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ABSTRACT

Visual projector plays a crucial role in bridging the visual model and the large
language model (LLM) in modern multimodal LLM. Most mllms use a simple
MLP to project all visual features into visual tokens, causing a heavy computational
burden and redundant visual tokens. In order to solve this problem, some efficient
visual projectors, e.g., the resampler or the adaptive pooling, are developed to
reduce the visual tokens. However, they only reduce the visual tokens based on
the image feature, leading to the feature misalignment between visual tokens and
text tokens. In this paper, we present a novel Language-guidance Visual Projector
(LVP), where the text feature serves as a guide to selecting the important visual
tokens. Specially, we first adopt a lightweight text encoder to extract the text
feature. Then, a lightweight cross-modal feature enhancement module is proposed
to enhance the cross-modal feature alignment. Finally, we select the important
visual tokens according to the feature similarity between visual tokens and text
tokens and apply a deformable attention module to integrate the visual features
from the visual encoder into the selected visual tokens. We further propose a
multi-level language-guidance visual projector, which selects the visual tokens
from different stages of the visual encoder. Extensive experiments demonstrate that
our LVP compresses the visual tokens by more than 75% while achieving the best
performance among the existing visual projectors. For instance, LLaVA1.5-LVP
with Qwen2.5-14B obtains 72.4% accuracy on VQAT, realizing the state-of-the-art
result. The code and the model will be released.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023b;a; Achiam et al., 2023; Bai et al., 2023a)
have made significant progress in recent years, promoting the rapid development of Multimodal
Large Language Models (MLLMs). The main idea for MLLMs is to employ a visual projector to
bridge the visual model and the LLM and train the visual projector using multimodel data while
keeping the parameters of the visual model and LLM. Such a simple paradigm enables MLLMs to
preserve and utilize the pre-training knowledge of visual model and LLM, making MLLMs show
a strong capability in vision-language reasoning (Liu et al., 2024b), understanding (Alayrac et al.,
2022), and interaction capabilities (You et al., 2023).

The efficiency of MLLM gains more and more attention due to the limit of compute resource in
the practical use. The recent works (Li et al., 2023c; 2024c) show that LLM dominates the major
computational resource and the number of input tokens directly affects the efficiency of LLM.
Meanwhile, the number of visual tokens is much more than the number of text tokens in MLLMs.
Reducing the number of visual tokens outputted by the visual projector is an effective way to improve
efficiency. Besides, the quality of visual tokens affects the overall performance of MLLMs. Therefore,
a visual projector, generating fewer but better visual tokens, is important for efficient MLLM.

Current research on the visual projector can be summarized into two lines: learnable query-based and
linear projector-based. As for the learnable query-based methods, Q-Former (Li et al., 2023c) and
resampler (Bai et al., 2023b) are the typical work. Both of them utilize learnable queries to squeeze
and extract the visual features. However, DeCo (Yao et al., 2024a) demonstrates the training efficiency
of the resampler and Q-former is low when training data is limited. As for the linear projector-based
methods, such as MLP, they map the visual contexts into visual tokens without squeezing the visual
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Figure 1: Visual projector comparison. (a) Linear projector, e.g., MLP. (b) Resampler. (c) Convention-
based or transformer-based projector such as LDP and TokenPacker. (d) Our LVP. LVP adopts the
language knowledge to select the important visual tokens, but existing visual projectors only depend
on image features to reduce the visual tokens.

features. Nevertheless, this way generates numerous visual tokens, leading to a heavy computational
burden. In order to squeeze the visual features while keeping visual information. Recent studies, e.g.
LDP (Chu et al., 2023), Abstract (Cha et al., 2024), and DeCo (Yao et al., 2024a), use the convolution
or average pooling to reduce the visual tokens and enhance the local feature. These methods inevitably
lose the finer detailed features. Mini-Gemini (Li et al., 2024d) and TokenPacker (Li et al., 2024c)
adopt the transformer or the cross-attention module to enrich the detailed visual information. As
depicted in Figure 1, existing visual projectors focus on generating representative visual tokens only
by the image feature, ignoring that inputting the visual tokens aligned with text tokens into LLM can
help MLLM learn multimodal features better.

In this paper, we present a novel visual projector, named Language-guide Visual Projector (LVP). The
main idea for LVP is utilizing the text feature as an guidance to decide which visual tokens should be
input into LLM. Specifically, LVP employs a lightweight text encoder to extract the text feature. Then,
we design a cross-modal feature enhancement module, including image-to-text and text-to-image
attention, to improve the cross-modal feature alignment. Finally, LVP uses the text feature to select
the important visual tokens and applies a deformable attention module to integrate the key visual
features into the selected visual tokens. Such the visual token selection guided by text feature not
only aligns the visual tokens with text tokens but also prompts the computational efficiency during
the text generation phase of MLLM. Furthermore, to obtain fine-grained visual features, we propose
a multi-level language-guide visual projector to select important visual tokens from different stages
of the visual encoder. Extensive experiments are conducted across various multimodal benchmarks to
evaluate the effectiveness of our approach. Notably, LLaVA1.5 with our LVP only uses 25% visual
tokens (144 vs. 576) and achieves state-of-the-art performance (see Table 1).

Our main contributions are summarized as follows: 1) We present a novel Language-guide Visual
Projector (LVP) to select the visual tokens by the text feature, effectively aligning the visual tokens
and text tokens. To the best of our knowledge, we are the first to adopt the language knowledge
to reduce the number of visual tokens. 2) We further propose a multi-level language-guide visual
projector to generate the visual tokens from different stages of the encoder, which can capture
fine-grained and global features at the same time. 3) Experimental results demonstrate that LVP
significantly reduces the visual tokens and obtains consistent performance improvement.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Early efforts (Li et al., 2021; Tan & Bansal, 2019) construct a series of architectures for Multimodal
Large Language Models (MLLMs), consisting of a visual encoder and a language model. With the
rapid development of LLM (Touvron et al., 2023b;a; Bai et al., 2023a; Achiam et al., 2023; Bi et al.,
2024), many studies (Li et al., 2024a; Bai et al., 2023b; Chen et al., 2023a) focus on infusing visual
features into LLM with a visual projector. LLaVA (Li et al., 2024a) feeds all visual tokens into
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LLM and trains the model via visual instruction tuning, enabling the LLM to comprehend the image
features and generate the correct response. MobileVLMV2 (Chu et al., 2024) proposes a 1B/3B
model to benefit the resource-constrained scenarios. Qwen-VL (Bai et al., 2023b) pretrains the model
with a large-scale dataset, effectively scaling up the MLLMs. Recent MLLMs, e.g., InternVL (Chen
et al., 2024b) and MiniCPMV (Yao et al., 2024b), adopt an effective visual projector to enhance the
model efficiency, indicating the visual projector is a significant topic to be investigated.

2.2 VISUAL PROJECTOR IN MLLMS

Modern MLLMs adopt the visual projector to connect the visual encoder and LLM. Early works,
such as the linear projector in LLaVA (Li et al., 2024a) and MiniGPT2 (Chen et al., 2023a), preserve
all visual features and map them into the language space via the fully connected layer. This approach
significantly increases the computational burden due to the generation of numerous visual tokens.
To reduce training resources, some efficient visual projectors have been proposed. Q-former (Li
et al., 2023c) and resampler (Bai et al., 2023b) utilize a group of learnable queries to squeeze the
visual features. Although such a learnable architecture reduces training resources, it underperforms in
scenarios with limited training data. An alternative research direction uses convolution or pooling to
reduce visual tokens. Abstractor (Cha et al., 2024) and LDP (Chu et al., 2023) leverage convolution
layers to extract visual features and output compressed visual tokens. DeCo (Yao et al., 2024a)
demonstrates the adaptive average pooling layer is an efficient way to compress the visual token.
However, these methods neglect the fine-grained information, hurting the visual reasoning capabilities
of MLLMs. TokenPacker (Li et al., 2024c) and MiniGemini (Li et al., 2024d) address this by
employing cross-attention layers to inject fine-grained information from high-resolution images into
compressed visual tokens. Nevertheless, their approaches focus on local regions, overlooking the
global information, leading to suboptimal performance in learning global semantic features. Other
approaches, such as Pixel-Shuffle (Chen et al., 2024a) and nearby concatenation (Dong et al., 2024b),
directly permute the length dimension and the channel dimension, distorting intrinsic characteristics.
In contrast to the existing methodologies, our LVP treats the text feature as an effective guide to select
the important visual tokens.

3 METHOD

3.1 OVERVIEW

The goal of the Multimodal Large Language Model (MLLM) is to generate the response corresponding
to the input instruction. In this paper, MLLM receives the image and text (instruction) as the inputs
and outputs the text (response) in an autoregressive manner. Formally, the multimodal input token
consists of two types: image token Ximg and text token Xtext. Then, the large language model
(LLM) generates the response Y = {gi}Li=1 conditioned on the Ximg and Xtext, where L is the
number of tokens in the response. The process of multimodal generation can be formulated by

p(Y|Ximg, Xtext) =

L∏
i=1

p(gi|Ximg, Xtext, g<i). (1)

where p denotes the conditional probability.

Model architecture. The architecture of MLLM is composed of three parts: visual encoder, visual
projector, and LLM. The visual encoder outputs a sequence of image features. The visual projector
translates the image features into a sequence of image tokens that LLM can interpret. LLM processes
the text token and image token and generates the response autoregressively. In MLLM, the efficiency
is mainly affected by the number of visual tokens fed into LLM. To improve the efficiency of MLLM,
effective visual projectors are developed to reduce the visual tokens.

3.2 MOTIVATION

The role of the visual projector is to bridge the visual encoder and LLM. As described in (Li et al.,
2023c; Cha et al., 2024; Li et al., 2024c), the number of visual tokens affects the overall efficiency
of MLLM. Considering the scenarios of processing multiple images and large images, numerous
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Figure 2: Comparison of attention map of different visual projectors. We visualize the attention map
of input visual tokens of LLM. The implementation of attention map visualization is presented in
Appendix A.1.

visual tokens are unbearable for MLLM. Improving the efficiency and scalability of MLLM is highly
required. This requirement makes recent MLLM (Bai et al., 2023b; Zhu et al., 2023; Xue et al., 2024)
prefer to adopt the resampler or convolution-based projector instead of the linear projector.

As shown in Figure 1, existing methods reduce the visual tokens only depending on the image feature.
However, we argue that visual tokens fed into LLM should align with the text tokens. To verify
this point, we visualize the attention map of visual tokens outputted by different visual projectors in
Figure 2. We can observe that resampler (Li et al., 2023c) and LDPv2 (Chu et al., 2023) only focus
on the feature of the surfer, ignoring the feature of the wave. From the attention map of the linear
projector, we can see that the features of both wave and surfer should be considered. The reason can
be attributed to the fact that the pre-training task of the visual encoder usually focuses on learning
the features of foreground objects in the image, such as the surfer in this picture, but this causes the
visual projector to ignore the important background information contained in the text (instruction),
resulting in misalignment between the visual tokens and the text tokens.

Stemming from the above analysis, we propose a novel Language-guide Visual Projector (LVP)
to align the visual tokens and text tokens. LVP follows two key principles: 1) effective alignment
between visual tokens and text tokens. 2) flexibility over the number of visual tokens. Our LVP
can not only determine the number of the visual tokens fed into LLM flexibly to improve the
computational efficiency but also boost the overall performance of MLLM by aligning the visual
tokens and text tokens.

3.3 LANGUAGE-GUIDE VISUAL PROJECTOR

Architecture. The overall architecture of our MLLM is shown in Figure 3. LVP consists of three
parts: text encoder, cross-modal feature enhancement, and language-guide visual token selection.
Specifically, given an input text (instruction) and an image, the visual encoder outputs the image
feature XI ∈ RNI×D, where NI and D denote the number of image tokens and dimension of
XI . Text encoder is composed of two transformer layers and each transformer layer contains a
self-attention layer and a feed-forward network (FFN). Experimental results (see Table A1 in the
Appendix) demonstrate that such a lightweight text encoder is enough for text feature extraction.

Cross-modal feature enhancement. Inspired by GLIP (Li et al., 2022), LXMERT (Tan & Bansal,
2019), and Grounding-DINO (Liu et al., 2023b), we introduce a lightweight Cross-modal Feature
Enhancement module (CFE) to prompt the efficiency of cross-modal feature learning. CFE includes
an image-to-text attention module and a text-to-image attention module. As depicted in Figure 3, the
process of the image-to-text attention module can be formulated by Xto = Attention(XI , XT , XT ),
where Xto is the enhanced text feature, XT ∈ RNT×D is the text feature from the text encoder,
NT is the number of text tokens, and Attention(Query,Key, V alue) represents a standard cross-
attention module. In the same way, the process of the text-to-image attention module can be expressed
by Xio = Attention(Xto, XI , XI), where Xio ∈ RNI×D stands for the enhanced image feature.
LXMERT adopts a similar cross-modal encoder to enhance cross-modal feature learning. Our CFE
differs from it in two aspects: 1) Image-to-text attention and Text-to-image attention in LXMERT
are parallel, while our CFE is a sequential structure. 2) The cross-modality encoder in the LXMERT
structure is much heavier than CFE. Experimental results (see Table A4 in the Appendix) show
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Figure 3: The overall framework of the MLLM with our LVP as the visual projector. LVP consists of
three components: the lightweight text encoder to extract the text feature, the cross-modal feature
enhancement module, including image-to-text attention and text-to-image attention, to enhance the
cross-modal feature, and the language-guide visual token selection to reduce the visual tokens.

that such a lightweight structure is enough for our metohd, since LLM is mainly responsible for
cross-modal feature interaction in MLLM.

Language-guide visual token selection. Our Language-guide visual token selection contains two
components: visual token selection and a deformable attention module. The process of visual token
selection is

MNq
= TopNq

(Max−1(
XioX

T
to

∥Xio∥∥XT
to∥

)). (2)

where TopNq
denotes the operation to select the top Nq visual tokens. The operation Max−1

represents the Max operation along the −1 dimension, ∥ · ∥ is the L2 norm, and the symbol T
stands for the matrix transposition. Directly inputting the selected visual tokens causes the loss of
visual features, we adopt a deformable attention module to enrich the feature representation of the
selected visual tokens. Specifically, we take the selected visual tokens MNq as the query and Xio

as the key and value. Then we input them into a deformable attention module (Zhu et al., 2020) to
integrate the key visual features into the selected visual tokens. This process can be formulated by
Ximg = DeformAttn(Xio,MNq

,MNq
). Here, DeformAttn(Query,Key, V alue) denotes the

deformable attention.

Comparison with token selection in Grounding-DINO. Grounding-DINO adopts a similar
language-guidance token selection module to determine the number of object queries. Our method
differs from is in two folds: 1) our language-guidance visual projector is much lighter than that in
Grounding-DINO; 2) we employ the deformable attention to integrate the key visual feature into
visual tokens but Grounding-DINO adopts a heavy cross-modal decoder to achieve feature interaction.
Experimental results (see Table 7) show that such a simple and lightweight module achieves a similar
performance compared to the heavy structure in Grounding-DINO.

3.4 MULTI-LEVEL LANGUAGE-GUIDANCE VISUAL PROJECTOR

To further improve the performance of MLLM, we propose a multi-level language-guide visual
projector. Visual features from different stages of the visual encoder represent different visual
information, e.g., visual features from the shallow stage contain rich detailed features while visual
features from the deep stage tend to represent the global semantic feature. Specifically, we first divide
the layers of the visual encoder into four stages following TokenPacker (Li et al., 2024c). Then, for
each stage, we select the top Na visual tokens as Eq. 2. The total number of visual tokens fed into
LLM is Na × 4. Finally, all selected visual tokens are concatenated along the feature dimension. In
this way, the visual tokens include both detailed features and global semantic features. The overall
pipeline of the multi-level language-guide visual projector is shown in Figure 4.
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Figure 4: The pipeline of multi-level language-guide visual projector.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our language-guide visual projector under the normal resolution and high resolution
settings. The training process is divided into two stages. For the normal resolution, we train our
model on LAION-CC-SBU-558K to achieve modal alignment in the first stage. In the second stage,
we utilize 656K mixture dataset for visual instruction tuning. For the high resolution setting, we
employ 1.2M training samples for the first stage and 1.5M training samples for the second stage,
following Mini-Gemini (Li et al., 2024d). The evaluation dataset is composed of: VQAv2 (Goyal
et al., 2017), GQA (Hudson & Manning, 2019), VizWiz (Gurari et al., 2018) for General visual
question answering; TextVQA (VQAT ) (Singh et al., 2019), OCRBench (OCRB) (Liu et al., 2023d),
and DocmentVQA (DocVQA) (Mathew et al., 2021) for the OCR task; 3. POPE (Li et al., 2023d)
for the Hallucination; 4. MMBench (MMB) (Liu et al., 2023c), MM-Vet (Yu et al., 2023), and
MMMU (Yue et al., 2024).

In order to further evaluate the effectiveness of our method, we conduct the experiments in the
scenario of multi-round conversations and video. For the multi-round conversations, we train our
model on MMDU-45K (Liu et al., 2024c), containing 45K high-quality conversation data for the
training and 110 multi-turn dialogues with more than 1600 questions for the test. Following LLaVA-
OneVision (OV) (Li et al., 2024a), we adopt 4.6M high-quality knowledge data and 4.8M visual
instruction data for the training. We evaluate the video performance of LVP on ActivityNet-QA (Yu
et al., 2019), EgoSchema (Mangalam et al., 2023), MLVU (Zhou et al., 2024), MVBench (Li et al.,
2024b), NextQA (Xiao et al., 2021), PerceptionTest (Patraucean et al., 2024), SeedBench (Li et al.,
2023b), VideoChatGPT (Maaz et al., 2023), VideoDetailCaption (Li et al., 2024a), VideoMME (Fu
et al., 2024), and LoneVideoBench (Wu et al., 2024).

4.2 IMPLEMENTATION DETAILS

In this paper, we adopt CLIP-ViT-L/14-336px (Radford et al., 2021) as the image encoder with
336 × 336 resolution and employ Vicuna-7B/13B (Zheng et al., 2024) as the LLM. Following
LLaVA1.5, we train the model in two stages, i.e., the first stage for pretraining and the second stage
for visual instruction tuning. The image encoder is frozen during the training. The number of layers
of four stages in the multi-level language-guide visual projector are 12, 16, 22, and 23, respectively.
We initialize the weight of the text enncoder using the first two layers of Bert (Devlin, 2018) and
adopt the tokenizer of bert as the tokenizer of text encoder. We train the model for one epoch and all
experiments are conducted on 8 Ascend 910B GPUs with 65 GB memory.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Normal Resolution. We first perform the comparison under the normal resolution setting. As shown
in Table 1, in the OCR-related benchmarks (e.g., VQAT, OCRB, and DocVQA), our LVP achieves
better performance than the peers. For example, in DocVQA, LLaVA-LVP utilizes only 25% (144
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Table 1: Comparison with state-of-the-art methods on zero-shot benchmarks. Our LVP compresses
the visual tokens from 576 to 144, 64, or 36 following TokenPacker (Li et al., 2024c). * denotes
reproduction results on Ascend 910B and ♯ represents the multi-level language-guide visual projector.

Method LLM Res. #Token TPS VQAT OCRB DocVQA MMB MMMU MME MM-Vet VQAv2 VizWiz GQA POPE
MobileVLM V2 (Chu et al., 2024) MLLaMA-2.7B 336 144 26.7 57.5 – – 57.7 – 1441/- – – – 61.1 84.7

Shikra (Chen et al., 2023b) Vicuna-13B 224 256 2.7 – – – 58.8 – – – 77.4 – – –
Qwen-VL Bai et al. (2023b) Qwen-7B 448 256 12.5 – – 65.1 38.2 – – – 78.8 35.2 59.3 –

TokenPacker (Li et al., 2024c) Vicuna-7B 336 144 25.4 56.9 286 59.2 65.1 31.7 1478/- 33.0 77.9 52.0 61.9 87.0
DeCo (Yao et al., 2024a) Vicuna-7B 336 144 28.3 56.2 – – – – 1373/- – 74.0 49.7 54.1 85.9

Qwen-VL-Chat Bai et al. (2023b) Qwen-7B 448 256 12.5 – – 62.6 60.6 – 1488/- – 78.2 38.9 57.5 –
LLaVA1.5 (Liu et al., 2023a)* Vicuna-7B 336 576 4.9 57.3 291 58.7 67.7 30.3 1370/294 32.2 78.4 50.0 62.0 87.3

LLaVA1.5-LVP♯ Vicuna-7B 336 144 24.2 58.9 317 59.7 67.3 30.6 1495/304 34.5 79.2 53.1 62.5 88.0
LLaVA1.5 (Liu et al., 2023a)* Vicuna-13B 336 576 1.8 59.7 320 60.0 68.3 31.0 1475/310 36.5 81.4 54.9 64.3 87.0

LLaVA1.5-LVP♯ Vicuna-13B 336 144 8.3 60.0 327 60.5 68.6 31.5 1480/305 35.3 81.6 56.2 65.2 87.9

Fewer Tokens Setting

InstructBLIP (Dai et al., 2023) Vicuna-7B 224 64 28.8 50.1 – – 36.0 – – 26.2 – 34.5 49.2 –
InstructBLIP (Dai et al., 2023) Vicuna-13B 224 64 12.9 50.7 – – – – – 25.6 – 33.4 49.5 –
TokenPacker (Li et al., 2024c) Vicuna-7B 336 64 25.3 55.4 269 58.0 64.1 30.5 1435/- 31.7 77.2 50.7 61.1 86.3
TokenPacker (Li et al., 2024c) Vicuna-13B 336 64 11.7 57.2 292 59.5 66.2 32.0 1500/- 34.2 78.1 52.9 62.0 87.3

LLaVA1.5-LVP♯ Vicuna-7B 336 64 24.9 56.0 275 58.2 65.7 30.2 1452/300 32.9 77.9 52.2 61.8 87.2
LLaVA1.5-LVP♯ Vicuna-7B 336 64 24.9 57.8 306 59.0 67.0 31.4 1477/303 34.4 79.2 53.8 63.6 87.5

LLaVA-PruMerge (Shang et al., 2024) Vicuna-7B 336 32 38.8 56.0 – – 60.9 – 1350/– – 72.0 – – 76.3
LLaVA-PruMerge (Shang et al., 2024) Vicuna-13B 336 32 16.7 58.4 – – 62.3 – 1428/– – 72.8 – – 78.5

TokenPacker (Li et al., 2024c) Vicuna-7B 336 36 39.0 53.7 249 56.3 62.8 28.9 1377/– 29.6 75.0 50.2 59.6 86.2
TokenPacker (Li et al., 2024c) Vicuna-13B 336 36 16.4 57.0 284 58.6 66.2 31.5 1446/– 34.1 76.3 53.9 60.7 86.5

LLaVA1.5-LVP♯ Vicuna-7B 336 36 36.4 54.0 255 57.0 63.6 29.4 1400/290 31.0 75.9 51.6 60.6 86.5
LLaVA1.5-LVP♯ Vicuna-13B 336 36 15.8 57.8 298 59.3 66.9 31.4 1473/299 34.3 78.7 53.5 61.8 87.4

vs. 576) visual tokens but improves the performance by 1% (59.7% vs. 58.7%) and 0.5% (60.5%
vs. 60.0%) compared to the vanilla LLaVA. Compared with the latest method DeCo (Yao et al.,
2024a) and TokenPacker (Li et al., 2024c), our LVP achieves 2.7% (58.9% vs. 56.2%) and 2% (58.9%
vs. 56.9%) improvements on VQAT, demonstrating the effectiveness of our LVP. LLaVA-LVP also
achieves the promising results on the comprehensive benchmarks. For instance, LLaVA-LVP-7B gains
the performance improvements by 2.3% (34.5% vs. 32.2%) on MM-Vet 3.1% (53.1% vs. 50.0%)
on VizWiz, 2.5% (62.5% vs. 62.0%) on GQA, and 0.7% (88.0% vs. 87.3%) on POPE compared to
vanilla LLaVA-7B. As for the 13B model, LLaVA-LVP obtains the following improvements against
LLaVA: 0.3% (68.6% vs. 68.3%) on MMB, 1.3% (56.2% vs. 54.9%) on VizWiz, 0.2% (81.6% vs.
81.4%) on VQAv2, 0.9% (65.2% vs. 64.3%) on GQA, 0.9% (87.9% vs. 87.0%) on POPE. The reason
for the above results is the visual tokens outputted by the linear projector in vanilla LLaVA1.5 are
redundant, causing inefficient learning on important visual features. Our LLaVA-LVP directly inputs
the important visual tokens aligned with the text tokens into LLM, which can naturally improve
learning efficiency. Moreover, LLaVA1.5-LVP surpasses the previous methods, e.g., Qwen-VL and
DeCo. LLaVA1.5-LVP exceeds the Qwen-VL-Chat on four benchmarks with fewer visual tokens and
each benckmark all gains over 2% performance improvement. Compared to the recent method DeCo,
LLaVA1.5-LVP displays significant performance advantages. For instance, LLaVA1.5-LVP enhances
the performance metrics by 3.4% (53.1% vs. 49.7%) on VizWiz and 5% (62.5% vs. 57.5%) on GQA.
It should be noted that Qwen-VL and DeCo utilize more training data than LLaVA1.5-LVP.

Fewer visual tokens comparison. To further verify the effectiveness of our method, we compare
LLaVA1.5-LVP with the previous leading methods under the fewer visual tokens setting. Results are
shown in Table 1. Our LLaVA1.5-LVP achieves the best performance across all benchmarks. For
example, for the 7B model, we achieve better performance by a large margin than the TokenPacker,
which is the latest leading method, on MMB (65.7% vs. 64.1%) and VizWiz (52.5% vs. 50.7%)
datasets with 64 visual tokens. When adopting 36 visual tokens, LLaVA1.5-LVP-7B gets a significant
performance improvement over LLaVA-PruMerge-7B on MMB (63.6% vs. 60.9%) and VQAv2

(75.9% vs. 72.0%) datasets. the above methods all focus on selecting the important visual tokens.
However, their visual token selection strategy only depends on the image feature, leading to feature
misalignment between the visual tokens and text tokens. Our LLaVA1.5-LVP chooses the important
visual tokens based on both image and text features, effectively aligning the tokens of two modalities.
The results demonstrate that an effective visual token selection strategy should generate the visual
tokens correlated to text tokens.

High-Resolution. We further evaluate the performance of LVP under the high-resolution setting
and results are shown in Table 2. Following TokenPacker (Li et al., 2024c), we set the input
resolution to 1088×1088 and 1344×1344. We compare our LVP against the latest MLLM with high
resolution, including OtterHD (Li et al., 2023a), Sphinx-2k (Lin et al., 2023), Monkey (Li et al.,
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Table 2: Performance comparisons with high-resolution approaches on nine benchmarks. The best
results are bold and the second-best results are underlined. * denotes the reproduction results on
Ascend 910B and ♯ represents the multi-level language-guide visual projector. ‡, ¶, and ♣ denotes
the scaling factor s = 2, 3, 4 in TokenPacker, respectively. ∼ means approximately equal to.

Method LLM Max Res. #Token TPS VQAT OCRB DocVQA MMB MMMU MME MM-Vet VQAv2 VizWiz GQA POPE
OtterHD (Li et al., 2023a) Fuyu-8B 1024×1024 – 0.8 – – – 58.3 – 1294/– 26.3 – – – 86.0

SPHINX-2k (Lin et al., 2023) LLaMA-13B 762×762 2890 0.4 61.2 – – 65.9 – 1471/– 40.2 80.7 44.9 63.1 87.2
UReader (Ye et al., 2023) LLaMA-13B 896×1120 – 0.08 57.6 – 65.4 – – – – – – – –
Monkey (Li et al., 2024e) QWen-7B 896×1344 1792 1.1 – 514 – – – – – 80.3 61.2 60.7 67.6

TextHawk (Yu et al., 2024) InternLM-7B 1344×1344 – 0.2 – – 76.4 74.6 – 1500/- – – – 64.6 –
LLaVA-UHD (Xu et al., 2024b) Vicuna-13B 672×1008 – 0.1 67.7 – – 68.0 – 1535/– – 81.7 56.1 65.2 89.1
LLaVA-NeXT (Liu et al., 2024a) Vicuna-7B 672×672 2880 0.9 64.9 – – 67.4 35.8 1519/332 – 81.8 57.6 – 86.5
LLaVA-NeXT (Liu et al., 2024a) Vicuna-13B 672×672 2880 0.5 67.1 – – 70.0 36.2 1575/326 – 82.8 60.5 – 86.2

Mini-Genimi-HD (Li et al., 2024d) Vicuna-7B 1536×1536 2880 1.0 68.4 456* 65.0* 65.8 36.8 1546/319 41.7* 80.3* 54.6* – 86.8*
Mini-Genimi-HD (Li et al., 2024d) Vicuna-13B 1536×1536 2880 0.6 70.2 501* 70.0* 68.6 37.3 1575/326 51.0* 81.5* 57.2* – 87.0*

TokenPacker (Li et al., 2024c) Vicuna-7B 1088×1088 ~954‡ 2.0 68.0 452 60.2 67.4 35.4 1489/338 42.5* 81.2 54.7 64.8* 88.2
TokenPacker (Li et al., 2024c) Vicuna-13B 1088×1088 ~954‡ 1.3 69.3 498 63.0 69.5 38.8 1595/356 45.0* 82.0 59.2 65.9* 88.1
TokenPacker (Li et al., 2024c) Vicuna-13B 1344×1344 ~1393‡ 0.9 70.6 521 70.0 68.7 37.4 1574/350 45.8* 81.7 57.0 65.5* 88.0
TokenPacker (Li et al., 2024c) Vicuna-13B 1344×1344 ~619¶ 1.5 68.8 470 63.0 69.9 38.2 1577/353 44.2* 81.7 61.0 64.9* 87.6
TokenPacker (Li et al., 2024c) Vicuna-13B 1344×1344 ~347♣ 2.0 68.4 447 58.0 68.3 36.9 1577/332 43.9* 81.2 58.1 64.0* 88.0

LLaVA1.5-LVP♯ Vicuna-7B 1088×1088 954 1.9 68.8 503 61.0 68.4 36.2 1582/350 43.1 81.9 55.9 65.2 88.2
LLaVA1.5-LVP♯ Vicuna-13B 1088×1088 954 1.3 69.7 519 64.9 69.9 39.8 1600/367 45.7 82.5 60.4 66.4 88.2
LLaVA1.5-LVP♯ Qwen2.5-7B 1088×1088 954 2.1 71.3 527 68.0 70.3 40.3 1633/371 46.4 82.9 60.8 66.9 88.3
LLaVA1.5-LVP♯ Vicuna-13B 1344×1344 1393 1.0 71.8 526 72.4 69.5 39.2 1592/367 46.6 82.2 60.3 66.7 88.3
LLaVA1.5-LVP♯ Vicuna-13B 1344×1344 619 1.4 69.2 512 64.5 70.3 39.5 1595/361 45.2 82.2 61.0 66.0 88.1
LLaVA1.5-LVP♯ Vicuna-13B 1344×1344 347 2.3 69.0 509 61.2 68.5 36.8 1598/349 44.3 82.0 59.3 64.6 88.2
LLaVA1.5-LVP♯ Qwen2.5-14B 1344×1344 1393 1.1 72.4 533 73.0 71.5 40.3 1652/374 47.0 82.7 61.3 67.0 88.3

Table 3: Evaluation results of different methods on MMDU. We report the metrics of Creativity (C), Richness (R),
Visual Perception (VP), Logical Coherence (LC), Answer Accuracy (AA), Image Relationship Understanding
(IRU), and the averaged (Avg.) results. Param represents the size of LLM.

Models Param C R VP LC AA IRU Avg.
LLaVa1.5-7B (Liu et al., 2023a) 7B 27.8 28.0 33.2 43.0 35.4 31.7 32.2
Qwen-VL-7B (Bai et al., 2023b) 7B 33.4 33.6 39.2 53.8 43.1 38.1 39.3
InternLM-XC2 (Dong et al., 2024a) 7B 29.7 29.5 36.2 50.1 40.3 35.2 35.6
MiniCPM-v-2.5 (Yao et al., 2024b) 8B 27.0 26.4 33.2 48.9 38.6 32.2 33.0
Deepseek-VL (Lu et al., 2024) 8B 27.3 27.7 31.2 38.7 33.2 30.0 30.8
InternVL-Chat-V1.5 (Chen et al., 2024a) 26B 31.2 31.5 37.4 52.6 41.7 36.1 37.4
LLaVa1.5 + MMDU-45k 7B 34.3 34.5 36.7 47.2 38.5 35.5 37.2
LLaVA1.5-LVP + MMDU-45k 7B 34.7 35.0 37.8 49.0 40.0 36.0 38.8
InternLM-XC2 + MMDU-45k 7B 45.6 43.9 49.9 64.1 53.0 48.7 50.1
InternLM-XC2-LVP + MMDU-45k 7B 46.0 44.4 51.0 65.7 53.8 49.0 51.7

2024e), Texthawk (Yu et al., 2024), UReader (Ye et al., 2023), LLaVA-UHD (Xu et al., 2024b),
LLaVA-Next (Liu et al., 2024a), and Mini-Gemini-HD (Li et al., 2024d). Eleven benchmarks, i.e.,
OCR-related VQAT, OCRB, and DocVQA, and comprehensive MMB, MMMU, MME, MM-Vet,
VQAv2, VizWiz, GQA, and POPE, are utilized to perform the overall evaluation. With 619 visual
tokens, our method gets the second-best performance on MMB, MMMU, and VizWiz, superior to
the methods with many visual tokens (e.g. TokenPacker. Mini-Genimi-HD, and LLaVA-NeXT). For
the OCR tasks, our LLaVA1.5-LVP with Qwen2.5-14B achieves state-of-the-art performance on
OCR-related VQAT (72.4%). LLaVA1.5-LVP with Vicuna 13B surpasses the second-base method
TokenPacker by 1.2% (71.8% vs. 70.6%). These results demonstrate that selecting the important
visual tokens effectively is more meaningful than the number of visual tokens for the high-resolution
setting. On the other hand, our approach obtains the best performance at a lower resolution (≤
1088×1088). The experimental results validate the effectiveness of our LLaVA1.5-LVP.

Multi-round conversations. We evaluate LVP in the scenario of multi-round conversations and
results are shown in Table 3. InternLM-XC2-LVP establishes the new state-of-the-art results on
each metric. It can be seen that LVP gains 1.6% improvement for LLaVA1.5 (38.8% vs. 37.2%)
and InternLM-XC2 (51.7% vs. 50.1%). LVP improves performance by over 1% in terms of
visual perception and logical coherence. The results demonstrate that LVP works for multi-round
conversations.

Video Benchmarks. We evaluate the effectiveness of LVP under the video task. LVP improves the
model performance on all 11 benchmarks, showing its advantages in the video tasks. LVP gains 1.2%
(47.0% vs. 45.8%) and 1.4% (57.8% vs. 56.4%) for the 0.5B and 7B model on LongVideoBench,
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Table 4: LLaVA-OneVision-LVP performance on video benchmarks. We report the score out of 5
for VideoDetailCaption (VideoDC), VideoChatGPT while other results are reported in accuracy. All
results are reported as 0-shot accuracy. The number of visual tokens fed into LLM in LLaVA-OV
is Z×196, where Z is the sampled frame per video. The number of visual tokens fed into LLM in
LLaVA-OV-LVP is Z×98.
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test test m-avg test mc val video test test wo/w-subs val

VILA-40B Lin et al. (2024) 58.0 58.0 - - 67.9 54.0 - 3.36 3.37 60.1/61.1 -
PLLaVA-34B Xu et al. (2024a) 60.9 - - 58.1 - - - 3.48 - - -
LLaVA-N-Video-34B Liu et al. (2024a) 58.8 49.3 - - 70.2 51.6 - 3.34 3.48 52.0/54.9 50.5
IXC-2.5-7B Zhang et al. (2024) 52.8 - 37.3 69.1 71.0 34.4 - 3.46 3.73 55.8/58.8 -
LLaVA-N-Video-32B Liu et al. (2024a) 54.3 60.9 65.5 - 77.3 59.4 - 3.59 3.84 60.2/63.0 -

LLaVA-OV-0.5B 50.5 26.8 50.3 45.5 57.2 49.2 44.2 3.12 3.55 44.0/43.5 45.8
LLaVA-OV-LVP-0.5B 51.0 28.0 51.0 46.3 57.9 50.3 44.9 3.55 3.77 45.9/44.7 47.0

LLaVA-OV-7B 56.6 60.1 64.7 56.7 79.4 57.1 56.9 3.51 3.75 58.2/61.5 56.4
LLaVA-OV-LVP-7B 57.3 61.0 65.8 57.8 80.3 58.3 57.6 3.70 3.88 59.9/63.0 57.8

Table 5: Evaluation results on different visual projectors. The resolution of the input image is
336×336 and the base model is LLaVA1.5 with Vicuna-7B. We adopt token per second (TPS) to
evaluate the throughput of LLM during inference, measured by a single Ascend 910B. ♯ stands for
the multi-level language-guide visual projector.

Projector #Token TPS MMB MM-Vet VQAv2 GQA POPE VizWiz Avg.
MLP Liu et al. (2023a) 576 4.9 67.7 32.2 78.4 62.0 87.3 50.0 62.9
Average-Pooling 144 28.3 64.6 26.9 76.5 60.2 86.4 51.5 61.0
Resampler (Bai et al., 2023b) 144 24.9 63.1 28.9 75.3 58.6 84.8 52.5 60.5
C-Abstractor (Cha et al., 2024) 144 24.5 65.1 31.8 75.7 60.0 85.1 49.7 61.2
Pixel-Shuffle (Chen et al., 2024a) 144 25.6 64.2 29.6 76.5 60.6 85.3 49.2 60.9
LDPv2 (Chu et al., 2024) 144 25.5 65.7 28.9 77.8 62.1 86.0 47.9 61.4
TokenPacker (Li et al., 2024c) 144 25.4 65.1 33.0 77.9 61.8 87.0 52.0 62.8
LVP 144 25.3 66.2 33.3 78.5 62.0 87.8 52.7 63.4
LVP♯ 144 24.2 67.3 34.5 79.2 62.5 88.0 53.1 64.1
Average-Pooling 64 29.5 62.3 27.3 72.9 59.0 85.6 48.2 59.2
Resampler (Bai et al., 2023b) 64 27.2 63.4 29.5 74.0 58.0 83.9 53.2 60.3
C-Abstractor (Cha et al., 2024) 64 26.9 62.9 29.2 74.4 59.0 85.3 45.2 59.3
Pixel-Shuffle (Chen et al., 2024a) 64 28.0 63.4 28.3 75.0 59.4 85.0 47.6 59.7
LDPv2 (Chu et al., 2024) 64 27.5 64.0 30.8 75.2 60.1 85.8 49.6 60.9
TokenPacker (Li et al., 2024c) 64 25.3 64.1 31.7 77.2 61.1 86.3 50.7 61.9
LVP 64 25.7 64.9 32.3 77.2 61.4 86.8 51.4 62.3
LVP♯ 64 24.9 65.7 32.9 77.9 61.8 87.2 52.2 63.0

demonstrating its strength in long video understanding. Besides, LLaVA-OV-LVP-7B achieves better
LLaVA-N-Video-32B on ActNet-QA, EgoSchema, MLVU, NextQA, VideoChatGPT, VideoDC, and
LoneVideoBench, indicating that our LVP is an effective visual projector for video tasks.

4.4 ABLATION STUDY

In this section, we validate the effectiveness of each component of the proposed LVP. All experiments
are conducted on the data as those in LLaVA1.5 and Vicuna-7B are utilized as LLM.

Comparison of visual projectors. We first conduct the comparison experiments between the existing
visual projectors and our LVP. To analyze the inference speed, we adopt the token per second (TPS)
to evaluate the throughput. We adopt the adaptive average pooling as the visual token reduction
operation for the average-pooling. We just replace the MLP layers in LLaVA1.5 with the above visual
projectors for a fair comparison. To analyze the inference speed, we adopt the token per second
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(TPS) to measure the throughput of MLLM. From Table 5, it can be seen that our LVP achieves the
best performance on all benchmarks. For example, when input visual tokens are 144, LVP without
multi-level feature outperforms the latest method TokenPacker on various benchmarks, such as 1.1%
(66.2% vs. 65.1%) performance improvement on MMB and 0.6% (78.5% vs. 77.9%) enhancement
on VQAv2. Compared with the convolution-based method, i.e., Average Pooling, LDPv2, and C-
Abstractor, LVP shows obvious performance advantages, e.g. 2.4% (63.4% vs. 61.0%), 2.0% (63.4%
vs. 61.4%), and 2.2% (63.4% vs. 61.2%) average performance improvement against Average Pooling,
LDPv2, and C-Abstractor. Equipped with multi-level features, our LVP further obtains 64.1% average
performance, superior to the MLP projector, which is the first visual projector that exceeds MLP.
We conclude the reason why LVP surpasses MLP is that the visual tokens outputted by MLP are
redundant, making the model require more training epochs to learn the important features, but our
LVP selects the important visual tokens by the text feature, reducing the useless visual tokens and
improving the learning efficiency. When input visual tokens are 64, our LVP with multi-level feature
obtains 63.0% average performance, on par with MLP (63.0% vs. 62.9%), further indicating the
effectiveness of our visual token selection approach. In terms of TPS, all visual projectors achieve
significant inference speed improvement against MLP. Our LVP achieves the competitive performance
compared to other visual projectors on inference speed.

Table 6: Results of integrating LVP into different
MLLMs. The input resolution is 336×336.

Method #Token VQAv2 GQA VQAT OCRB
MiniCPMV-2.6 (Yao et al., 2024b) 144 83.6 67.3 58.0 539
MiniCPMV-2.6-LVP 144 84.2 68.9 58.7 564
Qwen-VL-Chat (Bai et al., 2023b) 144 78.2 56.6 52.8 302
Qwen-VL-Chat-LVP 144 79.2 58.3 53.9 326
MobileVLMv2 (Chu et al., 2024) 144 77.4 62.6 43.7 337
MobileVLMv2-LVP 144 78.7 62.9 45.0 353

Integrating into different MLLMs. We
further integrate the proposed LVP into dif-
ferent MLLMs to evaluate the effectiveness
of our LVP. We conduct the experiments on
MiniCPMV-2.6, Qwen-VL-Chat, and Mo-
bileVLMV2 and LLM for three models are
LLaMA3-8B, Qwen-7B, and Vicuna-7B, re-
spectively. Results are shown in Table 6. We
can observe that our LVP achieves a consistent improvement on different MLLMs. For instance, LVP
enhances the performance by 0.6%, 1.6%, 0.7%, and 25 on VQAv2, GQA, VQAT, and OCRB for the
latest MiniCPMV-2.6. The results manifest that LVP can be a versatile visual projector to reduce the
visual tokens while improving the model performance.

Table 7: Comparison between the peer in Grounding-
DINO and LVP. The input resolution is 336×336 and
the number of visual tokens fed into LLM is 144. ♯

represents the multi-level language-guide visual pro-
jector.

Method TPS VQAv2 GQA VQAT OCRB
Grounding-DINO (Liu et al., 2023b) 18.7 78.3 62.0 57.7 300
LVP 25.3 78.5 62.0 58.0 298
Grounding-DINO♯ (Liu et al., 2023b) 12.1 79.2 63.1 59.2 314
LVP♯ 24.2 79.2 62.5 58.9 317

Comparison with the peer in Grounding-
DINO. We compare our LVP against the peer
in Grounding-DINO and adopt Vicuna-7B
as LLM to perform the experiment. From
Table 7, it can be seen that LVP achieves
competitive performance on different bench-
marks when compared with the visual pro-
jector in Grounding-DINO. However, LVP
gains much faster TPS than the visual projec-
tor in Grounding-DINO. When applying the
multi-level feature, the gap between two visual projectors in TPS is further widened, demonstrating
that our LVP is better than the visual projector in Grounding-DINO for efficient MLLM. Reasons we
conclude may be that: 1) the deformable attention module integrates the key feature into the visual
tokens, which significantly reduces the redundant feature aggregation as that in the Grounding-DINO.
2) LLM are mainly responsible for the feature interaction between visual features and text features in
MLLMs, weakening the role of the heavy cross-modal decoder in Grounding-DINO.

5 CONCLUSION

We introduce a novel Language-guide Visual Projector (LVP) for efficient MLLM. LVP adopts the
text (instruction) feature as the guidance to select the important visual tokens, effectively reducing
the visual tokens while aligning the visual tokens fed into LLM with text tokens. To make full use
of the features from the different stages of the visual encoder, we further propose a novel multi-
level language-guide visual projector. Experimental results show that LVP achieves state-of-the-art
performance among existing visual projectors. Notably, InternLM-XC2-LVP establishes the best
performance on MMDU benchmark with much fewer visual tokens.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Implementation of attention map visualization. In this section, we describe the implementation
of attention map visualization in detail. We adopt an approach similar to R-GAE in DeCo (Yao
et al., 2024a). Specifically, we first construct a Text-to-Visual map Mt ∈ RNI×Nq . Mt is initialized
to an identity matrix. For each layer in the projector, an attention map is obtained by utilizing the
gradients to average across the attention heads for the resampler (Bai et al., 2023b) and LVP. For
Linear projector and LDPv2 (Chu et al., 2024), an attention map is obtained by adopting the gradients
of each layer. For generation time step t, we can propagate the Mt from the projector’s first layer to
its last layer. Finally, we average the step t and average the Mt to get the final attention map.

Implementation of high-resolution. We take the high-resolution image processing in LLaVA-
HD (Liu et al., 2023a) as our high-resolution image processing method. Given a high-resolution
image, LLaVA-HD first splits the image into different patches and each patch is fed into the visual
encoder. The visual encoder outputs a sequence of visual tokens. We use PN

i=1 to represent the
sequence of visual tokens and N is the number of patches. Besides, LLaVA-HD resizes the original
high-resolution image to the size the visual encoder can process. Here we use PH the denote the the
visual token of the high-resolution image. Finally, LLaVA-HD concatenate the PN

i=1 and PH . We use
PC to stand for the concatenated visual tokens. PC is the visual input of our LVP. We use the text
feature as a guide to select the Top Nq (Nq is much smaller than the number of PC) visual tokens
from PC based on the similarity between visual features and text features.

A.2 ADDITIONAL ABLATION STUDY

In this section, we conduct additional ablation studies to validate the effectiveness of the component
of LVP. All experiments are performed as those in LLaVA1.5 with Vicuna-7B as LLM.

Table A1: Comparison between bert-base and our
lightweight text encoder.

Method TPS VQAv2 GQA VQAT OCRB
LVP-Bert (Devlin, 2018) 11.5 78.3 62.2 57.9 314
LVP 25.3 78.5 62.0 58.0 298
LVP♯-Bert (Devlin, 2018) 9.9 79.5 62.4 59.3 330
LVP♯ 24.2 79.2 62.5 58.9 317

Size of the text encoder. We compare our
lightweight text encoder with bert-base (De-
vlin, 2018) and the results are in Table A1.
From Table A1, our LVP obtains a signif-
icant TPS advantage over bert-base while
achieving competitive performance against
bert-base. The reason may be that LVP is
responsible for selecting important visual tokens not extracting text features. Therefore, adopting a
heavy text encoder does not bring obvious improvement.

Table A2: Influence of the deformable attention mod-
ule. DF denotes the deformable attention module and
RA represents the regular attention.

Method TPS VQAv2 GQA VQAT OCRB
LVP w/o DF 26.0 75.4 59.5 55.7 269
LVP w RA 25.0 78.0 61.7 57.3 291
LVP w DF 25.3 78.5 62.0 58.0 298
LVP♯ w/o DF 25.0 77.4 60.3 56.1 275
LVP w RA 23.9 78.8 62.0 58.2 315
LVP♯ w DF 24.2 79.2 62.5 58.9 317

Influence of the deformable attention mod-
ule. Table A2 demonstrates the effectiveness
of the deformable attention module in LVP.
We can observe that the deformable atten-
tion module brings consistent performance
improvement. The results show that com-
pressing the visual features into selected vi-
sual tokens is a necessary step for an effective
visual projector, which can avoid the loss of
visual features.

Table A3: Influence of the size of the cross-modal
feature enhancement module. NL represents the num-
ber of blocks in the cross-modal feature enhancement
module.

Method NL VQAv2 GQA VQAT OCRB
LVP 1 78.5 62.0 58.0 298
LVP 2 78.3 62.1 58.0 296
LVP 4 78.6 62.0 58.2 301
LVP 6 78.7 62.1 57.8 302

Influence of the size of the cross-modal fea-
ture enhancement module. We further ab-
late the size of the cross-modal feature en-
hancement module. Here, the size denotes
the number of blocks in the cross-modal fea-
ture enhancement module. We treat the com-
bination of image-to-text attention and text-
to-image attention as a block. Results are
shown in Table A3. As the number of blocks
increases, the model performance is not im-
proved significantly. For instance, the performance of NL = 1 is similar to that of NL = 6 (the setting
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in Grounding-DINO). However, the TPS of NL = 1 and NL = 6 are 25.3 and 19.4, respectively.
Therefore, we set NL to 1 considering the performance and TPS.

Table A4: Comparison between the peer in LXMERT.
The input resolution is 336×336 and the number of
visual tokens fed into LLM is 144. ♯ represents the
multi-level language-guide visual projector.

Method TPS VQAv2 GQA VQAT OCRB
LXMERT (Tan & Bansal, 2019) 20.2 78.7 61.8 57.6 299

LVP 25.3 78.5 62.0 58.0 298
LXMERT♯ (Tan & Bansal, 2019) 15.1 79.0 62.6 58.8 319

LVP♯ 24.2 79.2 62.5 58.9 317

Comparison with the peer in LXMERT.
We compare the cross-modal feature en-
hancement module (CFE) with the peer in
LXMERT. From Table A4, we can observe
that our CFE achieves the similar perfor-
mance compared to LXMERT. However,
TPS of CFE is much better than the peer in
LXMERT. Results demonstrate that CFE is
enough for our method.

Table A5: Ablation study on the visual tokens fed into
LLM Nq .

Method VQAv2 GQA VQAT OCRB
36 75.2 60.6 55.8 264
64 77.2 61.4 57.1 283
128 77.7 61.5 57.5 288
144 78.5 62.0 58.0 298
256 78.8 62.4 58.7 306
324 78.4 62.1 58.7 309

Ablation study on Nq. We ablate the influ-
ence of Nq, the number of visual toekns fed
into LLM. As shown in the Table A5, we can
see that when Nq is less than 144, model per-
formance improves as Nq increases. How-
ever, when Nq is larger than 144, the im-
provement is limited. Nq = 256 is better
than Nq = 324 on VQAv2 and GQA. We
attribute to that when Nq is enough large,
visual tokens fed into LLM are redundant.

Table A6: Results of SigLIP (Zhai et al., 2023) and
Qwen2.5 (Qwen Team, 2024). The normal resolution
is 336 × 336 and high-resolution is 1088 × 1088. The
Nq of normal resolution and high resolution are 144
and 954, respectively.

Vision Model LLM VQAv2 GQA VQAT OCRB
CLIP Vicuna-7B 78.5 62.0 58.0 298

SigLIP Vicuna-7B 78.8 62.3 58.5 302
CLIP Qwen2.5-7B 79.4 63.1 58.8 311

SigLIP Qwen2.5-7B 79.5 63.5 59.2 319
High-resolution Setting

CLIP Vicuna-7B 81.0 64.2 68.0 484
SigLIP Vicuna-7B 81.2 64.6 68.1 492
CLIP Qwen2.5-7B 81.6 64.7 68.8 502

SigLIP Qwen2.5-7B 81.8 64.9 69.0 511

Influence of SigLIP and Qwen2.5. In this
section, we ablate the effectiveness of SigLIP-
ViT-L and Qwen2.5-7B. Results are shown in
the Table A6. Both SigLIP and Qwen2.5-7B
improve the model performance. It should
be noted that Qwen 2.5-7B is more effec-
tive. Compared with Vicuna-7B, Qwen2.5-
7B obtains 0.9% (79.4% vs. 78.5%), 1.1%
(63.1% vs. 62.0%), 0.8% (58.8% vs. 58.0%),
and 13 (311 vs. 298) improvement on four
benchmarks under the normal input resolu-
tion settings, respectively. In the scenario
of high-resolution, Qwen2.5-7B and SigLIP
achieves the consistent improvement.

A.3 RESPENTATION OF VISUAL TOKENS

In this section, we discuss the representation of visual tokens fed into LLM. We still take the Vicuna-
7B as the LLM. In order to facilitate the visualization, we set the input resolution to 112 × 112. The
number of visual tokens fed into the LLM of the linear projector, resampler, LDPv2, and our LVP is
64, 16, 16, and 16, respectively. The visualization results are displayed in Figure A1. We can see that
the concept of "wave" is allocated only one visual token (red box), causing the model to focus on the
"surfer". However, from the attention map of the linear projector, we can find that "wave" should be
allocated several visual tokens. As for our LVP, it can be observed that the proportion of the visual
tokens representing "wave" is much higher than that of the resampler and LDPv2, effectively aligning
the visual tokens and input text. The visualization results are in line with our motivation.

A.4 QUALITATIVE RESULTS

In this section, we display the qualitative results of our LVP. Here, we adopt LLaVA1.5 with Vicuna-
7B. We visual the output of TokenPacker (Li et al., 2024c) and LVP in Figure A2, including two
tasks: VQA and OCR. It can be seen that the output of our LVP is more accurate than the output of
TokenPacker, demonstrating the superiority of our LVP.
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(a) The attention map of visual tokens of the linear projector.

(b) The attention map of visual tokens of the resampler and the LDPv2.

(c) The attention map of visual tokens of our LVP.

Figure A1: The attention map of visual tokens of different visual projectors. The input text is "What
is happening with the surfer and the wave in the image?".
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Figure A2: Visual comparison between TokenPacker and our LVP. We use red color to represent the
accurate output and blue to denote the false output.
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