
2024 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2024, LONDON, UK

PARAMETER-EFFICIENT TRANSFER LEARNING OF AUDIO SPECTROGRAM
TRANSFORMERS

Umberto Cappellazzo♡ Daniele Falavigna♣ Alessio Brutti♣ Mirco Ravanelli♠

♡ University of Trento, Italy ♣ Fondazione Bruno Kessler, Trento ♠ Concordia University, Canada

ABSTRACT

Parameter-efficient transfer learning (PETL) methods have
emerged as a solid alternative to the standard full fine-tuning
approach. They only train a few extra parameters for each
downstream task, without sacrificing performance and dis-
pensing with the issue of storing a copy of the pre-trained
model for each task. For audio classification tasks, the
Audio Spectrogram Transformer (AST) model shows im-
pressive results. However, surprisingly, how to efficiently
adapt it to several downstream tasks has not been tack-
led before. In this paper, we bridge this gap and present
a detailed investigation of common PETL methods for the
adaptation of the AST model to audio/speech tasks. Fur-
thermore, we propose a new adapter design that exploits
the convolution module of the Conformer model, leading to
superior performance over the standard PETL approaches
and surpassing or achieving performance parity with full
fine-tuning by updating only 0.29% of the parameters. Fi-
nally, we provide ablation studies revealing that our pro-
posed adapter: 1) proves to be effective in few-shot efficient
transfer learning, 2) attains optimal results regardless of the
amount of the allocated parameters, and 3) can be applied to
other pre-trained models. Our code is available at https:
//github.com/umbertocappellazzo/PETL_AST.

Index Terms— Parameter-Efficient Transfer Learning,
Audio Spectrogram Transformer, LoRA, Adapters, Depth-
wise Convolution

1. INTRODUCTION

Leveraging large pre-trained models for downstream tasks has
become a cornerstone of several machine learning domains
like natural language processing (NLP) and audio/speech pro-
cessing. The typical paradigm involves adapting the whole
model to each downstream task [1, 2] (i.e., full fine-tuning).
Despite achieving remarkable results, this approach leads to
a specialized model for each task, which is unfeasible when
fine-tuning a model on numerous downstream tasks.

To alleviate this issue, the research community is in-
creasingly focusing on parameter-efficient transfer-learning
(PETL) methods, whereby only a small amount of extra pa-

rameters is learned for each task while keeping the pre-trained
model frozen [3, 4, 5]. In doing so, the risk of catastrophic
forgetting the pre-trained model’s knowledge is also highly
reduced, a common problem in continual learning scenarios
[6, 7]. For example, prompt-tuning methods insert trainable
continuous vectors in the input or hidden state of the model,
known as prompts [8, 9]. Alternatively, low-rank modules
called adapters, which follow a bottleneck architecture with
a very small intermediate dimension, are introduced into each
layer. Another popular method, LoRA (Low-Rank Adapta-
tion), leverages low-rank matrix decomposition of pre-trained
weight matrices [10]. Several variants of LoRA have been
recently proposed to enhance the original implementation
leading to better performance and stability [11, 12].

Recently, PETL methods have garnered much attention
also in the audio and speech fields. For example, [13, 14, 15]
provide extensive experiments on the use of PETL approaches
and their combination for self-supervised learning speech
models. Also for automatic speech recognition adapters have
proven to be an effective solution [16, 17]. For audio clas-
sification, the Audio Spectrogram Transformer (AST) [18]
obtains superb results, standing out as the state-of-the-art
model for several downstream tasks. The problem of how
to efficiently transfer the knowledge of the AST is of crucial
importance, especially given the typical computational and
storage constraints of audio devices. Surprisingly, this topic
has received minimal attention [19]. Therefore, driven by 1)
the absence of previous works, 2) the excellent results ob-
tained by PETL methods in different domains for transformer
models, and 3) the need to efficiently adapt the AST model to
several downstream tasks, we ask the following question:

(Q) Can we exploit state-of-the-art PETL methods for
the efficient fine-tuning of AST to audio/speech down-
stream tasks?

We methodically investigate this research question (Q),
and to do so we provide a framework whereby we can study
the performance attained by several PETL methods on five au-
dio/speech benchmarks. Furthermore, from our experiments,
we notice that the bottleneck adapter struggles to achieve on-
par performance with respect to the full fine-tuning approach

ar
X

iv
:2

31
2.

03
69

4v
4

 [
ee

ss
.A

S]
 1

5
Ju

l 2
02

4

https://github.com/umbertocappellazzo/PETL_AST
https://github.com/umbertocappellazzo/PETL_AST

for speech tasks. We conjecture that this is attributable to the
overly simplistic design of the bottleneck adapter, where only
linear layers are adopted, which hinders a complete learning
of the task at hand. As a consequence, we propose a new
adapter design that hinges upon the convolution module of the
Conformer model. Our proposed Conformer adapter highly
benefits from the introduction of the depthwise convolution
layer, which allows not only to capture local spatial correla-
tions but also trim down the number of parameters, thus bridg-
ing the gap with the full fine-tuning method.

We carry out extensive experiments leading to multiple
findings: ❶ among the standard PETL methods, LoRA and
Houlsby bottleneck adapter achieve the best performance
overall, with LoRA using fewer parameters; ❷ our proposed
conformer adapter provides considerable improvements
over the bottleneck adapter, surpassing or attaining perfor-
mance parity with respect to the full fine-tuning approach
while using only 0.29/0.59% parameters compared to it for
the Pfeiffer/Houlsby configuration; ❸ we study the PETL
methods under few-shot settings and their scalability with
respect to the number of trainable parameters, validating the
efficacy of our proposed adapter; ❹ we show empirically that
the kernel size of the depthwise convolution is a key param-
eter to attain the best performance; ❺ we finally show that
the conformer adapter can be also harnessed for the efficient
fine-tuning of another pre-trained model like Wav2Vec 2.0.

2. METHODOLOGY

2.1. AST Model Recap

The Audio Spectrogram Transformer (AST) is an attention-
based model that achieves state-of-the-art results on various
audio and speech tasks [18, 20]. The AST model receives
as input audio spectrograms that are patchified and then a
linear projection is applied to each patch. This results in
a sequence of N tokens of size d = 768, which we refer
to as Xin ∈ RN×d. AST comprises 12 attention layers,
each of which is composed of two sub-layers: a multi-head
self-attention (MHSA) sub-layer and a fully-connected feed-
forward (FF) sub-layer. The output of each transformer layer,
Xout ∈ RN×d (we omit for simplicity the index of the layer),
is computed as follows:

Xout = X̂+ FF(LN(X̂)), X̂ = Xin + MHSA(LN(Xin)).
(1)

Both blocks, MHSA and FFN, include residual connections
and layer normalizations (LN) [21], with the LN applied
within the residual branch (i.e., Pre-LN).

2.2. Overview of Parameter-efficient Transfer Learning
Methods

We now introduce the PETL techniques we used in our exper-
iments: LoRA, prompt/prefix-tuning, and adapter-tuning.

CLS

Layer Norm

Layer Norm

Layer Norm

Head

MHSA

Sequential
Adapter

Parallel
Adapter

FFN

...

...

Linear Projection

LoRA LoRA

PT PT

Input Spectrogram

x L

Parallel
Adapter

Sequential
Adapter

DPT DPT ...

3x3 Conv

GELU

GELU

1x1 Down
Conv

1x1 Up
Conv

Adapter

ReLU

Down
Linear

Up
Linear

Bottleneck

LoRA

Down
Linear

Up
Linear

Adapter
Conformer

Pointwise
Down Conv

GLU

Depthwise
Conv

BatchNorm
+ Swish

Pointwise
Up Conv

Fig. 1: Left: illustration of the AST model and the integration
of PETL methods into it. We use blocks with dashed outlines
to characterize the added modules by those methods. Right:
the inner structure of LoRA, Bottleneck adapter and our pro-
posed Conformer adapter.

LoRA [10]. LoRA introduces trainable low-rank matrices
into transformer layers to approximate the weight updates.
For a pre-trained weight matrix W ∈ Rd×dk , LoRA repre-
sents its update with a low-rank decomposition W +∆W =
W + AB, where A ∈ Rd×r, B ∈ Rr×d are learnable and
r << d. LoRA typically applies this update to the query and
value projection matrices, Wq and Wv , in the MHSA sub-
layer. LoRA computes the query and value matrices like this:

Q/V = XinWq/v + s ·XinAq/vBq/v, (2)

where s is a tunable scalar hyperparameter.
Prefix-tuning/Prompt-tuning [22, 8]. Prefix-tuning [22]

inserts p learnable continuous embeddings of dimension d
(i.e., prompts) to the keys and values of the MHSA block
at every layer. Prompt-tuning [8, 9], instead, prepends the
prompts in the input space after the projection layer. Fol-
lowing [9], we consider the “shallow” prompt-tuning version
(SPT) where all the prompts are prepended to the first trans-
former layer, and the “deep” version (DPT) by prepending the
prompts uniformly to each transformer layer.

Bottleneck Adapter [23, 24]. Adapters are light subnet-
works that are inserted into every transformer layer. To keep
the number of parameters limited, adapters exploit a bottle-
neck architecture. The input sequence of hidden dimension
d is first down-projected (parametrized by Wdown) ∈ Rd×r

into a low-dimensional space with size r (the bottleneck di-
mension), followed by a non-linear activation function f(·)
(e.g., ReLU), and then up-projected back to the original di-
mension d (Wup ∈ Rr×d). We refer to this design as bot-
tleneck adapter and it is the established choice in the NLP
domain [4, 23]. Adapter-tuning is a flexible approach in that
we can identify multiple ways in which an adapter can be
included in a transformer layer, resulting in different config-
urations. For example, the adapter can be inserted only after
the FF block, (Pfeiffer [24]), or after both the MHSA and FF
blocks (Houlsby [23]). Furthermore, the adapter can be in-
cluded sequentially, either after the FF block [23] (sequential
Pfeiffer) or after both FF and MHSA blocks [25] (sequential
Houlsby), or parallel to only the FFN block [4, 26], or par-
allel to both FFN and MHSA blocks [27]. Mathematically,
if we consider, as an example, the Pfeiffer configuration in
which the Bottleneck adapter is placed sequentially after the
FF block and we let XFF = FF(LN(X̂)), following the nota-
tion in Eq. 1, the output is:

Xout = X̂+XFF + f(X̂Wdown)Wup. (3)

Conformer Adapter (Ours). As we will show in Sec-
tion 3.2, the bottleneck adapter attains competitive results for
audio classification tasks, whereas for speech tasks the gap
with the full fine-tuning approach is sizeable. We speculate
that this happens because the linear design of the bottleneck
adapter is not sufficient to disentangle the task at hand. For
this reason, we propose to leverage the key block of the
Conformer [28], a bleeding-edge model for several speech
processing tasks: the convolution module. This module
highly relies on the depthwise convolution, which is ap-
pealing for our PETL setting for two main reasons: 1) it
is used for capturing spatial correlations, a crucial aspect
for speech downstream tasks, which the bottleneck adapter
fails to accomplish, and 2) compared to a standard convolu-
tion, it requires fewer parameters, thus making it suitable for
parameter-efficient adapters. Therefore, we propose a new
adapter that uses the convolution module as the building block
and we call it conformer adapter (see Fig. 1, right). Specifi-
cally, the first pointwise convolution down-projects the input
sequence to a dimension of 2r. Then, the Gated Linear Unit
(GLU) halves the hidden dimension to the bottleneck one, r.
At this point, the intermediate sequence undergoes the depth-
wise convolution layer with kernel size equal to k (refer to
Section 3.3 for the analysis on this hyper-parameter), as well
as the Batch Normalization and Swish activation. Finally, the
dimension of the sequence is up-projected to the original d
through a pointwise convolution. We show the effectiveness
of our conformer adapter in Section 3.

3. EXPERIMENTS

3.1. Implementation Details

Datasets. We evaluate the PETL methods on four au-
dio/speech downstream classification tasks. (1) Audio clas-
sification: we use the ESC-50 and UrbanSound8K (US8K)
datasets. ESC-50 (ESC) [29] consists of 2, 000 5-second-long
environmental audio recordings of 50 classes. US8K [30] in-
cludes 8, 732 labeled sound excerpts of urban sounds from
10 classes. (2) Keyword spotting: Speech Commands V2
(GSC) [31] has 105, 829 1-sec recordings of 35 speech com-
mands. (3) Intent classification: Fluent Speech Commands
(FSC) [32] includes 30, 043 English utterances spanning 31
classes. (4) Emotion Recognition: IEMOCAP (IEM) [33]
comprises 10, 039 utterances from 10 distinct speakers with
4 emotional classes: neutral, happy, sad, angry.

Baselines. We include the full fine-tuning method (FFT),
which finetunes the full pre-trained AST model; and linear
probing, which only fine-tunes the classification head. We
then study various PETL methods: shallow prompt-tuning
(SPT), deep prompt-tuning (DPT), prefix-tuning (Pref-T),
and BitFit [34], which is a common baseline that fine-tunes
only the bias terms of the pre-trained backbone. SPT adds
all the 300 prompts to the input of the first transformer
layer, whereas DPT adds 25 prompts to each transformer
layer. We then include LoRA and bottleneck and conformer
(ours) adapters. The dimension of the intermediate space
for adapters and LoRA is r = d/RR, where d = 768 is the
hidden dimension of the AST model and RR is the reduction
rate. Unless otherwise stated, r is set to 12, 8, and 6 for
bottleneck adapter, conformer, and LoRA, respectively. In
this way, the resulting number of parameters is roughly the
same. For LoRA, following [10], the scaling factor is set to
s = α/RR, where α = 16 leads to the best results (i.e., s = 8).
We also note that each adapter module is added in parallel to
only the MHSA layer (Pfeiffer) or both the MHSA and FF
layers (Houslby). For this reason, Houlsby adapters require
twice as many parameters as Pfeiffer. Inserting the adapters
sequentially leads to slightly worse results, yet we do not
include these results for lack of space. Finally, for the speech
tasks we set the kernel size of the depthwise convolution layer
to 31, which is the original value proposed in [28], while for
audio tasks we found that k = 8 gives the best results (we
refer the reader to Section 3.3 for a detailed analysis).

Training Details. For all experiments we use the AST
model pre-trained on ImageNet-21K and AudioSet provided
by the Huggingface Transformers library. The model has
around 85.5 million parameters, 12 layers, and the hidden size
is 768. For the ablation studies, we also use Wav2Vec 2.0, a
well-established pre-trained model for speech tasks [35]. It
has around 94M parameters and the same number of layers
and hidden size as AST. For all datasets, we use AdamW opti-
mizer with cosine annealing scheduler and weight decay set to
0.1. The initial learning rate is 0.005 for adapters and LoRA,

Table 1: Performance evaluations of the PETL methods on 4
datasets for AST. Best and second-best performances for each
dataset are coloured in Green and Red, respectively.

Method Par ESC US8K GSC FSC Avg

FFT 85M 87.48 84.31 97.31 93.29 90.07
Linear 9/40K 75.85 77.93 41.78 27.52 55.77
BitFit 102K 86.05 82.17 85.51 63.85 79.40
SPT-300 230K 84.30 79.73 75.28 40.85 70.04
DPT-25 230K 86.52 83.67 89.18 68.60 81.99
Pref-T 24 221K 82.93 81.39 83.46 55.75 75.88
LoRA 221K 86.45 83.83 93.61 76.00 84.97
Bottleneck Adapter
Pfeiffer 249K 88.38 83.44 91.33 73.19 84.09
Houlsby 498K 88.00 82.80 91.75 78.71 85.32
Conformer Adapter
Pfeiffer 271K 88.30 84.57 96.28 95.48 91.16
Houlsby 542K 85.97 83.59 96.16 96.34 90.51

while for the three prompt-tuning methods is 0.01. Except
for US8K that does not provide a validation set by default,
for the others we set the hyper-parameters using the valida-
tion set. For the ESC and US8K datasets, we run 5-fold and
10-fold cross-validation as suggested in the original papers.
Each experiment is carried out using a single A40/V100 GPU.
The code and the complete list of hyper-parameters will be re-
leased upon acceptance.

3.2. Main Results and Discussion

Table 1 presents the performance comparisons among the
various PETL methods. The following observations can be
drawn: ❶ our conformer adapter attains the best perfor-
mance on average, bringing remarkable improvements over
the bottleneck adapter, with the best configurations leading
to up to {4.9%, 22.4%} extra performance improvement
on {GSC, FSC}, the two datasets that exhibit the biggest
mismatch between the downstream tasks and the data used
for pre-training the AST model. Furthermore, our adapter
approaches the FFT baseline for GSC, whereas for FSC it
is capable of exceeding it by more than 3 points. Yet, our
conformer Pfeiffer/Houlsby adapter only uses 0.29/0.59%
parameters compared to the FFT baseline. ❷ If we focus
on the audio classification tasks, we note good improvements
with respect to US8K (it also manages to outstrip FFT by
0.26 points), while for ESC-50 our adapter performs on par
with the bottleneck adapter. We point out that the bottleneck
adapter outperforms the FFT baseline and it can be already
considered a strong approach, so using a more complex de-
sign like ours does not improve the performance accuracy.
❸ For the bottleneck and conformer adapters, the Houlsby
configuration leads to better results for speech classification

Table 2: Few-shot analysis for the ESC-50 and GSC datasets.

ESC GSC
Examples per class

Method 1 2 4 8 2 8 32 64

DPT-25 32.7 44.3 57.0 71.9 9.4 18.7 43.1 57.1
LoRA 31.8 42.2 58.8 70.7 6.8 15.2 41.8 59.8
Bottleneck 33.0 45.5 60.2 72.8 7.2 16.0 47.9 66.6
Conformer 30.7 41.0 56.2 71.1 5.9 15.5 58.7 77.5

tasks, where having more parameters is beneficial (Houlsby
configuration uses twice as many parameters as Pfeiffer),
while for audio tasks Pfeiffer achieves better performance
accuracy. ❹ Among the other PETL methods, we point out
that LoRA achieves good results on average, beating the
bottleneck Pfeiffer adapter on 3 out of 4 benchmarks.

3.3. Ablation Studies

In this section, we study the efficacy of our proposed adapter
under different settings such as few-shot learning and differ-
ent pre-trained models (e.g., Wav2Vec 2.0). For the bottle-
neck/conformer adapters, we use the Pfeiffer configuration.

Few-shot Analysis. We evaluate our proposed adapters
for few-shot parameter-efficient transfer learning. This sce-
nario is challenging because, in addition to the constraint on
the number of trainable parameters, only a few samples are
labeled per class. We report the accuracy results for ESC
(4 samples) and GSC (32 samples) in Table 2. We see that,
whereas for ESC the bottleneck adapter attains the best re-
sults, for GSC the gap between this and the conformer adapter
is more than 10 points. This again confirms that our proposed
adapter is the best choice for speech tasks.

Scaling Abilities. We now want to verify whether our
proposed adapter also performs better when fewer parame-
ters (e.g., 50K) or more parameters (up to 1M) are allocated.
We restrict our analysis to the Pfeiffer configuration and
GSC/FSC datasets. In Fig. 2 we observe that the conformer
adapter, regardless of the number of parameters, outstrips the
other PETL approaches. In turn, LoRA turns out to be the
second best method, and it exhibits strong scaling properties
when more parameters are used, bringing better results than
bottleneck adapter and DPT. We point out that for FSC, the
best result obtained with LoRA requires roughly 900K pa-
rameters, whereas the conformer adapter only requires around
100K to achieve the same accuracy.

On the Kernel Size of the Conformer Adapter. We
study the impact of the kernel size k of the conformer adapter
on the ESC and GSC datasets both for the few-shot (4/32
samples) and full (i.e., no few-shot) settings. We let k vary
from 1 to 31, and we point out that setting k = 31 only adds
roughly 2.8K parameters with respect to k = 1. In Fig. 3 we

0 20 40 60 80

Fine-tuned Parameters [x10^4]

84

86

88

90

92

94

96

98

A
cc

ur
ac

y
(%

)

97.31
GSC

Full Fine-tuning
Bottleneck
DPT
LoRA
Conformer

0 20 40 60 80

Fine-tuned Parameters [x10^4]

60

65

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

93.29

FSC

Full Fine-tuning
Bottleneck
DPT
LoRA
Conformer

Fig. 2: Scaling trend as more trainable parameters for each PETL method are used for GSC (Left) and FSC (Right) datasets.

0 5 10 15 20 25 30

Kernel Size

51

52

53

54

55

56

57

58

59

A
cc

ur
ac

y
(%

)

Few-shot Setting

ESC
GSC

0 5 10 15 20 25 30

Kernel Size

88

90

92

94

96

A
cc

ur
ac

y
(%

)

Full Setting

ESC
GSC

Fig. 3: Impact of the kernel size for the ESC and GSC datasets
on the few-shot (Left) and full (Right) settings.

observe that for ESC, the results are not much influenced by
k, and setting k = 8 provides the best results. On the contrary,
for a more challenging dataset like GSC we see that increas-
ing k leads to better results for both the few-shot and full set-
tings, with the former being more sensitive to it. We speculate
that this happens because a larger kernel allows learning more
global features, and this is more beneficial when the number
of features is small (for the conformer adapter r = 8). On
the contrary, since ESC is an easier dataset, a smaller kernel
is sufficient to achieve optimal results.

Additional Results for Wav2Vec 2.0. Finally, we want
to verify whether the proposed conformer adapter can be effi-
ciently harnessed for another pre-trained model. In this direc-
tion, we consider Wav2Vec 2.0 [35]. We test the bottleneck
and conformer adapters on FSC and GSC, as well as IEMO-
CAP [33], a benchmark for emotion recognition. For IEMO-
CAP, we increase the number of parameters to roughly 900K
as it is a more challenging dataset. As we can see from Ta-
ble 3, the performance gap between the adapter approaches
and the FFT is large for IEMOCAP. Nonetheless, we can ob-
serve that the conformer adapter reaches accuracy results of
55.81, with an improvement of more than 6 points over the
bottleneck adapter. For the other two datasets, the conformer
adapter turns out again to surpass the bottleneck adapter.

Table 3: Results of bottlenck and conformer adapters for
Wav2Vec 2.0 on GSC, FSC and IEMOCAP (IEM) datasets.

Method Par GSC FSC Par IEM Avg

FFT 90M 98.16 99.58 90M 70.05 89.26
Linear 24K 84.93 30.95 4K 36.82 50.90
Bottle 250K 94.96 96.41 895K 48.32 79.90
Conf 272K 95.24 98.33 927K 55.81 83.13

4. CONCLUSION

In this work, we study the problem of parameter-efficient
transfer learning for the AST model. To do so, we estab-
lish a framework that allows us to examine the performance
achieved by the most common PETL methods across five
audio/speech benchmarks. We also propose a new adapter
module that relies on the conformer convolution module,
making effective use of the depthwise convolution. We show
that our proposed adapter turns out to be competitive with
the full fine-tuning approach and outperforms the established
bottleneck adapter, as well as LoRA and prompt-tuning meth-
ods. The conformer adapter also provides strong results under
few-shot settings, when we vary the number of parameters
and if applied to another pre-trained model like Wav2Vec
2.0. Finally, we study the role of kernel size, underscoring its
pivotal role in achieving peak performance.

5. REFERENCES

[1] K. Lv et al., “Full parameter fine-tuning for large lan-
guage models with limited resources,” arXiv preprint
arXiv:2306.09782, 2023.

[2] Y. Wang et al., “A fine-tuned wav2vec 2.0/hubert
benchmark for speech emotion recognition, speaker ver-
ification and spoken language understanding,” arXiv
preprint arXiv:2111.02735, 2021.

[3] L. Xu et al., “Parameter-efficient fine-tuning methods
for pretrained language models: A critical review and
assessment,” arXiv preprint arXiv:2312.12148, 2023.

[4] J. He et al., “Towards a unified view of parameter-
efficient transfer learning,” in ICLR, 2022.

[5] V. Lialin, V. Deshpande, and A. Rumshisky, “Scaling
down to scale up: A guide to parameter-efficient fine-
tuning,” arXiv preprint arXiv:2303.15647, 2023.

[6] U. Cappellazzo et al., “Sequence-level knowledge distil-
lation for class-incremental end-to-end spoken language
understanding,” Interspeech, 2023.

[7] U. Cappellazzo et al., “Continual contrastive spoken
language understanding,” in ACL, 2024.

[8] B. Lester et al., “The power of scale for parameter-
efficient prompt tuning,” in EMNLP, 2021.

[9] M. Jia et al., “Visual prompt tuning,” in ECCV, 2022.

[10] E. Hu et al., “Lora: Low-rank adaptation of large lan-
guage models,” in ICLR, 2022.

[11] Q. Zhang et al., “Adaptive budget allocation for
parameter-efficient fine-tuning,” in ICLR, 2023.

[12] S. Liu et al., “Dora: Weight-decomposed low-rank
adaptation,” arXiv preprint arXiv:2402.09353, 2024.

[13] T. Lin et al., “Peft for speech: Unveiling optimal place-
ment, merging strategies, and ensemble techniques,”
arXiv preprint arXiv:2401.02122, 2024.

[14] Z. Chen et al., “Exploring efficient-tuning methods in
self-supervised speech models,” in SLT, 2023.

[15] Y. Li et al., “Evaluating parameter-efficient transfer
learning approaches on sure benchmark for speech un-
derstanding,” in ICASSP, 2023.

[16] S. Kessler, B. Thomas, and S. Karout, “An adapter based
pre-training for efficient and scalable self-supervised
speech representation learning,” in ICASSP, 2022.

[17] K. Tomanek et al., “Residual adapters for parameter-
efficient ASR adaptation to atypical and accented
speech,” in EMNLP, 2021.

[18] Y. Gong, Y. Chung, and J. Glass, “Ast: Audio spectro-
gram transformer,” in Interspeech, 2021.

[19] N. Selvaraj et al., “Adapter incremental continual learn-
ing of efficient audio spectrogram transformers,” arXiv
preprint arXiv:2302.14314, 2023.

[20] Y. Gong, C. Lai, Y. Chung, and J. Glass, “Ssast: Self-
supervised audio spectrogram transformer,” in AAAI,
2022.

[21] J. Ba et al., “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[22] X. Li and P. Liang, “Prefix-tuning: Optimizing
continuous prompts for generation,” arXiv preprint
arXiv:2101.00190, 2021.

[23] N. Houlsby et al., “Parameter-efficient transfer learning
for nlp,” in ICML, 2019.

[24] J. Pfeiffer et al., “Adapterfusion: Non-destructive task
composition for transfer learning,” in EACL, 2021.

[25] R. Mahabadi et al., “Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks,”
arXiv preprint arXiv:2106.04489, 2021.

[26] S. Chen et al., “Adaptformer: Adapting vision trans-
formers for scalable visual recognition,” NeurIPS, 2022.

[27] S. Jie and Z. Deng, “Convolutional bypasses are
better vision transformer adapters,” arXiv preprint
arXiv:2207.07039, 2022.

[28] A. Gulati et al., “Conformer: Convolution-augmented
transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

[29] K. Piczak, “Esc: Dataset for environmental sound clas-
sification,” in ACM Multimedia, 2015, pp. 1015–1018.

[30] J. Salamon et al., “A dataset and taxonomy for urban
sound research,” in ACM Multimedia, 2014.

[31] P. Warden, “Speech commands: A dataset for
limited-vocabulary speech recognition,” arXiv preprint
arXiv:1804.03209, 2018.

[32] L. Lugosch, M. Ravanelli, P. Ignoto, V. Tomar, and
Y. Bengio, “Speech model pre-training for end-to-end
spoken language understanding,” Interspeech, 2019.

[33] C. Busso et al., “Iemocap: Interactive emotional dyadic
motion capture database,” Language resources and
evaluation, vol. 42, pp. 335–359, 2008.

[34] E. Zaken, S. Ravfogel, and Y. Goldberg, “Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models,” arXiv preprint
arXiv:2106.10199, 2021.

[35] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli,
“wav2vec 2.0: A framework for self-supervised learn-
ing of speech representations,” NeurIPS, 2020.

	 Introduction
	 Methodology
	 AST Model Recap
	 Overview of Parameter-efficient Transfer Learning Methods

	 Experiments
	 Implementation Details
	 Main Results and Discussion
	 Ablation Studies

	 Conclusion
	 References

