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Abstract
This paper studies the problem of solving noncon-
vex nonsmooth optimization over a closed con-
vex set. Most previous works tackle such prob-
lems by transforming the constrained problem
into an unconstrained problem. However, they
only provide asymptotic convergence analysis for
their methods. In this work, we provide the non-
asymptotic convergence analysis for solving con-
strained nonconvex nonsmooth optimization. We
first generalize classical gradient mapping and the
Frank–Wolfe gap in the nonsmooth setting. Then
we introduce novel notions of approximate sta-
tionarity concerning such generalized quantities.
We also propose several stochastic zeroth-order
algorithms for the problem, along with their non-
asymptotic convergence guarantees of obtaining
the proposed approximate stationarity. Finally, we
conduct numerical experiments that demonstrate
the effectiveness of our algorithms.

1. Introduction
This paper considers the following constrained stochastic
optimization problem

min
x∈Ω

F (x) := Eξ∼P [f(x; ξ)] (1)

where the stochastic component f(x; ξ), indexed by some
random variable ξ , is probably nonconvex and nonsmooth,
and the feasible set Ω ⊆ Rd is convex and compact. Such
problems are very common in many real-world machine
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learning applications including adversarial attack (Carlini
& Wagner, 2017; Madry et al., 2017), regularized support
vector machine (Smola & Schölkopf, 1998; Zhang, 2010)
and training Generative Adversarial Networks (GANs) (Gul-
rajani et al., 2017; Miyato et al., 2018).

Existing research (Curtis & Overton, 2012; Tang et al.,
2014; Hare et al., 2016; Curtis et al., 2017; Hoseini Mon-
jezi & Nobakhtian, 2021) for constrained nonconvex nons-
mooth optimization mainly focuses on transforming the con-
strained problem into an unconstrained problem that can be
solved with techniques developed in the unconstrained set-
ting. Though their methods enjoy asymptotic convergence,
little is known about the non-asymptotic convergence rates
of these algorithms. One of the difficulties is the choice
of convergence criteria that measure the progress of the
algorithm. The gradient mapping and Frank–Wolfe gap,
which are widely used as the convergence criteria in the con-
strained smooth problem, are unfortunately not suitable for
the nonsmooth setting because their definitions require the
gradient to be well-defined at every point in the feasible set.
One possible solution is to generalize such quantities with
the Clarke subdifferential, which considers the set of gener-
alized gradients at the current iterate. Nevertheless, we show
that the approximate stationarity concerning such quantities
does not permit a finite-time analysis for any algorithm. In-
spired by the definition of (δ, ϵ)-Goldstein stationary points
for unconstrained nonconvex nonsmooth problems (Zhang
et al., 2020; Lin et al., 2022; Chen et al., 2023; Cutkosky
et al., 2023; Kornowski & Shamir, 2023), we propose the
generalized gradient mapping and δ-Frank–Wolfe gap as the
extensions of the gradient mapping and the Frank–Wolfe
gap by leveraging the Goldstein δ-subdifferential (Gold-
stein, 1977), which considers the convex combination of
all generalized gradients in the neighborhood of current
iterate. Furthermore, we define the (γ, δ, ϵ)-generalized
Goldstein stationary point and the (δ, ϵ)-Goldstein Frank–
Wolfe stationary point as the approximate stationarity for
our problem.

Armed with the refined approximate stationarity, we propose
zeroth-order projection-based and projection-free stochastic
optimization algorithms for solving the problem (1) in finite
time. Specifically, we rigorously show that the zeroth-order
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Table 1. We present the non-asymptotic convergence rates of proposed algorithms for constrained nonconvex nonsmooth problems. FQO
stands for the function query oracle calls. GGSP stands for generalized Goldstein stationary point, and GFWSP stands for Goldstein
Frank–Wolfe stationary point.

METHODS CRITERION FQO REFERENCE

MB-ZOSPGD (γ, δ, ϵ)-GGSP O(d
3
2 δ−1ϵ−4) COROLLARY 5.2

VR-ZOSPGD (γ, δ, ϵ)-GGSP O(d
3
2 δ−1ϵ−3) COROLLARY 5.4

MB-ZOSFW (δ, ϵ)-GFWSP O(d
3
2 δ−1ϵ−4) COROLLARY 5.7

VR-ZOSFW (δ, ϵ)-GFWSP O(d
3
2 δ−1ϵ−3) COROLLARY 5.9

stochastic projected gradient descent algorithm with a mini-
batch gradient estimator obtains the (γ, δ, ϵ)-generalized
Goldstein stationary point through O(d

3
2 δ−1ϵ−4) function

query oracle calls. To tackle the case where the feasible
set is so complicated that projection onto it is rather ex-
pensive or even intractable, we also propose a zeroth-order
stochastic Frank–Wolfe algorithm with a minibatch gradient
estimator for problem (1) which attains the (δ, ϵ)-Goldstein
Frank–Wolfe stationary point through O(d

3
2 δ−1ϵ−4) func-

tion query oracle calls. Furthermore, the convergence rate
of both algorithms can be improved through the use of
variance-reduction techniques. The complexity results of
the algorithms are summarized in Table 1. Finally, we per-
form numerical experiments to validate the effectiveness of
the proposed approaches.

Paper Organization In Section 2, we present a literature
review on the convergence analysis for minimizing uncon-
strained and constrained nonconvex nonsmooth problems.
In Section 3, we formalize the notations and assumptions of
our problem and introduce the background for nonsmooth
analysis. In Section 4, we propose the approximate sta-
tionarity for our problem and provide some fundamental
properties of these notions. In Section 5, we present the
zeroth-order stochastic projection-based and projection-free
algorithms for solving our problem in finite time. In Sec-
tion 6, we conduct numerical experiments to demonstrate
the effectiveness of the proposed algorithms. We conclude
this work in Section 7.

2. Related Works
In this section, we review prior works on nonconvex nons-
mooth optimization.

2.1. Non-Asymptotic Convergence Analysis of
Nonconvex Nonsmooth Functions

The development of non-asymptotic convergence analysis
of nonsmooth optimization only emerged recently. Some
recent works (Davis & Grimmer, 2019; Davis & Drusvy-

atskiy, 2019) showed that a (δ, ϵ)-near approximate station-
ary (NAS) point is obtainable through O(ρ4δ−4 + ϵ−4) ora-
cles calls for ρ-weakly convex functions. However, a large
class of nonconvex nonsmooth functions does not belong
to the class of ρ-weakly convex functions, including deep
neural networks with RELU activations. Even worse, Tian
& So (2021) showed that it is impossible to find NAS points
for ρ-weakly convex functions when ρ is unbounded using
dimension-free algorithms in finite time. Zhang et al. (2020)
gave the first dimension independent non-asymptotic com-
plexity analysis to compute the (δ, ϵ)-Goldstein stationary
point. Their methods were improved by introducing pertur-
bations to remove the unrealistic subgradient oracle (Davis
et al., 2022; Tian et al., 2022). Furthermore, Tian & So
(2022); Jordan et al. (2023) showed that randomization is
necessary to obtain the dimension-free complexity for non-
convex nonsmooth optimization. Cutkosky et al. (2023)
proposed the optimal algorithm via the reduction from non-
convex nonsmooth optimization to online learning.

The first non-asymptotic convergence analysis of zeroth-
order methods for nonconvex nonsmooth functions was
introduced by Nesterov & Spokoiny (2017). Lin et al. (2022)
proposed the gradient-free approaches for finding a (δ, ϵ)-
Goldstein stationary point of the problem and Chen et al.
(2023) improved their results by leveraging the variance-
reduction technique. Kornowski & Shamir (2023) applied
the reduction technique introduced by Cutkosky et al. (2023)
to the gradient-free setting for achieving a shaper bound.

2.2. Convergence Analysis of Constrained Nonconvex
Nonsmooth Functions

We divide the existing literature for constrained nonconvex
nonsmooth optimization into two categories.

Asymptotic Analysis Most previous literature analyzes
the asymptotic convergence properties of various optimiza-
tion algorithms including bundle methods and gradient sam-
pling methods. A nonsmooth problem over a closed convex
set is usually reformulated as an unconstrained nonsmooth
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problem through the penalty or filter method (Hare et al.,
2016; Dao et al., 2016), which can be solved using the
bundle method. Besides this approach, Curtis & Overton
(2012) formulated the inequality-constrained nonconvex
nonsmooth problem as a sequential quadratic programming
(SQP) problem, which was solved by the gradient sampling
(GS) method. The convergence result showed that accu-
mulation points were stationary points of the reformulated
function but could possibly be infeasible. Their result was
improved by Tang et al. (2014) that generated a sequence of
feasible iterates using the SQP-GS methodology. A more
efficient BFGS-SQP was proposed by Curtis et al. (2017)
which showed faster convergence behavior without requir-
ing the existence of the Hessian. Xu et al. (2015) considered
a smoothing augmented lagrangian method for solving the
inequality-constrained problem.

Non-Asymptotic Analysis The first non-asymptotic con-
vergence analysis of the constrained nonconvex nonsmooth
optimization was proposed by Davis & Grimmer (2019) for
ρ-weakly convex functions. Vladarean et al. (2023) pro-
posed a Frank-Wolfe algorithm for constrained nonconvex
nonsmooth stochastic compositional optimization problems.
They considered the composite functions where the outer
function is convex but possibly non-differentiable and the in-
ner function is smooth. Very recently, Grimmer & Jia (2023)
proposed the non-asymptotic convergence analysis of mini-
mizing the inequality-constrained problem using the subgra-
dient method. We point out several differences between the
approximate stationarity proposed in their work and ours be-
low. Our problem can be reformulated in their setting by the
introduction of some Lipschitz functions g1, . . . , gm. How-
ever, the proposed (δ, ϵ, η)-Goldstein KKT (GKKT) station-
ary point by Grimmer & Jia (2023) requires fulfillment of a
certain constraint qualification while the (δ, ϵ, η)-Goldstein
Fritz-John (GKJ) stationary point does not. In addition, the
corresponding GKKT stationary point and GFJ stationary
point depend on how to describe the constrained set Ω by
the specific choice of Lipschitz functions g1, . . . , gm which
may not be unique, while the definitions of our GGSP and
GFWSP mainly depend on the constrained set Ω.

3. Preliminaries
In this section, we first present the notations and assump-
tions used in the paper, then introduce the background of
nonsmooth analysis, and finally review the randomized
smoothing technique that is widely used in zeroth-order
optimization.

3.1. Problem Assumptions

In this paper, we assume the problem (1) satisfies the fol-
lowing two assumptions.

Assumption 3.1. The feasible set Ω ∈ Rd of the prob-
lem (1) is convex and compact with diameter bounded by B.

Assumption 3.2. The stochastic component f(·, ξ) of the
problem (1) is L(ξ)-Lipschitz for a given ξ, i.e., it holds that

|f(x, ξ)− f(y, ξ)| ≤ L(ξ) ∥x− y∥ ,

for any x, y ∈ Rd, where L(ξ) has bounded second-order
moment such that Eξ[L(ξ)

2] ≤ G2 for some G > 0.

Remark 3.3. Assumption 3.2 implies the objective function
F (·) is G-Lipschitz by Jensen’s inequality.

In this paper, we study zeroth-order stochastic optimization
algorithms that can access one or both of the following two
oracles:

• Function Query Oracle (FQO): Given a point x ∈ Ω
and ξ sampled from the distribution P , FQO returns
the value of f(x, ξ).

• Linear Maximization Oracle (LMO): Given a vector
v ∈ Rd, LMO returns a solution of the linear opti-
mization problem: argmaxu∈Ω⟨u, v⟩.

3.2. Background for Nonsmooth Analysis

We can define generalized directional derivatives and gener-
alized gradients for general nondifferentiable functions as
follows.

Definition 3.4 (Clarke (1990)). Given a point x ∈ Rd and
a direction v ∈ Rd, the generalized directional derivative
of a nondifferentiable function f is defined as Df(x; v) :=
lim supy→x,t↓0

f(y+tv)−f(y)
t . Then the Clarke subdifferen-

tial of f is defined as the set ∂f(x) := {g ∈ Rd : g⊤v ≤
Df(x; v),∀v ∈ Rd}. Each element g ∈ ∂f(x) is called a
generalized gradient of f .

Given the definition of the Clarke subdifferential and gener-
alized gradients, the convergence criterion of solving the un-
constrained nonconvex nonsmooth problem minx∈Rd f(x)
can be characterized as finding the ϵ-Clarke stationary
point x of the function f , specifically,

min{∥g∥ : g ∈ ∂f(x)} ≤ ϵ.

Unfortunately, Zhang et al. (2020) showed that no algorithm
can find an ϵ-Clarke stationary point of the unconstrained
problem in finite time. Thus they considered a refined no-
tion of approximate stationarity concerning the Goldstein
δ-subdifferential.

Definition 3.5 (Goldstein (1977)). Denote B(x, δ) = {y :
∥y − x∥ ≤ δ}. Given a Lipschitz function f : Rd → R, a
point x ∈ Rd and δ ≥ 0, the Goldstein δ-subdifferential of
f at x is defined as

∂δf(x) := conv
(
∪y∈B(x,δ)∂f(y)

)
,
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which is the convex combination of the generalized gradi-
ents at points in the δ-neighbourhood of x.

We have the following relationship between Goldstein δ-
subdifferential and Clarke subdifferential.

Lemma 3.6 (Makela & Neittaanmaki (1992)). The Gold-
stein δ-subdifferential is equivalent to the Clarke subdiffer-
ential when δ = 0, i.e., ∂0f(x) = ∂f(x).

Accordingly, a refined approximate stationarity for the un-
constrained nonconvex nonsmooth problem is defined be-
low.

Definition 3.7 (Zhang et al. (2020)). Given a Lipschitz
function f : Rd → R, a point x ∈ Rd and δ ≥ 0, a point x
is called a (δ, ϵ)-Goldstein stationary point of f(·) if

min{∥g∥ : g ∈ ∂δf(x)} ≤ ϵ.

Zhang et al. (2020) and its follow-up works (Tian et al.,
2022; Davis et al., 2022; Cutkosky et al., 2023) proposed
a series of algorithms with non-asymptotic convergence
analysis of finding a (δ, ϵ)-Goldstein stationary point for δ >
0.

3.3. Randomized Smoothing

The randomized smoothing technique is widely used in
nonsmooth analysis (Duchi et al., 2012) and zeroth-order
optimization (Nesterov & Spokoiny, 2017). Formally, given
a L-Lipschitz function f and a distribution Q, we define the
smoothing function as fδ(x) = Eu∼Q[f(x + δu)], which
enjoys the following properties.

Lemma 3.8 (Lin et al. (2022)). Let fδ(x) = Eu∼Q[f(x+
δu)] where Q is a uniform distribution on a unit ball in ℓ2-
norm. Suppose the function f is L-Lipschitz, then we have
(a) |fδ(x)−f(x)| ≤ δL; (b) fδ is differentiable everywhere
and L-Lipschitz with (cL

√
d/δ)-Lipschitz gradient where

c > 0 is a constant; (c) ∇fδ(x) ∈ ∂δf(x) for all x ∈ Rd.

An unbiased estimation of ∇fδ(x) can be obtained by mak-
ing two function query oracle calls on points randomly sam-
pled from the unit sphere, which induces the zeroth-order
gradient estimator (Agarwal et al., 2010).

Definition 3.9. Given a stochastic function component
f(·; ξ) : Rd → R, we denote its zeroth-order stochastic
gradient estimator at x ∈ Rd by

ĝ(x;w, ξ) =
d

2δ
(f(x+ δw; ξ)− f(x− δw; ξ))w,

where w is sampled from a uniform distribution on a unit
sphere in Rd.

4. The Approximate Stationarity for
Constrained Nonsmooth Optimization

In this section, we first formally define our notions of
approximate stationarity for constrained nonconvex non-
smooth optimization and then present several properties
of our definitions. These notions can help us achieve the
non-asymptotic convergence rate of stochastic optimization
algorithms to be introduced in the later sections.

4.1. Definitions of Approximate Stationarity

We first introduce the notion of generalized gradient map-
ping as follows.

Definition 4.1. Given some δ ≥ 0, γ > 0 and a convex
compact set Ω ⊆ Rd, the generalized gradient mapping of a
Lipschitz function f : Rd → R at a point x ∈ Ω associated
with some g ∈ ∂δf(x) is defined as:

G(x, g, γ) := 1

γ
(x− ψ(x, g, γ)),

where

ψ(x, g, γ) := argmin
y∈Ω

{
⟨g, y⟩+ 1

2γ
∥y − x∥2

}
.

If the function f(·) is differentiable, the generalized gradient
mapping with δ = 0 is equivalent to the vanilla gradient
mapping (Nesterov et al., 2018, Section 2.2.4)

1

γ
(x− ψ(x,∇f(x), γ)),

which is a popular criterion for measuring the convergence
rate of stochastic projection-based algorithms in the smooth
setting (Nemirovskij & Yudin, 1983; Ghadimi et al., 2016;
Nesterov et al., 2018; Wang et al., 2019). This property
can be proved by the fact that ∂f(x) = {∇f(x)} when f
is a differentiable function (Makela & Neittaanmaki, 1992,
Theorem 3.1.7) and Lemma 3.6.

We define the following approximate stationary point w.r.t.
the generalized gradient mapping.

Definition 4.2. We say the point x ∈ Ω is a (γ, δ, ϵ)-
generalized Goldstein stationary point (GGSP) of the prob-
lem (1) if it satisfies

min
g∈∂δf(x)

∥G(x, g, γ)∥ ≤ ϵ.

By setting δ = 0, we denote the point x ∈ Ω is a (γ, ϵ)-
generalized Clarke stationary point (GCSP) if it satisfies

min
g∈∂f(x)

∥G(x, g, γ)∥ ≤ ϵ,

where ∂f(·) = ∂0f(·) is the Clarke subdifferential.
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Although the (γ, ϵ)-GCSP is a more natural generalization
of the approximate stationarity w.r.t. the gradient mapping,
we will show that it does not admit non-asymptotic conver-
gence for our problem. Instead, we use the (γ, δ, ϵ)-GGSP
as the approximate stationarity to analyze the finite-time
convergence rate of the stochastic projection-based algo-
rithms for any δ > 0. We remark that when Ω = Rd, the
(γ, δ, ϵ)-GGSP is reduced to the (δ, ϵ)-Goldstein stationary
point for the unconstrained nonconvex nonsmooth optimiza-
tion. To analyze the projection-free stochastic optimization
algorithms, we rely on the following notion of the δ-Frank–
Wolfe gap.

Definition 4.3. Given some δ ≥ 0 and a convex compact
set Ω ⊆ Rd, the δ-Frank–Wolfe gap of a Lipschitz function
f : Rd → R at x ∈ Ω is defined as:

min
g∈∂δf(x)

max
u∈Ω

⟨u− x,−g⟩, (2)

where ∂δf(·) is the Goldstein δ-subdifferential.

For a differentiable function f(·), the δ-Frank–Wolfe gap
when δ = 0 is equivalent to the vanilla Frank–Wolfe gap

max
u∈Ω

⟨u− x,−∇f(x)⟩,

which is a common criterion for measuring the convergence
rate of stochastic projection-free algorithms in the smooth
setting (Lacoste-Julien, 2016; Reddi et al., 2016; Yurtsever
et al., 2019; Gao & Huang, 2020). It is natural to define the
approximate stationary point w.r.t. the δ-Frank–Wolfe gap
as follows.

Definition 4.4. We say the point x ∈ Ω is a (δ, ϵ)-Goldstein
Frank–Wolfe stationary point (GFWSP) of the problem (1)
if it satisfies

min
g∈∂δf(x)

max
u∈Ω

⟨u− x,−g⟩ ≤ ϵ.

where ∂δf(·) is the Goldstein δ-subdifferential. By setting
δ = 0, we denote the point x ∈ Ω is an ϵ-Clarke Frank–
Wolfe stationary point (CFWSP) if it satisfies

min
g∈∂f(x)

max
u∈Ω

⟨u− x,−g⟩ ≤ ϵ.

where ∂f(·) = ∂0f(·) is the Clarke subdifferential.

Similar to the (γ, ϵ)-GCSP, we will show that ϵ-CFWSP
does not admit non-asymptotic convergence for solving our
problem. Alternatively, we will use the (δ, ϵ)-GFWSP as
the approximate stationarity to obtain the finite-time con-
vergence rate of stochastic projection-free algorithms for
any δ > 0.

4.2. Properties of Proposed Approximate Stationary
Points

Apparently, (γ, δ, ϵ)-GGSP appears to be a weaker notion
since if x is a (γ, ϵ)-GCSP, then it is also a (γ, δ, ϵ)-GGSP
for any δ ≥ 0, but not vice versa. We show that the con-
verse implication indeed still holds, assuming that f(·) is a
differentiable function.

Proposition 4.5. Given a differentiable function f : Rd →
R and a convex compact set Ω, the following statements
hold:

• Suppose a point x ∈ Ω is a (γ, ϵ)-generalized Clarke sta-
tionary point, then it is a (γ, δ, ϵ)-generalized Goldstein
stationary point for any δ ≥ 0.

• Suppose f(·) has L-Lipschitz gradient and the point x ∈
Ω is a (γ, ϵ/(2L), ϵ/2)-generalized Goldstein stationary
point, then the corresponding vanilla gradient mapping
at x satisfies ∥G(x,∇f(x), γ)∥ ≤ ϵ.

We can infer the equivalence between the (γ, ϵ)-GCSP and
the (γ, δ, ϵ)-GGSP when f(·) is a differentiable function.
Similar to Proposition 4.5, we can show the connection
between ϵ-CFWSP and (δ, ϵ)-GFWSP as follows.

Proposition 4.6. Given a differentiable function f : Rd →
R and a convex compact set Ω, we have the following state-
ments:

• Suppose a point x ∈ Ω is an ϵ-Clarke Frank–Wolfe sta-
tionary point, then it is a (δ, ϵ)-Goldstein Frank–Wolfe
stationary point for any δ ≥ 0.

• Suppose f(·) has L-Lipschitz gradient and the point
x ∈ Ω is a

(
ϵ/(3BL), 2ϵ/3

)
-Goldstein Frank–Wolfe

stationary point, then the corresponding vanilla Frank–
Wolfe Gap at x satisfies maxu∈Ω⟨u− x,−∇f(x)⟩ ≤ ϵ.

Consequently, the ϵ-CFWSP is equivalent to the (δ, ϵ)-
GFWSP assuming f(·) is a differentiable function. How-
ever, neither (γ, ϵ)-GCSP nor ϵ-CFWSP permits a finite-
time analysis for any deterministic or randomized algorithm
interacting with a local oracle1 in the nonsmooth setting.

Theorem 4.7. For any algorithm A interacting with a local
oracle, and any T ∈ N, d ≥ 2, there is a function f(·) on
Rd such that

1. f(·) is 15
4 -Lipschitz, f(0)− infx f(x) ≤ 2,

1We consider oracles that given a function f and a point x,
return some quantity Of (x) which conveys local information about
the function near that point (Kornowski & Shamir, 2022). A typical
example is the first-order oracle (f(x), ∂f(x)).

5



Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

2. With probability at least 1− 2T exp(−d/36) over the
algorithm’s randomness, the iterates x1, . . . , xT pro-
duced by the algorithm do not belong to the set of
(γ, ϵ)-GCSP or ϵ-CFWSP for ϵ < 1/(4

√
2).

On the contrary, we will show that both (γ, δ, ϵ)-GGSP and
(δ, ϵ)-GFWSP can help us achieve finite-time convergence
in the next section.

5. Zeroth-Order Stochastic Methods
In this section, we study stochastic zeroth-order methods for
the nonconvex nonsmooth optimization. We first introduce
two zeroth-order gradient estimators used in our algorithms.
Then we propose several stochastic zeroth-order algorithms
which non-asymptotically converge to the approximate sta-
tionary points defined in Section 4.

5.1. Zeroth-Order Gradient Estimators

We borrow the idea of the classical two-point gradient es-
timator and propose two stochastic zeroth-order gradient
estimators. The first estimator approximates the gradient by
the mean of estimated gradients of a small batch of samples:

vt =
1

b

b∑
i=1

gi,t,

where gi,t = ĝ(xt;wi,t, ξi,t) is one single stochastic gra-
dient estimator at iteration t. The complete procedure of
the minibatch stochastic gradient estimator (MB-SGrad) is
shown in Algorithm 1. For the second gradient estimator,
we leverage the idea of variance reduction (VR) to approxi-
mate ∇Fδ(xt) by a recursive gradient estimator vt with the
following update

vt =
1

b2

b2∑
i=1

(gi,t − gi,t−1) + vt−1,

where gi,t−1 and gi,t are the stochastic gradient estimators
at two consecutive iterations. The complete procedure of the
variance-reduced stochastic gradient estimator (VR-SGrad)
is presented in Algorithm 2.

Both algorithms employ the randomized smoothing tech-
nique to approximate the gradient of the smoothing func-
tion Fδ . The obtained approximations are verified to belong
to the Goldstein δ-subdifferential of F (·) by Lemma 3.8.

5.2. Zeroth-Order Stochastic Projection-based
Algorithms

We present the details of the zeroth-order stochastic pro-
jected gradient descent (ZOSPGD) algorithms for our prob-
lem in Algorithm 3. The algorithm leverages the classic

Algorithm 1 vt = MB-SGrad(xt)
1: Input: Parameter bt.
2: Sample ξ1,t, . . . , ξbt,t ∼ P independently.
3: Sample w1,t, . . . , wbt,t independently and uniformly

from a unit sphere in Rd.
4: Let gi,t = ĝ(xt;wi,t, ξi,t) for each i ∈ [bt].
5: return vt = 1

bt

∑bt
i=1 gi,t.

Algorithm 2 vt = VR-SGrad(xt, xt−1, t)
1: Input: Parameters b1, b2, q.
2: if mod(t, q) = 0 then
3: Sample ξ1,t, . . . , ξb1,t ∼ P independently.
4: Sample w1,t, . . . , wb1,t independently and uniformly

from a unit sphere in Rd.
5: Let gi,t = ĝ(xt;wi,t, ξi,t) for each i ∈ [b1].
6: return vt = 1

b1

∑b1
i=1 gi,t.

7: else
8: Sample ξ1,t, . . . , ξb2,t ∼ P independently.
9: Sample w1,t, . . . , wb2,t independently and uniformly

from a unit sphere in Rd.
10: Let gi,t = ĝ(xt;wi,t, ξi,t) for each i ∈ [b2].
11: Let gi,t−1 = ĝ(xt−1;wi,t, ξi,t) for each i ∈ [b2].
12: return vt = 1

b2

∑b2
i=1(gi,t − gi,t−1) + vt−1.

13: end if

Algorithm 3 ZOSPGD Method
1: Input: Initial points x0 ∈ Rd, stepsize γ > 0, smooth-

ing parameter δ and iteration number T ≥ 1.
2: for t = 0, 1, . . . , T − 1 do
3: Option I: Set vt = MB-SGrad(xt).
4: Option II: Set vt = VR-SGrad(xt, xt−1, t).
5: Set xt+1 = argminu∈Ω{⟨vt, u⟩+ 1

2γ ∥u− xt∥2}.
6: end for
7: return xR where R is uniformly sampled from the

set {1, 2, . . . , T}.

projected gradient descent algorithm except for the gradient
computation step. Since the gradient oracle is unavailable
in our setting, our algorithm estimates the gradient by the
two gradient estimators introduced in Section 5.1.

The following theorem shows the convergence rate of solv-
ing the problem (1) by Algorithm 3 with Option I (which
we call the MB-ZOSPGD algorithm).

Theorem 5.1. Running the MB-ZOSPGD algorithm (Algo-
rithm 3 with Option I) with γ = δ

cG
√
d

and the subroutine
MB-SGrad (Algorithm 1) with bt = b where b is some con-
stant, then the output xR holds that

E[∥G(xR,∇δF (xR),γ)∥]=O

(
G
√
Bd

1
4

√
Tδ

+

√
dG√
b

)
.
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Theorem 5.1 and Lemma 3.8(c) imply the following oracle
complexity of Algorithm 3 with Option I.

Corollary 5.2. The MB-ZOSPGD algorithm (Algorithm 3
with Option I) requires at most O(G4Bd

3
2 δ−1ϵ−4) FQO

calls to obtain a (γ, δ, ϵ)-GGSP.

The VR technique has been shown to improve the con-
vergence rate of the stochastic projected gradient descent
algorithm on the constrained nonconvex smooth problem in
the existing literature. It is interesting to see whether this
technique can improve the convergence rate of our algo-
rithm. Accordingly, we provide the following convergence
analysis of solving the problem (1) by Algorithm 3 with
Option II (which we call the VR-ZOSPGD algorithm).

Theorem 5.3. Running the VR-ZOSPGD algorithm (Algo-
rithm 3 with Option II) with γ = δ

2dG and the subroutine
VR-SGrad (Algorithm 2) with b2 = q, then the output xR
holds that

E [∥G(xR,∇δF (xR),γ)∥]=O

(√
dBG√
δT

+

√
dG√
b1

)
.

Theorem 5.3 and Lemma 3.8(c) imply the following oracle
complexity of Algorithm 3 with Option II.

Corollary 5.4. The VR-ZOSPGD algorithm (Algorithm 3
with Option II) requires at most O(G3Bd

3
2 δ−1ϵ−3) FQO

calls to obtain a (γ, δ, ϵ)-GGSP.

We remark on the connection between our result and existing
work on unconstrained nonconvex nonsmooth optimization.
Remark 5.5. When the feasible set Ω = Rd, Lin et al.
(2022) proved that O(d

3
2 δ−1ϵ−4) FQO calls suffice to ob-

tain a (δ, ϵ)-Goldstein stationary point, which matches the
complexity of our result in Corollary 5.2. Chen et al. (2023)
improved their complexity to O(d

3
2 δ−1ϵ−3) with the VR

technique, which matches our result in Corollary 5.4.

5.3. Zeroth-Order Stochastic Projection-Free
Algorithms

In this subsection, we focus on the cases where projection
onto the feasible sets could be rather expensive. For exam-
ple, projection onto the nuclear norm constraints is an es-
sential step of the matrix completion problem, and this step
requires computing the full singular value decomposition,
which takes O(d3) time. The Frank–Wolfe method (Frank
& Wolfe, 1956; Jaggi, 2013) has recently become popular
in constrained smooth optimization because it can avoid
such an expensive projection step by utilizing an efficient
linear maximization oracle (LMO). We present a zeroth-
order stochastic Frank–Wolfe (ZOSFW) algorithm for our
problem in Algorithm 4. The algorithm is built upon the
classical Frank–Wolfe algorithm with the two gradient esti-
mators introduced in Section 5.1.

Algorithm 4 ZOSFW Method
1: Input: Initial point x0 ∈ Rd, sequence of stepsizes

{γt : γt > 0}T−1
t=0 , smoothing parameter δ and iteration

number T ≥ 1.
2: for t = 0, 1, . . . , T − 1 do
3: Option I: Set vt = MB-SGrad(xt).
4: Option II: Set vt = VR-SGrad(xt, xt−1, t).
5: Set ut = argmaxu∈Ω⟨u,−vt⟩.
6: Set xt+1 = xt + γt(ut − xt).
7: end for
8: return xR where R is uniformly sampled from the

set {1, 2, . . . , T}.

The following theorem shows the convergence rate of solv-
ing the problem (1) by Algorithm 4 with Option I (which
we call the MB-ZOSFW algorithm).

Theorem 5.6. Running the MB-ZOSFW algorithm (Algo-
rithm 4 with Option I) with γt = δ

1
2T− 1

2B− 1
2 d−

1
4 and the

subroutine MB-SGrad (Algorithm 1) with bt = b where b is
some constant, then the output xR holds that

E
[
max
u∈Ω

⟨−∇Fδ(xR),u−xR⟩
]
=O

(
GB

3
2 d

1
4

√
Tδ

+
GB

√
d√

b

)
.

Theorem 5.6 and Lemma 3.8(c) imply the following oracle
complexity of Algorithm 4 with Option I.

Corollary 5.7. The MB-ZOSFW algorithm (Algorithm 4
with Option I) requires at most O(B5G4d

3
2 δ−1ϵ−4) FQO

calls and O(B3G2d
1
2 δ−1ϵ−2) LMO calls to obtain a (δ, ϵ)-

GFWSP.

Then, we provide the convergence analysis of solving the
problem (1) by Algorithm 4 with Option II (which we call
the VR-ZOSFW algorithm), which show that VR technique
can be used to improve the convergence rate of the ZOSFW
algorithm.

Theorem 5.8. Running the VR-ZOSFW algorithm (Algo-
rithm 4 with Option II) with γt =

√
δd−1T−1B−1 and the

subroutine VR-SGrad (Algorithm 2) with b2 = q, then the
output xR holds that

E
[
max
u∈Ω

⟨−∇Fδ(xR), u−xR⟩
]
=O

(
GB

3
2

√
d√

δT
+
BG

√
d√

b1

)
.

Theorem 5.8 and Lemma 3.8(c) imply the following oracle
complexity of Algorithm 4 with Option II.

Corollary 5.9. The VR-ZOSFW algorithm (Algorithm 4
with Option II) requires at most O(G3B4d

3
2 δ−1ϵ−3) FQO

calls and O(G2B3dδ−1ϵ−2) LMO calls to obtain a (δ, ϵ)-
GFWSP.
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Figure 1. Loss vs. Processed time on the synthetic dataset.

One notable difference in the analysis between our algorithm
and the zeroth-order methods for the constrained smooth
optimization (Balasubramanian & Ghadimi, 2018; Gao &
Huang, 2020) is that we take δ as any positive constant to
get a (δ, ϵ)-GFWSP for the problem (1) while algorithms for
constrained smooth optimization use δ as a hyperparameter
that is set arbitrarily small to obtain the ϵ-stationary point.

6. Experiments
In this section, we conduct numerical experiments to val-
idate the effectiveness of proposed approaches. We note
that Chen et al. (2023) has shown the improved convergence
result of the VR-ZOSPGD method compared with the MB-
ZOSPGD on simple constraints. However, their theoretical
results only consider the convergence analysis under the
unconstrained setting. Beyond their empirical findings, we
aim to demonstrate the improved time efficiency of stochas-
tic projection-free methods compared with the stochastic
projection-based methods on more complex constraints. In
particular, we evaluate the proposed algorithms on the ap-
plication of a robust low-rank matrix recovery problem.
Formally, we consider the following objective function:

min
X∈Rm×n

∑
i,j∈∆

1− exp(−|Xi,j − Yi,j |/σ),

s.t. ∥X∥∗ ≤ B,

(3)

where σ is a tunable parameter, Xi,j is the i, j-th element of
the matrix X , and ∆ is the set of observed indices in target
matrix Y ∈ Rm×n. This loss is less sensitive to the discrep-
ancy Xi,j − Yi,j compared with the common least square
loss, and hence more robust to adversarial outliers (Qu et al.,
2018; Shen et al., 2019). We conduct experiments on both
synthetic and real-world datasets. For all the experiments,
we set the parameter σ = 1.

For the synthetic dataset, we follow a similar setup of Shen
et al. (2019). We first generate an underlying matrix Y of
size d × d with rank γ = 20 where d is chosen from the
set {3000, 4000, 5000}. We also set singular values of Y

0 200 400 600
Processed Time

0.7

0.8

0.9

1.0

Lo
ss

MB-ZOSPGD
VR-ZOSPGD
MB-ZOSFW
VR-ZOSFW

Figure 2. Loss vs. Processed time on the real-world dataset.

as 2[γ]/2γ+1 × B and hence ∥Y ∥∗ ≤ B. For d = 3000
or 4000, we choose the parameter B = 2000 while for
d = 5000, we choose B = 4000. We then inject noise
into Y by uniformly sampling 5% of the entries in Y and
adding random noise uniformly sampled from [−3, 3] to
each selected entry. After that, we uniformly sample 10%
of the entries in the noise-injected matrix Y as the observa-
tions. In terms of hyperparameter setting for the algorithms,
we choose the minibatch size b = 100, 000 for both MB-
ZOSPGD and MB-ZOSFW methods. We set b1 = 100, 000,
b2 = 10, 000 and q = b1/b2 for VR-ZOSPGD and VR-
ZOSFW methods. The number of iterations T is set to be
300 for all algorithms. The step size is tuned from the set
{0.1, 0.03, . . . , 3×10−7, 1×10−7} for each algorithm. The
experimental result is demonstrated in Figure 1. We find
that MB-ZOSFW and VR-ZOSFW have faster convergence
than the ZOSPGD methods because they are projection-free.
Interestingly, VR-ZOSPGD converges slower than the MB-
ZOSPGD although VR-ZOSPGD has a better theoretical
convergence rate. We conjecture that it is due to the expen-
sive projection operation that undermines the efficiency of
cheap gradient calculation.

For the real-world dataset, we validate our methods on the
“MovieLens 1M”2 dataset. The dataset is a sparse movie

2https://grouplens.org/datasets/movielens/1m/
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rating matrix Y with 6040 users and 3952 movies. Each
rating of the matrix Y is an integer ranging from 1 to 5. We
set the parameter B = 7000. In terms of the hyperparam-
eter setting for the algorithms, we choose b = 1, 000, 000
for both MB-ZOSPGD and MB-ZOSFW methods. We set
b1 = 1, 000, 000, b2 = 100, 000 and q = b1/b2 for VR-
ZOSPGD and VR-ZOSFW methods. For other hyperpa-
rameters including the stepsize and the number of iterations,
we use the same parameter setting in the synthetic dataset
experiment. We present the experimental results on this
dataset in Figure 2. We also find that ZOSFW methods
converge much faster than ZOSPGD methods. In addition,
the VR-ZOSPGD method converges even slower than the
MB-ZOSPGD method due to the high projection cost.

7. Conclusion
In this work, we introduce the novel notions of (γ, δ, ϵ)-
generalized Goldstein stationary points and (δ, ϵ)-Goldstein
Frank–Wolfe stationary points for solving the constrained
nonconvex nonsmooth problem. We also propose zeroth-
order stochastic projected gradient descent algorithms and
stochastic Frank–Wolfe algorithms with non-asymptotic
convergence guarantees for obtaining the proposed approxi-
mate stationary points. We provide numerical experiments
on the robust low-rank matrix recovery problem to show the
convergence behavior of the proposed algorithms empiri-
cally.

In future work, it is interesting to study the lower bound
of the zeroth-order stochastic optimization algorithms for
solving unconstrained or constrained nonconvex nonsmooth
problems. It is also interesting to investigate whether the
O(d

3
2 δ−1ϵ−3) complexity of zeroth-order stochastic algo-

rithms for our problem can be further improved.
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The appendix is organized as below. Section A introduces several key lemmas essential for the convergence analysis
of proposed zeroth-order stochastic optimization methods. Section B presents the proof of the properties introduced in
Section 4. Section C proves the convergence rate of MB-ZOSPGD and VR-ZOSPGD methods proposed in Section 5.2.
Section D proves the convergence rate of MB-ZOSFW and VR-ZOSFW methods proposed in Section 5.3. For all the
proposed algorithms, we also provide the improved large-deviation estimation results of the algorithms with the two-phase
postprocessing technique.

A. Supporting Lemmas
In this section, we first review some key lemmas which are essential for the analysis of proposed methods. The following
result shows some basic properties of the zeroth-order gradient estimator.
Lemma A.1 (Lin et al. (2022)). Suppose that f is G-Lipschitz and let {gt}T−1

t=0 be defined as

gt =
d

2δ
(f(xt + δwi,t)− f(xt − δwi,t))wi,t.

where wi,t is uniformly sampled from a unit sphere in Rd. Then, we have E[gt | xt] = ∇fδ(xt) and E[∥gt∥2 | xt] ≤
16
√
2πdG2.

We find the following result useful for the proof of the large-deviation estimation bound of the proposed method.
Proposition A.2 (Juditsky & Nemirovski (2008)). Suppose that Ω is a Polish space with a Borel probability measure P and
let {∅,Ω} = F0 ⊆ F1 ⊆ F2 ⊆ . . . be a sequence of filtration. For an integer N ≥ 1, we define a martingale difference
sequence of Borel functions {ζk}Nk=1 ⊆ Rd such that ζk is Fk-measurable and E[ζk | Fk−1] = 0. Then, if E

[
∥ζk∥2

]
≤ σ2

k

for all k ≥ 1, we have E
[ ∥∥∥∑N

k=1 ζk

∥∥∥2 ] ≤∑N
k=1 σ

2
k and the following statement holds true

Prob

∥∥∥∥∥
N∑

k=1

ζk

∥∥∥∥∥
2

≥ λ

N∑
k=1

σ2
k

 ≤ 1

λ
, for allλ ≥ 0.

Here we show that the variance of the VR-GRAD estimator (Algorithm 2) can be bounded with the following lemmas.
Lemma A.3. Assume gi,t is the i-th function call evaluated at t-th iteration for Algorithm 2, then it follows that:

E[∥gi,t − gi,t−1∥2] ≤
d2G2

δ2
∥xt − xt−1∥2 .

Proof. By the definition of gi,t, we have

∥gi,t − gi,t−1∥2

=
d2

4δ2
|F (xt + δwi,t, ξi,t)− F (xt − δwi,t, ξi,t)− (F (xt−1 + δwi,t, ξi,t)− F (xt−1 − δwi,t, ξi,t))|2 ∥wi,t∥2

=
d2

4δ2
|F (xt + δwi,t, ξi,t)− F (xt−1 + δwi,t, ξi,t)− (F (xt − δwi,t, ξi,t)− F (xt−1 − δwi,t, ξi,t))|2

≤ d2

2δ2
(|F (xt + δwi,t, ξi,t)− F (xt−1 + δwi,t, ξi,t)|2 + |F (xt − δwi,t, ξi,t)− F (xt−1 − δwi,t, ξi,t)|2)

≤d
2L(ξi,t)

2

δ2
∥xt − xt−1∥2 .

The first inequality is due to |a+ b|2 ≤ 2|a|2 + 2|b|2. The second inequality follows from the assumption that F (·, ξi,t) is
L(ξi,t)-Lipschitz and the diameter of the feasible set is bounded by B. Taking expectations on both sides of the equation
and using the assumption that E[L(ξ)2] ≤ G2, we have

E[∥gi,t − gi,t−1∥2] ≤
d2G2

δ2
∥xt − xt−1∥2 .
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Lemma A.4. Define nt = ⌊t/q⌋ for any t in Algorithm 2, then we have

E
[
∥vntq −∇Fδ(xntq)∥

2
]
≤ 16

√
2πdG2

b1
. (4)

Proof. Let nt = ⌊t/q⌋ such that ntq ≤ t ≤ (nt + 1)q − 1

E
[
∥vntq −∇Fδ(xntq)∥

2
]

=E


∥∥∥∥∥∥ 1

b1

∑
i∈[b1]

gi,ntq −∇Fδ(xntq)

∥∥∥∥∥∥
2


≤ 1

b1
E
[
∥g1,ntq −∇Fδ(xntq)∥

2
]

≤ 1

b1
E
[
∥g1,ntq∥

2
]

≤16
√
2πdG2

b1
.

The first inequality follows because gi,ntq are i.i.d. random variables, and a sequence of i.i.d. random variables {ζi}bi=1

satisfies that E
[ ∥∥∥ 1

b

∑b
i=1 ζi − E[ζi]

∥∥∥2 ] ≤ 1
bE
[
∥ζ1 − E[ζ1]∥2

]
. The second inequality follows from E

[
∥ξ − E[ξ]∥2

]
≤

E
[
∥ξ∥2

]
for any random variable ξ. The last inequality is due to Lemma A.1.

Lemma A.5. In Algorithm 2, we can bound the variance of the gradient estimator vt for any t as follows:

E
[
∥vt −∇Fδ(xt)∥2

]
≤ d2G2

δ2b2

t∑
j=ntq+1

∥xj − xj−1∥2 +
16

√
2πdG2

b1
.

Proof. Let ntq ≤ t ≤ (nt + 1)q − 1 where nt ≥ 0, we have:

vt −∇Fδ(xt) = vntq −∇Fδ(xntq) +

t∑
i=ntq+1

(vi − vi−1 − (∇Fδ(xi)−∇Fδ(xi−1))).

In addition,

vt =
1

b2

∑
i∈[b2]

(gi,t − gi,t−1) + vt−1.

Taking expectations on both sides, we have:

E [vt − vt−1 − (∇Fδ(xt)−∇Fδ(xt−1))] = 0.

As a result, vt −∇Fδ(xt) is a martingale. Therefore, we have:

E
[
∥vt −∇Fδ(xt)∥2

]
= E

[
∥vntq −∇Fδ(xntq)∥

2
]
+

t∑
j=ntq+1

E
[
∥vj − vj−1 − (∇Fδ(xj)−∇Fδ(xj−1))∥2

]
.

We can expand the second term on the right-hand side with:

E
[
∥vj − vj−1 − (∇Fδ(xj)−∇Fδ(xj−1))∥2

]
13
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=E


∥∥∥∥∥∥ 1

b2

∑
i∈[b2]

(gi,j − gi,j−1)− (∇Fδ(xj)−∇Fδ(xj−1))

∥∥∥∥∥∥
2


≤ 1

b2
E
[
∥(g1,j − g1,j−1)− (∇Fδ(xj)−∇Fδ(xj−1))∥2

]
≤ 1

b2
E
[
∥g1,j − g1,j−1∥2

]
≤d

2G2

δ2b2
∥xj − xj−1∥2 .

The first inequality follows because gi,j are i.i.d. random variables, and a sequence of i.i.d. random variables {ζi}bi=1 satisfies

that E
[ ∥∥∥ 1

b

∑b
i=1 ζi − E[ζi]

∥∥∥2 ] ≤ 1
bE
[
∥ζ1 − E[ζ1]∥2

]
. The second inequality follows from E

[
∥ξ − E[ξ]∥2

]
≤ E

[
∥ξ∥2

]
for any random variable ξ. The last inequality is due to Lemma A.3. Combining the above two inequalities with Lemma
A.4, it follows that:

E[∥vt −∇Fδ(xt)∥2] ≤
d2G2

δ2b2

t∑
j=ntq+1

∥xj − xj−1∥2 +
16

√
2πdG2

b1
.

B. Properties of the Refined Approximate Stationarity
In this section, we present the proof of propositions and theorems proposed in Section 4.

B.1. Proof of Proposition 4.5

The proof of proposition 4.5 (i) is trivial. For (ii), according to the definition of (γ, ϵ
2L , ϵ/2)-GGSP, we have g ∈

conv{∇f(y) : ∥y − x∥ ≤ ϵ
2L} such that ∥G(x, g, γ)∥ ≤ ϵ/2. The conv operation means that there exists k coefficients

α1, . . . , αk satisfying
∑k

i=1 αi = 1 and k points x1, . . . , xk ∈ {y : ∥y − x∥ ≤ ϵ
2L} satisfying:

g =

k∑
i=1

αi∇f(xi).

Assume y1 = ψ(x, g, γ) and y2 = ψ(x,∇f(x), γ), then by the definition of ψ(·) it follows that:

⟨g + y1 − x

γ
, y1 − y2⟩ ≤ 0,

and
⟨∇f(x) + y2 − x

γ
, y2 − y1⟩ ≤ 0.

Add the above two inequalities together, and we have:

⟨g −∇f(x) + y1 − y2
γ

, y1 − y2⟩ ≤ 0.

Rearrange the terms, we have:

∥y1 − y2∥2 ≤γ⟨∇f(x)− g, y1 − y2⟩
≤γ ∥∇f(x)− g∥ ∥y1 − y2∥

≤
k∑

i=1

γαi ∥∇f(x)−∇f(xi)∥ ∥y1 − y2∥

14



Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

≤
k∑

i=1

γLαi ∥x− xi∥ ∥y1 − y2∥

≤γϵ ∥y1 − y2∥
2

.

The second inequality is due to the Cauchy–Schwartz inequality, the third inequality is due to the Jensen’s inequality, and
the fourth inequality follows the definition that f is L-smooth. Therefore, we have

∥G(x,∇f(x), γ)∥

=

∥∥∥∥x− y2 + y1 − y1
γ

∥∥∥∥
≤
∥∥∥∥x− y1

γ

∥∥∥∥+ ∥∥∥∥y2 − y1
γ

∥∥∥∥
≤ ϵ

2
+
ϵ

2
=ϵ.

The first equality is due to the definition of y1 and y2. The first inequality is due to ∥a− b∥ ≤ ∥a∥+ ∥b∥.

B.2. Proof of Proposition 4.6

The proof of Proposition 4.6 (i) is trivial. For (ii), according to the definition of (ϵ/(3BL), 2ϵ/3)-GFWSP, we have
g ∈ conv{∇f(y) : ∥y − x∥ ≤ ϵ

3BL} such that maxu∈Ω⟨u− x,−g⟩ ≤ 2ϵ/3. The conv operation means that there exists k
coefficients α1, . . . , αk satisfying

∑k
i=1 αi = 1 and k points x1, . . . , xk ∈ {y : ∥y − x∥ ≤ ϵ

3BL} satisfying:

g =

k∑
i=1

αi∇f(xi).

Then it follows that

max
u∈Ω

⟨u− x,−∇f(x)⟩

=max
u∈Ω

(⟨u− x,−∇f(x) + g⟩+ ⟨u− x,−g⟩)

≤max
u∈Ω

∥u− x∥ ∥g −∇f(x)∥+max
u′∈Ω

⟨u′ − x,−g⟩

≤B

∥∥∥∥∥
k∑

i=1

αi∇f(xi)−∇f(x)

∥∥∥∥∥+ 2ϵ

3

≤
k∑

i=1

αiBL ∥xi − x∥+ 2ϵ

3

≤ ϵ

3
+

2ϵ

3
=ϵ.

The first inequality is due to the Cauchy–Schwartz inequality, the second inequality follows from domain Ω has diameter B,
and the third inequality is the result of applying Jensen’s Inequality.
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B.3. Proof of Theorem 4.7

We first introduce some notations. Function h(·) is a hard and non-negative function sampled from a uniform distribution of
hard functions hσ . In particular, the hard functions hσ is defined in the following recursive manner,

h10(x) =


1− x x ∈ (−∞, 0]

1− 2x x ∈ (0, 38 ]
6
5x− 1

5 x ∈ ( 38 , 1]

x x ∈ (1,∞)

, h11(x) =


1− x x ∈ (−∞, 0]

− 6
5x+ 1 x ∈ (0, 58 ]

2x− 1 x ∈ ( 58 , 1]

x x ∈ (1,∞)

For any σ̂ := (σ2, . . . , σN ) ∈ {0, 1}N−1, we define

hN0,σ̂(x) =



1− x x ∈ (−∞, 0]

1− 2x x ∈ (0, 14 ]
1
4h

(N−1)
σ̂ (4x− 1) + 1

4 x ∈ ( 14 ,
1
2 ]

x x ∈ ( 12 , 1]

x x ∈ (1,∞)

,

hN1,σ̂(x) =



1− x x ∈ (−∞, 0]

1− x x ∈ (0, 12 ]
1
4h

(N−1)
σ̂ (4x− 2) + 1

4 x ∈ ( 12 ,
3
4 ]

2x− 1 x ∈ ( 34 , 1]

x x ∈ (1,∞)

Let x̃ ∈ (0, 1) denote the global minima of h(·). Then we define

f̄(x) := h(xd) +
1

4

√√√√d−1∑
i=1

x2i

fw(x) := h(xd + x̃) +
1

4

√√√√d−1∑
i=1

x2i − [⟨w̄, x+ w⟩ − 1

2
∥x+ w∥]+

Fw(x1, . . . , xd) := max{−1, fw(x− x∗)}

where x∗ = (0, . . . , 0, x̃) is the global minima of f̄(x). For a vector x, we use

x̄ =
x

∥x∥

to denote the normalized vector of x.

Now we consider solving minx∈Ω Fw(x) over the feasible set Ω = [−100, 100]d.

We first show that The function Fw(·) satisfies following properties:

Lemma B.1 ((Lemma 14 and Lemma 15 of (Kornowski & Shamir, 2022))). Fw(·) satisfies the following properties:

1. Fw(·) is 15
4 -Lipschitz, Fw(0)− infx Fw(x) ≤ 2 and inf{∥x∥ | ∂Fw(x) = {0}} ≤ 13.

2. fw has no ϵ-stationary points for any ϵ < 1
4
√
2

.

3. Any ϵ-stationary point x of Fw(·) for ϵ < 1
4
√
2

satisfies Fw(x) = −1.

4. For all vector x which satisfies x ̸= x∗ and ⟨w̄, x− x∗⟩ ≤ 1
2 − 3∥w∥

2∥x−x∗∥ , we have Fw(x) = f̄(x) := h(xd) +

1
4

√∑d−1
i=1 x

2
i .
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5. There exists a choice of w, such that if we run any algorithm A with a local oracle on Fw(·), then with probability at
least 1− 2T exp(−d/36), the algorithm’s iterates xFw

1 , . . . , xFw

T satisfy mint∈[T ] Fw(x
Fw
t ) > 0.

Based on Lemma 1, we can obtain the following results:

Lemma B.2. If a vector x satisfies

x ̸= x∗ and ⟨w̄, x− x∗⟩ ≤ 1

2
− 3 ∥w∥

2 ∥x− x∗∥
(5)

then the norm of the generalized gradient mapping with γ ≤ 0.1 and 0-Frank–Wolfe gap of Fw at point x is not less than
1/(4

√
2).

Proof. step 1: We first consider the subgradient of point x satisfying condition (5).

According to (4) of Lemma B.1 and the fact that h(·) is non-negative, we have Fw(x) = f(x) ≥ 0 for all x satisfying the
condition (5). In addition, by (3) of Lemma B.1, all ϵ-stationary points x with ϵ < 1

4
√
2

satisfy Fw(x) = −1. Therefore,
every point x satisfying condition (5) meets inf{∥g∥ : g ∈ ∂Fw(x)} ≥ 1

4
√
2

.

step 2: Then we consider the norm of the generalized gradient mapping.

Let g ∈ ∂Fw(x) and gi be the i-th coordinate of g. By the definition of f(x), gi has the same sign as the xi and |gi| ≤ 1 for
i ∈ [d− 1]. In addition, by (1) of Lemma B.1 and the definition of h(·), gd satisfies

gd = −1 xd < 0

gd = 1 xd > 1

|gd| ≤ 15
4 xd ∈ [0, 1]

(6)

If x is in the feasible set, then x − γg is also in the feasible set since γ ≤ 0.1. Then we can get G(x, g, γ) = g, which
indicates that ∥G(x, g, γ)∥ = ∥g∥.

If x is not in the feasible set, then there exists i ∈ [d] such that |xi| > 100. Since xi and gi have the same sign,
γ ≤ 0.1, and |gi| ≤ 1, we have |xi − γgi| ≤ |xi|. If |xi − γgi| ≤ 100, then projΩ(xi − γgi) = xi − γgi. Otherwise,
projΩ(xi− γgi) = sign(xi) · 100. Consequently, |xi−projΩ(xi− γgi)| ≥ γ|gi|. By the definition of generalized gradient
mapping, we have ∥G(x, g, γ)∥ ≥ ∥g∥.

To sum up, we can get ∥G(x, g, γ)∥ ≥ ∥g∥ ≥ 1
4
√
2

where we use the result of step 1.

step 3: Finally we consider the 0-Frank–Wolfe gap.

If xd ̸= x̃, we have |gd| ≥ 1 by Proposition 11 of (Kornowski & Shamir, 2022). Then we can get maxu∈Ω⟨u− x,−g⟩ ≥
maxud∈[−100,100] −gd(ud − xd) ≥ 1

4
√
2

, where the first inequality is because we can set ui = xi for i ∈ [d − 1] and the
second inequality is due to property (6).

If xd = x̃, there exists x1, . . . , xd−1 cannot be all zero since x ̸= x∗. Then we can obtain the norm of the gradient of
1
4

√∑d−1
i=1 x

2
i is 1/4, which means

√∑d−1
i=1 g

2
i = 1/4 and gi ∈ [0, 1/4]. Thus we have maxu∈Ω⟨u−x,−g⟩ ≥

∑d−1
i=1 4g2i =

1
4 ≥ 1

4
√
2

, where we choose ud = xd and ui = xi − 4gi (Notice that we can easily get (xi − 4gi) ∈ [−100, 100] for
i ∈ [d− 1] since gi ∈ [0, 1/4]).

According to the Eq.(12) of (Kornowski & Shamir, 2022), we have

PrA

[(
min
t∈[T ]

∥∥∥xf̄t − x∗
∥∥∥ ≥ ρ

)
∧
(
max
t∈[T ]

⟨w̄, xf̄t − x∗⟩ < 1

3

)]
> 1− 2T exp(−d/36),

where ρ > 0 is a constant, ∥w∥ = ρ/99 and xf̄t is the t-th iteration of algorithm A minimizing f̄ . Thus by Lemma B.2, we
have xf̄

t is not a (γ, ϵ)-GCSP or ϵ-CFWSP for ϵ < 1
4
√
2

with probability 1− 2T exp(−d/36).
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Algorithm 5 Two-Phase Zeroth-Order Stochastic Projected Gradient Descent Method
1: Input: Initial point x0 ∈ Rd, stepsize γ > 0, problem dimension d ≥ 1, smoothing parameter δ, iteration number
T ≥ 1, number of rounds S ≥ 1 and sample size B̂.

2: for s = 0, 1, . . . , S − 1 do
3: Call Algorithm 3 with x0, γ, d, δ and T and let x̄s be an output.
4: end for
5: for s = 0, 1, . . . , S − 1 do
6: for k = 0, 1, . . . , B̂ − 1 do
7: Simulate ξk ∼ P
8: Sample wk ∈ Rd uniformly from a unit sphere in Rd.
9: gsk = d

2δ (f(x̄
s + δwk, ξk)− f(x̄s − δwk, ξk))wk

10: end for
11: gs = 1

B̂

∑B̂−1
k=0 g

s
k

12: ḡs = 1
γ (x̄

s − ψ(x̄s, gs, γ))
13: end for
14: Let Ŝ := {0, 1, . . . , S − 1}, and choose s∗ = argmins∈Ŝ ∥ḡs∥
15: return x̄s

∗
.

C. Convergence Analysis of ZOSPGD Methods
In this section, we prove the convergence rate of MB-ZOSPGD and VR-ZOSPGD methods introduced in Section 5.2. First,
we review some fundamental lemmas demonstrating the properties of the gradient mapping operator.
Lemma C.1 (Ghadimi et al. (2016)). For arbitrary g1, g2 ∈ Rd, we have

∥G(x, g1, γ)− G(x, g2, γ)∥ ≤ ∥g1 − g2∥ . (7)

Lemma C.2 (Ghadimi et al. (2016)). For arbitrary g ∈ Rd, we can show that

⟨g,G(x, g, γ)⟩ ≥ ∥G(x, g, γ)∥2 . (8)

Proof. Denote x+ := ψ(x, g, γ). By the optimality of x+ on the convex set Ω, for ∀u ∈ Ω we have,

⟨g + 1

γ
(x+ − x), u− x+⟩ ≥ 0.

Let u = x, it follows

⟨g, x− x+⟩ ≥ 1

γ

∥∥x− x+
∥∥2 .

By dividing both sides by γ, we get the desired result.

C.1. Convergence Analysis of the MB-ZOSPGD method

We can now show the convergence rate of the MB-ZOSPGD method with the following lemma.
Lemma C.3. Running the MB-ZOSPGD method (Algorithm 3 with Option I), then the output xR holds that

E[∥G(xR, vR, γ)∥2] ≤ E

[
Fδ(x0)− Fδ(xT )

T (γ − cγ2G
√
d

2δ )
+

γ

T (γ − cγ2G
√
d

2δ )

T−1∑
t=0

∥vt −∇Fδ(xt)∥2
]
.

Proof. Since Fδ is cG
√
d

δ -smooth, we have

Fδ(xt+1) ≤Fδ(xt) + ⟨∇Fδ(xt), xt+1 − xt⟩+
cG

√
d

2δ
∥xt+1 − xt∥2

18



Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

≤Fδ(xt)− γ⟨∇Fδ(xt),G(xt, vt, γ)⟩+
cγ2G

√
d

2δ
∥G(xt, vt, γ)∥2

=Fδ(xt)− γ⟨vt,G(xt, vt, γ)⟩+ γ⟨vt −∇Fδ(xt),G(xt, vt, γ)⟩+
cγ2G

√
d

2δ
∥G(xt, vt, γ)∥2 .

The second inequality follows from the definition of the G(xt, vt, γ). Using Lemma C.2, we have

Fδ(xt+1) ≤Fδ(xt)−

(
γ − cγ2G

√
d

2δ

)
∥G(xt, vt, γ)∥2 + γ⟨vt −∇Fδ(xt),G(xt, vt, γ)⟩

≤Fδ(xt)−

(
γ − cγ2G

√
d

2δ

)
∥G(xt, vt, γ)∥2 + γ⟨vt −∇Fδ(xt),G(xt,∇Fδ(xt), γ)⟩

+ γ ∥vt −∇Fδ(xt)∥ ∥G(xt, vt, γ)− G(xt,∇Fδ(xt), γ)∥

≤Fδ(xt)−

(
γ − cγ2G

√
d

2δ

)
∥G(xt, vt, γ)∥2 + γ⟨vt −∇Fδ(xt),G(xt,∇Fδ(xt), γ)⟩

+ γ ∥vt −∇Fδ(xt)∥2 .

The second inequality follows from the Cauchy–Schwarz inequality. The last inequality is due to Lemma C.1. Take
expectations on both sides and rearrange the terms, and note that E[vt] = ∇Fδ(xt), then we have(

γ − cγ2G
√
d

2δ

)
E
[
∥G(xt, vt, γ)∥2

]
≤E

[
Fδ(xt)− Fδ(xt+1) + γ ∥vt −∇Fδ(xt)∥2

]
.

Sum up both sides of the inequality from t = 0 to T − 1, and divide both sides by T

1

T

T−1∑
t=0

(
γ − cγ2G

√
d

2δ

)
E
[
∥G(xt, vt, γ)∥2

]
≤ E

[
Fδ(x0)− Fδ(xT )

T
+
γ

T

T−1∑
t=0

∥vt −∇Fδ(xt)∥2
]
.

Now we can prove Theorem 5.1 with the above result.

C.1.1. PROOF OF THEOREM 5.1

Substituting γ = δ
cG

√
d

into the above lemma, we have the following result:

E[∥G(xR, vR, γ)∥2] ≤E

[
2cG

√
d(Fδ(x0)− Fδ(xT ))

Tδ
+

2

T

T−1∑
t=0

∥vt −∇Fδ(xt)∥2
]

≤E

[
2cG

√
d(Fδ(x0)− Fδ(xT ))

Tδ
+

2

T

T−1∑
t=0

∥vt∥2
]

≤2cG2
√
dB

Tδ
+

32
√
2πdG2

b
.

The second inequality follows from E
[
∥ξ − E[ξ]∥2

]
≤ E

[
∥ξ∥2

]
for any random variable ξ. The last inequality follows

from the G-Lipschitzness of the function F , B is the upper bound of the diameter of the feasible set Ω and Lemma A.1.

E
[
∥G(xR,∇Fδ(xR), γ)∥2

]
≤E

[
2 ∥G(xR,∇Fδ(xR), γ)− G(xR, vR, γ)∥2 + 2 ∥G(xR, vR, γ)∥2

]
≤2E

[
∥vR −∇Fδ(xR)∥2

]
+ 2E

[
∥G(xR, vR, γ)∥2

]
≤4cG2

√
dB

Tδ
+

96
√
2πdG2

b
.
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The first inequality is due to the fact ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2. The second inequality follows from Lemma C.1. By
Lemma 3.8, we have ∇Fδ(xR) ∈ ∂δF (xR). This together with the above inequality implies that

E[min{∥G(xR, g, γ)∥ : g ∈ ∂δF (xR)}] ≤ E[∥G(xR,∇Fδ(xR), γ)∥] ≤
2G

√
cBd

1
4

√
Tδ

+
24

√
dG√
b

.

C.1.2. PROOF OF COROLLARY 5.2

To ensure E[min{∥G(xR, g, γ)∥ : g ∈ ∂δF (xR)}] ≤ ϵ, we choose b = dG2

ϵ2 , the total number of the function value oracle
calls is bounded by

bT = O

(
G2Bd

1
2

δϵ2
· dG

2

ϵ2

)
= O

(
G4Bd

3
2

δϵ4

)
.

C.1.3. LARGE-DEVIATION ESTIMATION OF THE TWO-PHASE MB-ZOSPGD METHOD

While Theorem 5.1 and 5.3 establish the expected convergence rate over many runs of Algorithm 3, we are also interested in
the large-deviation properties for a single run. To show such a bound, we combine Algorithm 3 with a post-optimization
procedure (Ghadimi et al., 2016), leading to a two-phase zeroth-order stochastic projected gradient descent method (2-
ZOSPGD) that is shown in Algorithm 5. Formally, we provide the large-deviation estimation of the two-phase MB-ZOSPGD
method as follows.
Theorem C.4. Let δ > 0 and 0 < ϵ,Λ < 1, then there exists some T, S, B̂ > 0 such that the output x̄s

∗
of Algorithm 5

with MB-ZOSPGD satisfies that Prob
(
min{

∥∥G(x̄s∗ , g, γ)∥∥ ≥ ϵ : g ∈ ∂δF (x̄
s∗)}

)
≤ Λ and the total number of calls of the

FQO is bounded by

O

(
G4Bd

3
2

δϵ4
log

(
1

Λ

)
+
dG2

ϵ2Λ
log

(
1

Λ

)2
)
.

Proof. By the definition of s∗ and the Cauchy–Schwarz inequality, we have∥∥∥G(x̄s∗ , gs∗ , γ)∥∥∥2 = min
s∈{0,1,...,S−1}

∥G(x̄s, gs, γ)∥2 ≤ min
s∈{0,1,...,S−1}

(2 ∥G(x̄s,∇Fδ(x̄
s), γ)∥2 + 2 ∥gs −∇Fδ(x̄

s)∥2)

≤2 min
s∈{0,1,...,S−1}

∥G(x̄s,∇Fδ(x̄
s), γ)∥2 + 2 max

s∈{0,1,...,S−1}
∥gs −∇Fδ(x̄

s)∥2 .

The first inequality is due to Lemma C.1 and the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2. It implies that∥∥∥G(x̄s∗ ,∇Fδ(x̄
s∗), γ)

∥∥∥2 ≤2
∥∥∥G(x̄s∗ , gs∗ , γ)∥∥∥+ 2

∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥2

≤4 min
s∈{0,1,...,S−1}

∥G(x̄s,∇Fδ(x̄
s), γ)∥2 + 4 max

s∈{0,1,...,S−1}
∥gs −∇Fδ(x̄

s)∥2

+ 2
∥∥∥gs∗ −∇Fδ(x̄

s∗)
∥∥∥2 .

The first inequality follows from Cauchy–Schwarz inequality and Lemma C.1. The next step is to provide the probabilistic
bounds on all the terms on the right-hand side of the above inequality. Theorem 5.1 implies that

E
[
∥G(x̄s,∇Fδ(x̄

s), γ)∥2
]
≤ 4cG2

√
dB

Tδ
+

96
√
2πdG2

b
.

Using Markov’s inequality, we have

Prob

(
∥G(x̄s,∇Fδ(x̄

s), γ)∥2 ≥ 8cG2
√
dB

Tδ
+

192
√
2πdG2

b

)
≤ 1

2
.

Thus, we have

Prob

(
min

s∈{0,1,...,S−1}
∥G(x̄s,∇Fδ(x̄

s), γ)∥2 ≥ 8cG2
√
dB

Tδ
+

192
√
2πdG2

b

)
≤ 1

2S
.
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Furthermore, for each s ∈ {0, 1, . . . , S − 1}, we have

gs −∇Fδ(x̄
s) =

1

B̂

B̂−1∑
k=0

(gsk −∇Fδ(x̄
s)).

By Lemma A.1, we have E [gsk | x̄s] = ∇Fδ(x̄
s) and E

[
∥gsk∥

2 | x̄s
]
≤ 16

√
2πdG2. By Markov’s inequality and Proposi-

tion A.2, it implies that

Prob

(
∥gs −∇Fδ(x̄

s)∥2 ≥ λ(16
√
2πdG2)

B̂

)
= Prob


∥∥∥∥∥∥
B̂−1∑
k=0

(gsk −∇Fδ(x̄
s))

∥∥∥∥∥∥
2

≥ λB̂(16
√
2πdG2)

 ≤ 1

λ
.

Thus, we conclude that

Prob

(
max

s∈{0,1,...,S−1}
∥gs −∇Fδ(x̄

s)∥2 ≥ λ(16
√
2πdG2)

B̂

)
≤ S

λ
.

By a similar argument, one has

Prob

(∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥2 ≥ λ(16

√
2πdG2)

B̂

)
≤ 1

λ
.

Combining the above inequalities yields that

Prob

(∥∥∥G(xs∗ ,∇Fδ(x
s∗), γ)

∥∥∥2 ≥ 32cG2
√
dB

Tδ
+

768
√
2πdG2

b
+
λ96

√
2πdG2

B̂

)
≤ S + 1

λ
+

1

2S
.

If we set λ = 2(S+1)
Λ , S = ⌈log(2/Λ)⌉ and the parameters (T, b, B̂) as follows

T = O

(
G2Bd

1
2

δϵ2

)
, b = O

(
dG2

ϵ2

)
, B̂ = O

(
dG2

ϵ2Λ
log

(
1

Λ

))
.

To satisfy Prob(min{
∥∥G(x̄s∗ , g, γ)∥∥ : g ∈ ∂δF (x̄

s∗)} ≥ ϵ) ≤ Λ, the total number of function oracle calls is bounded by

S(Tb+ B̂) = O

(
G4Bd

3
2

δϵ4
log

(
1

Λ

)
+
dG2

ϵ2Λ
log

(
1

Λ

)2
)
.

C.2. Convergence Analysis of VR-ZOSPGD

We can prove the convergence rate of the VR-ZOSPGD method as follows.

Lemma C.5. Running the VR-ZOSPGD method (Algorithm 3 with Option II), then the output xR holds that

E
[
∥G(xR, vR, γ)∥2

]
≤

(
γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2

)−1(
E[Fδ(x0)]− E[Fδ(xT )]

T
+

8
√
2πdγG2

b1

)
.

Proof. By the Lipschitz continuity of ∇Fδ , we have

Fδ(xt+1) ≤Fδ(xt) + ⟨∇Fδ(xt), xt+1 − xt⟩+
cG

√
d

2δ
∥xt+1 − xt∥2
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≤Fδ(xt)− γ⟨∇Fδ(xt),G(xt, vt, γ)⟩+
cγ2G

√
d

2δ
∥G(xt, vt, γ)∥2

=Fδ(xt)− γ⟨∇Fδ(xt)− vt,G(xt, vt, γ)⟩ − γ⟨vt,G(xt, vt, γ)⟩+
cγ2G

√
d

2δ
∥G(xt, vt, γ)∥2

≤Fδ(xt) +
γ

2
∥∇Fδ(xt)− vt∥2 − γ⟨vt,G(xt, vt, γ)⟩+

(
cγ2G

√
d

2δ
+
γ

2

)
∥G(xt, vt, γ)∥2

≤Fδ(xt) +
γ

2
∥∇Fδ(xt)− vt∥2 +

(
cγ2G

√
d

2δ
− γ

2

)
∥G(xt, vt, γ)∥2 .

The second inequality follows from xt+1 = xt − γG(xt, vt, γ). The third inequality is due to Young’s inequality. The last
inequality follows from Lemma C.2.

Denote nt = ⌊t/q⌋. Taking expectations on both sides, we obtain

E[Fδ(xt+1)] ≤E[Fδ(xt)] +
γ

2
E
[
∥∇Fδ(xt)− vt∥2

]
−

(
γ

2
− cγ2G

√
d

2δ

)
E
[
∥G(xt, vt, γ)∥2

]
≤E[Fδ(xt)] +

γd2G2

2δ2b2

t−1∑
i=ntq

E
[
∥xi+1 − xi∥2

]
+

8
√
2πdγG2

b1
−

(
γ

2
− cγ2G

√
d

2δ

)
E
[
∥G(xt, vt, γ)∥2

]

≤E[Fδ(xt)] +
γ3d2G2

2δ2b2

t−1∑
i=ntq

E
[
∥G(xi, vi, γ)∥2

]
+

8
√
2πdγG2

b1
−

(
γ

2
− cγ2G

√
d

2δ

)
E
[
∥G(xt, vt, γ)∥2

]
.

The second inequality is due to Lemma A.5. The last inequality follows from xi+1 = xi − γG(xi, vi, γ). Telescoping the
above inequality over t from ntq to t where t ≤ (nt + 1)q − 1, we have

E [Fδ(xt+1)]− E [Fδ(xntq)]

≤γ
3d2G2

2δ2b2

t∑
j=ntq

j−1∑
i=ntq

E
[
∥G(xi, vi, γ)∥2

]
+

t∑
j=ntq

8
√
2πdγG2

b1

−

(
γ

2
− cγ2G

√
d

2δ

)
t∑

j=ntq

E
[
∥G(xj , vj , γ)∥2

]

≤γ
3d2G2

2δ2b2

t∑
j=ntq

t∑
i=ntq

E
[
∥G(xi, vi, γ)∥2

]
+

t∑
j=ntq

8
√
2πdγG2

b1

−

(
γ

2
− cγ2G

√
d

2δ

)
t∑

j=ntq

E
[
∥G(xj , vj , γ)∥2

]

≤γ
3d2G2q

2δ2b2

t∑
j=ntq

E
[
∥G(xj , vj , γ)∥2

]
+

t∑
j=ntq

8
√
2πdγG2

b1

−

(
γ

2
− cγ2G

√
d

2δ

)
t∑

j=ntq

E
[
∥G(xj , vj , γ)∥2

]

=−

(
γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2

)
t∑

j=ntq

E
[
∥G(xj , vj , γ)∥2

]

+

t∑
j=ntq

8
√
2πdγG2

b1
.

The third inequality uses the fact that ntq ≤ t ≤ (nt + 1)q. Thus, we have t− ntq + 1 ≤ q. Now if we sum up the above
inequality over all epochs, we obtain

E[Fδ(xT )]− E[Fδ(x0]
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=(E[Fδ(xq)]− E[Fδ(x0)]) + (E[Fδ(x2q)]− E[Fδ(xq)]) + · · ·+ (E[Fδ(xT )]− E[Fδ(xnT q)])

≤−

(
γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2

)
T−1∑
t=0

E
[
∥G(xt, vt, γ)∥2

]
+

T−1∑
t=0

8
√
2πdγG2

b1

=−

(
γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2

)
T−1∑
t=0

E
[
∥G(xt, vt, γ)∥2

]
+

8
√
2πdγG2T

b1
.

Rearrange the terms, and divide both sides by (γ2 − cγ2G
√
d

2δ − γ3d2G2q
2δ2b2

)T , we can obtain

1

T

T−1∑
t=0

E
[
∥G(xt, vt, γ)∥2

]
≤

(
γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2

)−1(
E[Fδ(x0)]− E[Fδ(xT )]

T
+

8
√
2πdγG2

b1

)
.

Since R is chosen uniformly from 0, 1, . . . , T − 1, it completes the proof.

C.2.1. PROOF OF THEOREM 5.3

To bound E
[
∥G(xR,∇Fδ(xR), γ)∥2

]
, one has

E
[
∥G(xR,∇Fδ(xR), γ)∥2

]
≤2E

[
∥G(xR, vR, γ)∥2

]
+ 2E

[
∥G(xR, vR, γ)− G(xR,∇Fδ(xR), γ)∥2

]
≤2E

[
∥G(xR, vR, γ)∥2

]
+ 2E

[
∥vR −∇Fδ(xR)∥2

]
.

The first inequality is due to ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 for ∀a, b ∈ Rd. We use Lemma C.1 for the second inequality. To
bound the second term on the right-hand side, one has

E
[
∥vR −∇Fδ(xR)∥2

]
≤d

2G2

δ2b2
E

 R∑
j=nRq+1

∥xj+1 − xj∥2
+

16
√
2πdG2

b1

=
d2G2γ2

δ2b2
E

 R∑
j=nRq+1

∥G(xj , vj , γ)∥2
+

16
√
2πdG2

b1

≤d
2G2γ2q

δ2b2T
E

T−1∑
j=0

∥G(xj , vj , γ)∥2
+

16
√
2πdG2

b1
.

The first inequality is due to Lemma A.5. The first equality follows from xj+1 = xj − γG(xj , vj , γ). The second inequality
holds because each term j ∈ [T ] is chosen with a probability less than q/T . Therefore, one has

E
[
∥G(xR,∇Fδ(xR), γ)∥2

]
≤2

(
d2G2γ2q

δ2b2T
+

1

T

)
E

T−1∑
j=0

∥G(xj , vj , γ)∥2
+

32
√
2πdG2

b1
.

If we choose b2 = q, and we can show that

γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2
=
γ

2

(
1− cγG

√
d

δ
− γ2d2G2

δ2

)
.

If we further choose γ = δ
2dG and assume d ≥ 4c2, then we have

γ

2
− cγ2G

√
d

2δ
− γ3d2G2q

2δ2b2
=

δ

4dG

(
3

4
− c

2
√
d

)
≥ δ

8dG
.
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Now we can bound E
[
∥G(xR,∇Fδ(xR), γ)∥2

]
with

E
[
∥G(xR,∇Fδ(xR), γ)∥2

]
≤ 5

2T
E

T−1∑
j=0

∥G(xj , vj , γ)∥2
+

32
√
2πdG2

b1

≤20dG

δ

(
E[Fδ(x0)]− E[Fδ(xT )]

T
+

4
√
2πGδ

b1

)
+

32
√
2πdG2

b1

≤20dG

δ

(
GB

T
+

4
√
2πGδ

b1

)
+

32
√
2πdG2

b1

≤20dG2B

δT
+

192
√
2πdG2

b1
.

The second inequality follows from Lemma C.5. The third inequality is due to the assumption that the function Fδ(·) is
G-Lipschitz and the diameter of the feasible set Ω is bounded by B. It further implies that

E [min{∥G(xR, g, γ)∥ : g ∈ ∂δF (xR)}] ≤ E [∥G(xR,∇Fδ(xR), γ)∥] ≤
5
√
dBG√
δT

+
16

√
dG√
b1

.

C.2.2. PROOF OF COROLLARY 5.4

To obtain an ϵ-approximate solution, we choose T = O(dBG2

δϵ2 ), b1 = O(dG
2

ϵ2 ) and b2 = q = O(
√
dG
ϵ ). The total number of

the function value oracle calls is bounded by

O(b1T/q + b2T ) = O

(
d

3
2G3B

δϵ3

)
.

C.2.3. LARGE-DEVIATION ESTIMATION OF THE TWO-PHASE VR-ZOSPGD METHOD

Similar to the result of Theorem C.4 for the two-phase MB-ZOSPGD method, we present the large-deviation estimation for
the two-phase VR-ZOSPGD method as follows.

Theorem C.6. Let δ > 0 and 0 < ϵ,Λ < 1, then there exists some T, S, B̂ > 0 such that the output x̄s
∗

of Algorithm 5 with
the VR-ZOSPGD satisfies that Prob

(
min{

∥∥G(x̄s∗ , g, γ)∥∥ ≥ ϵ : g ∈ ∂δF (x̄
s∗)}

)
≤ Λ and the total number of calls of the

FQO is bounded by

O

(
d

3
2BG3

δϵ3
log

(
1

Λ

)
+
dG2

ϵ2Λ
log

(
1

Λ

)2
)
.

Proof. By the definition of s∗ and the Cauchy–Schwarz inequality, we have∥∥∥G(x̄s∗ , gs∗ , γ)∥∥∥2 = min
s∈{0,1,...,S−1}

∥G(x̄s, gs, γ)∥2 ≤ min
s∈{0,1,...,S−1}

(
2 ∥G(x̄s,∇Fδ(x̄

s), γ)∥2 + 2 ∥gs −∇Fδ(x̄
s)∥2

)
≤2 min

s∈{0,1,...,S−1}
∥G(x̄s,∇Fδ(x̄

s), γ)∥2 + 2 max
s∈{0,1,...,S−1}

∥gs −∇Fδ(x̄
s)∥2 .

The first inequality is due to Lemma C.1 and the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2. It implies that∥∥∥G(x̄s∗ ,∇Fδ(x̄
s∗), γ)

∥∥∥2 ≤2
∥∥∥G(x̄s∗ , gs∗ , γ)∥∥∥+ 2

∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥2

≤4 min
s∈{0,1,...,S−1}

∥G(x̄s,∇Fδ(x̄
s), γ)∥2 + 4 max

s∈{0,1,...,S−1}
∥gs −∇Fδ(x̄

s)∥2

+ 2
∥∥∥gs∗ −∇Fδ(x̄

s∗)
∥∥∥2 .
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The first inequality follows from Cauchy–Schwarz inequality and Lemma C.1. The next step is to provide the probabilistic
bounds on all the terms on the right-hand side of the above inequality. Theorem 5.3 implies that

E
[
∥G(x̄s,∇Fδ(x̄

s), γ)∥2
]
≤ 20dG2B

δT
+

192
√
2πdG2

b1
.

Using Markov’s inequality, we have

Prob

(
∥G(x̄s,∇Fδ(x̄

s), γ)∥2 ≥ 40dG2B

δT
+

384
√
2πdG2

b1

)
≤ 1

2
.

Thus, we have

Prob

(
min

s∈{0,1,...,S−1}
∥G(x̄s,∇Fδ(x̄

s), γ)∥2 ≥ 40dG2B

δT
+

384
√
2πdG2

b1

)
≤ 1

2S
.

Furthermore, for each s ∈ {0, 1, . . . , S − 1}, we have

gs −∇Fδ(x̄
s) =

1

B̂

B̂−1∑
k=0

(gsk −∇Fδ(x̄
s)).

By Lemma A.1, we have E [gsk | x̄s] = ∇Fδ(x̄
s) and E

[
∥gsk∥

2 | x̄s
]
≤ 16

√
2πdG2. By Markov’s inequality and Proposi-

tion A.2, it implies that

Prob

(
∥gs −∇Fδ(x̄

s)∥2 ≥ λ(16
√
2πdG2)

B̂

)
= Prob


∥∥∥∥∥∥
B̂−1∑
k=0

(gsk −∇Fδ(x̄
s))

∥∥∥∥∥∥
2

≥ λB̂(16
√
2πdG2)

 ≤ 1

λ
.

Thus, we conclude that

Prob

(
max

s∈{0,1,...,S−1}
∥gs −∇Fδ(x̄

s)∥2 ≥ λ(16
√
2πdG2)

B̂

)
≤ S

λ
.

By a similar argument, one has

Prob

(∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥2 ≥ λ(16

√
2πdG2)

B̂

)
≤ 1

λ
.

Combining the above inequalities yields that

Prob

(∥∥∥G(xs∗ ,∇Fδ(x
s∗), γ)

∥∥∥2 ≥ 160dG2B

δT
+

1536
√
2πdG2

b1
+
λ96

√
2πdG2

B̂

)
≤ S + 1

λ
+

1

2S
.

If we set λ = 2(S+1)
Λ , S = ⌈log(2/Λ)⌉ and the parameters (T, b1, b2, q, B̂) as follows

T = O
(
dBG2

δϵ2

)
, b1 = O

(
dG2

ϵ2

)
, b2 = q = O

(√
dG

ϵ

)
, B̂ = O

(
dG2

ϵ2Λ
log

(
1

Λ

))
.

To satisfy Prob
(
min{

∥∥G(x̄s∗ , g, γ)∥∥ ≥ ϵ : g ∈ ∂δF (x̄
s∗)}

)
≤ Λ, the total number of function oracle calls is bounded by

S(T (b1/q + b2) + B̂) = O

(
d

3
2BG3

δϵ3
log

(
1

Λ

)
+
dG2

ϵ2Λ
log

(
1

Λ

)2
)
.
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Algorithm 6 Two-Phase Zeroth-Order Stochastic Frank–Wolfe Method

1: Input: Initial point x0 ∈ Rd, sequence of stepsizes {γt : γt > 0}T−1
t=0 , problem dimension d ≥ 1, smoothing parameter

δ, iteration number T ≥ 1, number of rounds S ≥ 1 and sample size B̂.
2: for s = 0, 1, . . . , S − 1 do
3: Call Algorithm 4 with x0, {γt}T−1

t=0 , d, δ and T and let x̄s be an output.
4: end for
5: for s = 0, 1, . . . , S − 1 do
6: for k = 0, 1, . . . , B̂ − 1 do
7: Simulate ξk ∼ P
8: Sample wk ∈ Rd uniformly from a unit sphere in Rd.
9: gsk = d

2δ (f(x̄
s + δwk, ξk)− f(x̄s − δwk, ξk))wk

10: end for
11: gs = 1

B̂

∑B̂−1
k=0 g

s
k

12: us = argmaxu∈Ω⟨u,−gs⟩
13: end for
14: Choose s∗ = argmins∈{0,1,...,S−1}⟨−gs, us − x̄s⟩
15: return x̄s

∗
.

D. Convergence Analysis of ZOSFW Methods
In this section, we present the analysis of the convergence rate of both MB-ZOSFW and VR-ZOSFW methods. In addition,
we show the large-deviation estimation results of the proposed projection-free stochastic optimization methods with the
two-phase post-processing technique.

D.1. Convergence Analysis of the MB-ZOSFW method

In this subsection, we show the convergence rate of the MB-ZOSFW method as follows.

D.1.1. PROOF OF THEOREM 5.6

We define ũt = argmaxu∈Ω⟨u,−∇Fδ(xt)⟩, it follows that:

⟨∇Fδ(xt), ut − xt⟩
=⟨∇Fδ(xt), ũt − xt⟩+ ⟨∇Fδ(xt), ut − ũt⟩
=⟨∇Fδ(xt), ũt − xt⟩+ ⟨vt, ut − ũt⟩+ ⟨∇Fδ(xt)− vt, ut − ũt⟩
≤⟨∇Fδ(xt), ũt − xt⟩+ ∥∇Fδ(xt)− vt∥ ∥ut − ũt∥ .

The first inequality is due to ⟨vt, ut⟩ ≤ ⟨vt, ũt⟩ by the optimality of ut.

Fδ(xt+1)

≤Fδ(xt) + γt⟨∇Fδ(xt), ut − xt⟩+
cG

√
dγ2t

2δ
∥ut − xt∥2

≤Fδ(xt) + γt⟨∇Fδ(xt), ũt − xt⟩+
cG

√
dγ2t

2δ
∥ut − xt∥2 + γt ∥∇Fδ(xt)− vt∥ ∥ut − ũt∥

≤Fδ(xt) + γt⟨∇Fδ(xt), ũt − xt⟩+
cG

√
dγ2tB

2

2δ
+ γtB ∥∇Fδ(xt)− vt∥ .

The first inequality follows from Lemma 3.8 such that Fδ is a cG
√
d/δ-smooth objective function. The last inequality is due

to the assumption that the diameter of the domain is bounded by B. Taking expectations on both sides of the inequality, we
have

E[Fδ(xt+1)]

≤E[Fδ(xt)] + γtE[⟨∇Fδ(xt), ũt − xt⟩] +
cG

√
dγ2tB

2

2δ
+ γtBE[∥∇Fδ(xt)− vt∥]

26



Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

≤E[Fδ(xt)] + γtE[⟨∇Fδ(xt), ũt − xt⟩] +
cG

√
dγ2tB

2

2δ
+

8γtBG
√
d√

bt
.

The last inequality follows from Lemma A.1 and the fact E[∥ζ∥]2 ≤ E[∥ζ∥2] for any random variable ζ. Fix γt = γ, and
telescope the above results through t = 0 to T − 1, we have

γ

T−1∑
t=0

E[⟨−∇Fδ(xt), ũt − xt⟩] ≤ E[Fδ(x0)]− E[Fδ(xT )] +
cG

√
dγ2B2T

2δ
+

T−1∑
t=0

8γBG
√
d√

bt
.

Divide both sides by γT , we can obtain:

1

T

T−1∑
t=0

E[⟨−∇Fδ(xt), ũt − xt⟩]

≤E[Fδ(x0)]− E[Fδ(xT )]

γT
+
cG

√
dγB2

2δ
+ 8BG

√
d

∑T−1
t=0 1/

√
bt

T

≤GB
γT

+
cG

√
dγB2

2δ
+ 8BG

√
d

∑T−1
t=0 1/

√
bt

T
.

The last inequality follows from the assumption that the function Fδ(·) is G-Lipschitz and the diameter of the domain Ω is
bound by B. Set bt = b and γ =

√
δ/(

√
TBd

1
4 ), we have

1

T

T−1∑
t=0

E[⟨−∇Fδ(xt), ũt − xt⟩] ≤
2
√
cGB

3
2 d

1
4

δ
1
2T

1
2

+
8BG

√
d√

b
.

D.1.2. PROOF OF COROLLARY 5.7

If we choose T = O(B3G2d
1
2 δ−1ϵ−2) and b = O(B2G2dϵ−2) for Theorem 5.6, then the total function oracle call is

Tb = O(B5G4d
3
2 δ−1ϵ−4).

D.1.3. LARGE-DEVIATION ESTIMATION OF THE TWO-PHASE MB-ZOSFW METHOD

Similar to the large-deviation estimation of the two-phase MB-ZOSPGD method, we combine Algorithm 4 with a post-
optimization procedure, leading to a two-phase zeroth-order stochastic Frank–Wolfe method (2-ZOSFW) that is shown in
Algorithm 6. Formally, we provide the large-deviation estimation of the two-phase MB-ZOSFW method as follows.

Theorem D.1. Let δ > 0 and 0 < ϵ,Λ < 1, then there exists some T, S, B̂ > 0 such that the output x̄s
∗

of Algorithm 6 with
the MB-ZOSFW satisfies that Prob(min{maxu∈Ω⟨−g, u− x̄s

∗⟩ ≥ ϵ : g ∈ ∂δF (x̄
s∗)}) ≤ Λ and the total number of calls

of the FQO is bounded by

O

(
B5G4d

3
2

δϵ4
log

(
1

Λ

)
+
dG2B2

ϵ2Λ
log

(
1

Λ

)2
)
.

Proof. We define ũs = argmaxu∈Ω⟨u,−∇Fδ(x̄
s)⟩, it follows that

⟨−∇Fδ(x̄
s∗), ũs

∗
− x̄s

∗
⟩ =⟨−gs

∗
, ũs

∗
− x̄s

∗
⟩+ ⟨gs

∗
−∇Fδ(x̄

s∗), ũs
∗
− x̄s

∗
⟩

≤⟨−gs
∗
, us

∗
− x̄s

∗
⟩+ ⟨−gs

∗
, ũs

∗
− us

∗
⟩+

∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥∥∥∥ũs∗ − x̄s

∗
∥∥∥

≤⟨−gs
∗
, us

∗
− x̄s

∗
⟩+

∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥∥∥∥ũs∗ − x̄s

∗
∥∥∥ .

The first inequality follows from Cauchy–Schwarz inequality. The last inequality is due to us
∗
= argmaxu∈Ω⟨−gs

∗
, u⟩.

The first term on the right-hand side of the inequality can be bound by

⟨−gs
∗
, us

∗
− x̄s

∗
⟩ = min

s∈{0,1,...,S−1}
⟨−gs, us − x̄s⟩
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= min
s∈{0,1,...,S−1}

(⟨−∇Fδ(x
s), us − x̄s⟩+ ⟨∇Fδ(x

s)− gs, us − x̄s⟩)

≤ min
s∈{0,1,...,S−1}

(⟨−∇Fδ(x
s), ũs − x̄s⟩+ ⟨∇Fδ(x

s)− gs, us − x̄s⟩)

≤ min
s∈{0,1,...,S−1}

⟨−∇Fδ(x
s), ũs − x̄s⟩+ max

s∈{0,1,...,S−1}
⟨∇Fδ(x

s)− gs, us − x̄s⟩

≤ min
s∈{0,1,...,S−1}

⟨−∇Fδ(x
s), ũs − x̄s⟩+ max

s∈{0,1,...,S−1}
∥∇Fδ(x

s)− gs∥ ∥us − x̄s∥ .

The first inequality follows from ũs = argmaxu∈Ω⟨u,−∇Fδ(x̄
s)⟩, and the last inequality is due to Cauchy–Schwarz

inequality. The proof in Theorem 5.6 implies that

E[⟨−∇Fδ(x
s), ũs − xs⟩] ≤ GB

3
2 d

1
4

δ
1
2T

1
2

+
8BG

√
d√

b
.

Using Markov’s inequality, we have

Prob

(
⟨−∇Fδ(x

s), ũs − xs⟩ ≥ 2GB
3
2 d

1
4

δ
1
2T

1
2

+
16BG

√
d√

b

)
≤ 1

2
.

Therefore, we can deduce that

Prob

(
min

s∈{0,1,...,S−1}
⟨−∇Fδ(x

s), ũs − x̄s⟩ ≥ 2GB
3
2 d

1
4

δ
1
2T

1
2

+
16BG

√
d√

b

)
≤ 1

2S
.

By Lemma A.1, we have E[gsk | x̄s] = ∇Fδ(x̄
s) and E

[
∥gsk∥

2 | x̄s
]

≤ 16
√
2πdG2. By Markov’s inequality and

Proposition A.2, it yields that

Prob

(
∥gs −∇Fδ(x̄

s)∥ ∥us − x̄s∥ ≥
√
λ(8

√
dGB)√
B̂

)

=Prob

(
∥gs −∇Fδ(x̄

s)∥2 ∥us − x̄s∥2 ≥ λ(16
√
2πdG2B2)

B̂

)
≤ 1

λ
.

Therefore, we can conclude that

Prob

(
max

s∈[S−1]
∥gs −∇Fδ(x̄

s)∥ ∥us − x̄s∥ ≥
√
λ(8

√
dGB)√
B̂

)
≤ S

λ
.

Using a similar argument, one has

Prob

(∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥∥∥∥ũs∗ − x̄s

∗
∥∥∥ ≥

√
λ(8

√
dGB)√
B̂

)
≤ 1

λ
.

Combining the above inequalities, for all λ > 0 we have

Prob

(
⟨−∇Fδ(x̄

s∗), ũs
∗
− x̄s

∗
⟩ ≥ 2GB

3
2 d

1
4

δ
1
2T

1
2

+
16BG

√
d√

b
+

√
λ(16

√
dGB)√
B̂

)
≤ S + 1

λ
+

1

2S
.

We set λ = 2(S+1)
Λ , S =

⌈
log 2

Λ

⌉
, and the parameters (T, b, B̂) as follows

T = O

(
B3G2d

1
2

δϵ2

)
, b = O

(
B2G2d

ϵ2

)
, B̂ = O

(
dG2B2(S + 1)

ϵ2Λ

)
.

Therefore, we have

Prob
(
⟨−∇Fδ(x̄

s∗), ũs
∗
− x̄s

∗
⟩ ≥ ϵ

)
≤ Λ.
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The total number of function oracle calls is therefore bounded by

S(Tb+ B̂) = O

(
B5G4d

3
2

δϵ4
log

(
1

Λ

)
+
dG2B2

ϵ2Λ
log

(
1

Λ

)2
)
.

D.2. Convergence Analysis of the VR-ZOSFW Method

In this subsection, we provide the convergence analysis of the VR-ZOSFW method.

D.2.1. PROOF OF THEOREM 5.8

We define ũt = argmaxu∈Ω⟨u,−∇Fδ(xt)⟩, it follows that:

⟨∇Fδ(xt), ut − xt⟩
=⟨∇Fδ(xt), ũt − xt⟩+ ⟨∇Fδ(xt), ut − ũt⟩
=⟨∇Fδ(xt), ũt − xt⟩+ ⟨vt, ut − ũt⟩+ ⟨∇Fδ(xt)− vt, ut − ũt⟩
≤⟨∇Fδ(xt), ũt − xt⟩+ ∥∇Fδ(xt)− vt∥ ∥ut − ũt∥ .

The first inequality is due to ⟨vt, ut⟩ ≤ ⟨vt, ũt⟩ by the optimality of ut and Cauchy–Schwarz inequality.

Fδ(xt+1)

≤Fδ(xt) + γt⟨∇Fδ(xt), ut − xt⟩+
cG

√
dγ2t

2δ
∥ut − xt∥2

≤Fδ(xt) + γt⟨∇Fδ(xt), ũt − xt⟩+
cG

√
dγ2t

2δ
B2 + γt ∥∇Fδ(xt)− vt∥ ∥ut − ũt∥ .

The first inequality is due to the cG
√
d

δ -smoothness of the function Fδ(·). The last inequality follows from the Cauchy–
Schwarz inequality and the assumption that the diameter of the domain Ω is bounded by B. Taking expectations on both
sides and fix γt = γ, we have:

E[Fδ(xt+1)]

≤E[Fδ(xt)] + γE[⟨∇Fδ(xt), ũt − xt⟩] +
cG

√
dγ2B2

2δ
+ γE[∥∇Fδ(xt)− vt∥ ∥ut − ũt∥]

≤E[Fδ(xt)] + γE [⟨∇Fδ(xt), ũt − xt⟩] +
cG

√
dγ2B2

2δ
+ γBE

√√√√d2G2

δ2b2

t∑
j=ntq+1

∥xj − xj−1∥2 +
16

√
2πdG2

b1


≤E[Fδ(xt)] + γE[⟨∇Fδ(xt), ũt − xt⟩] +

cG
√
dγ2B2

2δ
+ γB

(
dGγB

√
q

δ
√
b2

+
20

√
dG√
b1

)

=E[Fδ(xt)] + γE[⟨∇Fδ(xt), ũt − xt⟩] +
cG

√
dγ2B2

2δ
+
dGγ2B2√q

δ
√
b2

+
20γ

√
dBG√
b1

.

The second inequality is due to Lemma A.5. The last inequality follows from the fact
√
a+ b ≤

√
a +

√
b if a, b ≥ 0.

Rearrange the terms and telescope t from 0 to T − 1 gives:

T−1∑
t=0

γE[⟨−∇Fδ(xt), ũt − xt⟩]

≤E[Fδ(x0)]− E[Fδ(xT )] +
cG

√
dγ2B2T

2δ
+
dGγ2B2√qT

δ
√
b2

+
20γ

√
dBGT√
b1

.

Dividing both sides by γT , then

1

T

T−1∑
t=0

E[⟨−∇Fδ(xt), ũt − xt⟩]
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≤E[Fδ(x0)]− E[Fδ(xT )]

γT
+
cG

√
dγB2

2δ
+
dGγB2√q
δ
√
b2

+
20

√
dBG√
b1

.

If we choose b2 = q, then

1

T

T−1∑
t=0

E[⟨−∇Fδ(xt), ũt − xt⟩]

≤E[Fδ(x0)]− E[Fδ(xT )]

γT
+
cG

√
dγB2

2δ
+
dGγB2

δ
+

20
√
dBG√
b1

≤GB
γT

+
cG

√
dγB2

2δ
+
dGγB2

δ
+

20
√
dBG√
b1

.

The last inequality follows from the assumption that the function Fδ(·) is G-Lipschitz and the diameter of the domain Ω is
bound by B. We can further set γ =

√
δ/(dTB), then we can obtain

1

T

T−1∑
t=0

E[⟨−∇Fδ(xt), ũt − xt⟩] ≤
3GB

3
2

√
d√

δT
+

20
√
dBG√
b1

.

D.2.2. PROOF OF COROLLARY 5.9

To obtain an ϵ-approximate solution, we have to set T = O(G2B3dδ−1ϵ−2) and b1 = O(dB2G2ϵ−2). In addition, we set
b2 = q =

√
b1, then the total function calls is

Tb1/q + Tb2 = O(G3B4d
3
2 δ−1ϵ−3).

D.2.3. LARGE-DEVIATION ESTIMATION OF THE TWO-PHASE VR-ZOSFW METHOD

Similar to the result of Theorem D.1 for the two-phase MB-ZOSFW method, we present the large-deviation estimation for
the two-phase VR-ZOSFW method as follows.

Theorem D.2. Let δ > 0 and 0 < ϵ,Λ < 1, then there exists some T, S, B̂ > 0 such that the output x̄s
∗

of Algorithm 6 with
the VR-ZOSFW satisfies that Prob(min{maxu∈Ω⟨−g, u− x̄s

∗⟩ ≥ ϵ : g ∈ ∂δF (x̄
s∗)}) ≤ Λ and the total number of calls

of the FQO is bounded by

O

(
B4G3d

3
2

δϵ3
log

(
1

Λ

)
+
dG2B2

ϵ2Λ
log

(
1

Λ

)2
)
.

Proof. We define ũs = argmaxu∈Ω⟨u,−∇Fδ(x̄
s)⟩, it follows that

⟨−∇Fδ(x̄
s∗), ũs

∗
− x̄s

∗
⟩ =⟨−gs

∗
, ũs

∗
− x̄s

∗
⟩+ ⟨gs

∗
−∇Fδ(x̄

s∗), ũs
∗
− x̄s

∗
⟩

≤⟨−gs
∗
, us

∗
− x̄s

∗
⟩+ ⟨−gs

∗
, ũs

∗
− us

∗
⟩+

∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥∥∥∥ũs∗ − x̄s

∗
∥∥∥

≤⟨−gs
∗
, us

∗
− x̄s

∗
⟩+

∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥∥∥∥ũs∗ − x̄s

∗
∥∥∥ .

The last inequality is due to us
∗
= argmaxu∈Ω⟨−gs

∗
, u⟩. The first term on the right-hand side of the inequality can be

bound by

⟨−gs
∗
, us

∗
− x̄s

∗
⟩ = min

s∈{0,1,...,S−1}
⟨−gs, us − x̄s⟩

= min
s∈{0,1,...,S−1}

(⟨−∇Fδ(x
s), us − x̄s⟩+ ⟨∇Fδ(x

s)− gs, us − x̄s⟩)

≤ min
s∈{0,1,...,S−1}

(⟨−∇Fδ(x
s), ũs − x̄s⟩+ ⟨∇Fδ(x

s)− gs, us − x̄s⟩)

≤ min
s∈{0,1,...,S−1}

⟨−∇Fδ(x
s), ũs − x̄s⟩+ max

s∈{0,1,...,S−1}
⟨∇Fδ(x

s)− gs, us − x̄s⟩
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≤ min
s∈{0,1,...,S−1}

⟨−∇Fδ(x
s), ũs − x̄s⟩+ max

s∈{0,1,...,S−1}
∥∇Fδ(x

s)− gs∥ ∥us − x̄s∥ .

The first inequality follows from ũs = argmaxu∈Ω⟨u,−∇Fδ(x̄
s)⟩, and the last inequality is due to Cauchy–Schwarz

inequality. The proof in Theorem 5.8 implies that

E[⟨−∇Fδ(x
s), ũs − xs⟩] ≤ 3GB

3
2

√
d√

δT
+

20
√
dBG√
b1

.

Using Markov’s inequality, we have

Prob

(
⟨−∇Fδ(x

s), ũs − xs⟩ ≥ 6GB
3
2

√
d√

δT
+

40
√
dBG√
b1

)
≤ 1

2
.

Therefore, we can deduce that

Prob

(
min

s∈{0,1,...,S−1}
⟨−∇Fδ(x

s), ũs − x̄s⟩ ≥ 6GB
3
2

√
d√

δT
+

40
√
dBG√
b1

)
≤ 1

2S
.

By Lemma A.1, we have E[gsk | x̄s] = ∇Fδ(x̄
s) and E[∥gsk∥

2 | x̄s] ≤ 16
√
2πdG2. By Markov’s inequality and Proposition

A.2, it yields that

Prob

(
∥gs −∇Fδ(x̄

s)∥ ∥us − x̄s∥ ≥
√
λ(8

√
dGB)√
B̂

)

=Prob

(
∥gs −∇Fδ(x̄

s)∥2 ∥us − x̄s∥2 ≥ λ(16
√
2πdG2B2)

B̂

)
≤ 1

λ
.

Therefore, we can conclude that

Prob

(
max

s∈{0,1,...,S−1}
∥gs −∇Fδ(x̄

s)∥ ∥us − x̄s∥ ≥
√
λ(8

√
dGB)√
B̂

)
≤ S

λ
.

Using a similar argument, one has

Prob

(∥∥∥gs∗ −∇Fδ(x̄
s∗)
∥∥∥∥∥∥ũs∗ − x̄s

∗
∥∥∥ ≥

√
λ(8

√
dGB)√
B̂

)
≤ 1

λ
.

Combining the above inequalities, for all λ > 0 we have

Prob

(
⟨−∇Fδ(x̄

s∗), ũs
∗
− x̄s

∗
⟩ ≥ 6GB

3
2

√
d√

δT
+

40
√
dBG√
b1

+

√
λ(16

√
dGB)√
B̂

)
≤ S + 1

λ
+

1

2S
,

We set λ = 2(S+1)
Λ , S =

⌈
log 2

Λ

⌉
, and the parameters (T, b1, b2, q, B̂) as follows

T = O
(
B3G2d

δϵ2

)
, b1 = O

(
B2G2d

ϵ2

)
, b2 = q =

√
b1, B̂ = O

(
dG2B2(S + 1)

ϵ2Λ

)
.

Therefore, we have

Prob
(
⟨−∇Fδ(x̄

s∗), ũs
∗
− x̄s

∗
⟩ ≥ ϵ

)
≤ Λ.

The total number of function oracle calls is therefore bounded by

S(T (b1/q + b2) + B̂) = O

(
B4G3d

3
2

δϵ3
log

(
1

Λ

)
+
dG2B2

ϵ2Λ
log

(
1

Λ

)2
)
.
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