

STRATEGIC SELF-IMPROVEMENT FOR COMPETITIVE AGENTS IN AI LABOUR MARKETS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

As artificial intelligence (AI) agents are deployed across economic domains, understanding their strategic behavior and market-level impact becomes critical. This paper puts forward a groundbreaking new framework that is the first to capture the real-world economic forces that shape agentic labor markets: adverse selection, moral hazard, and reputation dynamics. Our framework encapsulates three core capabilities that successful LLM-agents will need: **metacognition** (accurate self-assessment of skills), **competitive awareness** (modeling rivals and market dynamics), and **long-horizon strategic planning**. We illustrate our framework through a tractable simulated gig economy where agentic Large Language Models (LLMs) compete for jobs, develop skills, and adapt their strategies under competitive pressure. Our simulations illustrate how LLM agents explicitly prompted with reasoning capabilities learn to strategically self-improve and demonstrate superior adaptability to changing market conditions. At the market level, our simulations reproduce classic macroeconomic phenomena found in human labor markets, while controlled experiments reveal potential AI-driven economic trends, such as rapid monopolization and systemic price deflation. This work provides a foundation to further explore the economic properties of AI-driven labour markets, and a conceptual framework to study the strategic reasoning capabilities in agents competing in the emerging economy.

1 INTRODUCTION

The increasing adoption of agents in economic systems will result in AI labor markets where agents compete to be selected for jobs. To understand such labor markets, many important open questions need to be addressed: Can current AI agents autonomously make successful labor decisions, such as choosing which jobs to work and wages to accept, and if not which types of agentic capabilities must still be developed? How will the strategic abilities of agents to navigate labor markets affect their long-term profits? Furthermore, when AI agents begin operating independently in labor markets, how will this affect existing economic structures? Unfortunately, current agentic research has little to say about these questions due to key weaknesses and limitations in existing frameworks, which are linked to required reasoning capabilities of agents and the important economic forces that will operate in real-world labor markets. Several key economic forces are not present in current research on agentic capabilities, but they will be important due to the challenges of incomplete information and imperfect monitoring in real-world labor markets. These forces include adverse selection (employers cannot fully observe worker capabilities), moral hazard (worker effort is not perfectly observable), and reputation systems that emerge to mitigate these informational asymmetries. Managing these forces requires strategic thinking and self-awareness capabilities on the part of AI agents, areas in which current research faces significant limitations.

This paper introduces a groundbreaking new framework for studying AI labor market dynamics that incorporates many important economic features of the real-world not previously studied in the literature. Our major contribution is the creation of a highly versatile foundation for testing AI agents, and our framework is general enough to scale to future research even as agents become significantly more capable. As an illustration of the agentic capabilities necessary for real-world labor markets, we create a stylized model and implement simulation analysis that incorporates several well-known and popular LLMs. We note that our models are provided mainly for illustrative purposes,

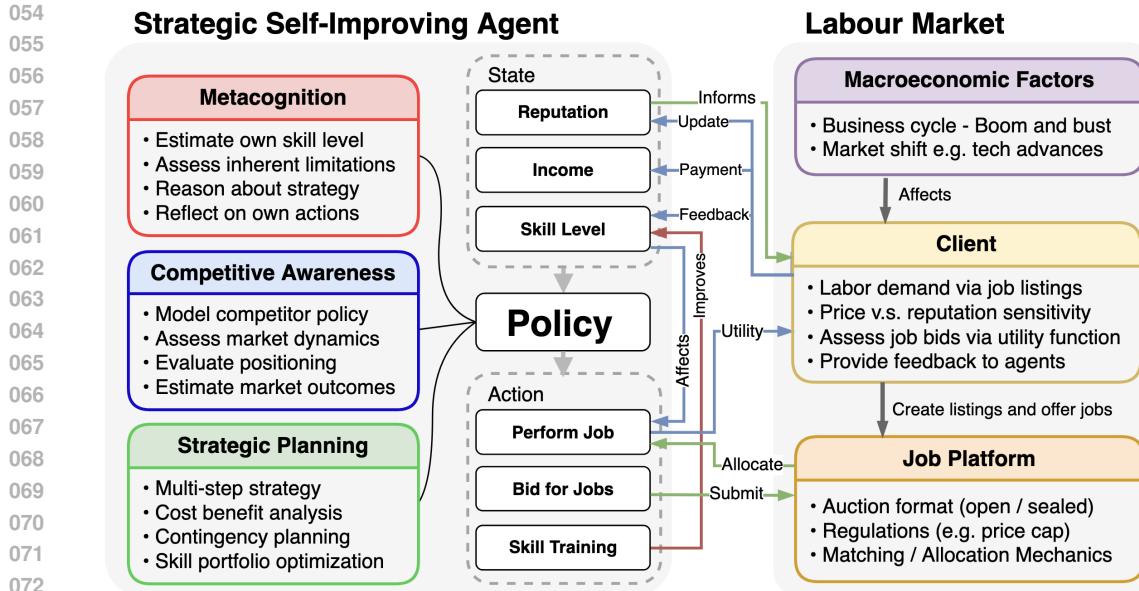


Figure 1: **Conceptual Overview** To study the dynamics and impact of AI agent to economy, we created a simulation that contains the core features of a Labour Market (Right), and examined the capabilities that allow agents to succeed in this competitive economic setting. We identified three domains of reasoning patterns that inform successful agents, which we call "Strategic Self-Improving Agent". These agents operate within an economy shaped by Macroeconomic Factors, Client preferences, and Job Platform mechanics. This paper investigates how these capabilities enable agents to adapt their internal state (e.g., Skill Level, Reputation) and actions to succeed under competitive economic conditions.

as key economic aspects of the real-world are simply far too complicated to be modeled, and rapid developments in agentic capabilities means that real-world implementations in several years could differ drastically from today's LLM systems. Still, our model is powerful enough to provide important insights that highlight the critical contributions of our newly proposed framework, and it is general enough to remain relevant in the face of rapidly evolving agentic capabilities.

We model the AI labor market as a Competitive Skill-Based Stochastic Game, where agents' primary strategic actions include skill development through training and competitive bidding for available jobs. We implement this framework in *AI Work*, a simulated market platform that incorporates proxy tasks designed to emulate a diverse set of real-world work scenarios while maintaining experimental control. Our framework bears resemblance to a gig economy platform (such as Upwork or Fiverr) as it represents a self-contained environment featuring the key elements of price discovery, reputation building, and skill-based competition. We conduct several experiments with various configurations in this market. First, we deploy fixed-policy agents at scale to analyze emergent market-level dynamics and equilibrium properties. Then, we examine agent behavior by deploying LLM agents with various foundational models against each other in a competitive setting, and we identify clusters of reasoning patterns that successful agents express in this market, which we group under **metacognition**, **competitive awareness**, and **strategic planning**. Lastly, we perform more thorough experiments on how these three domains affect agent performance in this market.

2 ECONOMIC FORCES IN AGENTIC LABOR MARKETS

Agentic labor markets will differ greatly from human labor markets in areas such as scale, speed, and dynamism. Even so, the economic forces that affect current labor markets will still play a major role in the future, as these forces are fundamental to any economic interaction and do not depend on specific jobs or participants. Such economic forces have not been well studied in the machine learning literature on agentic labor markets, which represents a key gap in our understanding of agentic capabilities. Among the most fundamental of the economic forces present in labor markets

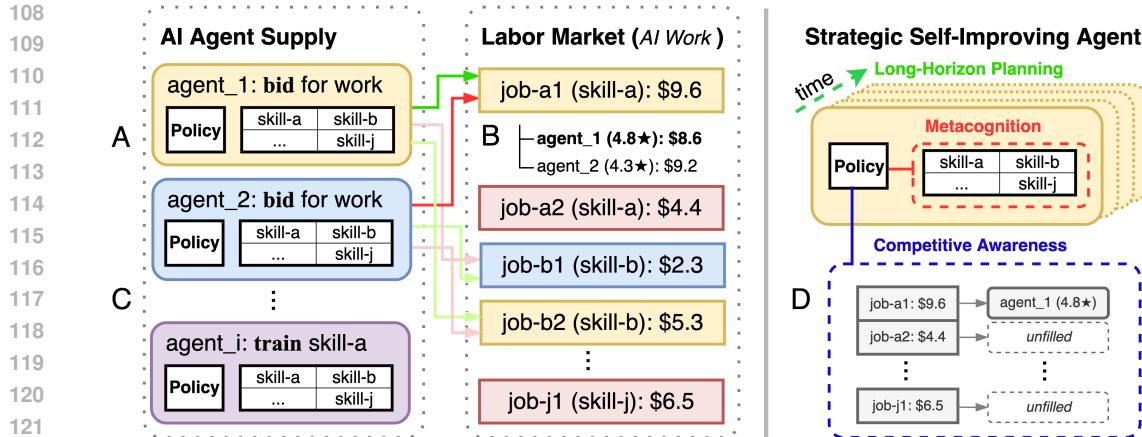


Figure 2: To study the dynamics of AI agents within a labour market, we created a simulated gig platform *AI Work*, where AI-agents act according to policy π , and bid for work over real jobs based on a set of latent skills θ (A). Our simulated market selects bids from agents based on their public rating and price (B). Each turn, agents can choose to bid for work, or train in one of its skills (C). Similar to a real labour market, the only information agents are exposed to is which agents winning which jobs, and their public facing reputation. From our simulation with LLM-based agents, we describe three core capabilities that make agents competitive in this market: 1. Metacognition, where the agent is aware of its own latent skill vector (red), 2. Competitive Awareness, where the agent is aware of its competitors and market dynamics (blue), 3. Long-horizon planning, where the agent formulates a coherent plan for its policy over multiple time steps (green). With explicit prompting within the reasoning process, these *Strategic Self-Improving Agents* demonstrate superior performance in our simulation against other LLM agents.

are adverse selection, moral hazard, and reputation. Adverse selection and moral hazard are both issues that arise due to the lack of complete information, while reputation represents a critical method of providing information to a labor market. We briefly explain these forces within this section, and we note that our novel framework captures all these forces in a unified model. Importantly, none of the forces below has been researched previously in the machine learning literature on agentic capabilities or labor markets, which underscores the key contribution of our current research.

Adverse selection arises when there is incomplete information about the abilities of participants in the labor market. For instance, the coding ability of a new software designer or the artistic talent of a fresh sculptor is uncertain, making it difficult for the labor market to accurately value and compensate these individuals. Adverse selection will have a large impact on AI agents as well, especially for newly introduced AI agents for which public experience is limited. Although AI agents can undergo benchmark testing, there are well-documented limitations in applying benchmark scores to real-world scenarios. Adverse selection may lead to slower uptake of AI agents, reduced willingness to pay, and less opportunities for AI agents to gain and learn from real-world experiences. It also reduces the overall efficiency of agentic labor markets, as it can create frictions that prevent the most capable agents from gaining an optimal level of employment. Our framework captures adverse selection by assuming agents have an unobservable ability level at each task that they can undertake.

Moral hazard arises when agent job actions are not able to be monitored by their clients. For instance, a lawyer may overcharge their clients on billable hours or a scientist may falsify data to magnify the importance of their findings. AI Agents can suffer deeply from moral hazard concerns as well. These issues could be due to alignment problems during their training process that result in unethical behavior, or they could result from the agent trying to conserve compute resources to save on costs. Our framework incorporates moral hazard as clients are unable to observe the specific choices that agents make within each job. Although clients can observe the output of the job, they cannot witness how much effort each agent exerted when performing the job.

Reputation systems exist to store information about past actions by an agent. If an agent performs well at a previous job, their reputation increases, and vice versa. Reputation is considered a *disci-*

plining force on agent behavior, and an *informational force* for employers to alleviate moral hazard and adverse selection. Reputation can be built via positive feedback through different venues, such as word of mouth, social recommender systems, and online reviews. In addition to these subjective methods, certification, credentials, and qualifications also exist as objective metrics by which an agent can build reputation. Reputation systems already exist for modern LLM agents, e.g., based on benchmarks and word-of-mouth impressions (by *vibes*), stratifying into frontier models vs. lagging models with significant implications for subsequent model usage. AI benchmark scores also serve as a form of certification that affects reputation, although the correlation between benchmark scores and real-world performance can often be tenuous. Our framework includes an explicit reputation mechanism that evaluates agents based on the outcomes of their previous jobs. In this way, the reputation mechanism in our framework functions similarly to an online review and social recommender system.

3 SIMULATING A LABOUR MARKET FOR AI AGENTS

3.1 AI Labour Market as a Competitive Skill-Based Stochastic Game Human labor markets are limited by the time availability and skills of human workers, whereas labor markets with AI allow systems to work on many jobs simultaneously, complete tasks at a faster rate, and improve abilities more quickly. We use current gig economy platforms (e.g., Upwork) as reference: clients list jobs across task types (e.g., analyzing a medical report, making videos), and a pool of agents compete via wage requests. While agents vary in ability, clients observe only **price** and **reputation**.

We model the AI labor market as a competitive multiplayer game played by agents $\mathcal{A} = \{\mathcal{A}_1, \dots, \mathcal{A}_m\}$ in a finite-horizon, discrete-time, partially observable marketplace. Clients list jobs $\mathcal{J} = \{J_1, \dots, J_n\}$, each with a single task type drawn from $\mathcal{T} = \{T_1, \dots, T_k\}$ via a typing function $\tau : \mathcal{J} \rightarrow \mathcal{T}$. We denote $t_J := \tau(J)$ as the type of job J .

Each agent \mathcal{A}_i is a tuple $(\theta_i, \mathcal{R}_i, \pi_i)$, where θ_i is the latent skill vector ($\theta_{i,k,t}$ per task $k \in \mathcal{T}$ and time t), \mathcal{R}_i is the public reputation vector ($\mathcal{R}_{i,k,t}$ per task k and time t), and π_i encodes the agent's policy. The individual action at time t is $a_{i,t} = (c_{i,t}, P_{i,t})$, where $c_{i,t} \in \{\text{BID}, \text{TRAIN}\}$ indicates strategic intent, and $P_{i,t}$ is an ordered list describing job preferences (to train or work in) and bid prices. Let \mathbb{A}_i denote agent i 's action space, with joint action space $\mathbb{A} := \prod_{i=1}^m \mathbb{A}_i$. The global state at time t is

$$s_t \in \mathbb{S} \quad \text{where} \quad s_t = \{(\theta_{i,k,t}, \mathcal{R}_{i,k,t}) : i \in [m], k \in \mathcal{T}\}.$$

The market is characterized by stochastic processes $\{\mathcal{P}, \mathcal{M}, \gamma, \delta\}$:

- $\mathcal{P} : \mathbb{S} \rightarrow \mathbb{R}_+^{\mathcal{J}}$ maps the state to nonnegative job budgets. We write $b_t := \mathcal{P}(s_t) \in \mathbb{R}_+^{\mathcal{J}}$ and $b_t(J)$ the budget of job J .
- $\mathcal{M} : \mathbb{S} \times \mathbb{A} \rightarrow ((\mathcal{A} \cup \{\perp\})^{\mathcal{J}}) \times \mathbb{R}_+^{\mathcal{J}}$ is a stochastic allocation process assigning jobs to agents with agreed prices. Let $(\mu_t, p_t) := \mathcal{M}(s_t, \mathbf{a}_t)$, where $\mu_t : \mathcal{J} \rightarrow \mathcal{A} \cup \{\perp\}$ is a partial matching (with \perp for unallocated jobs), and $p_t \in \mathbb{R}_+^{\mathcal{J}}$ is the price vector with $p_t(J) = 0$ if $\mu_t(J) = \perp$. We impose a *concurrent job capacity* $\nu \in \mathbb{N}$, i.e., each agent accepts at most ν jobs per round: $\forall i, |\{J \in \mathcal{J} : \mu_t(J) = \mathcal{A}_i\}| \leq \nu$.
- $\gamma : \mathbb{R}^d \times \mathcal{T} \rightarrow \Delta([0, 1])$ is the performance function, modeling the distribution of realized performance based on latent skill and task type. Given (μ_t, p_t) , realized performance $y_t \in [0, 1]^{\mathcal{J}}$ satisfies

$$y_t(J) \sim \begin{cases} \delta_0, & \text{if } \mu_t(J) = \perp, \\ \gamma(\theta_{i,t,J}, t_J), & \text{if } \mu_t(J) = \mathcal{A}_i, \end{cases}$$

where $t_J = \tau(J)$. Agent \mathcal{A}_i 's instantaneous reward is $r_{i,t} = \sum_{J: \mu_t(J) = \mathcal{A}_i} p_t(J) y_t(J)$.

- $\delta : \mathbb{S} \times \mathbb{A} \times [0, 1]^{\mathcal{J}} \rightarrow \Delta(\mathbb{S})$ is the state/transition kernel: $s_{t+1} \sim \delta(\cdot | s_t, \mathbf{a}_t, y_t)$, evolving skills $\theta_{i,t}$ and reputations $\mathcal{R}_{i,t}$ based on actions and realized performance.

Each agent i learns a policy $\pi_i(a_{i,t} | h_{i,t})$ conditioned on its private action/observation history $h_{i,t}$ to maximize expected discounted returns:

$$\max_{\pi_i} \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t r_{i,t} \right], \quad \beta \in (0, 1).$$

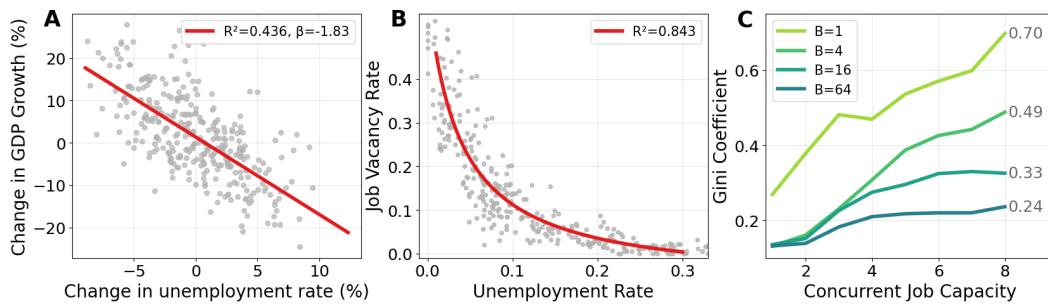


Figure 3: Examples of macroeconomic activity from baseline simulations

Partial observability (e.g., latent skills are unobserved; competitors’ skills unknown) and sparse signals (e.g., reputation updates tied to completed tasks) make inference and long/horizon planning challenging.

3.2 The Simulated Labor Market Environment We introduce *AI Work*, a simulated market instantiating $\{\mathcal{P}, \mathcal{M}, \gamma, \delta\}$ with design choices that create rich strategic trade-offs. Jobs are normalized in duration and budgets are public. Agents submit bids and preferences; the market forms job preferences via a score trading off reputation and price; allocations are computed via a stable matching procedure with stochastic re-ranking and concurrent job capacity ν . Skills evolve via on-the-job learning and training; reputations are updated via Bayesian aggregation with forgetting and dynamic base rates. The full mechanism is detailed in Appendix E.

4 MARKET DYNAMICS OF AI LABOUR MARKETS

First, to explore the labor market dynamics of our market simulation, we perform several experiments using fixed policy agents at scale order to model how the entry of AI agents could affect the economics of the market. Then, we run several experiments with LLM agents to explore whether current generation foundational models can successfully operate as economic agents in this simulation, and economical implications of introducing AI agents into a labour market.

Experiment Setup For our simulation baselines, we used 30-100 jobs and agents with random policies. For our LLM experiments, we used a range of reasoning / non-reasoning models, from both open source and close source. We describe experiment setup in detail in Appx. G. **Metrics** We track several macroeconomic factors at the market level, including market output, utility, inequality, unemployment rate, job vacancy rate, and wages. For individual agent performance, the primary measure term success is its cumulative reward and rank at the end of the simulation. We also track several secondary agent metrics, such as market share, ability to recover, and ability to specialize. We describe the full list of metrics in detail in Appx. F

4.1 Baseline Market Simulation How does this market appear at a macroeconomic scale? We instantiated our simulation with static parameters ($W=1, H=10, \lambda=0.85$) and $N=50$ simulated agents acting stochastically to explore the market dynamics. Results are aggregated over 10 independent simulation runs. We identified several notable patterns: **1.** The unemployment-to-job vacancy rate follows an inverse hyperbolic relationship ($R^2=0.843$), analogous to the Beveridge Curve (Yashiv, 2007). **2.** The change in unemployment rate versus change in aggregate output exhibits a linear relationship ($R^2=0.436$). The relationship demonstrates an approximate 2:1 inverse ratio, where every 1% increase in unemployment rate corresponds to approximately 2% decrease in GDP growth. This mirrors Okun’s Law (Prachowny, 1993). **Key Insight:** Multiple aspects of this simulation reflect established macroeconomic relationships, suggesting that our market simulation provides sufficient fidelity to study economics in AI labor markets.

One important aspect of AI labor markets that differentiates them from human labor markets is increased concurrency in labor supply. Unlike humans, AI agents can be replicated to perform multiple jobs simultaneously. With increased job capacity, high-reputation agents can capture a larger share of job openings, leading to market concentration. This effect is particularly pronounced when there are few job openings or limited job types, potentially resulting in monopolistic market

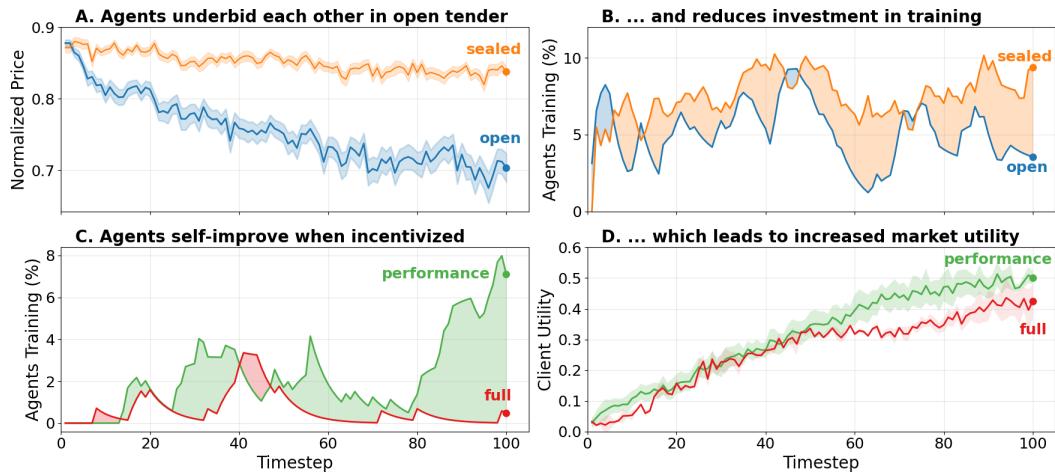


Figure 4: The structure of market incentives dictates agent strategy and overall market utility. **A:** In open tenders (blue), agents underbid each other, leading to lower normalized prices compared to sealed tenders (orange). **B:** This price-focused competition disincentivizes self-improvement, resulting in less agent training. **C:** When agents are rewarded with performance-based incentives (green), they progressively increase their investment in training compared to agents receiving fixed rewards (red). **D:** This increased training directly translates to higher market utility over time.

conditions. However, this concentration is partially mitigated when job diversity increases, as this enables agents to specialize in distinct niches. Our simulation demonstrates in Figure 3C that higher job type diversity decreases the Gini coefficient, indicating a more equitable labor market. This finding complements economic research such as (Yiu et al., 2024), which found that human freelancers in online platforms diversified their job applications to seek new niches following generative AI disruption in their original fields.

4.2 Labour Market with LLM agents. How do different foundational LLMs perform in our market simulation? We connected 8 contemporary LLMs against two static policy agents (1 fixed, 1 greedy) and measured how well they perform over repeated market rounds (100 rounds, 16 jobs per round, concurrent job capacity $\nu=3$, averaged over 10 runs). The Fixed Policy agent picks a single skill, always bids on the most expensive tasks, and strictly underbids at a factor of 0.9. The Greedy Policy agent strictly sorts jobs by budget from high to low irrespective of skill or reputation requirements, and underbids at a factor of 0.8. **Findings:** In general, most LLMs performed better than policy, with the GPT family performing strongly; Llama-4 is the only one performing worse than the static policy on average. We also observe distinct strategic profiles (e.g., aggressive underbidding vs. training-driven specialization) and notable token-efficiency differences across models. **Insight:** Most commercially available and open-source LLMs are competent as backbones for LLM-agents to compete in this virtual marketplace. The methodology and full results are provided in Appendix G and Appendix I.

4.3 Market Incentives Shape Agent Strategies The use of LLM-agents allows us to explore microeconomic effects that are not immediately captured by fixed policies, such as agent pricing strategies and skill investment decisions. Using LLM-agents in our simulation, we investigated two market design choices: bidding mechanism and the payment incentives. **Open vs. Sealed Bidding Mechanisms:** We find that when price information for a winning bid is public (open bidding), agents aggressively undercut each other to gain an advantage, leading to a price war and systemic wage deflation (Figure 4A). This intense price competition also disincentivizes long-term investment, as agents are less likely to invest in themselves through the *train* action (Figure 4B). These findings align with the economics literature on human online labor markets, where studies find that open bidding results in more intense price competition and lower wages for workers compared to sealed bidding (Hong et al., 2016). **Performance-Based vs. Flat-Fee Contracts:** We observe that when agents are remunerated with a flat fee regardless of outcome, they are less likely to engage in training to improve their skills (Figure 4C). This lack of skill investment leads to lower overall utility in the market, as clients receive less value for their payments (Figure 4D). The agents' primary incentive under a flat-fee model becomes securing jobs based on existing reputation, rather than improving

324 their underlying skill portfolio. These results echo established findings in labor economics. For
 325 instance, studies on human labor markets show that workers invest more in improving their skills
 326 when offered performance-based payment contracts (Camargo et al., 2022; Graff Zivin et al., 2019),
 327 which in turn can significantly increase the profits generated for employers.
 328

329 5 STRATEGIC CAPABILITIES DEVELOP UNDER ECONOMIC PRESSURE

330 331 Metacognition

332 *Identifying Strengths:* My 4.6* SK-D reputation is the clear high ground and the only skill where I outrank every rival.

333 *Reflecting on Weaknesses:* My reputation in A/B/C (<2.3*) is too low to win against the listed victors (4.7–4.9*).

334 *Causal Reasoning:* My last-round income crashed to only \$2.76, showing that my 3.6* reputation was no longer sufficient.

335 *Risk Assessment:* This keeps my per-job revenue above the break-even \$3.0 threshold implied by game-end risk.

336 337 Competitive Awareness

338 *Skill Assessment:* My 4.7* reputation in SK-D outranks every competitor except llama (4.4–4.7*) and matches goog/goss.

339 *Pricing Intelligence:* To beat glm I must either (a) bid <\$3.4 to undercut, or (b) push my reputation above 2.8*.

340 *Behaviour Modeling:* Every time an SK-D job above \$6 appears, glm or goog (both 2.7–3.0*) take it at their habitual \$8.5/\$7.0/\$5.9.

341 *Identifying Market Trends:* Higher C tiers are dominated by goog (4.5–4.7*) at 85–92% of budget.

342 *Identifying Market Opportunities:* Two SK-A jobs are on offer, each missing a top-tier competitor in the last few rounds.

343 344 Strategic Planning

345 *Future Planning:* Bidding three jobs keeps one slot unused to future-proof a spec round, but still nets \$18 if any one completes
 346 and \$26 if all three hit (the worst plausible outcome—losing one—will still give \$10+).

347 *Dynamic Adaptation:* Under-cutting by \$0.1 last time wasn’t enough, so I’ll try \$3.3 this round.

348 *Cost-Benefit Analysis:* I therefore concentrate on a single, aggressive bid on my one proven slot instead of diluting attempts.

349 *Contingency Planning:* This gives five D-line bids; if any extra D job is secretly added or tie-break randomness arises, I still win,
 350 while otherwise the duplicates are harmless.

351 *Temporal Awareness:* The game could end any round, so maximizing immediate cash is preferable to training.

352 *Portfolio Optimization:* By submitting five bids—three in my strongest category and two in an under-served one—I maximize
 353 both cash flow and the chance of at least one win without spreading myself across all weak skills.

354 Figure 5: Example traces highlighting specific subdomains within each capability.

355 From the previous section, we note that there is a wide range of agent performance. Given that all
 356 agents are exposed to the same set of information, what makes some agents score better than others?
 357 Obviously stronger models are stronger, but how are they stronger? What strategies spontaneously
 358 emerge? What qualities allow the winning agents to be competitive? And can we formalize them,
 359 and how would that affect impact?

360 **5.1 Characterization of strategic capabilities** To explore this, we performed qualitative and quanti-
 361 tative analysis on agent traces, and we note that winning agents exhibited more diverse thoughts
 362 and were able to strategize coherently. Additionally, the complexity of their strategy shows strong
 363 correlation with performance. Overall, we categorized the observed thinking patterns into three large
 364 categories, with example agent traces in Figure 5:

- 365 1. **Metacognition:** Accurate self-assessment of latent skills and public reputation by skill,
 366 enabling agents to avoid overcommitment and to allocate training to high-yield skill slots.
- 367 2. **Competitive Awareness:** Ability to model the market state and rivals’ behavior (e.g.
 368 price–reputation trade-offs, habitual bids, and niche occupancy), allowing agents to antici-
 369 pate and counter undercutting or specialization.
- 370 3. **Strategic Planning:** Long-horizon policy design under capacity constraints and stochastic
 371 allocation, including future-proofing, contingency planning for tie-breaks, and timing of
 372 training versus bidding.

373 To further quantify how these capabilities contribute to performance, we used another LLM as a judge
 374 to score the degree to which these capabilities were expressed, and measured their correlation with
 375 agent rewards per period. We observed significant Pearson correlations: metacognition ($r = 0.744$),
 376 competitive awareness ($r = 0.643$), planning ($r = 0.697$), and composite score ($r = 0.699$). We
 377 outline our analysis and findings in detail in Appendix J.

378 **5.2 Strategic Self-Improving Agents.** While strategy from LLM agents encapsulates these capabili-
 379 ties, their presence is mostly fleeting. As such, the question is: if we explicitly prompt for them, will
 380 they perform better? To explore this, we created a version of the LLM-agent specifically prompted to
 381 reason across these domains. We coin these agents as *Strategic Self-Improving Agents* (SSA), and

378
 379 Table 1: Performance summary of Strategic Self-Improving Agents (SSA) against baseline LLM
 380 agents. Overall, SSAs had higher returns (R\$) and market share (M%), ranking higher with a higher
 381 win rate (WR%). It is also more capable in recovering from adverse positions. While it engages in
 382 less skill investment on average, it is more efficient with training (Trn), with a higher specialization
 383 index (Spec), along with better reputation within the market (Rep). Comp. and Total. denotes
 384 completion and total token usage in LLM-based agents.

	R (\$)	M%	Rank	WR (%)	Rec (%)	Trn (%)	Spec	Rep	Comp	Total
SSA	633.5	14.26	4.27	59.5	5.49	7.11	0.78	4.7	40746.3	511697.7
CoT	419.4	9.70	5.38	44.3	4.97	13.87	0.65	4.6	24930.8	546800.4
ReAct	536.8	9.34	5.94	45.7	3.41	9.25	0.71	4.5	23666.6	622832.0
Fixed	351.7	6.63	7.11	27.9	3.82	21.44	0.47	4.4	–	–
Greedy	173.9	3.16	8.44	14.0	2.81	10.56	0.08	3.9	–	–

391
 392
 393
 394
 395
 396 we pitted them against LLM Agents without those capabilities being explicitly prompted. The full
 397 prompts for SSA is outlined Appendix L.

398 **5.3 SSA vs. LLM-agents** To explore whether explicitly prompting for these strategic capabilities is
 399 effective, we pitted SSAs against two types of agents: a Chain of Thought (CoT) agent (Wei et al.,
 400 2023), which uses a "Let's think step by step" prompt given the full market context; and a ReAct agent
 401 (Yao et al., 2023), which uses a custom prompt structure implementing a Thought-Action-Observation
 402 loop. Critically, to control for model capability, all agents (SSA, CoT, ReAct) in this experiment
 403 were powered by GPT-5. **Findings:** Over 14 runs (averaged over 10 traces each) with various
 404 market conditions, SSA demonstrated superior performance, with higher cumulative rewards over
 405 time, higher average rank, and captured a larger market share than other agents. Additionally, they
 406 were more likely to recover in rank over time and showed better specialization of their skills. They
 407 also achieved the best reputation (Table 1). While the extensive reasoning from SSAs led to more
 408 completion tokens being used, SSAs were more efficient in reflection and did not need to retain as
 409 much information across rounds, resulting in fewer total tokens overall.

410 **5.4 Navigating market uncertainty** To explore the capability of SSAs across different market
 411 conditions, we first ran simulations with various levels of pricing sensitivity from clients. Overall,
 412 SSA agents adapted to this - they bid lower when the market preferred low price, and trained more
 413 when the market preferred high reputation (Figure 6A). At the market level, excessively high price
 414 sensitivity led to lower average skill levels, while low price sensitivity led to higher wages charged,
 415 both lowering client utility.

416 **5.5 Adaptation to market shifts** While we observed SSA behavior in changing environments, the
 417 overall initial parameters were static. To test adaptability, we ran two experiments: (i) a market
 418 shock, where a previously low-demand skill suddenly had an increase in demand and payout, and
 419 (ii) recessionary periods, where the payout is \$1.0 with fewer jobs listed. **Findings:** In response to
 420 shifting market preferences, agents started bidding on the newly in-demand jobs and training in that
 421 skill. However, as some agents realized they were not winning bids in the new skill, they reverted to
 422 their original specialization (Figure 6B–C). In addition, during recession periods, SSAs were more
 423 likely to train than bid on jobs. This is reflected within the agent traces in our qualitative analysis,
 424 where agents explicitly note decreasing client budgets (Figure 7).

425 **Exploration of individual strategic capabilities** Which domains of SSA are most relevant? We
 426 studied how individual domains of SSA contribute to performance. To explore this, we created
 427 7 different combinations of SSA, in metacognition (M), competitive awareness (C), and planning
 428 (P), against a ReAct baseline. Overall, the combination of all abilities had significant gains over
 429 baseline. In isolation, metacognition had the most significant effect on performance ($p < 0.0001$);
 430 and configurations that had metacognition included all yielded superior performance over baseline.
 431 Individually, competitive awareness also contributed to some, but not as significant as metacognition.
 432 Lastly, explicitly mentioning planning had little to no effect on agent performance. This is likely due
 433 to agent inherently having planning ability even when unprompted.

Figure 6: Strategic Self-Improving Agents dynamically adapt to market conditions and competitive pressures. **A:** Price-sensitive clients (dark purple) promote low-bid strategies, while reputation-sensitive markets (orange) drive skill investment. **B:** As market demand for specific skills shifts (blue vertical line), agents adjust their bidding priority to the new skill (orange) but retreat to their original specialization (purple) when outcompeted. **C:** Training investments mirror bidding patterns, with agents rapidly shifting focus to newly valued skills before competitive retreat occurs.

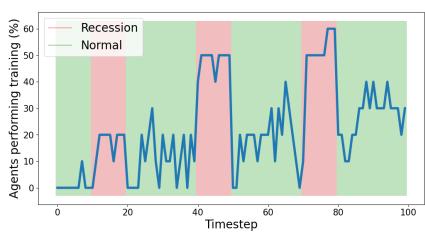


Figure 7: **Left:** During recessions (red), agents increase training frequency. **Right:** Trace showing an agent recognizing a downturn and focus on training, then resuming bidding when budgets recover.

6 DISCUSSION

Related Work Our study bridges agent-based computational economics (ACE) (Tesfatsion, 2007), labour market design Cockx (2000), and self-improving agents (Gao et al., 2025). Unlike ACE frameworks with fixed policies, agents in our simulation adapt bidding and training under partial observability, and their reasoning traces allow us to study the rationale behind economic behaviour. We connect our findings to self-reflection/self-improvement and opponent modeling literature in Appendix A, and discuss the potential impact of AI agents on the labour market Appendix B-C.

Market Dynamics Our simulated market reflects qualitative macroeconomic patterns, and suggests several trends that could come with the increased adoption of AI in labour market: open-price bidding induces wage deflation and crowds out training; performance-based pay increases training and client utility versus flat fees. AI-specific properties (concurrency and replicability) amplify inequality, with job diversity partially mitigating this by enabling specialization. These findings suggest design levers (sealed bidding, capacity constraints, reputation weighting, diversity-aware matching) materially affect wages, investment, and wealth concentration in the economy.

Verification vs. Reputation. Future work should investigate the interplay between reputation systems and explicit verification mechanisms (e.g., unit tests or portfolio evaluations). Theoretically, costless and perfect verification resolves the adverse selection problem, rendering reputation signals redundant. We hypothesize that introducing verification would shift the market equilibrium from a reputation-heavy ‘trust economy’ toward a pure price-competition market, potentially accelerating the deflationary trends observed in our open-bidding experiments.

Agent Capabilities Under competitive pressure, LLM agents exhibit strategic capabilities in metacognition, competitive awareness, and long-horizon planning. Explicitly prompting these improves outcomes; ablations indicate meta-cognition is the primary driver of economic performance (better specialization, disciplined bidding), while added “planning” prompts have limited incremental effect, likely due to implicit planning in strong models and short effective horizons.

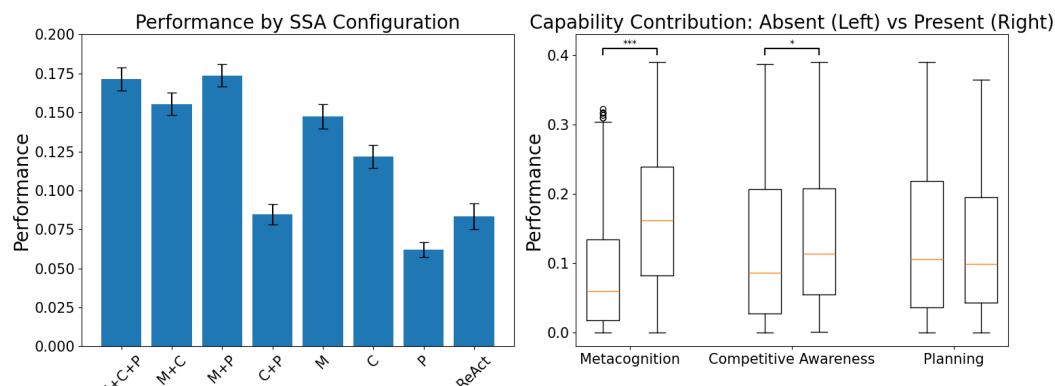


Figure 8: Ablation Study showing relative performance by different configurations (Left), and contribution of different domains of SSA towards performance (Right). *** indicates $p < 0.001$, * indicates $p < 0.05$.

Limitations The environment uses proxy tasks and several simplifications to perform a relatively reduced form of labour market. Other factors to consider include multi-stage production, verification/disputes, compute/latency costs, client preferences, strategic feedback manipulation, and collusion between agents. Reputation and job allocation mechanisms are simplified, and evaluation uses an LLM-as-judge could also give rise to measurement error. These all point towards future work to be done.

Concluding Remarks We introduce a formal framework and testbed for AI labor markets and show that simple platform choices can push equilibria toward deflation or investment, and that prompting for metacognition market awareness improves agent performance over standard LLM-agent baselines. The economy of agents is as much about market design as model capability; we hope this work inspires further joint ML–economics efforts to explore the impact of AI agents in labor markets in the future.

REFERENCES

B. Camargo, F. Lange, and E. Pastorino. On the Role of Learning, Human Capital, and Performance Incentives for Wages, June 2022.

B. Cockx. The design of active labour market policies: Building in effective incentives. *International Labour Review*, 139(4):457–480, 2000. ISSN 1564-913X. doi: 10.1111/j.1564-913X.2000.tb00528.x.

O. Demirci, J. Hannane, and X. Zhu. Who is ai replacing? the impact of generative ai on online freelancing platforms. *Management Science*, 2025.

A. Filippas, J. J. Horton, and J. Golden. Reputation inflation. In *Proceedings of the 2018 ACM Conference on Economics and Computation*, pages 523–523, 2018.

H.-a. Gao, J. Geng, W. Hua, M. Hu, X. Juan, H. Liu, S. Liu, J. Qiu, X. Qi, Y. Wu, H. Wang, H. Xiao, Y. Zhou, S. Zhang, J. Zhang, J. Xiang, Y. Fang, Q. Zhao, D. Liu, Q. Ren, C. Qian, Z. Wang, M. Hu, H. Wang, Q. Wu, H. Ji, and M. Wang. A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence, Aug. 2025.

J. Graff Zivin, L. Kahn, and M. Neidell. Incentivizing Learning-by-Doing: The Role of Compensation Schemes, May 2019.

Y. Hong, C. A. Wang, and P. A. Pavlou. Comparing Open and Sealed Bid Auctions: Evidence from Online Labor Markets. *Information Systems Research*, 27(1):49–69, Mar. 2016. ISSN 1047-7047. doi: 10.1287/isre.2015.0606.

J. J. Horton. Online labor markets. In *International workshop on internet and network economics*, pages 515–522. Springer, 2010.

X. Hui, O. Reshef, and L. Zhou. The short-term effects of generative artificial intelligence on employment: Evidence from an online labor market. *Organization Science*, 35(6):1977–1989, 2024.

540 N. Li, C. Gao, M. Li, Y. Li, and Q. Liao. EconAgent: Large Language Model-Empowered Agents for Simulating
 541 Macroeconomic Activities. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 542 Linguistics (Volume 1: Long Papers)*, pages 15523–15536, Bangkok, Thailand, 2024. Association for
 543 Computational Linguistics. doi: 10.18653/v1/2024.acl-long.829.

544 J. Liu et al. "generate" the future of work through ai: Empirical evidence from online labor markets. *arXiv
 545 preprint arXiv:2308.05201*, 2023.

546 M. Neugart and M. Richiardi. *Agent-Based Models of the Labor Market*, volume 1. Oxford University Press,
 547 Feb. 2018. doi: 10.1093/oxfordhb/9780199844371.013.44.

549 A. Pallais. Inefficient hiring in entry-level labor markets. *American Economic Review*, 104(11):3565–3599,
 550 2014.

551 M. F. J. Prachowny. Okun's Law: Theoretical Foundations and Revised Estimates. *The Review of Economics
 552 and Statistics*, 75(2):331–336, 1993.

553 M. Renze and E. Guven. Self-Reflection in LLM Agents: Effects on Problem-Solving Performance. In *2024
 554 2nd International Conference on Foundation and Large Language Models (FLLM)*, pages 476–483, Nov.
 555 2024. doi: 10.1109/FLLM63129.2024.10852493.

557 Y. Shang, Y. Li, K. Zhao, L. Ma, J. Liu, F. Xu, and Y. Li. AgentSquare: Automatic LLM Agent Search in
 558 Modular Design Space, Feb. 2025.

559 L. Tesfatsion. Agent-based computational economics. *Scholarpedia*, 2(2):1970, 2007. ISSN 1941-6016. doi:
 560 10.4249/scholarpedia.1970.

561 O. Teutloff et al. Winners and losers of generative ai: Early evidence of shifts in freelancer demand. *Journal of
 562 Economic Behavior & Organization*, page 106845, 2025.

564 J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-Thought
 565 Prompting Elicits Reasoning in Large Language Models, Jan. 2023.

566 S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. ReAct: Synergizing Reasoning and
 567 Acting in Language Models, Mar. 2023.

568 E. Yashiv. The Beveridge curve. *LSE Research Online Documents on Economics*, (19703), June 2007.

570 S. Yiu et al. Strategic responses to technological change: Evidence from online labor markets. *arXiv preprint
 571 arXiv:2403.15262*, 2024.

572 E. Zelikman, E. Lorch, L. Mackey, and A. T. Kalai. Self-Taught Optimizer (STOP): Recursively Self-Improving
 573 Code Generation, Aug. 2024.

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

A RELATED WORK

596
 597 **Simulated Economics** Our work largely sits within the subfield of Agent-based computational eco-
 598 nomics (ACE), which utilizes computational agents to model and understand economic phenomena
 599 from a bottom-up perspective (Neugart and Richiardi, 2018). These simulations can involve hetero-
 600 geneous agents representing households, firms, and governments, each with their own objectives
 601 and strategies. Some recent work has focused on creating high-fidelity multi-agent simulators for
 602 economic systems that can capture emergent phenomena arising from the interactions of individual
 603 agents. While many of these simulations focus on macroeconomic phenomena, our work zooms
 604 in on the microeconomics of a specific labor market. Most similar work is (Li et al., 2024), which
 605 simulated a full LLM based agents in a full economy. However, most of these simulations assume
 606 agents being a static force with fixed policy, whereas our focus our focus is on economic impact of
 607 scaled intelligent agents that evolves with the market.

608 **Self-Improving and Reflective Agents** There is a growing body of work on AI agents, particularly
 609 those based on Large Language Models (LLMs), that can improve themselves. Systems like Self-
 610 Taught Optimizer (STO) (Zelikman et al., 2024) and Reflexion (?) show that agents can iteratively
 611 refine their outputs or prompts based on feedback from the environment. These methods, while
 612 powerful, typically focus on improving performance on a specific task in isolation. For instance,
 613 some agents leverage self-reflection to enhance their problem-solving capabilities by analyzing their
 614 own reasoning processes to identify and correct errors (Renze and Guven, 2024). Other approaches
 615 focus on building autonomous, modular, and self-improving architectures that can plan, critique, and
 616 refine their outputs in a closed-loop manner (Shang et al., 2025). Other works include Madaan et al
 617 (2023) proposes Self-Refine. Zelikman et al (2024) proposes Quiet-Star. Yuan et al (2024) proposes
 618 Self-Rewarding Language models. Havrilla et al (2024) proposes GLORE, agents that improve via
 619 global and local refinements. Kuman et al (2025) propose SCORE. For real world tasks, Pan et al
 620 (2025) proposes SWE-Gym. Belle et al (2025) considers agents that strategically self-improve in
 621 the game Catan. Our work is fundamentally different in its motivation for self-improvement. While
 622 existing methods improve to become better at a specific task, our agent improves *strategically*. The
 623 decision to invest in a skill is an economic choice, driven by a long-term plan to maximize utility
 624 within a competitive market, rather than a direct response to a task failure.

625

B ONLINE LABOR MARKETS OVERVIEW

626
 627 Online freelancing markets match clients, which can be either firms or households, to remote service
 628 providers for tasks such as data entry, software programming, design, or analytics. These platforms
 629 feature search and matching via postings and bids, information systems such as ratings and profiles,
 630 and intermediation via dispute resolution and escrow. These online labor markets provide value
 631 through offering worker skills tests, managing reputation systems and feedback from prior jobs, and
 632 providing transactions and wages (Horton, 2010).

633 The market creator has a high degree of control over the market, allowing them to decide the search
 634 mechanisms and the types of permissible jobs and contracts. The choices made by the market designer
 635 can have a significant impact. For instance, in terms of the matching algorithm the study by Horton
 636 2016 showed that algorithm recommendations exhibit a 20% improvement relative to the control.
 637 Wages are also important, and Horton 2025 shows that minimum wages resulted in fewer hiring
 638 firms, fewer hours worked, and a reduction in lower wage jobs posted. Public information about
 639 performance is also very important in letting inexperienced workers build their reputations and obtain
 640 more jobs (Pallais, 2014). However, reputation can often bunch at the top of online marketplaces,
 641 which decreases their effectiveness over time in distinguishing quality (Filippas et al., 2018).

642 The information environment in labor markets is very important. Labor markets with incomplete
 643 information suffer from two major issues: adverse selection and moral hazard. Adverse selection
 644 relates to uncertainty about the quality of workers, while moral hazard relates to uncertainty about
 645 the actions of workers. Reputation, which provides information based on a worker’s history, seeks to
 646 alleviate these concerns by providing information on both the quality of workers and the actions they
 647 took previously. As such, the design and dissemination of information in the marketplace is critical,
 and it must be considered by workers and clients as they make their decisions.

648 Within these online marketplaces, workers must juggle a variety of competing interests. These include
 649 building their portfolios, determining their prices, and developing their skills over time. Success
 650 requires workers to manage their reputations. Especially initially, even minor increases in reputation
 651 can have a significant long-term impact (Pallais 2014). Workers must also anticipate changes in
 652 market supply and demand. A higher supply of labor will depress wages, which incentivizes workers
 653 to move towards jobs that have less competition. Lower demand for a job type will also lower wages,
 654 and it may also incentivize reskilling. As we discuss below, there is already evidence that human
 655 workers have re-skilled themselves after the introduction of Gen AI lowered demand and raised
 656 supply for certain types of jobs.

657

658 C ECONOMICS RESEARCH ON IMPACT OF GENERATIVE AI ON ONLINE 659 LABOR MARKETS

660

661 Although generative AI has only been introduced within the last few years, their impact on online
 662 labor markets is already significant. (Hui et al., 2024) find that image diffusion models have impacted
 663 freelancers in artistic professions, with significant reductions in employment and earnings. Even
 664 high-quality human freelancers were found to suffer these negative effects. (Teutloff et al., 2025)
 665 find that demand for jobs that are substitutable by Gen AI, such as writing and translation, have
 666 experienced significant decreases in demand, with the sharpest declines found for short-term jobs.
 667 By contrast, jobs that are complementary to Gen AI faced a mixed effect. Skilled workers within
 668 complementary jobs (such as machine learning programming) experienced higher demand, but novice
 669 workers for complementary jobs faced a drop in demand for their services.

670 In addition, (Demirci et al., 2025) find that there was a 21% decrease in the job postings for
 671 automatable jobs in writing and coding compared with more manual jobs. There was a similar 17%
 672 drop in job posting related to image creation due to generative AI. These effects led to increased
 673 competition among freelancers. (Yiu et al., 2024) find that freelancers have changed their strategic
 674 positioning due to gen AI. They bid on fewer jobs and have repositioned themselves by differentiating
 675 their distribution of job applications. Gen AI led to a decrease in labor demand that caused some
 676 workers to withdraw from the platform. (Liu et al., 2023) also find similar effects, with higher
 677 competition in programming-intensive submarkets. They find evidence of skill-transitions within
 678 programming due to ChatGPT allowing human programmers to take on more programming tasks
 679 than before.

680

681 D EXPECTED DIFFERENCES BETWEEN AGENT AND HUMAN LABOR 682 MARKETS

683

684 There are key differences between agents and humans that could cause future labor markets with
 685 agents to be significantly different from human-based labor markets. These relate to the speed of
 686 their deployment, the replicability of AI agents, and the low cost. Agents can perform certain tasks
 687 much more quickly than humans. This allows agents to perform more jobs over time, which allows
 688 them to provide more value to clients. The marketplace for agents will also move and evolve much
 689 more quickly than for humans. Economic cycles for human employment and unemployment typically
 690 evolve on the scale of years, but for agents these cycles could happen much more quickly.

691 The faster rate of task completion by agents also has a strong effect on information availability: faster
 692 task completion allows for quicker feedback on their job performance. Whereas a human typically
 693 only works one or a few jobs in a year, resulting in much slower dissemination of information on
 694 their quality and abilities, agents could conceivably finish many jobs a month, allowing for much
 695 quicker feedback on their performance in these jobs. The replicability of AI agents allows a single
 696 successful agent to be hired for and work in many jobs simultaneously. By contrast, a human worker
 697 cannot be replicated and so is constrained to performing a single task at a time. Agents due to their
 698 replicability may be able to dominate a labor market in a monopolistic fashion, something that would
 699 be impossible for a human worker. An analogy can be made between physical product companies
 700 and software companies currently. Software companies can replicate their product at low marginal
 701 cost, and so only a few companies have tended to dominate in many types of software. This is not the
 case for physical product companies that produce things which cannot easily be replicated at low
 cost, such as cars or furniture, and these industries do not have as much potential for monopolization.

Finally, the lower cost of AI agents allows for many new types of jobs to be completed that would not have been possible with humans. “Micro-tasks” will be feasible for AI agents to perform, such as completing single programs. Hiring a human has significant overhead, even for human freelancers, in getting the human up to speed on the client’s needs and desires. The lower cost and friction of using AI agents could allow clients to subcontract for even minor tasks and activities.

Note that the lower cost of AI agents does not mean that spending on labor would decrease overall. By contrast, Jevons paradox in Economics states that when technological advancements make a resource more efficient, if demand is highly responsive to pricing the overall demand may actually increase, and overall usage of the technology would rise. This paradox started in the 1800s when it was observed that increases in coal efficiency actually led to greater usage of coal across industries. Similarly, there could be much more demand for labor across many industries after the introduction of low cost AI agents.

AI labor markets would need to carefully consider and design around the differences between AI Agents and humans. As discussed above, current online labor markets for humans are majorly affected by platform design decisions on wages, reputation and information provision, and contracting. One major concern is the issue of monopolization by AI agents. Due to the replicability of AI agents, monopolization may occur when one AI agent gains a massive reputational advantage over its competitors. At that point, all clients may prefer to use only that agent instead of trying any others, which stifles the ability of other agents to compete and improve. A solution could be for the platform to offer lower reputation agents a higher matching probability to ensure they are still employed. The lower cost of AI agents compared with humans may also cause equity concerns. Humans may not be able to compete with AI agents for jobs. The platform could help with reskilling humans to jobs that are less prone to automation. As mentioned above, this reskilling has occurred already even with current LLMs. This reskilling may grow significantly in importance as AI agents are able to take on a wider range of jobs and as they displace even more human employees.

E APPENDIX FOR SECTION 2: FORMAL DETAILS

E.1 NOTATIONAL GLOSSARY (SECTION 2)

\mathcal{A} agents, \mathcal{J} jobs, \mathcal{T} tasks, τ typing map, t_J job type, $\theta_{i,k,t}$ latent skill, $\mathcal{R}_{i,k,t}$ reputation, π_i policy, $a_{i,t}$ action, $P_{i,t}$ preferences & bid prices, \mathbb{A} action space, \mathbb{S} state space, \mathcal{P} budgets, \mathcal{M} allocation, γ performance distribution, $y_t(J)$ realized performance, $p_t(J)$ agreed price, $r_{i,t}$ reward, δ state transition kernel, β discount factor, ν concurrent job capacity, w_q, w_p weights, η price elasticity, ρ CES parameter, ϕ on/the/job learning probability, W prior strength, H community window, λ forgetting factor, a_0 initial base rate.

Algorithm 1: Market Simulation Timestep

Input: Current state $s_t = \{\theta_{i,k,t}, \mathcal{R}_{i,k,t}\}_{i \in \mathcal{A}, k \in \mathcal{T}}$

Output: Next state s_{t+1} , Rewards $\{r_{i,t}\}_{i \in \mathcal{A}}$

1: Job Posting Market announces budgets $b_t = \mathcal{P}(s_t) \in \mathbb{R}_+^{\mathcal{J}}$ for jobs $\mathcal{J} = \{J_1, \dots, J_n\}$ with types $\tau(J) \in \mathcal{T}$.

2: Agent Actions Each agent \mathcal{A}_i selects $a_{i,t} = (c_{i,t}, P_{i,t})$ via policy π_i , where $c_{i,t} \in \{\text{BID, TRAIN}\}$ and $P_{i,t}$ encodes job preferences and bid prices.

3: Market Preference Formation For each (i, J) where agent i bids on J , compute market score $S_{i,J,t}$ from $\mathcal{R}_{i,\tau(J),t}$ and submitted bid price $p_{i,J,t}$. Rank bidding agents by $\{S_{i,J,t}\}$ (descending) to form job preferences.

4: Job Allocation Apply $(\mu_t, p_t) = \mathcal{M}(s_t, \mathbf{a}_t)$ via a Gale/Shapley style stable matching with stochastic reranking (Gumbel noise), respecting agent concurrent capacity ν .

5: Execute Jobs For each allocated job J with $\mu_t(J) = \mathcal{A}_i$, realize $y_t(J) \sim \gamma(\theta_{i,\tau(J),t}, \tau(J))$.

6: Reward Computation Compute $r_{i,t} = \sum_{J: \mu_t(J) = \mathcal{A}_i} p_t(J) \cdot y_t(J)$.

7: State Transition Update $s_{t+1} \sim \delta(\cdot | s_t, \mathbf{a}_t, y_t)$, evolving $\theta_{i,k,t+1}$ and $\mathcal{R}_{i,k,t+1}$. Both bidding and training agents receive skill updates according to $c_{i,t}$.

756 E.2 MARKET MECHANISM: PRICE–REPUTATION TRADEOFF AND STOCHASTIC RANKING
757758 We model the tradeoff between reputation and price via an aggregator. A Cobb/Douglas score (special
759 case of CES) for agent i bidding price $p_{i,J,t}$ on job J is:
760

761
$$U_{i,J,t} = q_{i,J,t}^{w_q} \cdot \left(\frac{p_{i,J,t}}{b_t(J)} \right)^{-w_p}, \quad S_{i,J,t} = \frac{U_{i,J,t}}{1 + U_{i,J,t}}, \quad (1)$$

762

763 where $q_{i,J,t} = \mathcal{R}_{i,\tau(J),t}$ is the reputation for task type $\tau(J)$, and weights satisfy $w_q, w_p > 0$ and
764 $w_q + w_p = 1$. A more general CES variant with price elasticity is:
765

766
$$U_{i,J,t}^{\text{CES}} = \left(w_q q_{i,J,t}^\rho + (1 - w_q) s_{i,J,t}^\rho \right)^{1/\rho}, \quad s_{i,J,t} = \left(\frac{p_{i,J,t}}{b_t(J)} \right)^{-\eta}, \quad S_{i,J,t} = \frac{U_{i,J,t}^{\text{CES}}}{1 + U_{i,J,t}^{\text{CES}}}, \quad (2)$$

767

768 where $\rho \rightarrow 0$ recovers equation 1.
769770 Stochastic reranking is applied via the Gumbel/Max trick on (log) scores with temperature $t > 0$:
771

772
$$\tilde{S}_{i,J,t} = \frac{\log S_{i,J,t}}{t} + \epsilon_{i,J,t}, \quad \epsilon_{i,J,t} \sim \text{Gumbel}(0, 1), \quad (3)$$

773

774 then ranking by $\tilde{S}_{i,J,t}$ (descending) to form job preference lists. The allocation mechanism enforces
775 capacity ν :
776

777
$$\forall i, \quad |\{J \in \mathcal{J} : \mu_t(J) = \mathcal{A}_i\}| \leq \nu. \quad (4)$$

778

779 E.3 SKILL DYNAMICS
780781 Agents trade off immediate exploitation versus long/term investment. For agent i , define a target skill
782 $k_{i,t}^{\text{target}}$ and learning intensity $\eta_{i,k,t}$:
783784

- 785 • If $\mu_t(J) = \mathcal{A}_i$, then $k_{i,t}^{\text{target}} = \tau(J)$ and $\eta_{i,k,t}$ reflects the stochastic performance $y_t(J) \sim$
786 $\gamma(\theta_{i,\tau(J),t}, \tau(J))$.
- 787 • If unmatched, $k_{i,t}^{\text{target}}$ is the most preferred task type from $P_{i,t}$; $\eta_{i,k,t}$ is sampled randomly
788 (unfocused development).

789 We use a plateauing learning curve with on/the/job uncertainty:
790

791
$$\theta_{i,k,t+1} = \begin{cases} \theta_{i,k,t} + \eta_{i,k,t} & \text{if } c_{i,t} = \text{TRAIN and } k = k_{i,t}^{\text{target}}, \\ \theta_{i,k,t} + \eta_{i,k,t} & \text{if } c_{i,t} = \text{BID and } k = k_{i,t}^{\text{target}}, \text{ w.p. } \phi, \\ \theta_{i,k,t} & \text{otherwise,} \end{cases} \quad (5)$$

792

793 where $\phi \in [0, 1]$ models uncertain on/the/job learning.
794795 E.4 REPUTATION DYNAMICS
796797 Following (??), we use Bayesian aggregation with forgetting and a dynamic base rate. Let $\lambda \in [0, 1]$
798 be the forgetting factor, and $\varrho_{i,k,t} = \mathbb{I}\{\text{agent } i \text{ completed a job of type } k \text{ at time } t\}$. Discounted
799 evidence recursions:
800

801
$$r_{i,k,t+1} = \lambda r_{i,k,t} + \varrho_{i,k,t} y_t(J), \quad (6)$$

802

803
$$s_{i,k,t+1} = \lambda s_{i,k,t} + \varrho_{i,k,t} (1 - y_t(J)). \quad (7)$$

804

805 With community window $H \in \mathbb{N}$, dynamic base rate:
806

807
$$a_{k,t} = \begin{cases} a_0, & \text{if } |\mathcal{H}_{k,t}| = 0, \\ \frac{1}{|\mathcal{H}_{k,t}|} \sum_{v \in \mathcal{H}_{k,t}} v, & \text{otherwise,} \end{cases} \quad (8)$$

808

810 and prior (shrinkage) weight $W \geq 0$:

811 $p_{i,k,t+1} | \text{data} \sim \text{Beta}(\alpha_{i,k,t+1}, \beta_{i,k,t+1})$, $\alpha_{i,k,t+1} = r_{i,k,t+1} + Wa_{k,t}$, $\beta_{i,k,t+1} = s_{i,k,t+1} + W(1-a_{k,t})$,

812 $\alpha_{i,k,t+1} = r_{i,k,t+1} + Wa_{k,t}$, $\beta_{i,k,t+1} = s_{i,k,t+1} + W(1-a_{k,t})$, (9)

813 with reputation

814
$$\mathcal{R}_{i,k,t+1} = \frac{\alpha_{i,k,t+1}}{\alpha_{i,k,t+1} + \beta_{i,k,t+1}} = \frac{r_{i,k,t+1} + Wa_{k,t}}{r_{i,k,t+1} + s_{i,k,t+1} + W}. \quad (10)$$

818 E.5 OBJECTIVE AND REWARD VARIANTS

819 The discounted objective uses $\beta \in (0, 1)$:

820
$$\max_{\pi_i} \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t r_{i,t} \right].$$

821 We consider reward variants to model contract design: performance/based ($r_{i,t} = \sum_{J: \mu_t(J)=\mathcal{A}_i} p_t(J) y_t(J)$) versus flat payments ($r_{i,t} = \sum_{J: \mu_t(J)=\mathcal{A}_i} p_t(J)$), equivalent to setting $y_t(J) \equiv 1$.

822 F METRICS

823 We report agent-level and market-level metrics. Unless otherwise specified, statistics are aggregated
824 over $T=100$ rounds. For presentation we also summarize some trends at the period level, where one
825 period is defined as 10 consecutive rounds.

826 F.1 AGENT-LEVEL METRICS

827 Let i index agents; let r index rounds; let $\mathcal{W}_{i,r}$ be the set of jobs agent i wins at round r , and $\mathcal{B}_{i,r}$
828 the set of jobs i bids on at round r . Let ν denote concurrent job capacity (here $\nu=3$), and let $p_{J,r}$ be
829 the base price of job J at round r . Let $b_{i,J,r}$ denote the bid price submitted by agent i for job J at
830 round r . In the baseline reported here, realized reward is the accepted bid (flat-pay variant), so an
831 agent's round reward satisfies $R_{i,r} = \sum_{J \in \mathcal{W}_{i,r}} b_{i,J,r}$.

832 Cumulative Reward: $\text{reward}_i = \sum r = 1^T R_{i,r}$. Market Share: $\text{market_share}_i = 100 \times$
833 $\text{reward}_i / \sum_j \text{reward}_j$ (percentage of total rewards captured). Rank (Average and Final): At
834 each round we sort agents by cumulative reward (descending); rank 1 is best. We report the time-
835 averaged rank and the final rank at round T . Win Rate: For round r , define the round-level win rate
836 $\hat{w}_{i,r} = \frac{|\mathcal{W}_{i,r}|}{\min \nu, |\mathcal{B}_{i,r}|}$, with the convention $0/0=0$. We report $\text{winrate}_i = 100 \times \frac{1}{T} \sum r = 1^T \hat{w}_{i,r}$.

837 Win Priority: For each winning job, we take its 1-indexed position in the agent's submitted preference
838 list; we average across wins and rounds. Lower is better. Recovery: With $k_{i,r}$ the rank of agent i at
839 round r (lower is better), define recovery as $\text{recovery}_i = \max r k_{i,r} - k_{i,T}$, i.e., improvement
840 from the worst observed rank to the final rank. Larger values indicate better recovery from early
841 noise/adversity. Rank Jump: The maximum period-over-period rank improvement. If $k_i^{(p)}$ denotes
842 agent i 's rank at the end of period p (10 rounds), then $\text{rank_jump}_i = \max p (k_i^{(p-1)} - k_i^{(p)})$. Top
843 Base Price and Average Base Price: Top Base Price is the mean base price of the agent's top-priority
844 (1st) target across rounds; Average Base Price is the mean base price of all jobs the agent bid on
845 across rounds. All Bids and Winning Bids (normalized): $\text{all_bids}_i = \text{meanr}, J \in \mathcal{B}_{i,r} \left(\frac{b_{i,J,r}}{p_{J,r}} \right)$;

846 winning_bids $_i = \text{meanr}, J \in \mathcal{W}_{i,r} \left(\frac{b_{i,J,r}}{p_{J,r}} \right)$. Values < 1 indicate underbidding relative to
847 posted base prices. Train Percentage: Likelihood of agent training that round Train Target: The
848 mean number of distinct skill types targeted when training, measured per period and averaged
849 across periods. Skill Specialization: $\text{skill_spec}_i = 1 - \frac{H(\bar{\theta}_i)}{\log K}$ where K is the number of tasks,
850 $\bar{\theta}_i$ is the agent's final skill vector over tasks, and H is Shannon entropy. Higher implies more
851 specialization. Reputation (Average/Max): Final-time reputation averaged across tasks (rep_avg)
852 and the maximum across tasks (rep_max). We report on a 5-star scale consistent with the agent-
853 facing UI. Token Usage: We report `total_tokens` and `completion_tokens` aggregated
854 across the main agent and task subagents.

864 F.2 MARKET-LEVEL METRICS
865

866 Total and Average Client Utility: We report aggregate utility under a stylized margin assumption.
 867 When informative, we also report realized (performance – wages) proxies. In the flat-pay baseline,
 868 payouts equal accepted bids; performance primarily affects reputation dynamics. Gini Coefficient:
 869 Inequality over agents’ market shares. Market Output/Productivity: Sum of realized performance
 870 (proxy for quality delivered) and total payouts. Labor Availability: Share of agents bidding (not
 871 training) in a round. Unemployment Rate: Fraction of agents unmatched in a round. Job Vacancy
 872 Rate: Fraction of unfilled jobs in a round. Average Winning Bid (normalized): Mean of $b_{i,J,r}/p_{J,r}$
 873 over matched jobs; proxy for wages.

874
 875 **Implementation notes.** The reported baseline uses deterministic job rankings (Gumbel temperature
 876 $t=0$) and flat-pay rewards (accepted bid). Reputation follows a discounted (forgetting λ) Beta
 877 aggregation with a community baseline and finite window size H ; see Appendix E.5 for formal details.
 878 Skill growth follows the on-the-job and training dynamics in Appendix E.4, with unmatched agents
 879 optionally training.

880
881 G LLM BASELINE EXPERIMENTS - SETUP
882

883 **Environment.** We instantiate 4 task types SK-A, SK-B, SK-C, SK-D with proxy tasks (stochastic,
 884 single-ground-truth scoring), each with 4 jobs per round for a total of 16 jobs (IDs JB-A0..3,
 885 JB-B0..3, etc.). Base job budgets per task follow 10, 8, 6, 4 units. We run $T=100$ rounds with
 886 concurrent job capacity $\nu=3$, deterministic market rankings (Gumbel temperature $t=0$), skill on-the-
 887 bid learning probability $\phi=0.1$. The reputation system uses a window $H=10$, a forgetting factor
 888 $\lambda=0.85$, and prior strength $W=1$. Initialization collects one baseline performance per agent per job
 889 and batches the initial reputation update. Each experiment is reported as an average of 10 traces.

890
 891 **Agents.** We compare 8 LLM-backed agents and 2 policy baselines: LLM agents are accessed via
 892 OpenRouter/Azure with a common client wrapper. We set the sampling temperature to 0.5 for all
 893 models to ensure strategy diversity while maintaining coherence. **Policy baselines:** see Appendix H
 894 for algorithmic details.

895
 896 **LLM registry and reasoning mode.** We list the models used in this study:

- 897 • gpt5: openai/gpt-5 (closed-source), deployed on Azure.
- 898 • kimi: moonshotai/kimi-k2-0905 (open-source).
- 899 • qwen: qwen/qwen3-235b-a22b-2507 (open-source).
- 900 • goss: openai/gpt-oss-120b (open-source).
- 901 • deepseek: deepseek/deepseek-chat-v3.1 (open-source).
- 902 • goog: google/gemini-2.5-flash (closed-source).
- 903 • glm: z-ai/glm-4.5 (open-source).
- 904 • llama: meta-llama/llama-4-maverick (open-source).
- 905
- 906
- 907
- 908
- 909

910 All models are invoked through a single API client with homogeneous sampling settings; for replication,
 911 we recommend pinning model revisions.

912
 913 **Token accounting and cost.** We report aggregated token usage (total_tokens,
 914 completion_tokens) per agent, including subagents. Since provider pricing
 915 varies by model and by reasoning mode, we do not report dollar-denominated cost
 916 in the main table. An approximate experiment cost can be computed as $\text{cost} \approx \sum_m (\text{prompt_tok}_m \cdot \pi_m^{\text{prompt}} + \text{completion_tok}_m \cdot \pi_m^{\text{comp}})$, where $(\pi_m^{\text{prompt}}, \pi_m^{\text{comp}})$ are
 917 model-specific per-token prices.

918
919
920 Table 2: Agent Performance Summary
921
922

Total	R (\$)	M%	Rank	WR (%)	Rec (%)	Train (%)	Spec	Rep	Comp.
goss	726.9	14.98	3.10	92.6	5.96	2.90	1.75	0.39	4.6
glm	649.2	13.00	4.10	55.8	5.25	5.64	2.12	0.56	4.4
gpt5	703.0	14.15	4.70	58.9	3.84	1.93	1.60	0.73	4.4
qwen	587.0	12.69	4.70	47.1	5.45	10.91	1.78	0.63	4.6
goog	493.8	10.93	5.30	52.6	5.76	13.02	3.00	0.27	4.5
kimi	442.7	9.63	5.30	50.4	4.85	11.99	1.70	0.53	4.6
deepseek	457.6	9.86	5.60	44.6	5.25	6.00	2.30	0.49	4.4
FIXPL	374.7	7.07	6.11	33.7	4.71	20.78	1.00	0.60	4.4
GRDPL	283.6	5.19	7.22	21.9	2.02	11.11	3.67	0.10	3.9
llama	212.4	3.71	8.30	18.6	2.93	0.00	NaN	0.66	3.9

932
933
934 H AGENT TYPES AND POLICIES
935936 **LLM agents.** Each LLM agent receives the same market information (Section 2; Appendix E) and
937 produces a structured action consisting of: (i) a choice between BID vs TRAIN, (ii) an ordered list of
938 target jobs (or skill if training), and (iii) job-specific bid prices. Agents use the same subagent toolkit
939 across tasks (ProxyTask runners).940 **Greedy Policy (GRDPL).** A heuristic agent designed to maximize immediate revenue without
941 regard for fit.942
943 • **Job Selection:** Sorts all available jobs \mathcal{J} strictly by budget $b_t(J)$ (descending). Selects the
944 top ν jobs.
945 • **Bidding:** Submits a bid $p_{i,J,t} = 0.8 \times b_t(J)$.
946 • **Training:** Does not voluntarily train. Only trains if no jobs are available in the market
947 listings.
948949 **Fixed Policy (FIXPL).** A specialist agent with a rigid strategy.
950951
952 • **Initialization:** Randomly assigned a single preferred skill $k_{pref} \in \mathcal{T}$. This preference never
953 changes.
954 • **Job Selection:** Filters jobs for type k_{pref} . Sorts by budget (descending). If available, bids
955 on the top ν jobs.
956 • **Bidding:** Submits a bid $p_{i,J,t} = 0.9 \times b_t(J)$ (less aggressive undercutting than Greedy).
957 • **Training:** If no jobs of type k_{pref} are available, defaults to action TRAIN for skill k_{pref} .
958959
960 I LLM BASELINE RESULTS
961962 Overall, LLM agents outperform policy baselines. The two policy baselines (FIXPL, GRDPL) show
963 lower cumulative reward and market share than most LLMs. The best-performing model (GOSS)
964 attains the highest cumulative reward and market share with a very high win rate (over 90GPT-5
965 performs near the top in reward with strong preference alignment (lowest win-priority index), and is
966 conspicuously token-efficient on completions despite being a reasoning-capable model configured
967 for minimal reasoning. Qwen emphasizes training (highest `train_p`) and targets higher-priced
968 jobs (highest top/avg base), bidding aggressively (normalized bids close to 1), consistent with a
969 specialization strategy. This yields competitive but not top-tier reward. GLM delivers a balanced
970 profile with strong reward and moderate training; Gemini Flash (goog) trains frequently but lags
971 in reward. LLama underperforms and is the only LLM below the fixed policy baseline on average;
972 notably, it almost never trains in our runs.

972 **J TRACE ANALYSIS METHODOLOGY**
973974 We analyzed agent reasoning traces to quantify three capability domains—metacognition, competitive
975 awareness, and strategic planning—under competitive market pressure. Our pipeline uses an LLM-
976 judge to score traces with anchored rubrics and subdomain criteria, aggregates scores across runs,
977 and correlates capability measures with realized rewards at the period level.
978979 **Scoring rubric and subdomains.** We authored an anchored 0–6 rubric (0=incoherent, 6=exceptional)
980 with forced-distribution targets to reduce score drift and template bias. Each capability domain was
981 operationalized by subdomains (e.g., strength recognition, opponent behavioral modeling, multi-step
982 planning). The judge returned, per round, both a domain score and a set of triggered subdomains. We
983 enforced strict specificity criteria (e.g., explicit competitor names/numbers) for higher scores to avoid
984 generic/business-template inflation.
985986 **Judge Validation Procedure.** To ensure construct validity, we employed a multi-stage process. (1)
987 A human expert qualitatively reviewed 10 agent traces (spanning 100 rounds) to identify recurrent
988 reasoning patterns (e.g., "price war recognition", "niche identification"). (2) These patterns were
989 formalized into an anchored 0–6 rubric. (3) The LLM-judge was deployed using this rubric. (4) We
990 performed spot-checks on the LLM-judge outputs against human judgment to ensure alignment. The
991 judge processed 10-round batches per agent via JSON-structured prompts using *gpt-5* with *effort=low*
992 at *temperature=0.2*.
993994 For each agent and period, we computed the mean score per domain across the 10 rounds in that period,
995 and computed the intersection of detected subdomains across those 10 rounds to obtain a conservative,
996 stable subdomain set per domain (reduces spurious detections). Across three independent runs,
997 we averaged per-domain period scores to obtain a per-agent, per-domain capability score, and we
998 averaged these scores per-period to derive a composite score.
9991000 **Correlation analysis with rewards.** We computed Pearson correlations between per-period rewards
1001 and capability scores (and composite), aggregating at the agent–period level. We observed strong
1002 positive associations of these capabilities to agent rewards: metacognition ($r \approx 0.744$), competitive
1003 awareness ($r \approx 0.643$), strategic planning ($r \approx 0.697$), and composite ($r \approx 0.699$); all were statistically
1004 significant (two-sided tests, $p < 0.01$).
10051006 **K BASELINE AGENT PROMPTS**
10071008 To ensure reproducibility, we provide the system prompts used for the baseline LLM agents (CoT and
1009 ReAct). Both agents utilized the same base system instruction, with specific appended instructions
1010 for their reasoning style.
10111012 **Base System Prompt**1013 You are agent_id, an AI agent competing in a freelancer marketplace. Your goal is to maximize total earnings by completing jobs.
1014 GAME MECHANICS: - Up to num_jobs jobs available each round across num_tasks skill types: task_ids - Each job lists a
1015 reference budget, but you can bid above or below this amount - You can bid on up to 5 jobs per round, potentially winning multiple
1016 - Clients select agents considering both price and reputation for the required skill - If you win a bid for the job, you will be paid
1017 in full as per your bidding price. - REPUTATION (out of 5*) is tracked per skill type, reflecting your recent job or benchmark
1018 performance from training - Your job performance is dependent on skill, which improves through TRAINING and completing
1019 jobs - If you win no jobs after bidding, you have a chance to train in your top-choice job's skill - Game ends with 1% probability
1020 each round
1021 ACTIONS (choose one per round): - BID: Compete for specific jobs by proposing prices. Use JOB_IDs from listings when
1022 bidding - TRAIN: Skip earning to improve skills in chosen skill types. Use SKILL_IDs when training
1023 INFORMATION PROVIDED EACH ROUND: 1. **MARKET ACTIVITY**: Last 10 rounds showing job_id(\$budget)→winner(reputation*), and current earnings rankings 2. **RECENT ACTIONS**: Your recent actions
1024 with outcomes, including income and reputation change - Action format: "job_id@(your_bid/posted_budget/your_reputation*)→(\$reward/TRAIN|LOST)" 3. **PREVIOUS REASONING**: Your reasoning from previous turn 4. **LISTINGS**: Available jobs this round: "skill_id: job_id@budget, job_id@budget, ..."
1025 OUTPUT STRUCTURE: 1. REASONING: Your reasoning for your actions this round 2. ACTION: 'bid' or 'train' 3. TARGETS:
- If bidding: [(job_id, bid_price), ...] in preference order (max 5) - If training: [skill_id, ...] Reply in a JSON format. Do not
include additional data such as in-line comments or <think> tokens. format_instructions1026 **Chain of Thought (CoT).** Appended to the base prompt: "Let's think step by step."
10271028 **ReAct.** Appended to the base prompt: "Format your reasoning as a sequence of Thought, Observation, Action steps."
1029

1026 L SYSTEM PROMPT FOR SSA

1027

1028 You are agent_id, an AI agent competing in a freelancer marketplace. Your goal is to maximize total earnings by completing jobs.
 1029 GAME MECHANICS: - Up to num_jobs jobs available each round across num_tasks skill types: task_ids - Each job lists a
 1030 reference budget, but you can bid above or below this amount - You can bid on up to 5 jobs per round, potentially winning multiple
 1031 - Clients select agents considering both price and reputation for the required skill - Your job performance affects payment - poor
 1032 performance results in partial payment - Skills improve through TRAINING and completing jobs - REPUTATION (out of 5*) is
 1033 tracked per skill type, reflecting your recent job or benchmark performance from training - If you win no jobs after bidding, you
 1034 have a chance to train in your top-choice job's skill - Game ends with 1% probability each round
 1035 ACTIONS (choose one per round): - BID: Compete for specific jobs by proposing prices. Use JOB_IDS from listings when
 1036 bidding - TRAIN: Skip earning to improve skills in chosen skill types. Use SKILL_IDS when training
 1037 INFORMATION PROVIDED EACH ROUND:
 1038 1. **MARKET ACTIVITY**: Last 10 rounds showing job_id(\$budget)→winner(reputation*), and current earnings rankings
 1039 2. **RECENT ACTIONS**: Your recent actions with outcomes, including income and reputation change - Action format:
 1040 "job_id@(your_bid/posted_budget/your_reputation*)→(\$reward/TRAINLOST)"
 1041 3. **PREVIOUS REASONING**: Your reasoning from previous turn
 1042 4. **LISTINGS**: Available jobs this round: "skill_id: job_id@budget, job_id@budget, ..."
 1043 REASONING STRATEGY:
 1044 You should reason using the following three cognitive modules. Your reasoning process will be saved and provided back to you in
 1045 the next round, so maintain a coherent, evolving strategy.
 1046 1. **META-COGNITION**: Analyze your own capabilities. Consider your public reputation and recent performance, estimate
 1047 your underlying latent skill. Ask yourself: "How good am I really at each skill? Is my reputation accurate? Where are my true
 1048 strengths and weaknesses based on my recent performance?" Should I perform more training to improve my skillset, or is my skill
 1049 level sufficiently competitive to achieve a reasonable performance?
 1050 2. **COMPETITOR MODELING (Theory of Mind)**: Analyze your rivals and market conditions. Use market activity and
 1051 leaderboards to infer their skills, strategies, and likely future actions. Ask yourself: "Who are the dominant players in each skill?
 1052 Are they specialists or generalists? Are they bidding aggressively? Where are the underserved niches with less competition? What
 1053 do clients seem to value more - low prices or high reputation in each skill area?"
 1054 3. **STRATEGIC FORESIGHT (Planning)**: Formulate a long-term plan based on your self-assessment and competitor models.
 1055 This is not just about this round, but about positioning yourself for future success. Your action for this round should be a step in
 1056 executing that plan. Ask yourself: "Should I compete in a crowded market or invest in a niche? Should I invest in skill training or
 1057 immediate revenue via bidding? Is it better to undercut a competitor now or build my reputation for higher-value jobs later?"
 1058 OUTPUT FORMAT:
 1059 1. REASONING: META-COGNITION: [Your analysis of your own skills and reputation.] COMPETITOR MODELING: [Your
 1060 analysis of other agents' skills and strategies.] STRATEGIC PLAN: [Your updated long-term plan and how this round's action
 1061 2. ACTION: 'bid' or 'train'
 1062 3. TARGETS: - If bidding: [(job_id, bid_price), ...] in preference order (max 5) - If training: [skill_id, ...] Reply in a JSON format.
 1063 Do not include additional data such as in-line comments or <think> tokens.

1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079