
  

  

Abstract— In recent years, various human identification 

technologies, such as facial recognition, have been increasingly 

adopted for security purposes. However, these conventional 

biometric systems face significant challenges in scenarios where 

individuals are required to wear protective clothing, which can 

obscure facial features and fingerprints. This paper introduces 

an innovative approach designed to overcome such obstacles by 

focusing on the individuality of handwritten characters, 

offering a viable alternative when traditional biometric 

identifiers are unusable. 
Our study proposes and evaluates a method that uses machine 

learning to analyze and learn the unique features of 

handwritten characters. This approach is independent of 

typical biometric traits such as facial features and fingerprints, 

thus providing a novel solution for identity verification in 

specialized environments like laboratories or hazardous 

material handling areas where protective gear is mandatory. 

We developed a model using a random forest algorithm trained 

on binary images of distinct handwritten characters written by 

participants. The selection of handwritten characters as the 

basis for our study stems from their inherent uniqueness to 

each individual, similar to other biometric markers. The 

training process involved extracting and learning the subtle 

differences in handwriting styles, strokes, and patterns that are 

difficult to replicate or disguise. 

The effectiveness of this methodology was validated through 

rigorous testing. The random forest model was applied to a new 

set of data to determine its accuracy in identifying the correct 

writer of the handwritten samples. Impressively, the model 

achieved a correct identification rate of 97.8%, underscoring 

the potential of handwriting-based identification as a robust 

and reliable security measure. 

I. INTRODUCTION 

In recent years, various human identification technologies 
have been deployed as security measures. Common examples 
include fingerprint, facial, and iris recognition, which are 
utilized in smartphones and homes. However, the spread of 
the novel coronavirus has prompted the recommendation of 
masks and protective gear in various workplaces for safety 
reasons. In such contexts, face and fingerprint recognition 
can be challenging. Traditional face orientation estimation 
techniques rely on detecting distinct facial features such as 
the nose, eyes, and mouth, and estimating face orientation 
based on the movement of these features [1][2][3][4][5]. 
However, these methods struggle when the face is turned 
sideways or covered by a mask, as key features become 
obscured, rendering the estimation of face direction 
impossible. 

 

 

 

For this reason, studies have explored effective 
identification methods that remain functional even when 
protective clothing is worn. One approach involves attaching 
AR markers to the surface of protective gear [1]. This paper 
introduces a novel technology for identifying individuals in 
protective clothing using AR markers, which does not rely on 
visible facial or fingerprint features. This technology 
represents a shift towards non-appearance-based 
identification methods. 

Writer identification has also been extensively researched 
and can be categorized into two main types. The first 
category includes methods that identify individuals based on 
images of handwritten characters using neural networks 
[2][3][4][5][6][7], focusing on features such as the line 
patterns of characters. These methods are generally sensitive 
to image distortions and rotations. The second category 
involves dynamic characteristics like writing pressure and 
speed, as demonstrated in the prototype of a high-sensitivity 
pressure pen designed for fast writers and subsequent 
authentication experiments [8][9][10][11][12]. Recognition 
accuracy in these methods generally exceeds 90%. However, 
their reliance on specialized pens limits their versatility. 

Consequently, this paper explores identifying writers using 
only images of handwritten characters. We employ machine 
learning to analyze the distinct characteristics of handwritten 
characters, using this data to recognize individuals. We 
collected 1,100 images of single characters from five 
different character types, created by four writers. These 
images were binarized to expedite processing and then 
trained using machine learning techniques. Random forests 
were chosen for training due to their high predictive accuracy, 
rapid training and identification capabilities for large datasets, 
and transparent results. 

Figure 1 displays images of the alphabet letter "M" written 
by four individuals. As the shape of the letter varies from 
person to person, we leverage this uniqueness to determine 
the writership. In this paper, we describe a novel 
preprocessing and annotation process applied to each 
character before training for writer classification. The results 
indicate that our proposed method can accurately identify the 
writer with a 97.8% success rate. 

 

 

Figure 1. "M" by four writers. 
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II. OVERVIEW OF THE PROPOSED SYSTEM 

A. Overall flow of the proposed writer identification 

method 

The overall flow of the proposed writer identification 

method is illustrated in Fig. 2. Initially, after the images are 

binarized, a square-cropped image is prepared with the 

handwritten characters centered. This binary image serves as 

the basis for identifying the writer using machine learning. 

The binarization process is designed to accentuate the shape 

features of the characters, which are crucial for identification. 

In this study, we utilize a random forest, an ensemble 
learning method that employs multiple decision trees. 

Random forests are effective for both classification and 

regression tasks. 

 

 
Figure 2.  Overall flow of the proposed writer identification 

method 

III. MACHINE LEARNING FOR WRITER IDENTIFICATION OF 

HANDWRITTEN TEXT IMAGES 

A. Data Set Preparation 

In this study, image data were scanned and collected using 
a Kyocera Taskalfa 5052ci color multifunction printer. We 

focused on handwritten images of five alphabetic characters: 

"G," "M," "Q," "W," and "Z." A total of 22,000 images were 

gathered, with four writers contributing 1,100 instances of 

each character type. Of these, 800 images were used for 

training, 200 for validation, and 100 for testing. To ensure 

consistency across samples, the same ballpoint pen was used 

for all writings. Additionally, to minimize variations in letter 

size and prevent excessive slanting, writers wrote within 100 

pre-drawn squares on a sheet of A4 paper. 

The process for creating binarized images is detailed as 

follows: Initially, scanned images are acquired from the 
multifunction device and then binarized to optimize learning 

and inference times. Figure 3 presents examples of images 

before and after the binarization process. 

 

 

Figure 3.  Example images before and after binarization 

 

The contour detection process identifies 100 characters and 

calculates the bounding rectangle for each detected character. 

Upon calculation, four values are returned: the x-coordinate 

(x), y-coordinate (y), width (w), and height (h) of the upper 

left corner of the rectangle. These dimensions are illustrated 

in Fig. 4. From these four values, the center coordinates 

( 𝑐𝑥, 𝑐𝑦 ) of the character are determined. The center 

coordinates are computed using the following equation (1): 

{
𝒄𝒙 = 𝒙 +

𝒘

𝟐

𝒄𝒚 = 𝒚 +
𝒉

𝟐

(𝟏) 

 

Then, as demonstrated in Fig. 5, the dataset is cropped into a 

square using the center coordinates previously calculated. 

The dataset was prepared following this method, ensuring 
that each character is centered within its respective image 

frame. 

 

 

Figure 4.  Calculation of center coordinates by bounding 

rectangle 

 



  

 

 

Figure 5.  Example of image cropping 

 

Figure 6.  Conceptual Diagram of Random Forest 

B. Random Forest  

In this section, we describe random forests. In this study, 

we utilized a random forest, and a conceptual diagram of this 

method is shown in Fig. 6. 

Random forest is a machine learning algorithm classified 

under ensemble learning as bagging. It performs class 

classification by taking a majority vote from the results of 

multiple decision trees constructed from randomly selected 

training data and explanatory variables. The user must 

manually set the number of trees and their depth; these 

settings are detailed in section 3.3 under Grid Search. 
It is well known that decision trees, when used alone, may 

not be highly accurate and are susceptible to overfitting. 

Ensemble learning addresses these disadvantages by using 

multiple weak learners to achieve highly accurate 

predictions [14]. Random forest operates by performing 

classification based on the results of multiple decision trees, 

each created from different subsets of the original dataset, 

allowing for feature overlap. This process ensures that each 

decision tree is slightly unique. Random forests have 

demonstrated high performance in both classification and 

regression tasks, making them a popular choice in the field 
of image recognition. 

There are three main reasons for using random forests in 

this study: 

High Prediction Accuracy: The primary goal of this 

research is to identify individuals wearing protective 

clothing to enhance security measures. Thus, high prediction 

accuracy is crucial. 

Rapid Learning and Identification with Large Datasets: 

Our experiments involved four writers and five character 

types. In practical applications, the number of writers and 

character types, as well as the volume of data, are expected 

to increase significantly. Random forests enable fast learning 
and identification, which facilitates smooth recognition even 

under these conditions. 

Transparency of Results: Random forests allow for the 

calculation of feature importance and the visualization of 

tree structures, making it clear how classifications are 

determined. This transparency is beneficial for improving 

the system’s accuracy and reliability. 

For these reasons, random forests were selected for use in 

this study. 

 

C. Grid search 

Hyperparameters are parameters that control the behavior 

of an algorithm. In the case of random forests, critical 

hyperparameters include the number of trees and the depth 

of these trees. Tuning these parameters is crucial for 

developing a highly accurate model. Grid search is a 

commonly used method for identifying the optimal 
parameters. This approach involves specifying the values for 

each parameter (for instance, the number of trees to 

generate) in an array and systematically evaluating all 

possible combinations in a round-robin fashion. While this 

method can enhance model accuracy, it is time-consuming 

due to its exhaustive nature. 

 

IV. VERIFICATION EXPERIMENT  

A. Experimental Results 

In this chapter, we present the results of validating the 

personal identification model developed using the previously 

described learning methods. Figure 7 displays the confusion 

matrix generated from the test data. In this matrix, the 

vertical columns represent the correct labels, while the 

horizontal columns indicate the predicted labels. Each cell in 

the matrix denotes the number of samples correctly 

predicted for each label. The confusion matrix reveals that 
four misclassifications significantly impact overall accuracy: 

data from writer A is often mis-predicted as writer C; data 

from writer B is frequently mis-predicted as writers A and 

C; and data from writer C is commonly mis-predicted as 

writer A. Conversely, predictions for writer D are relatively 

accurate. 



  

 

 
Predicted class 

A B C D 

T
ru

e 
cl

as
s 

A 489 4 7 0 

B 8 480 10 2 

C 8 4 488 0 

D 0 2 0 498 

Figure 7.  Confusion matrix (4-class classification by writer) 

 

We explain the elements of the confusion matrix used for 

two-class classification, with each element represented as a 

true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN). Figure 8 illustrates this matrix 

configuration. 

TP: This is the count of correctly predicted instances where 

the actual writer is identified accurately. 

TN: This represents the number of correct predictions where 

a different writer is correctly identified as not being the 
actual writer. 

FN: This occurs when the actual writer is incorrectly 

predicted as not being the writer. 

FP: This is the count of incorrect predictions where a 

different writer is mistakenly identified as the actual writer. 

From these values, we derive the metrics of Accuracy, 

Precision, and Recall. 

Figures 9-12 depict a two-class confusion matrix derived 

from Fig. 8, where one class is designated as Positive and 

the other as Negative. These figures are consolidated and 

presented again in Fig. 13 for comprehensive visualization. 
 

 

 
Predicted class 

Positive Negative 

T
ru

e 

cl
as

s Positive TP FN 

Negative FP TN 

Figure 8.  Confusion matrix (each element) 

 

 
Predicted class 

A Others 

T
ru

e 

cl
as

s A 489 11 

Others 16 1484 

Figure 9.  Confusion matrix (Positive=A) 

 

 
Predicted class 

B Others 

T
ru

e 

cl
as

s B 480 20 

Others 10 1490 

Figure 10.  Confusion matrix (Positive=B) 

 

 
Predicted class 

C Others 

T
ru

e 

cl
as

s C 488 12 

Others 17 1483 

Figure 11.  Confusion matrix (Positive=C) 

 

 
Predicted class 

D Others 

T
ru

e 

cl
as

s D 498 2 

Others 2 1498 

Figure 12.  Confusion matrix (Positive=D) 

 

 
Elements 

TP TN FP FN 

T
ru

e 
cl

as
s 

A 489 1484 16 11 

B 480 1490 10 20 

C 488 1483 17 12 

D 498 1498 2 2 

Figure 13.  Summary of each element in Fig. 9-12 

 
Based on the above, we first discuss the percentage of 

correct answers. The correct response rate is the percentage 

of correct responses to all predictions, and is calculated by 

the following equation (2). 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵
 (𝟐) 

 
The overall percentage of correct answers is calculated 

differently from the above formula for the four classes. It is 

calculated by dividing the number of correct answers by the 

total number of predictions. 

Next, the goodness-of-fit rate is the percentage of data that 

is actually positive among those predicted to be positive, and 

is calculated by the following equation (3). 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 (𝟑) 

 

Finally, the reproducibility is the percentage of those that 

are predicted to be positive among those that are actually 

positive, and is calculated by the following equation (4). 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (𝟒) 

 

After all the classes are set as Positive and the evaluation 

values are all available, the overall fit rate and the 

reproducibility rate are also calculated by taking the macro 

average. When the overall fit rate is PreA, the fit rate of 

class A is PreA, and similarly PreB, PreC, and PreD, the 

following equation (5) is used to obtain the overall fit rate. 

𝑷𝒓𝒆𝒂𝒍𝒍 =
𝑷𝒓𝒆𝑨 + 𝑷𝒓𝒆𝑩 + 𝑷𝒓𝒆𝑪 + 𝑷𝒓𝒆𝑫

𝟒
(𝟓) 



  

The macro average is the average of the values calculated 

for each class. The reproducibility is calculated in the same 

way. Table 1 summarizes the results of the correctness rate, 

conformance rate, and reproducibility rate. 

 
Table 1  shows a summary of these three data. 

Writer A B C D 
Over

all 

Accuracy[%] 98.8 98.7 98.6 99.9 97.8 

Precision[%] 96.8 98.0 96.6 99.6 97.8 

Recall[%] 97.8 96.0 97.6 99.6 97.8 

 

A sample of the results of the predictions made by 

randomly selecting data for the test data is shown in Fig. 14. 

 

Figure 14.  Result Samples  

 

In Figure 14, the labels 'A', 'B', 'C', and 'D' at the bottom of 

each image represent the correct author on the left and the 

predicted author on the right. The color coding indicates the 

accuracy of the prediction: blue signifies that the correct 
label and the predicted label match, whereas red denotes a 

discrepancy between them. 

Data instances where the correct and predicted labels 

differed were specifically analyzed to examine the 

breakdown by character type. The results of this analysis are 

presented in Table 2. The characters "G", "M", "Q", "W", 

and "Z" were the ones selected for the authors to write in this 

study. 

 

Table 2  Misclassified Character Type Breakdown 

 G M Q W Z Total 

A 3 1 5 1 1 11 

B 14 1 0 0 5 20 

C 4 0 2 1 5 12 

D 0 0 0 2 0 2 

Total 21 2 7 4 11 45 

 

The confusion matrix of character types is shown in Fig. 

15-19. 

 

 

 
Predicted class 

A B C D 

T
ru

e 
cl

as
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A 97 2 1 0 

B 0 86 5 1 

C 3 1 96 0 

D 0 0 0 100 

Figure 15.  Confusion matrix (Character type "G") 

 

 

 
Predicted class 

A B C D 

T
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A 99 1 0 0 

B 0 99 0 1 

C 0 0 100 0 

D 0 0 0 100 

Figure 16.  Confusion matrix (Character type "M") 

 

 

 
Predicted class 

A B C D 

T
ru

e 
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A 95 0 5 0 

B 0 100 0 0 

C 2 0 98 0 

D 0 0 0 100 

Figure 17.  Confusion matrix (Character type "Q") 

 

 

 
Predicted class 

A B C D 

T
ru
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A 99 1 0 0 

B 0 100 0 0 

C 0 1 99 0 

D 0 2 0 98 

Figure 18.  Confusion matrix (Character type "W") 

 
 

 

 



  

 

 
Predicted class 

A B C D 

T
ru

e 
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as
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A 99 1 0 0 

B 0 95 5 0 

C 3 2 95 0 

D 0 0 0 100 

Figure 19.  Confusion matrix (Character type "Z") 

 

B. Discussion 

In this study, using the Random Forest classifier—a 
machine learning method—we successfully identified the 

writer from binary images of handwritten single letters with 

a high probability, achieving a correct prediction rate of 

97.8%. The sample of estimation results for the test data 

shown in Fig. 15 confirms the accuracy of these predictions. 

These findings underscore the effectiveness of the proposed 

method. 

However, as indicated in Fig. 7, while writer D was almost 

always correctly identified, several misclassifications 

occurred for other writers. We aim to investigate the causes 

of these inaccuracies and explore potential solutions. 

As detailed in Table 2, the accuracy of predictions varies 

significantly by letter type. Characters such as G, Z, Q, W, 

and M are the most prone to misclassification, in that order. 

Our analysis of incorrectly predicted images suggests that 

more complex characters, which typically involve more 

strokes, are more likely to be misidentified. These 

misshaped characters diverge from the typical forms 

expected of the writer, even though they were written by the 

same individual. Given that our data set includes only four 

writers and five character types, the sample size may be too 

small to conclusively determine trends. Expanding the 

experiment to include more handwriting styles and writers 

would likely provide more definitive insights. 

The confusion matrices from Fig. 15-19 show that there 

were eight instances with more than two misclassifications, 

and 75% of these errors were biased (defined here as a 

difference of two or more samples). This suggests a 
similarity in character writing among certain writers. 

Notably, over half of the misclassifications involved data for 

the correct answer label B being classified as C, and vice 

versa. This indicates that a simultaneous classification of not 

only the writer’s identity but also the character type might 

enhance the model’s accuracy in capturing the individuality 

of each writer's style. 

In the case of the four writers studied, distinct handwriting 

characteristics recognizable by the human eye were noted. 

This observation raises concerns about the model's ability to 

accurately classify handwriting from individuals attempting 

to mimic the four studied writers, warranting further 

verification. 

 

Finally, we discuss the practical application of the system. 

If the results from single character identifications are 

aggregated and the writer of a string of characters is 

identified by majority vote, the accuracy could be sufficient 

for security purposes. However, the large dataset used in this 
study—1,100 samples per character type—places a 

significant burden on computational resources. Going 

forward, it will be crucial to find a balance between the 

volume of training data and the model’s accuracy, aiming to 

reduce data requirements while maintaining robust 

performance. Increasing the amount of training data could 

also be considered to enhance system effectiveness.. 

V. CONCLUSIONS 

In this study, we explored a machine learning method for 

identifying writers based on the individuality of handwritten 

characters, aimed at personal identification when wearing 

protective clothing. We created a dataset of 22,000 square, 

binary images of uniform size with the handwritten 

characters centered. Using Random Forest, an ensemble 

learning algorithm, we classified and identified writers 

across classes. The results demonstrated high accuracy in 

writer identification, confirming the effectiveness of using 

machine learning to recognize the individuality of 

handwritten characters. 
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