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ABSTRACT

This work tackles a key challenge in Test Time Adaptation (TTA): adapting on
limited data. This challenge arises naturally from two scenarios. (i) Current TTA
methods are limited by the bandwidth with which the stream reveals data, since
conducting several adaptation steps on each revealed batch from the stream will
lead to overfitting. (ii) In many realistic scenarios, the stream reveals insufficient
data for the model to fully adapt to a given distribution shift. We tackle the first
scenario problem with auxiliary tasks where we leverage unlabeled data from the
training distribution. In particular, we propose distilling the predictions of an orig-
inally pretrained model on clean data during adaptation. We found that our pro-
posed auxiliary task significantly accelerates the adaptation to distribution shifts.
We report a performance improvement over the state of the art by 1.5% and 6% on
average across all corruptions on ImageNet-C under episodic and continual evalu-
ation, respectively. To combat the second scenario of limited data, we analyze the
effectiveness of combining federated adaptation with our proposed auxiliary task
across different models even when different clients observe different distribution
shifts. We find that not only federated averaging enhances adaptation, but com-
bining it with our auxiliary task provides a notable 6% performance improvement
over previous TTA methods.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable success in providing state-of-the-art re-
sults in several applications (Ranftl et al., 2021; He et al., 2016; Deng et al., 2009). However,
their performance severely deteriorates whenever a shift exists between training and testing distribu-
tions (Hendrycks et al., 2021a;b). Such distribution shifts are likely to occur in real-world settings in
the form of changes in weather conditions (Hendrycks & Dietterich, 2019), camera parameters (Kar
et al., 2022), data compression or, in extreme cases, adversarial perturbations (Goodfellow et al.,
2015). Needless to say, mitigating or adapting to the effects of such distribution shifts is crucial to
the safe deployment of DNNs in many use cases, e.g., self-driving cars.

Test Time Adaptation (TTA) (Sun et al., 2020; Liu et al., 2021) attempts to resolve this problem by
closing the gap between the model performance when tested with or without distribution shifts. In
particular, TTA adapts a pretrained model at test time by optimizing a proxy objective function on
a stream of unlabeled data in an online fashion (Wang et al., 2021). The recent progress in TTA
showed great success in improving performance under distribution shifts in several scenarios (Niu
et al., 2022; Wang et al., 2022; Yuan et al., 2023). However, and to prevent overfitting, all TTA
methods in the literature conduct a single adaptation step on each received batch at test time (Niu
et al., 2023; Nguyen et al., 2023). This limits the efficacy of TTA methods by the bandwidth of
the stream and the amount of data that the model receives, hampering their online performance.
Furthermore, the current paradigm of TTA focuses on updating a single model at a time, assuming
the stream will reveal enough data to capture the underlying distribution shift. Nonetheless, in many
realistic settings, the stream of data accessible to an individual model might be too scarce to enable
adequate adaptation. In such scenarios, we might accelerate adaptation by leveraging other models
being adapted to similar domain shifts in a collaborative and federated fashion (Jiang & Lin, 2023).

In this work, we tackle the aforementioned lack of data in Test Time Adaptation by proposing an
auxiliary task that can be optimized during test time. Since the amount of data from a given dis-
tribution shift is limited by the bandwidth of the stream, we follow Kang et al. (2023); Gao et al.
(2022); Niu et al. (2022) in leveraging unlabeled data from the training distribution. We first show
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how one could simply employ the same proxy objective of previous TTA methods on unlabeled
clean data to accelerate the adaptation to distribution shifts. Based on this observation, we pro-
pose DISTA (Distillation-based TTA) a better auxiliary objective that distills the predictions of the
originally pretrained model on clean unlabeled data during adaptation. We assess the effectiveness
of DISTA on two different benchmarks and 3 different evaluation protocols where consistent and
significant performance improvements are attained. In summary, our contributions are threefold:

1. We present a methodology to analyze the effectiveness of auxiliary tasks on accelerating
the adaptation under distribution shift through lookahead analysis. We show that one can
leverage clean unlabeled data to better adapt to distribution shifts.

2. We propose DISTA; a TTA method with a distillation based auxiliary task. We conduct
comprehensive experimental analysis on the two standard and large-scale TTA benchmarks
ImageNet-C (Hendrycks & Dietterich, 2019) and ImageNet-3DCC (Kar et al., 2022) where
we show how DISTA improves the performance over state-of-the-art methods by a signifi-
cant margin (1.5% under episodic evaluation and 6-8% under continual evaluation).

3. We further analyze a novel and realistic scenario where each individual model is presented
with insufficient amount of data for adaptation. We first show how federated learning facili-
tates adaptation in this case, even when the observed distribution shift varies among clients.
Further, we show how DISTA provides a large performance gain (6% on ImageNet-C) over
state-of-the-art methods in this federated setup.

2 METHODOLOGY

Preliminaries Test Time Adaptation (TTA) studies the practical problem of adapting pretrained
models to unlabeled streams of data from an unknown distribution that potentially differs from the
training one. In particular, let fθ : X → P(Y) be a classifier parametrized by θ that maps a given
input x ∈ X to a probability simplex over k labels (i.e. f i

θ(x) ≥ 0, ∥fθ(x)∥1 = 1). During the
training phase, fθ is trained on some source data Ds ⊆ X × Y , but at test time, it is presented with
a stream of data S that might be differently distributed from Ds. In this work, we focus on covariate
shifts, i.e. changes in the distribution over the input space X due to, for instance, visual corruptions
caused by changes in weather conditions faced by self-driving systems. TTA defines a learner g(θ, x)
that adapts the network parameters θ and/or the received unlabeled input x at test time to enhance
the performance of the model under such distribution shifts. Throughout, we use distribution and
domain shift interchangeably. Formally, and following the online learning notation (Shalev-Shwartz,
2011; Cai et al., 2021; Ghunaim et al., 2023; Alfarra et al., 2023), we describe the interaction at a
time step t ∈ {0, 1, . . . ,∞} between a TTA method g and the stream of unlabeled data S as:

1. S reveals a sample xt.

2. g adapts xt to x̂t, θt to θ̂t, generates a prediction ŷt, and updates parameters via θt+1 =

αθt + (1− α)θ̂t with 0 ≤ α ≤ 1.

The main paradigm in TTA employs an unsupervised objective function to be optimized on-the-fly
at test time to circumvent performance drops caused by domain shift. Wang et al. (2021) observed
a strong correlation between the entropy of the output prediction for a given batch of inputs and
the error rate. Based on that, Wang et al. (2021) proposed to minimize the entropy of the output
prediction for a given batch of inputs at test time through:

θt+1 = argmin
θ

Ext∼S [E (fθ(xt))] with E (fθ(xt)) = −
∑
i

f i
θ(xt) log f

i
θ(xt). (1)

Note that the optimization problem is usually solved with a single gradient descent step to avoid
overfitting network parameters on each received batch. It is noteworthy that this approach has
demonstrated a great success only when the received batches (i) have diverse sets of labels and
(ii) relate to a single type of domain shift (Niu et al., 2023). In previous work, Niu et al. (2022)
attempted to circumvent these drawbacks by deploying a data selection procedure, while Yuan et al.
(2023) leveraged a balanced episodic memory that have inputs with a diverse set of labels.

2.1 TEST TIME ADAPTATION WITH AUXILIARY TASKS

TTA imposes many challenges due to its realistic setup. One main challenge is that the learner
needs to adapt the model to unlabeled data revealed from the stream in an online manner. Another
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(a) Tent (equation 2).
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(b) DISTA (equation 4). (c) Pipeline (equation 5).

Figure 1: Lookahead Analysis and Pipeline. (a) Running mean of lookahead over observed
batches when employing Tent on both data revealed from the stream and Ds. (b) Running mean
of lookahead over observed batches using DISTA. (c) Pipeline summarizing our proposed DISTA.

important challenge we identify is that the learner is constrained by the speed of the stream and the
amount of revealed data. That is, the model needs to adapt on a limited amount of data. The faster
the learner adapts to the distribution shift, the better its online performance. However, most TTA
methods in the literature conduct a single adaptation step to prevent overfitting model parameters to
each received batch. That is, even when new batches are revealed slowly enough to allow multiple
optimization steps, the learner g cannot benefit from this additional time. This naturally begs the
question: can we enhance the adaptation speed of TTA methods in such setting? In this work, we
address this question through the lens of auxiliary tasks (Lyle et al., 2021).

Auxiliary tasks (Liebel & Körner, 2018) are additional loss terms that indirectly optimize the de-
sired objective function. A simple auxiliary loss function to be optimized is the TTA method, e.g.
minimizing entropy on xt for one more step, which results in overfitting on the revealed batch from
the stream. We take a step back and ask the following question: what could an adaptation model
access at step t other than xt? EATA (Niu et al., 2022), for instance, leveraged Ds for calculating
the anti-forgetting regularizer while DDA (Gao et al., 2022) used Ds to train a diffusion model to
project xt into the source domain. More recently, Kang et al. (2023) condensed Ds to construct a
set of labeled examples per class used for adaptation. While one could potentially access labeled
samples Ds for the aforementioned approach, several applications do not allow accessing this la-
beled distribution (e.g. training procedure can be outsourced with private training data). Note that,
however, one could get unlabeled data from this distribution cheaply. For example, one could store
few unlabeled data examples at clear weather conditions (for autonomous driving applications) as a
proxy for source distributions before deploying the model in an episodic memory, following Yuan
et al. (2023). Having said that, a natural question could arise: how can we use unlabeled samples
from Ds to better adapt on distribution shifts in S?

We first examine a simple auxiliary task: during test time, adapt the model not only on the data
revealed from the stream (i.e. xt), but also on a sample xs ∼ Ds. For example, let g(θ, x) be the
entropy minimization approach in equation 1. One could solve the following objective function:

min
θ

E
xt∼S

E (fθ(xt)) + E
xs∼Ds

E (fθ(xs)) . (2)

At first glance, it is unclear whether the additional term in the loss function would effectively facil-
itate adaptation to domain shifts in S. Thus, to better analyze the effect of the auxiliary term, we
solve the optimization problem in equation 2 with the following alternative optimization approach:

θct = θt − γ∇θ [E (fθ(xt))] θt+1 = θct − γ∇θ [E (fθ(xs))] . (3)

Note that the gradients in the first and second SGD steps are evaluated at θt and θct , respectively.
Now, we can study the effect of our simple auxiliary task by measuring the improvement on the
entropy after optimizing the auxiliary task; denoted as lookahead (Fifty et al., 2021), and defined as

Lookahead(%) = 100×

(
1−

E
(
fθt+1(xt)

)
E
(
fθc

t
(xt)

) ) .

Note, the higher the lookahead, the better the auxiliary task is at minimizing the desired objective.

We conduct experiments on ImageNet-C benchmark (Hendrycks & Dietterich, 2019) where we fix
fθ0 to be ResNet-50 (He et al., 2016) pretrained on ImageNet dataset (Deng et al., 2009). We
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measure the lookahead over samples revealed from the stream for when S contains one of 3 domain
shifts (Gaussian Noise, Motion Blur, and Snow) and we take Ds as a subset of unlabeled images
from the training set. For each received batch xt from the stream S, we sample a batch xs from
Ds with the same size for simplicity. Figure 1a summarizes the results. We can observe that the
simple auxiliary task of minimizing the entropy of predictions on source data has, surprisingly, a
positive impact on the desired task (i.e. minimizing entropy on corrupted data). This hints that
one could accelerate the convergence of adaptation on corrupted data by leveraging unsupervised
auxiliary tasks on source data. We highlight that through our lookahead analysis, one could analyze
the effectiveness of different auxiliary tasks in TTA. Next, we describe our proposed auxiliary task.

2.2 DISTA: DISTILLATION BASED TEST TIME ADAPTATION

In Section 2.1, we analyzed the positive impact of one example of auxiliary task, observing that
entropy minimization on source data does improve adaptation to domain shifts. Next, we propose a
better and more powerful auxiliary task. We distill a saved copy of the original pretrained model fθ0
during adaptation on samples from the source distribution. More precisely, we replace the entropy
minimization term on the source data with a cross-entropy loss between the predictions of fθt and
fθ0 . We also employ a data selection scheme whereby we update the model on samples with low
entropy, following Niu et al. (2022). Our overall objective function can be described as follows:

min
θ

E
xt∼S

λt(xt)E (fθ(xt)) + E
xs∼Ds

λs(xs)CE (fθ(xs), fθ0(xs)) (4)

where λt(x) =
1{E(fθt (x))<E0}.1{cos(fθt (x),mt−1)<ϵ}

exp(E(fθt(x))− E0)
, λs(x) =

1{E(fθt (x))<E0}

exp(E(fθt(x))− E0)

where 1{.} is an indicator function that takes the value 1 if the condition {.} is satisfied and 0
otherwise, ϵ and E0 are positive thresholds, and mt−1 is the moving average of the prediction vector.
We note here that both λt and λs are data selection functions that prevent updating the model on
unreliable or redundant samples. To assess the effectiveness of our proposed auxiliary task, we
follow our setup in Section 2.1 and consider the following alternating optimization approach:

θct = θt − γ∇θ [λt(xt)E (fθ(xt))] θt+1 = θct − γ∇θ [λs(xs)CE (fθ(xs), fθ0(xs))] . (5)

Hence, we can now measure the lookahead and analyze how effective our approach is for adaptation.
We replicate our setup from Section 2.1 and report the results in Figure 1b. We find that our proposed
auxiliary task has a positive lookahead over all observed batches. It is worth mentioning that we
observe similar results with all types of domain shifts we considered, as indicated by more detailed
lookahead results that we defer to appendix for the sake of conciseness. That is, solving our auxiliary
task on clean data in an online fashion helps the model to adapt faster and better to distribution shifts
presented in the stream S. Please refer to Figure 1c for an illustration of DISTA.

Intuition behind DISTA. First, based on our observation in Section 2.1, minimizing the entropy
of the predictions on clean data can accelerate adaptation and hence improve online performance.
However, besides the clean data, we also have access to the pretrained model fθ0 . Therefore, we
can combine both sources of information to obtain the richer auxiliary task of knowledge distilla-
tion (Hinton et al., 2015), which can improve performance in similar settings (Hong et al., 2021).
Further, our auxiliary task in DISTA allows adapting a pretrained model to domain shifts while be-
ing close to fθ0 in the output space. We hypothesize this allows for a more stable adaptation that
prevents fθt from diverging and overfitting on each presented domain shift by S. We argue that this
approach is richer than the simple entropy minimization in equation 2 while being more beneficial
and flexible than regularizing the parameter space as in EATA (Niu et al., 2022).

3 RELATED WORK

Test Time Training (TTT) aims at updating a pretrained model at test time on the received unla-
beled data when there is a distribution shift between training and testing data (Sun et al., 2020). This
is usually done by including a self-supervised loss function during the training process (e.g. pre-
dicting the rotation angle (Gidaris et al., 2018)) that will be later used at test time (Liu et al., 2021;
Chen et al., 2022; Tzeng et al., 2017). It is noteworthy that such approaches, while being effective in
mitigating performance drops under distribution shifts, are less practical as they require control over
the training process, and thus are not readily applicable to any pretrained model (Sun et al., 2020).
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Table 1: Episodic Evaluation on ImageNet-C Benchmark with ResNet-50. We report the error
rate (lower is better) for each corruption. We adapt the model to each corruption independently in
episodic evaluation. DISTA improves over the previous state-of-the-art EATA on all domain shifts.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

Source 97.8 97.1 98.1 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.0 79.4 68.4 82.0
AdaBN 84.9 84.3 84.3 85.0 84.7 73.6 61.1 65.8 66.9 52.1 34.8 83.3 56.1 51.1 60.3 68.5
BN 84.6 83.9 83.8 80.1 80.2 71.7 60.4 65.4 65.2 51.6 34.6 76.3 54.4 49.7 59.2 66.7
SHOT 73.1 69.8 72.0 76.9 75.9 58.5 52.7 53.3 62.2 43.8 34.6 82.6 46.0 42.3 48.9 59.5
TTAC 71.3 70.3 70.8 82.1 77.4 63.9 53.9 49.9 55.5 43.9 32.8 81.4 43.7 41.1 46.7 59.0
Tent 70.3 68.2 69.0 72.2 73.0 58.8 50.7 52.7 59.0 42.7 32.7 72.9 45.6 41.4 47.6 57.1
SAR 69.5 69.7 69.0 71.2 71.7 58.1 50.5 52.9 57.9 42.7 32.7 62.9 45.5 41.6 47.8 56.2
EATA 64.0 62.1 62.5 66.9 66.9 52.5 47.4 48.2 54.2 40.2 32.2 54.6 42.2 39.2 44.7 51.9

DISTA 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 50.4

Table 2: Episodic Evaluation on ImageNet-3DCC Benchmark with ResNet-50. We compare our
proposed DISTA with the previous state-of-the-art EATA in terms of error rate (lower is better).

Bit Error Quant. Far Focus Flash Fog H256 ABR H256 CRF Noise Low Light Near Focus XY Blur Z Blur Avg.

EATA 91.5 58.9 47.8 71.0 62.2 72.4 67.3 56.1 46.8 38.6 64.9 52.7 60.9
DISTA 91.4 57.9 47.0 70.2 61.8 71.5 66.3 54.1 45.5 38.0 63.8 51.5 59.9

Test Time Adaptation (TTA) relaxes the assumption of altering the training process and solely
optimizes a given pretrained model at test time (Liang et al., 2020; Boudiaf et al., 2022; Su et al.,
2022). Earlier approaches showed a strong impact of adapting the statistics of the normalization
layers on reducing the error rate under distribution shifts (Li et al., 2016; Schneider et al., 2020;
Mirza et al., 2022). This was followed by the seminal work of Wang et al. (2021) which showed a
correlation between the entropy of predicted samples and the error rate. This observation initiated a
line of work that minimizes the entropy of the predictions at test time such as TENT (Wang et al.,
2021), MEMO (Zhang et al., 2021b), and the more powerful EATA (Niu et al., 2022) and SAR (Niu
et al., 2023). Later approaches employed data augmentations at test time to enhance invariance to
distribution shifts (Nguyen et al., 2023; Yuan et al., 2023). More closely to our work, some TTA
methods distilled the training data for adaptation through model optimization (Kang et al., 2023),
feature matching (Mirza et al., 2023), or input projection via diffusion models (Gao et al., 2022). In
this work, we approach TTA through the lens of auxiliary tasks. In essence, we show how one could
leverage unlabeled data samples from the training distribution to accelerate the adaptation.

Evaluation Protocols in TTA. The predominant evaluation protocol in TTA is the episodic evalu-
ation: adapting the pretrained model to one type of distribution shift at a time (e.g. fog) where the
environment reveal batches of data with mixed categories. More recently, a line of work tackled
more challenging setups such as continual evaluation (Wang et al., 2022), practical evaluation (Yuan
et al., 2023), a computationally budgeted evaluation (Alfarra et al., 2023), and federated evalua-
tion (Jiang & Lin, 2023). In this work, we experiment with our proposed DISTA under different
evaluation protocols showing its superiority to previous methods in the literature in different cases.

4 EXPERIMENTS

Setup. We follow prior art in focusing our experiments on the image classification task (Niu et al.,
2023; Su et al., 2022; Liang et al., 2020) where fθ is a model pretrained on ImageNet (Deng et al.,
2009). In our experiments, we consider different architectures including the standard ResNet-50 (He
et al., 2016), the smaller ResNet-18, ResNet-50-GN (replacing Batch Normalization Layers with
Group Normalization layers), and Vision Transformers (ViT) (Ranftl et al., 2021), following Niu
et al. (2023). Regarding the evaluation benchmarks, we consider two large scale standard bench-
marks in the TTA literature; ImageNet-C (Hendrycks & Dietterich, 2019) and the more realistic
ImageNet-3DCC (Kar et al., 2022). We fix the severity level in our experiments to 5 and evaluate
on all corruptions presented in both of the aforementioned datasets. Unless stated otherwise and
following prior work (Wang et al., 2021; Niu et al., 2022; Wang et al., 2022), we report results for
ResNet-50 He et al. (2016) as the architecture fθ and assume that the stream S reveals batches of
data with a size of 64. Nonetheless, Section 4.4.2 presents results under different architectures and
batch sizes. Please refer to the appendix for further experimental details.
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Table 3: Continual Evaluation on ImageNet-C with ResNet-50. We report the average error rate
per (lower is better) corruption when S contains a sequence of domain shifts (ordered from left to
right) followed by the clean validation set of ImageNet. DISTA improves over previous state-of-the-
art by 6% on average across all corruptions and on clean data.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg. Val.

CoTTA 77.2 66.9 63.1 75.1 71.5 69.4 67.1 71.9 71.2 67.1 62.0 73.1 69.1 66.1 68.0 69.3 61.4
SAR 68.6 61.7 61.8 72.6 69.8 65.1 57.6 63.7 64.1 52.8 41.2 67.6 52.8 49.4 52.5 60.1 34.1
EATA 64.0 58.8 59.2 69.2 68.1 62.8 56.4 58.5 60.6 48.4 39.2 58.9 49.0 45.4 48.7 56.5 32.7

DISTA 62.4 56.9 57.0 63.5 62.9 51.4 46.3 48.1 53.5 40.1 32.8 52.8 42.5 38.9 43.3 50.2 26.3

Table 4: Continual Evaluation on ImageNet-3DCC with ResNet-50. We compare DISTA to
the previous state-of-the-art EATA in terms of average error rate per corruption when S contains a
sequence of domain shifts (ordered from left to right) followed by the clean ImageNet validation set.
DISTA improves over EATA by ∼ 8% on average across all corruptions and by 9% on clean data.

Bit Error Quant. Far Focus Flash Fog H256 ABR H256 CRF Noise Low Light Near Focus XY Blur Z Blur Avg. Val.

EATA 91.5 71.5 57.2 74.6 66.6 79.0 75.0 66.9 55.9 48.5 70.6 59.3 68.1 35.8
DISTA 91.0 61.2 48.9 70.4 61.4 72.1 66.0 55.1 45.1 39.2 63.4 50.8 60.4 26.5

In our experiments, we consider a total of 8 TTA baselines from the literature. In particular, we ana-
lyze methods that adapt the statistics of BN layers, such as Adabn (Li et al., 2016) and BN (Schneider
et al., 2020); the clustering approach TTAC-NQ (Su et al., 2022); SHOT (Liang et al., 2020), which
maximizes the mutual information; the continual adaptation method CoTTA (Wang et al., 2022);
entropy minimization approaches, such as Tent (Wang et al., 2021); and the state-of-the-art methods
that employ data point selection procedures, like SAR (Niu et al., 2023) and EATA (Niu et al., 2022).
We follow the official implementation of all baselines with their recommended hyperparameters.

Regarding our proposed DISTA, for each received xt, we sample xs from Ds with an equivalent
batch size. We employ our alternating optimization approach described in equation 5. We fix Ds to
be a randomly selected subset of ImageNet training set1. We consider different approaches to solve
our proposed auxiliary objective function with more analysis in Section 4.4.1. For the evaluation
protocols, we consider the standard and simplest episodic evaluation in Section 4.1, the more chal-
lenging life-long continual evaluation in Section 4.2, and a novel federated evaluation in Section 4.3.
Finally, we present ablation studies and analysis in Section 4.4.

4.1 EPISODIC EVALUATION

We start with the simple episodic evaluation, following the common practice in the TTA litera-
ture (Liang et al., 2020; Wang et al., 2021; Niu et al., 2022). In this setting, the stream S contains
data from a single type of domain shift w.r.t to the training distribution (e.g. fog). We report the error
rates for all 15 corruptions in the ImageNet-C benchmark in Table 1 for different TTA methods.

We observe that (i) DISTA sets new state-of-the-art results in the episodic evaluation by outperform-
ing EATA. In particular, we found that our auxiliary distillation task reduces the error rate under all
corruptions by a significant 1.5% on average and by 2% on shot noise and motion blur. Table 2
shows that similar improvements are presented on the more realistic and challenging ImageNet-
3DCC benchmark. This result demonstrates the effectiveness of DISTA in accelerating the conver-
gence of entropy minimization on data received from the stream, as evidenced in Figure 1b. That
is, the faster the model is in adapting to earlier batches, the better the performance of the model on
later batches revealed by the stream.

4.2 CONTINUAL EVALUATION

Next, we consider the more realistic and challenging continual evaluation protocol. In this setting,
the stream S presents the learner with a sequence of domain shifts. We follow Kang et al. (2023) in
constructing the stream S by concatenating all corruptions in the ImageNet-C benchmark. We report
the results on different domain orders in the appendix due to space limitations. Further, and to assess
the performance of the model on the original source distribution upon adaptation, we follow Alfarra

1We experimented with Ds being a subset of the validation set and did not notice any changes in our results.
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Table 5: Federated Evaluation on ImageNet-C with ResNet-50. We split the data belonging to
each corruption into 50 clients (no overlap) and report the average error rate per corruption. We
consider the local training (-L) where there is no communication across clients and the federated
adaptation (-F) when clients with the same domain shift category communicate their models for
averaging. For example, clients with Noise corruption (Gaussian, Shot, and Impulse) average their
models every communication round. We observe that federated adaptation reduces the error rate
over local adaptation. Further, DISTA improves over other methods in both scenarios.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

Tent-L 83.6 82.9 82.9 84.7 84.6 73.3 60.7 65.4 66.6 51.8 34.9 82.7 55.8 50.5 59.6 68.0
Tent-F 72.6 69.7 69.6 75.3 74.8 65.8 57.0 57.8 61.1 47.1 36.5 73.4 50.4 46.8 51.4 60.6

EATA-L 82.3 81.4 81.8 83.8 83.6 72.2 59.8 64.0 65.7 50.5 34.3 81.1 54.7 49.5 57.9 66.8
EATA-F 68.8 66.0 66.0 72.5 72.5 64.6 59.0 54.5 59.1 45.6 38.2 64.0 49.7 45.8 49.7 58.4

DISTA-L 81.1 79.6 80.4 82.7 82.6 70.4 58.2 62.2 64.3 48.7 34.2 79.4 53.3 48.1 55.8 65.4
DISTA-F 62.8 58.8 58.9 66.8 66.0 54.6 48.2 50.5 54.9 40.6 33.8 56.6 44.8 40.2 44.6 52.1

et al. (2023) by appending the clean validation set of ImageNet as a last domain in the stream S.
For this evaluation setup, we consider three strong continual adaptation methods: CoTTA (Wang
et al., 2022), SAR (Niu et al., 2023), and EATA (Niu et al., 2022) that are designed for life-long
adaptation. Table 3 summarizes the results on ImageNet-C where the order of domains presented to
the learner follows the order in the table (from left to right). We accompany the reported error rate
on each corruption with the average error rate under all domain shifts. We further adapt the model
on the clean validation set (source distribution) at the end of the stream (last column).

We observe that (ii) DISTA sets a new state-of-the-art in continual evaluation by outperforming
EATA by a notable 6% on average across all corruptions. It is worth noting that the performance
gap is particularly wide for snow, motion and zoom blur, where DISTA reduces the error rate by
10% or more. (iii) Furthermore, while all considered methods suffer from a significant performance
drop on the source distribution, our distillation auxiliary task prevents forgetting the source domain
and reduces the error rate on clean validation data by more than 6%, recovering the performance of
the non-adapted model. This goes to show that, while our auxiliary task enhances the convergence
speed of adaptation, this improved convergence does not come at the cost of overfitting to each
adapted domain. In fact, our distillation loss helped in better life-long adaptability, and importantly,
not forgetting the original source domain. Notably, the performance of DISTA under continual
evaluation was not substantially different from that under episodic evaluation. This demonstrates
the stability that our auxiliary task provides in the adaptation process. We also complement our
experiments with continual evaluation on ImageNet-3DCC dataset and report the results in Table 4.
We observe similar results on this more challenging dataset where we outperform the previous state
of the art, EATA, by 8% on average across all corruptions and by 9% on the clean validation set.

4.3 FEDERATED EVALUATION

Motivation. In all of the previous evaluation schemes, we focused on adapting a single model having
access to the entire stream of data S. However, in many realistic scenarios there might be several
deployed models, and the data received by each one of them individually might not be enough for
adaptation. Federated learning (Konečnỳ et al., 2016; Zhang et al., 2021a) shines in this setting by
allowing different models to communicate their updates privately with a server that aggregates the
information and sends back a more powerful global model. The aggregation step is usually done
through federated averaging (Konečnỳ et al., 2016), where the global model is the average of the
weights of the local models. In this section we analyze a novel federated evaluation setup of TTA.

Setup. We consider a category-wise federated TTA setup where clients (i.e. models) adapting to
the same category of domain shifts (e.g. all weather corruptions in ImageNet-C) communicate their
updates for a better global adaptation. We divide the data belonging to a single domain into N non-
overlapping subsets where each client adapts to a stream of data coming from one of these subsets.
Further, we allow all clients to have M communication rounds with the server that aggregates the
updates and sends back the global model. We consider the full participation setup where all clients
participate in each adaptation and communication round. For instance, in the weather conditions
case, all clients adapting to snow, frost, fog, and brightness will communicate their models to be
aggregated via federated averaging. Note that setting N = 1 and M = 0 recovers the episodic
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Figure 2: Analysis on DISTA. (a) Shows the tradeoff between the performance improvement that
DISTA provides compared to EATA vs the additional computational requirement. (b) Shows the
robustness of the performance gain of DISTA under different batch sizes. (c) Shows consistent
performance gains of DISTA under different architectures when compared to EATA (Niu et al.,
2022) (ResNet-18, 50) and SAR (Niu et al., 2023) (ResNet 50-GN, ViT).

evaluation in Section 4.1. In our experiments, we set N = 50 and compare the performance of
local adaptation (i.e. setting M = 0) and the federated adaptation with M = 4 which results in a
communication round each 4 adaptation steps.

Results. We report the error rates on the 4 corruption categories in Table 5 for Tent, EATA, and
DISTA where (-L) represents local adaptation and (-F) represents federated adaptation. We observe
that (v) Conducting federated adaptation provides consistently lower error rates than adapting each
client solely on their own local stream of data. This result is consistent for all considered meth-
ods. Note that the performance gain is despite the fact that in each communication round, models
adapting to different domain shifts are being aggregated. (vi) Furthermore, DISTA is consistently
outperforming all other baselines under both the local and federated adaptation setups. Specifically,
DISTA improves over EATA by a notable 6% on average in the federated adaptation setup.

4.4 ANALYSIS

4.4.1 COMPUTATIONAL AND MEMORY BURDEN

In the previous experimental results, we demonstrated the effectiveness of our proposed DISTA
in different evaluation schemes and benchmarks. Now, we delve into fine-grained analysis of our
proposed auxiliary task. We first observe that the second update step in equation 5 has a similar cost
to the adaptation step on xt as we sample xs with the same size. This makes the overall cost of
DISTA 2× the cost of updating using ETA. Next, we discuss some tricks to accelerate DISTA.

Parallel updates. The main bottleneck in the update step in equation 5 is that θt+1 is a function
of θct . That is, the two optimization steps on xt and xs are done sequentially. Assuming access to
sufficient compute memory, and inspired by federated averaging, one could alternatively solve the
DISTA optimization problem in equation 4 with

θct = θt − γ∇θ [λt(xt)E (fθ(xt))] θst = θt − γ∇θ [λs(xs)CE (fθ(xs), fθ0(xs))] (6)

and set θt+1 = (θc
t+θs

t )/2. This will allow both update steps on xt and xs to be conducted in parallel,
minimizing the latency of DISTA. We found that this approach, with the very same hyperparameters,
yields similar results to the solver in equation 5. Further details are left for the appendix.

Memory restrictive setup. While the parallel approach in equation 6 reduces the latency of DISTA,
it incurs larger memory costs than EATA. Thus, we consider the memory conservative case with a
sequential update for DISTA. We analyze the sensitivity of DISTA to (1) varying the batch size
of xs and (2) the frequency of updates on xs under a fixed batch size of 64. Figure 2a reports
the average error rate on ImageNet-C under episodic evaluation. We analyze the performance of
DISTA under different additional computational burdens. Note that for 0% additional computation,
the performance of DISTA restores the current state-of-the-art EATA. Interestingly, we observe a
smooth trade-off between additional computation and performance gains. For example, with 50%
additional computation (i.e. optimizing the auxiliary task on every other batch) DISTA outperforms
EATA by 1.4% on average. That is, one could save 50% of the additional computation of DISTA
with a very marginal drop in performance gains. We leave the rest of the discussion to the appendix.
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Table 6: Orthogonality of Auxiliary Tasks with ResNet-50. We quantify the performance im-
provement of employing two different auxiliary tasks. We follow our formulation in equation 2 for
Aux-Tent, and similarly for Aux-SHOT. In both scenarios, auxiliary tasks assisted the adaptation.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

Tent 70.3 68.2 69.0 72.2 73.0 58.8 50.7 52.7 59.0 42.7 32.7 72.9 45.6 41.4 47.6 57.1
Aux-Tent 68.5 66.4 66.6 71.1 71.9 55.8 49.3 50.8 60.4 41.6 32.7 80.8 44.2 40.5 46.3 56.5

SHOT 73.1 69.8 72.0 76.9 75.9 58.5 52.7 53.3 62.2 43.8 34.6 82.6 46.0 42.3 48.9 59.5
Aux-SHOT 67.1 64.9 65.7 69.0 69.9 55.5 49.8 50.7 58.7 42.3 33.3 68.2 44.4 41.1 46.5 55.1

4.4.2 ABLATION STUDIES

Sensitivity to batch size. For completeness, we analyze the sensitivity of DISTA when the stream
S reveals batches of different sizes. In particular, we consider batch sizes in {64, 32, 16, 8}. We
conduct episodic evaluation on ImageNet-C and report the average error rate on all corruptions in
Figure 2b. We compare our DISTA with the non-adapted model (Source), Tent, and EATA. We
observe that DISTA provides consistent performance improvement under all considered batch sizes.
In fact, at batch size 8, DISTA improves upon EATA by more than 15%. It is worth noting that
the data selection process of EATA hinders its effectiveness for small batch sizes, allowing Tent to
outperform it, but our proposed auxiliary task seems to mitigate the same effect for DISTA.

Experiments with different architectures. Finally, we follow the recent work of Niu et al. (2023)
and explore the effectiveness of integrating DISTA into different architectures. In particular, we
consider the smaller and more efficient ResNet18, ResNet50-GN, and ViT (Ranftl et al., 2021). For
all architectures, we follow Niu et al. (2023) in adapting only the normalization layers and compare
the performance against EATA on ResNet18 and ResNet50, and against SAR on ResNet50-GN
and ViT (best performing method). We report the results in Figure 2c where we follow our episodic
evaluation on ImageNet-C. We find that DISTA consistently outperforms other baselines irrespective
of the choice of the architecture. That is, our proposed distillation auxiliary loss is reducing the error
rate on the four considered architectures. In fact, we found that DISTA improves over SAR under the
ViT architecture by an impressive 7%, setting new state-of-the-art results. Due to limited space, we
leave experiments with ViT architecture under batch size 1 along with ablating the effect of varying
the size of Ds on DISTA’s performance to the appendix. Further, we analyze the effectiveness of a
variant of DISTA that leverages labeled examples from the source distribution in the appendix.

4.4.3 ORTHOGONALITY OF AUXILIARY TASKS

In Section 2.1, we analyzed a simple auxiliary task integrated with Tent (Wang et al., 2021) and
showed its positive impact with the lookahead analysis. In this section, we analyze experimentally
the benefits of auxiliary tasks on different TTA methods. In a similar spirit to our analysis in Sec-
tion 2.1, we add an auxiliary task, as in equation 2, to two TTA methods; namely SHOT (Liang
et al., 2020) and Tent (Wang et al., 2021). That is, for each TTA method, we conduct two adaptation
steps: one on xt and one on xs. For Tent, we precisely conduct the alternating optimization scheme
in equation 3 while for SHOT, we replace the entropy with a mutual information term on both xt

and xs. Table 6 reports results for episodic evaluation on ImageNet-C.

We observe that our auxiliary task approach is orthogonal to the adaptation strategy. Both Aux-Tent
and Aux-SHOT outperform their original baselines by a significant margin. For example, optimizing
the auxiliary task yields a 3% error rate reduction on motion blur for both baselines. It is worth
mentioning that we record a more notable performance improvement when employing the auxiliary
task on SHOT (4% performance improvement on average) compared with Tent (0.6% improvement
on average). We leave a more detailed analysis with more experiments to the appendix.

5 CONCLUSIONS

In this work, we analyzed the effectiveness of auxiliary tasks in accelerating the adaptation to dis-
tribution shifts through lookahead analysis. In particular, we showcased two scenarios for when test
time adaptation suffer from limited available data for adaptation (slow stream and limited data per
client). In both scenarios, our proposed DISTA provided significant performance gains. Further, we
showed how DISTA is robust to the choice of architecture, batch size, and the evaluation protocol.
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Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016. 7

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016. 5, 6

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning, pp. 6028–6039. PMLR, 2020. 5, 6, 9

Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. arXiv preprint
arXiv:1805.06334, 2018. 3

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? Advances in Neural
Information Processing Systems, 34:21808–21820, 2021. 1, 4

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks on
representation dynamics. In International Conference on Artificial Intelligence and Statistics, pp.
1–9. PMLR, 2021. 3

M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
dynamic unsupervised domain adaptation by normalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14765–14775, 2022. 5
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A TEST TIME ADAPTATION WITH AUXILIARY TASKS

A.1 DISTA: DISTILLATION BASED TEST TIME ADAPTATION

In Section 2.2, we showed how our proposed auxiliary task in DISTA had a positive lookahead for
three corruptions from the ImageNet-C benchmark. Here, for the sake of completeness, we provide
the lookahead plots for the remaining corruptions in ImageNet-C in Figure 3. We observe, similarly
to our earlier findings in Section 2.2, that our auxiliary task has a consistent positive lookahead across
all corruptions. That is, our distillation loss on clean data helps to better adapt to domain shifts. Note
that this is already demonstrated through our extensive experimental evaluation in Sections 4.1-4.3
where DISTA consistently outperformed previous state-of-the-art TTA methods.
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Figure 3: Lookahead Analysis. We plot the lookahead of DISTA for the 12 different corruptions
from the ImageNet-C benchmark. We find that our proposed auxiliary task always yields a positive
lookahead across all considered corruptions. These results corroborate our hypothesis that optimiz-
ing our distillation task on clean data helps adapting to distribution shifts.

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTAL SETUP AND HYPER-PARAMETER CHOICES

In Section 4, we outlined our experimental setup in terms of architectures and evaluation protocols.
In this section, we delve more deeply into implementation and experimental details that, due to space
constraints, were not able to elaborate on in the main paper. For all baselines, we used the official
code released by the authors to reproduce their results with their recommended hyperparameters.
Note that all analyzed TTA methods (except SHOT) operate solely on the normalization layers of
a given network. That is, θ always refers to the learnable parameters of the normalization layers
(e.g. BatchNorm layers). Further, and following Wang et al. (2021) and Niu et al. (2022), we use
an SGD optimizer with learning rate of 25 × 10−4 and momentum of 0.9. For DISTA, we follow
Niu et al. (2022) in setting ϵ = 5 × 10−2 in equation 4 but pick a higher value for E0; we set
E0 = 0.5 log(1000) instead of 0.4 log(1000), since we observed better lookahead with modest
increases in E0. Yet, as we as show in a later section, we still observe better results with DISTA than
with EATA even when keeping E0 = 0.4 log(1000). Regarding Aux-Tent, we set the learning rate
to 5× 10−4. For Aux-SHOT, the learning rate is set to the default value recommended by SHOT.

Table 7: Continual Evaluation on ImageNet-C Under Different Domain Orders with ResNet-
50. We report the average error rate on corrupted (across all 15 corruptions) and clean domains
with different random orders of domains. The first two columns are the summary of the evaluation
in Section 4.2. We observe a more stable adaptation with DISTA in comparison to EATA under
different domain orders where the performance gap surpasses 10%. Lower is better.

Seed Ordered 42 4242 424242 Avg.
Corr. Clean Corr. Clean Corr. Clean Corr. Clean Corr. Clean

EATA 56.5 32.7 63.6 38.5 64.7 39.4 65.8 40.4 62.7 37.8
DISTA 50.2 26.3 52.3 27.6 52.2 27.7 52.6 28.2 51.8 27.4
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Table 8: Episodic Evaluation on ImageNet-C Benchmark with ResNet-50. We report the results
of employing parallel update (DISTA-P) compared with sequential update (DISTA) to improve effi-
ciency. We observe that both solvers yield comparable results that are consistently better than EATA.
Hence, under sifficient memory availability, one can improve latency with the parallel update.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

EATA 64.0 62.1 62.5 66.9 66.9 52.5 47.4 48.2 54.2 40.2 32.2 54.6 42.2 39.2 44.7 51.9
DISTA 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 50.4
DISTA-P 62.4 60.1 61.0 65.0 65.0 50.6 46.4 46.8 53.2 39.0 31.9 53.4 41.1 38.3 43.7 50.5

B.2 CONTINUAL EVALUATION

In Section 4.2, we evaluated DISTA under the continual learning setup where the stream S contains
multiple distribution shifts presented one at a time. We followed the evaluation setup from Niu et al.
(2022) regarding the order of types of domain shift in the stream S. Here, and for completeness, we
evaluate DISTA and compare it to EATA when the order of different domains is shuffled. We report
the results across 3 random seeds that control the randomness of domains in S in Table 7.

We observe that while randomly shuffling the domains of ImageNet-C in the stream S has a large
impact on the performance of EATA, DISTA is much more robust against such variation. That is, we
report a performance drop of 7-9% for EATA when the corruptions are randomly ordered, and thus
more severe shifts between presented domains are expected compared to a nicely ordered sequence.
However, the same effect is virtually absent when using DISTA, for which the added randomness in
domain order had little effect on the performance either on corrupted or clean domains. This brings
another demonstration of the stability of DISTA under different evaluation schemes.

B.3 ANALYSIS

B.3.1 COMPUTATIONAL BURDEN

In Section 4.4.1, we discussed an alternative approach of solving the DISTA optimization problem
for the sake of improving efficiency. In particular, we considered a parallel update in equation 3. We
compare the performance of the alternating solver (DISTA) and parallel solver (DISTA-P) against
EATA in Table 8 (Episodic evaluation on ImageNet-C). We observe the performance of DISTA-P is
on par with that of DISTA, with both variants outperforming EATA by a significant margin. That is,
our proposed auxiliary task is boosting the performance irrespective of the deployed solver. Hence,
one can improve the efficiency (latency) by employing the parallel solver for our proposed objective
in equation 4 when sufficient memory is available.

B.3.2 ABLATION STUDIES

In Section 4.4.2, we analyzed the sensitivity of DISTA under different batch sizes when compared
against Tent and EATA. We showed how DISTA is much more stable than both approaches when
tested with very small batch sizes. Here, we step up the game and analyze DISTA under the smallest
batch size of 1 where most TTA methods fail.

SAR (Niu et al., 2023) provided state-of-the-art results under this realistic evaluation (batch size
of 1) by employing a stable update and leveraging a ViT architecture, where Layer Normalization
layers are independent of the batch size. In that regard, we fix the architecture in this section to ViT

Table 9: Episodic Evaluation on ImageNet-C Under Batch Size of 1 with ViT. We compare
DISTA and SAR under batch size of 1 when emplying the ViT architecture. We observe that DISTA
significantly outperforms SAR under this setting.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

SAR 54.2 56.4 53.4 46.4 49.2 42.5 46.9 41.3 46.7 31.1 23.8 34.3 41.8 31.1 33.7 42.19
DISTA 47.5 48.7 46.6 44.8 44.7 40.2 42.0 32.9 34.2 27.4 22.0 32.4 35.8 29.7 32.6 37.43

14



Under review as a conference paper at ICLR 2024

Table 10: Episodic Evalutation on ImageNet-C of SHOT with different auxiliary components
with ResNet-50. We experiment with auxiliary components when combined with SHOT. (Aux.)
represents applying SHOT on both clean and corrupted data. (Fil) adds filtering unreliable examples.
(DIS) replaces SHOT as an auxiliary task with our distillation task.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

SHOT 73.1 69.8 72.0 76.9 75.9 58.5 52.7 53.3 62.2 43.8 34.6 82.6 46.0 42.3 48.9 59.5

+ Aux 67.1 64.9 65.7 69.0 69.9 55.5 49.8 50.7 58.7 42.3 33.3 68.2 44.4 41.1 46.5 55.1
+ Fil. 66.2 64.1 64.3 68.5 68.7 54.9 49.0 50.0 56.7 41.7 32.7 64.2 44.0 40.6 45.9 54.1

+ DIS 64.9 62.6 62.7 67.1 66.9 52.9 47.9 48.6 55.4 40.5 32.4 61.8 42.9 39.3 44.7 52.7

where we update the learnable parameters of the normalization layers. We compare the performance
of SAR and DISTA under this setting and with batch size of 1 in Table 9. We observe that DISTA
significantly outperforms SAR under this setup. In particular, DISTA provides an average of ∼
5% reduction on the error rate under episodic evaluation on ImageNet-C. This performance gain is
consistent across all corruptions in the ImageNet-C benchmark.

B.3.3 ORTHOGONALITY OF AUXILIARY TASKS

In Section 4.4.3, we showed how our auxiliary task approach is orthogonal to the underlying TTA
method. In particular, we showed in Table 6 how applying an auxiliary task on clean data helps with
either a Tent-like or a SHOT-like approach. Here we delve more onto this orthogonality. For the sake
of this study, we pick SHOT as a TTA method. We report in Table 10 the effect of different auxiliary
components on the overall performance of SHOT. Note that we fix the architecture to ResNet-50
and conduct episodic evaluation on the ImageNet-C benchmark.

First, we observe that employing an auxiliary task given by the SHOT objective computed on clean
data improves the results significantly (> 4%). Further, we combine the aforementioned approach
with the filtering approach of not updating the model on unreliable examples where we observe
another performance boost of 1%. At last, we replace SHOT as an auxiliary task with our proposed
distillation scheme in Section 2.2, while maintaining the SHOT objective on corrupted data. In
this case, we observe another significant performance boost, corroborating the superiority of our
proposed auxiliary task and the orthogonality of our components to the adaptation method.

B.3.4 COMPONENTS OF DISTA

At last, we ablate the effect of each component of DISTA on the performance gain. Note that DISTA
is reduced to EATA if we remove the proposed auxiliary task. To that end, we report in Table 11 the
error rate of EATA, and its enhanced version through our proposed auxiliary task. Fist, we analyze
the effect of introducing our distillation scheme via Cross Entropy (CE) on clean data without filter-
ing. We observe a 0.5% reduction in the average error rate, with the performance gain reaching 0.8%
on the motion blur corruption. Further, we analyze combining the aforementioned approach with
filtering unreliable samples (by employing λs(xs)), observing another 0.4% performance boost. Fi-
nally, we include sample reweighing and increase the filtering margin E0 to 0.5 log(1000) resulting
in another boost in accuracy (reduction in error rate). We note that we set the best hyperparameters
for EATA, as recommended by the authors, with E0 = 0.4 log(1000).

Table 11: Ablating DISTA with Episodic Evaluation on ImageNet-C with ResNet-50. We ab-
late each component of DISTA where (CE) represents the distillation via Cross Entropy, (Fil) rep-
resents the filtering, and DISTA is the an improved version with better hyperparameter (setting
E0 = 0.5 log(1000). Note that each proposed component provides a consistent performance boost.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

EATA 64.0 62.1 62.5 66.9 66.9 52.5 47.4 48.2 54.2 40.2 32.2 54.6 42.2 39.2 44.7 51.9

+ CE 63.2 61.2 61.6 66.3 66.3 51.7 46.9 47.9 53.9 39.7 31.9 54.3 41.9 39.1 44.4 51.4
+ Fil. 62.9 60.7 61.4 65.8 65.9 51.2 46.5 47.6 53.7 39.3 31.7 54.3 41.6 38.5 44.1 51.0

DISTA 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 50.4
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Table 12: Effect of the Size of Ds. We report the error rate of DISTA under episodic evaluation
on ImageNet-C when Ds is a sub-sampled set of the validation set of ImageNet. We observe that
DISTA is robust under varying the size of Ds. ‘Ratio’ represents the sub-sampled coefficient (i.e.
ratio of 0.25 means that DISTA only leverages 25% of the validation set as Ds).

Ratio (%) Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

EATA(0.0%) 64.0 62.1 62.5 66.9 66.9 52.5 47.4 48.2 54.2 40.2 32.2 54.6 42.2 39.2 44.7 51.9

DISTA(1.0%) 63.1 61.1 61.1 66.7 65.8 50.9 46.7 47.3 53.7 39.1 31.9 54.1 41.5 38.6 44.1 51.1
DISTA(2.5%) 62.6 60.8 60.9 65.7 65.8 50.9 46.6 47.2 53.4 39.1 31.7 54.0 41.5 38.7 43.8 50.8
DISTA(5.0%) 62.4 60.4 60.9 65.5 66.0 50.5 46.3 46.9 53.2 38.9 31.8 53.6 41.0 38.3 43.8 50.6
DISTA(7.5%) 62.6 60.3 60.8 65.4 65.3 50.4 46.4 46.8 53.3 38.9 31.7 53.8 41.2 38.2 43.7 50.6
DISTA(10%) 62.4 60.3 60.2 65.5 65.5 50.6 46.3 46.7 53.1 38.8 31.7 53.5 41.1 38.2 43.8 50.5
DISTA(25%) 62.2 60.4 60.6 65.8 65.5 50.5 46.3 46.7 53.1 38.6 31.7 53.3 40.9 38.2 43.6 50.5
DISTA(50%) 62.3 60.4 60.4 65.1 65.7 50.6 46.2 46.7 53.3 38.7 31.7 53.2 40.9 38.3 43.4 50.5
DISTA(75%) 62.3 59.9 60.5 64.8 65.2 50.4 46.0 46.8 53.1 38.7 31.7 53.7 40.9 38.1 43.5 50.4

DISTA(100%) 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 50.4

B.4 ABLATING THE SIZE OF Ds

We complement our results with an ablation study on the effect of the size of source dataset Ds on
the performance of DISTA. To that end, let Ds be a random subset of the validation set (unlabeled
images). We conduct episodic evaluation on ImageNet-C using ResNet-50 dataset for this ablation
and report the results in Table 12, where we observe DISTA is robust against variations in the size
of Ds. In particular, we observe that even with 10% of the validation set (i.e. storing 5000 unlabeled
images), DISTA improves over EATA by 1.4% on average across all corruptions. Furthermore, with
only 1% of the validation dataset (500 unlabeled images), DISTA still improves on EATA by 1%on
shot and impulse noise.

B.5 LIMITATIONS OF DISTA

In our experiments, we showed how DISTA is effective in multiple evaluation protocols, two
datasets, and four different architectures. We note here that the performance improvement of DISTA
comes at the cost of a memory burden (storing data samples from Ds). However, our experiments
in Table 12 shows that even with storing a very small set of unlabeled examples, DISTA is still
effective in improving the performance.

B.6 LEVERAGING LABELED SOURCE DATA

At last, we study a variation of DISTA for when labeled data from the source distribution is available.
In this setting, one could replace the distillation loss in Equation equation 4 with a supervised loss
function. To that end, we analyze one variant of DISTA where we replace the distillation loss with
cross entropy loss between the prediction of fθt and the ground-truth labels. The modified objective
function can be expressed as:

min
θ

E
xt∼S

λt(xt)E (fθ(xt)) + E
(xs,ys)∼Ds

λs(xs)CE (fθ(xs), ys)

We experiment with this labeled variant of DISTA and report the results on ImageNet-C in Table 13
under episodic evaluation using ResNet-50 architecture. We observe that leveraging hard (ground-
truth) labels does not improve the result over our unsupervised distillation loss. Nevertheless, this
supervised variant enhances the performance over the previous state-of-the-art method, EATA.

Table 13: Episodic Evaluation on ImageNet-C Benchmark. We compare the performance of
EATA, DISTA, and leveraging labeled data for DISTA instead of the distillation task. We replace
the distillation task with a cross entropy loss between the predictions and the ground-truth labels.
We observe that our unsupervised distillation scheme outperforms both EATA and leveraging labeled
data. Nevertheless, DISTA+Labeled still outperforms EATA by 0.8% on average.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

EATA 64.0 62.1 62.5 66.9 66.9 52.5 47.4 48.2 54.2 40.2 32.2 54.6 42.2 39.2 44.7 51.9
DISTA + Labels 62.7 60.9 60.9 66.0 66.1 50.7 46.9 47.4 53.6 39.2 31.9 54.9 41.5 38.6 44.2 51.0

DISTA 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 50.4
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