modal decoder in Grounding-DINO.

5 CONCLUSION

We introduce a novel Language-guide Visual Projector (LVP) for efficient MLLM. LVP adopts the
text (instruction) feature as the guidance to select the important visual tokens, effectively reducing
the visual tokens while aligning the visual tokens fed into LLM with text tokens. To make full use
of the features from the different stages of the visual encoder, we further propose a novel multi-
level language-guide visual projector. Experimental results show that LVP achieves state-of-the-art
performance among existing visual projectors. Notably, InternLM-XC2-LVP establishes the best
performance on MMDU benchmark with much fewer visual tokens.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716-23736,
2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023b.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek 1lm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and Byungseok Roh. Honeybee: Locality-enhanced
projector for multimodal llm. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13817-13827, 2024.

Jun Chen, Deyao Zhu, Xiaoqgian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023a.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal Ilm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023b.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024a.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185-24198, 2024b.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
Zhang, Bo Zhang, Xiaolin Wei, et al. Mobilevlm: A fast, reproducible and strong vision language
assistant for mobile devices. arXiv preprint arXiv:2312.16886, 2023.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming
Hu, Xinyang Lin, Bo Zhang, et al. Mobilevlm v2: Faster and stronger baseline for vision language
model. arXiv preprint arXiv:2402.03766, 2024.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang
Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-form text-image
composition and comprehension in vision-language large model. arXiv preprint arXiv:2401.16420,
2024a.

11



Under review as a conference paper at ICLR 2025

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, et al. Internlm-xcomposer2-4khd: A pioneering
large vision-language model handling resolutions from 336 pixels to 4k hd. arXiv preprint
arXiv:2404.06512, 2024b.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 6904—-6913, 2017.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608-3617,
2018.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700-6709, 2019.

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
high-resolution multi-modality model. arXiv preprint arXiv:2311.04219, 2023a.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal 1lms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023b.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694-9705, 2021.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730-19742. PMLR, 2023c.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22195-22206, 2024b.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10965-10975, 2022.

Wentong Li, Yuqgian Yuan, Jian Liu, Dongqi Tang, Song Wang, Jianke Zhu, and Lei Zhang. Token-
packer: Efficient visual projector for multimodal llm. arXiv preprint arXiv:2407.02392, 2024c.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
arXiv preprint arXiv:2403.18814, 2024d.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023d.

12



Under review as a conference paper at ICLR 2025

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. Monkey: Image resolution and text label are important things for large multi-modal
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26763-26773, 2024e.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
pre-training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 26689-26699, 2024.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wengqi
Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
multi-modal large language models. arXiv preprint arXiv:2311.07575, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024b.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023c.

Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng Yin, Cheng-lin Liu, Lianwen Jin,
and Xiang Bai. On the hidden mystery of ocr in large multimodal models. arXiv preprint
arXiv:2305.07895, 2023d.

Ziyu Liu, Tao Chu, Yuhang Zang, Xilin Wei, Xiaoyi Dong, Pan Zhang, Zijian Liang, Yuanjun Xiong,
Yu Qiao, Dahua Lin, et al. Mmdu: A multi-turn multi-image dialog understanding benchmark and
instruction-tuning dataset for Ivlms. arXiv preprint arXiv:2406.11833, 2024c.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
benchmark for very long-form video language understanding. Advances in Neural Information
Processing Systems, 36:46212-46244, 2023.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqga: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200-2209, 2021.

Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan Banarse,
Skanda Koppula, Mateusz Malinowski, Yi Yang, Carl Doersch, et al. Perception test: A diagnostic
benchmark for multimodal video models. Advances in Neural Information Processing Systems, 36,
2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm,
github.io/blog/gqwen2.5/.

13


https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.

8748-8763. PMLR, 2021.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
reduction for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317-8326, 2019.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding. arXiv preprint arXiv:2407.15754, 2024.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9777-9786, 2021.

Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava: Parameter-free
llava extension from images to videos for video dense captioning. arXiv preprint arXiv:2404.16994,
2024a.

Ruyi Xu, Yuan Yao, Zonghao Guo, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu,
Maosong Sun, and Gao Huang. Llava-uhd: an Imm perceiving any aspect ratio and high-resolution
images. arXiv preprint arXiv:2403.11703, 2024b.

Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj
Prabhu, Yutong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A family of open large multimodal
models. arXiv preprint arXiv:2408.08872, 2024.

Linli Yao, Lei Li, Shuhuai Ren, Lean Wang, Yuanxin Liu, Xu Sun, and Lu Hou. Deco: Decoupling
token compression from semantic abstraction in multimodal large language models. arXiv preprint
arXiv:2405.20985, 2024a.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024b.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. Ureader: Universal ocr-free visually-situated language understanding
with multimodal large language model. arXiv preprint arXiv:2310.05126, 2023.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
arXiv preprint arXiv:2310.07704, 2023.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,

and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

14



Under review as a conference paper at ICLR 2025

Ya-Qi Yu, Minghui Liao, Jihao Wu, Yongxin Liao, Xiaoyu Zheng, and Wei Zeng. Texthawk:
Exploring efficient fine-grained perception of multimodal large language models. arXiv preprint
arXiv:2404.09204, 2024.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-qa:
A dataset for understanding complex web videos via question answering. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 9127-9134, 2019.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
standing and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9556-9567, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11975-11986, 2023.

Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language
model supporting long-contextual input and output. arXiv preprint arXiv:2407.03320, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
understanding. arXiv preprint arXiv:2406.04264, 2024.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

15



Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Implementation of attention map visualization. In this section, we describe the implementation
of attention map visualization in detail. We adopt an approach similar to R-GAE in DeCo (Yao
et al.| 20244a). Specifically, we first construct a Text-to-Visual map M, € RN1xNq M, is initialized
to an identity matrix. For each layer in the projector, an attention map is obtained by utilizing the
gradients to average across the attention heads for the resampler (Bai et al., [ 2023b) and LVP. For
Linear projector and LDPv2 (Chu et al.}[2024), an attention map is obtained by adopting the gradients
of each layer. For generation time step ¢, we can propagate the M; from the projector’s first layer to
its last layer. Finally, we average the step ¢ and average the M, to get the final attention map.

Implementation of high-resolution. We take the high-resolution image processing in LLaVA-
HD (Liu et al., 2023a)) as our high-resolution image processing method. Given a high-resolution
image, LLaVA-HD first splits the image into different patches and each patch is fed into the visual
encoder. The visual encoder outputs a sequence of visual tokens. We use P/Y; to represent the
sequence of visual tokens and NN is the number of patches. Besides, LLaVA-HD resizes the original
high-resolution image to the size the visual encoder can process. Here we use Pp the denote the the
visual token of the high-resolution image. Finally, LLaVA-HD concatenate the PY, and Py. We use
Pc to stand for the concatenated visual tokens. Pc is the visual input of our LVP. We use the text
feature as a guide to select the Top IV, (/V, is much smaller than the number of Pr) visual tokens

from Pc based on the similarity between visual features and text features.

A.2 ADDITIONAL ABLATION STUDY

In this section, we conduct additional ablation studies to validate the effectiveness of the component
of LVP. All experiments are performed as those in LLaVA1.5 with Vicuna-7B as LLM.

Size of the text encoder. We compare our Table Al: Comparison between bert-base and our
lightweight text encoder with bert-base (De{ lightweight text encoder.

vlin, 2018) and the results are in Table[All  Vmod TPS[VQA” GQA VQAT OCRB
From Table [AT] our LVP obtains a signif-  TvPBert (Deviin|2018) [115| 783 622 579 314
icant TPS advantage over bert-base while  LvP 253| 785 620 580 298
achieving competitive performance against ~ LVP!-Bert (Devlin|[2018)[9.9 | 79.5 624 593 330
bert-base. The reason may be that LVP is  LVP! 242 792 625 589 317

responsible for selecting important visual tokens not extracting text features. Therefore, adopting a
heavy text encoder does not bring obvious improvement.

Influence of the deformable attentiop mod- Table A2: Influence of the deformable attention mod-
ule. Table[A2 demonstrates the effectiveness ule. DF denotes the deformable attention module and
of the deformable attention module in LVP.  RA represents the regular attention.

We can observe that the deformable atten- Method TPS|VQA?> GQA VQAT OCRB
tion module brings consistent performance LVP w/oDF [26.0| 754 595 557 269
improvement. The results show that com- LVPwRA (250( 780 617 573 291
pressing the visual features into selected vi- LVPwDF |253| 785 620 580 298

LVP? w/o DF[25.0| 77.4 603 56.1 275
LVPwRA [239| 78.8 62.0 58.2 315
LVP wDF (242 792 62.5 58.9 317

sual tokens is a necessary step for an effective
visual projector, which can avoid the loss of
visual features.

Influence of the size of the cross-modal fea- Table A3: Influence of the size of the cross-modal
ture enhancement module. We further ab- feature enhancement module. Ny, represents the num-
late the size of the cross-modal feature en- ber of blocks in the cross-modal feature enhancement
hancement module. Here, the size denotes module.

the number of blocks in the cross-modal fea- TR, Tvoa?  Goa VOAT  OCRB
ture enhancement module. We treat the com- e 1 1 1785 62.0 530 208
bination of image-to-text attention and text- e | 2 [783 62.1 58.0 296
to-image attention as a block. Results are LVP | 4 |786 62.0 58.2 301
shown in Table[A3] As the number of blocks LVP | 6 |787 62.1 57.8 302

increases, the model performance is not im-
proved significantly. For instance, the performance of Ny = 1 is similar to that of Nz = 6 (the setting
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in Grounding-DINO). However, the TPS of Ny, = 1 and Ny, = 6 are 25.3 and 19.4, respectively.
Therefore, we set Nz, to 1 considering the performance and TPS.

Comparison with the peer in LXMERT. Table A4: Comparison between the peer in LXMERT.
We compare the cross-modal feature en- The input resolution is 336x336 and the number of
hancement module (CFE) with the peer in visual tokens fed into LLM is 144. ! represents the
LXMERT. From Table [A4] we can observe multi-level language-guide visual projector.

that our CFE achieves the similar perfor- Method TPS|VQAZ _GQA __ VQAT _ OCRB
mance Compared to LXMERT HOWeVer, LXMERT{Tan&BansaI]ZOIQI 20.2(78.7 61.8 57.6 299

LVP 25.3|78.5 62.0 58.0 298

TPS of CFE is much better than the peer in | xyggrt 1511790 62.6 58 319
LXMERT. Results demonstrate that CFE is LVPF 242|792 62.5 58.9 317

enough for our method.

Ablation study on N,. We ablate the influ- Table A5: Ablation study on the visual tokens fed into
ence of IV, the number of visual toekns fed LLM N, .

into LLM. As shown in the Table[A3] we can Method |[VOA _GOA voAT  OCRB

see that when IV, is less than 144, model per- 36 |752 60.6 55.8 264

formance improves as NV, increases. How- o4 772 614 571 283
128 |77.7 61.5 575 288

ever, when N, is larger than 144, the im- o oo o o8
provement is limited. N, = 256 is better 256|788 624 557 306
than Nq = 324 on VQAV2 and GQA We 324 |78.4 62.1 587 309
attribute to that when N, is enough large,
visual tokens fed into LLM are redundant.

Influence of SigLIP and Qwen2.5. In this  Table A6: Results of SigLIP (Zhai et al.,[2023) and
section, we ablate the effectiveness of SigLIP- - Qwen2.5 (Qwen Team| [2024). The normal resolution
ViT-L and Qwen2.5-7B. Results are shown in  is 336 x 336 and high-resolution is 1088 x 1088. The

the Table[A6] Both SigLIP and Qwen2.5-7B N, of normal resolution and high resolution are 144
improve the model performance. It should and 954, respectively.

be noted that Qwen 2.5-7B is more effec- Vooaoaa] LM [voa?  Goa VOAT — OCRB
tive. Compared with Vicuna-7B, Qwen2.5- CLIP | Vicuna-7B |78.5 62.0 580 298
7B obtains 0.9% (79.4% vs. 78.5%), 1.1% SigllP | Vicuna-7B | 788 623 385 302
(63.1% vs. 62.0%), 0.8% (58.8% vs. 58.0%),  guto |qwansm|ros @5 s aw
and 13 (311 vs. 298) improvement on four High-resolution Setting

benchmarks under the normal input resolu- CLIP | Vicuna-7B |81.0 642 68.0 484
tion settings, respectively. In the scenario el Q‘S‘;‘g‘:fB o i o o
of high-resolution, Qwen2.5-7B and SigLIP SigLlP | Qwen2.5-7B |81.8 4.9 9.0 11

achieves the consistent improvement.

A.3 RESPENTATION OF VISUAL TOKENS

In this section, we discuss the representation of visual tokens fed into LLM. We still take the Vicuna-
7B as the LLM. In order to facilitate the visualization, we set the input resolution to 112 x 112. The
number of visual tokens fed into the LLM of the linear projector, resampler, LDPv2, and our LVP is
64, 16, 16, and 16, respectively. The visualization results are displayed in Figure[AT] We can see that
the concept of "wave" is allocated only one visual token (red box), causing the model to focus on the
"surfer". However, from the attention map of the linear projector, we can find that "wave" should be
allocated several visual tokens. As for our LVP, it can be observed that the proportion of the visual
tokens representing "wave" is much higher than that of the resampler and LDPv2, effectively aligning
the visual tokens and input text. The visualization results are in line with our motivation.

A.4 QUALITATIVE RESULTS

In this section, we display the qualitative results of our LVP. Here, we adopt LLaVA1.5 with Vicuna-
7B. We visual the output of TokenPacker and LVP in Figure [A2] including two
tasks: VQA and OCR. It can be seen that the output of our LVP is more accurate than the output of
TokenPacker, demonstrating the superiority of our LVP.
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Figure Al: The attention map of visual tokens of different visual projectors. The input text is "What
is happening with the surfer and the wave in the image?".
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User: Describe the image in detail

User:

Describe the image in detail

TR

LLaVA-LVP

In this image, we see a group of people gathered around a dirt road, engaged in
3 lively game of frisbee. The person at the center of the action is a young boy
who has just thrown the white frisbee towards another individual standing on
the other side of the road. This person, dressed in a blue shirt and white skirt,
appears to be waiting for the frisbee The setting is a rural area with trees and
buildings with white roofs visible in the background. The dirt road where they're
playing suggests that it's a quiet, peaceful place away from the hustle and bustle
of city life. Despite the simplicity of their surroundings, the joy and excitement
of the game can be felt through the image.

Tokenpacker

In the heart of a rural setting, a group of children and adults gather on a dirt
road. The children, dressed in vibrant clothing, are engaged in a lively game of
frisbee. One child, in particular, is seen throwing the frisbee with enthusiasm.On
the right side of the image, an adult woman stands out. She's casually dressed in
a white shirt and white skirt, her attention focused on the children's game. Her
stance suggests she might be supervising or simply enjoying the moment The
backdrop to this scene is a quaint white building with a red roof, adding a rustic
charm to the overall setting. The building's location suggests it might be a
community center or a local landmark.The image captures a moment of joy and
camaraderie among the group, set against the backdrop of a simple yet beautiful
rural landscape.

LLaVA-LVP

This image captures a scene in a kitchen, dominated by a white sink nestled into
a wooden cabinet. The sink, pristine and clean, contrasts sharply with its
surroundings. Above it, a faucet stands ready for use, while below it, a garbage
disposal system waits to do its dutyTo the left of the sink, a dishwasher stands
closed, its surface gleaming under the light. On the right, a cabinet door hangs
open, revealing a glimpse of the chaos within - a jumble of dishes and bottles,
hinting at a busy day in the kitchen.Scattered across the floor beneath the sink,
towels lie in disarray, adding to the sense of disorder. Above the sink, a window
punctuates the wall, offering a view of the world outside. The overall scene
paints a picture of a kitchen in need of some tidying up after a busy day of
cooking and cleaning.

Tokenpacker

The image captures a scene of a kitchen in the midst of a remodel. The central
focus is a white sink, which is nestled within a wooden countertop. The
countertop, with its light brown hue, contrasts with the white sink and
backsplash.Beneath the sink, a metal pipe runs horizontally across the floor,
serving as a conduit for the plumbing. This pipe is not just functional but also
hosts an array of items that add character to the scene. A green rag lies atop the
pipe, perhaps used in cleaning or cooking. Nearby, a white towel hangs neatly,
ready for use.The floor beneath these fixtures is tiled, providing a clean and
bright backdrop to the scene. On the right side of the image, a can of soda
stands upright, its vibrant color adding a pop of contrast to the otherwise
neutral tones of the room.

User: Where is the Falcon Street exit going to ?
LLaVA-LVP

Crows Nest

Tokenpacker

North Sydney

Ground Truth: Crows Nest

Figure A2: Visual comparison between TokenPacker and our LVP. We use red color to represent the
accurate output and blue to denote the false output.
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