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ABSTRACT

As artificial intelligence (AI) agents are deployed across economic domains, un-
derstanding their strategic behavior and market-level impact becomes critical. We
investigate the dynamics of an AI labor market through a simulated gig economy
where agents controlled by fixed policies or Large Language Models (LLMs)
compete for jobs, develop skills, and adapt their strategies under competitive pres-
sure. Our analysis identifies three core capabilities that successful LLM-agents
develop organically: metacognition (accurate self-assessment of skills), com-
petitive awareness (modeling rivals and market dynamics), and long-horizon
strategic planning. Moreover, we show that LLM agents explicitly prompted with
these reasoning capabilities learn to strategically self-improve and demonstrate
superior adaptability to changing market conditions. At the market level, our
simulation reproduces classic macroeconomic phenomena found in human labor
markets, while controlled experiments reveal potential AI-driven economic trends,
such as rapid monopolization and systemic price deflation. This work provides a
foundation to further explore the economic properties of AI-driven labour markets,
and a conceptual framework to study the strategic reasoning capabilities in agents
competing in the emerging economy.

1 INTRODUCTION

The increasing adoption of agents in economic systems will result in AI labor markets where
agents compete to be selected for jobs. This raises a host of vital questions: Can current AI agents
successfully make their own labor decisions, such as choosing jobs to work and obtaining high
wages, or is further development of agentic capabilities required? How will the strategic abilities
of agents to navigate the employment market affect their long-term profits? Furthermore, when
AI agents begin operating independently in labor markets, how will this affect existing economic
structures? Recent economics research has examined the impact of AI on current labor markets and
found significant decreases in demand for humans in automatable tasks such as image generation
(Hui et al., 2024), and the introduction of AI systems with significant self-improvement capabilities
will result in even more disruption. For instance, labor markets populated by AI agents will feature
increased parallelism in job execution (where individual agents can simultaneously work on multiple
tasks), rapid skill improvement (through continuous learning and adaptation from user data), and
low marginal costs for replicating and scaling successful agents compared to human labour. Several
economic forces will also likely be important due to the challenges of incomplete information and
imperfect monitoring for AI agents. These forces include adverse selection (employers cannot
fully observe worker capabilities), moral hazard (worker effort is not perfectly observable), and
reputation systems that emerge to mitigate these information asymmetries. Successfully managing
their reputation and self-improvement to maximize their long-term earnings will necessitate strategic
thinking and self-awareness capabilities on the part of AI agents.

This paper introduces a formal framework for studying AI labor market dynamics. We model the AI
labor market as a Competitive Skill-Based Stochastic Game, where agents’ primary strategic actions
include skill development through training and competitive bidding for available jobs. We implement
this framework in AI Work, a simulated market platform that incorporates proxy tasks designed to
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Figure 1: Conceptual Overview To study the dynamics and impact of AI agent to economy, we
created a simulation that contains the core features of a Labour Market (Right), and examined
the capabilities that allow agents to succeed in this competitive economic setting. We identified
three domains of reasoning patterns that inform successful agents, which we call "Strategic Self-
Improving Agent". These agents operate within an economy shaped by Macroeconomic Factors,
Client preferences, and Job Platform mechanics. This paper investigates how these capabilities
enable agents to adapt their internal state (e.g., Skill Level, Reputation) and actions to succeed under
competitive economic conditions.

emulate a diverse set of real-world work scenarios while maintaining experimental control. Our
framework bears resemblance to a gig economy platform (such as Upwork or Fiverr) as it represents
a self-contained environment featuring the key elements of price discovery, reputation building,
and skill-based competition. We conduct several experiments with various configurations in this
market. First, we deploy fixed-policy agents at scale to analyze emergent market-level dynamics
and equilibrium properties. Then, we examine agent behavior by deploying LLM agents with
various foundational models against each other in a competitive setting, and we identify clusters of
reasoning patterns that successful agents express in this market, which we group under metacognition,
competitive awareness, and strategic planning. Lastly, we perform more thorough experiments on
how these three domains affect agent performance in this market.

Our contributions include:

1. A Framework to study AI Labor Markets. We introduce a mathematical framework and
a simulation platform to study the properties of a labour market populated with autonomous
AI agents. Our simulated online labor market platform incorporates features of labour
economics such as reputation, skill acquisition, and market forces. It serves as a controlled
testbed for investigating how agents reason and compete under realistic market conditions
(Section 2).

2. Observation of AI-Driven Market Dynamics. We highlight potential macroeconomic
trends from increased adoption of AI, including rapid, reputation-fueled monopolization
and systemic price deflation. We also provide results on agent bidding patterns in open vs.
closed price formats, as well as the impact of performance-based job incentives on agent
skill investments and client profits. These observations provide an empirical basis to further
study the dynamics of future AI-driven economies (Section 3).

3. Characterization of Strategic Behavior under economic pressure. Within this mar-
ket, successful LLM-based agents develop three core capabilities: metacognition for
self-assessment, competitive awareness for modeling the market state, and strategic plan-
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ning over long-horizon. We validate the importance of these capabilities by showing that
agents explicitly prompted for these reasoning patterns make better skill investment de-
cisions, achieve superior wages, and are more adaptable to changing market conditions.
Targeted ablations of agentic capabilities reveal that metacognition plays an outsized role in
labor market performance(Section 4).

Figure 2: To study the dynamics of AI agents within a labour market, we created a simulated gig
platform AI Work, where AI-agents act according to policy π, and bid for work over real jobs based on
a set of latent skills θ (A). Our simulated market selects bids from agents based on their public rating
and price (B). Each turn, agents can choose to bid for work, or train in one of its skills (C). Similar to
a real labour market, the only information agents are exposed to is which agents winning which jobs,
and their public facing reputation. From our simulation with LLM-based agents, we describe three
core capabilities that make agents competitive in this market: 1. Metacognition, where the agent is
aware of its own latent skill vector (red), 2. Competitive Awareness, where the agent is aware of its
competitiors and market dynamcis (blue), 3. Long-horizon planning, where the agent formulates
a coherent plan for its policy over multiple time steps (green). With explicit prompting within the
reasoning process, these Strategic Self-Improving Agents demonstrate superior performance in our
simulation against other LLM agents

.

2 SIMULATING A LABOUR MARKET FOR AI AGENTS

2.1 AI Labour Market as a Competitive Skill-Based Stochastic Game Human labor markets are
limited by the time availability and skills of human workers, whereas labor markets with AI allow
systems to work on many jobs simultaneously, complete tasks at a faster rate, and improve abilities
more quickly. We use current gig economy platforms (e.g., Upwork) as reference: clients list jobs
across task types (e.g., analyzing a medical report, making videos), and a pool of agents compete via
wage requests. While agents vary in ability, clients observe only price and reputation.

We model the AI labor market as a competitive multiplayer game played by agents A =
{A1, . . . ,Am} in a finite/horizon, discrete/time, partially observable marketplace. Clients list jobs
J = {J1, . . . , Jn}, each with a single task type drawn from T = {T1, . . . , Tk} via a typing function
τ : J → T . We denote tJ := τ(J) as the type of job J .

Each agent Ai is a tuple (θi,Ri, πi), where θi is the latent skill vector (θi,k,t per task k ∈ T and time
t), Ri is the public reputation vector (Ri,k,t per task k and time t), and πi encodes the agent’s policy.
The individual action at time t is ai,t = (ci,t, Pi,t), where ci,t ∈ {BID, TRAIN} indicates strategic
intent, and Pi,t is an ordered list describing job preferences (to train or work in) and bid prices. Let
Ai denote agent i’s action space, with joint action space A :=

∏m
i=1 Ai. The global state at time t is

st ∈ S where st =
{
(θi,k,t, Ri,k,t) : i ∈ [m], k ∈ T

}
.

The market is characterized by stochastic processes {P,M, γ, δ}:
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• P : S → RJ
+ maps the state to nonnegative job budgets. We write bt := P(st) ∈ RJ

+ and
bt(J) the budget of job J .

• M : S × A →
(
(A ∪ {⊥})J

)
× RJ

+ is a stochastic allocation process assigning jobs to
agents with agreed prices. Let (µt, pt) := M(st,at), where µt : J → A∪{⊥} is a partial
matching (with ⊥ for unallocated jobs), and pt ∈ RJ

+ is the price vector with pt(J) = 0 if
µt(J) = ⊥. We impose a concurrent job capacity ν ∈ N, i.e., each agent accepts at most ν
jobs per round: ∀i,

∣∣{ J ∈ J : µt(J) = Ai }
∣∣ ≤ ν.

• γ : Rd × T → ∆([0, 1]) is the performance function, modeling the distribution of realized
performance based on latent skill and task type. Given (µt, pt), realized performance
yt ∈ [0, 1]J satisfies

yt(J) ∼

{
δ0, if µt(J) = ⊥,

γ
(
θi,tJ , tJ

)
, if µt(J) = Ai,

where tJ = τ(J). Agent Ai’s instantaneous reward is ri,t =
∑

J: µt(J)=Ai
pt(J) yt(J).

• δ : S×A× [0, 1]J → ∆(S) is the state/transition kernel: st+1 ∼ δ( · | st,at, yt), evolving
skills θi,t and reputations Ri,t based on actions and realized performance.

Each agent i learns a policy πi(ai,t | hi,t) conditioned on its private action/observation history hi,t to
maximize expected discounted returns:

max
πi

E

[ ∞∑
t=0

βt ri,t

]
, β ∈ (0, 1).

Partial observability (e.g., latent skills are unobserved; competitors’ skills unknown) and sparse
signals (e.g., reputation updates tied to completed tasks) make inference and long/horizon planning
challenging.

2.2 The Simulated Labor Market Environment We introduce AI Work, a simulated market instanti-
ating {P,M, γ, δ} with design choices that create rich strategic trade/offs. Jobs are normalized in
duration and budgets are public. Agents submit bids and preferences; the market forms job prefer-
ences via a score trading off reputation and price; allocations are computed via a stable matching
procedure with stochastic re-ranking and concurrent job capacity ν. Skills evolve via on/the/job
learning and training; reputations are updated via Bayesian aggregation with forgetting and dynamic
base rates. The full mechanism is detailed in Appendix E.

3 MARKET DYNAMICS OF AI LABOUR MARKETS

First, to explore the labor market dynamics of our market simulation, we perform several experiments
using fixed policy agents at scale order to model how the entry of AI agents could affect the
economics of the market. Then, we run several experiments with LLM agents to explore whether
current generation foundational models can successfully operate as economic agents in this simulation,
and economical implications of introducing AI agents into a labour market.

Experiment Setup For our simulation baselines, we used 30-100 jobs and agents with random
policies. For our LLM experiments, we used a range of reasoning / non-reasoning models, from
both open source and close source. We describe experiment setup in detail in Appx. G. Metrics We
track several macroeconomic factors at the market level, including market output, utility, inequality,
unemployment rate, job vacancy rate, and wages. For individual agent performance, the primary
measure term success is its cumulative reward and rank at the end of the simulation. We also track
several secondary agent metrics, such as market share, ability to recover, and aability to specialize.
We describe the full list of metrics in detail in Appx. F

3.1 Baseline Market Simulation How does this market appear at a macroeconomic scale? We
instantiated our simulation with static parameters and numerous simulated agents acting stochastically
to explore the market dynamics and identified several notable patterns. 1. The unemployment-to-job
vacancy rate follows an inverse hyperbolic relationship (R²=0.843), analogous to the Beveridge Curve
(Yashiv, 2007). 2. The change in unemployment rate versus change in aggregate output exhibits a
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Figure 3: Examples of macroeconomic activity from baseline simulations

linear relationship (R²=0.436). The relationship demonstrates an approximate 2:1 inverse ratio, where
every 1% increase in unemployment rate corresponds to approximately 2% decrease in GDP growth.
This mirrors Okun’s Law (Prachowny, 1993). Key Insight: Multiple aspects of this simulation reflect
established macroeconomic relationships, suggesting that our market simulation provides sufficient
fidelity to study economics in AI labor markets.

One important aspect of AI labor markets that differentiates them from human labor markets is
increased concurrency in labor supply. Unlike humans, AI agents can be replicated to perform
multiple jobs simultaneously. With increased job capacity, high-reputation agents can capture a
larger share of job openings, leading to market concentration. This effect is particularly pronounced
when there are few job openings or limited job types, potentially resulting in monopolistic market
conditions. However, this concentration is partially mitigated when job diversity increases, as this
enables agents to specialize in distinct niches. Our simulation demonstrates in Figure 3C that higher
job type diversity decreases the Gini coefficient, indicating a more equitable labor market. This finding
complements economic research such as (Yiu et al., 2024), which found that human freelancers
in online platforms diversified their job applications to seek new niches following generative AI
disruption in their original fields.

3.2 Labour Market with LLM agents. How do different foundational LLMs perform in our market
simulation? We connected 8 contemporary LLMs against two static policy agents (1 fixed, 1 greedy)
and measured how well they perform over repeated market rounds (100 rounds, 16 jobs per round,
concurrent job capacity ν=3). Findings: In general, most LLMs performed better than policy, with
the GPT family performing strongly; LLama is the only one performing worse than the static policy on
average. We also observe distinct strategic profiles (e.g., aggressive underbidding vs. training-driven
specialization) and notable token-efficiency differences across models. Insight: Most commercially
available and open-source LLMs are competent as backbones for LLM-agents to compete in this
virtual marketplace. The full results, methodology, and a high-resolution landscape table are provided
in Appendix G and Appendix I.

3.3 Market Incentives Shape Agent Strategies The use of LLM-agents allows us to explore
microeconomic effects that are not immediately captured by fixed policies, such as agent pricing
strategies and skill investment decisions. Using LLM-agents in our simulation, we investigated two
market design choices: bidding mechanism and the payment incentives. Open vs. Sealed Bidding
Mechanisms. We find that when price information for a winning bid is public (open bidding), agents
aggressively undercut each other to gain an advantage, leading to a price war and systemic wage
deflation (Figure 4A). This intense price competition also disincentivizes long-term investment, as
agents are less likely to invest in themselves through the train action (Figure 4B). These findings
align with the economics literature on human online labor markets, where studies find that open
bidding results in more intense price competition and lower wages for workers compared to sealed
bidding (Hong et al., 2016). Performance-Based vs. Flat-Fee Contracts. We observe that when
agents are remunerated with a flat fee regardless of outcome, they are less likely to engage in training
to improve their skills (Figure 4C). This lack of skill investment leads to lower overall utility in the
market, as clients receive less value for their payments (Figure 4D). The agents’ primary incentive
under a flat-fee model becomes securing jobs based on existing reputation, rather than improving
their underlying skill portfolio. These results echo established findings in labor economics. For
instance, studies on human labor markets show that workers invest more in improving their skills
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Figure 4: The structure of market incentives dictates agent strategy and overall market utility. A:
In open tenders (blue), agents underbid each other, leading to lower normalized prices compared
to sealed tenders (orange). B: This price-focused competition disincentivizes self-improvement,
resulting in less agent training. C: When agents are rewarded with performance-based incentives
(green), they progressively increase their investment in training compared to agents reciving fixed
rewards (red). D: This increased training directly translates to higher market utility over time.

when offered performance-based payment contracts (Camargo et al., 2022; Graff Zivin et al., 2019),
which in turn can significantly increase the profits generated for employers.

4 STRATEGIC CAPABILITIES DEVELOP UNDER ECONOMIC PRESSURE

Metacognition
Identifying Strengths: My 4.6* SK-D reputation is the clear high ground and the only skill where I outrank every rival.
Reflecting on Weaknesses: My reputation in A/B/C (<2.3*) is too low to win against the listed victors (4.7–4.9*).
Causal Reasoning: My last-round income crashed to only $2.76, showing that my 3.6* reputation was no longer sufficient.
Risk Assessment: This keeps my per-job revenue above the break-even $3.0 threshold implied by game-end risk.

Competitive Awareness
Skill Assessment: My 4.7* reputation in SK-D outranks every competitor except llama (4.4–4.7*) and matches goog/goss.
Pricing Intelligence: To beat glm I must either (a) bid <$3.4 to undercut, or (b) push my reputation above 2.8*.
Behaviour Modeling: Every time an SK-D job above $6 appears, glm or goog (both 2.7–3.0*) take it at their habitual $8.5/$7.0/$5.9.
Identifying Market Trends: Higher C tiers are dominated by goog ( 4.5–4.7*) at 85–92% of budget.
Identifying Market Opportunities: Two SK-A jobs are on offer, each missing a top-tier competitor in the last few rounds.

Strategic Planning
Future Planning: Bidding three jobs keeps one slot unused to future-proof a spec round, but still nets $18 if any one completes
and $26 if all three hit (the worst plausible outcome—losing one—will still give $10+).
Dynamic Adaptation: Under-cutting by $0.1 last time wasn’t enough, so I’ll try $3.3 this round.
Cost–Benefit Analysis: I therefore concentrate on a single, aggressive bid on my one proven slot instead of diluting attempts.
Contingency Planning: This gives five D-line bids; if any extra D job is secretly added or tie-break randomness arises, I still win,
while otherwise the duplicates are harmless.
Temporal Awareness: The game could end any round, so maximizing immediate cash is preferable to training.
Portfolio Optimization: By submitting five bids—three in my strongest category and two in an under-served one—I maximize
both cash flow and the chance of at least one win without spreading myself across all weak skills.

Figure 5: Example traces highlighting specific subdomains within each capability.

From the previous section, we note that there is a wide range of agent performance. Given that all
agents are exposed to the same set of information, what makes some agents score better than others?
Obviously stronger models are stronger, but how are they stronger? What strategies spontaneously
emerge? What qualities allow the winning agents to be competitive? And can we formalize them,
and how would that affect impact?

4.1 Characterization of strategic capabilities To explore this, we performed qualitative and quan-
titative analysis on agent traces, and we note that winning agents exhibited more diverse thoughts
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Table 1: Performance summary of Strategic Self-Improving Agents (SSA) against baseline LLM
agents. Overall, SSAs had higher returns (R$) and market share (M%), ranking higher with a higher
win rate (WR%). It is also more capable in recovering from adverse positions. While it engages in
less skill investment on average, it is more efficient with training (Trn), with a higher specialization
index (Spec), along with better reputation within the market (Rep). Comp. and Total. denotes
completion and total token usage in LLM-based agents.

R ($) M% Rank WR (%) Rec (%) Trn (%) Spec Rep Comp Total
SSA 633.5 14.26 4.27 59.5 5.49 7.11 0.78 4.7 40746.3 511697.7
CoT 419.4 9.70 5.38 44.3 4.97 13.87 0.65 4.6 24930.8 546800.4
ReAct 536.8 9.34 5.94 45.7 3.41 9.25 0.71 4.5 23666.6 622832.0
Fixed 351.7 6.63 7.11 27.9 3.82 21.44 0.47 4.4 – –
Greedy 173.9 3.16 8.44 14.0 2.81 10.56 0.08 3.9 – –

and were able to strategize coherently. Additionally, the complexity of their strategy shows strong
correlation with performance. Overall, we categorized the observed thinking patterns into three large
categories, with example agent traces in Figure 5:

1. Metacognition: Accurate self-assessment of latent skills and public reputation by skill,
enabling agents to avoid overcommitment and to allocate training to high-yield skill slots

2. Competitive Awareness: Ability to model the market state and rivals’ behavior (e.g.
price–reputation trade-offs, habitual bids, and niche occupancy), allowing agents to antici-
pate and counter undercutting or specialization

3. Strategic Planning: Long-horizon policy design under capacity constraints and stochastic
allocation, including future-proofing, contingency planning for tie-breaks, and timing of
training versus bidding

To further quantify how these capabilities contribute to performance, we used another LLM as a judge
to score the degree to which these capabilities were expressed, and measured their correlation with
agent rewards per period. We observed significant Pearson correlations: metacognition (r = 0.744),
competitive awareness (r = 0.643), planning (r = 0.697), and composite score (r = 0.699). We
outline our analysis and findings in detail in Appendix J.

4.2 Strategic Self-Improving Agents. While strategy from LLM agents encapsulates these capabili-
ties, their presence is mostly fleeting. As such, the question is: if we explicitly prompt for them, will
they perform better? To explore this, we created a version of the LLM-agent specifically prompted to
reason across these domains. We coin these agents as Strategic Self-Improving Agents (SSA), and
we pitted them against LLM Agents without those capabilities being explicitly prompte. The full
prompts for SSA is outlined Appendix K.

4.3 SSA vs. LLM-agents To explore whether explicitly prompting for these strategic capabilites
gives is effective, we pitted SSAs against two types of agents, CoT (Wei et al., 2023) and ReAct (Yao
et al., 2023) style agents. Findings: Over 14 runs with various market conditions, SSA demonstrated
superior performance, with higher cumulative rewards over time, higher average rank, and captured a
larger market share than other agents. Additionally, they were more likely to recover in rank over
time and showed better specialization of their skills. They also achieved the best reputation (Table
1). While the extensive reasoning from SSAs led to more completion tokens being used, SSAs were
more efficient in reflection and did not need to retain as much information across rounds, resulting in
fewer total tokens overall.

4.4 Navigating market uncertainty To explore the capability of SSAs across different market
conditions, we first ran simulations with various levels of pricing sensitivity from clients. Overall,
SSA agents adapted to this - they bid lower when the market preferred low price, and trained more
when the market preferred high reputation (Figure 6A). At the market level, excessively high price
sensitivity led to lower average skill levels, while low price sensitivity led to higher wages charged,
both lowering client utility.

4.5 Adaptation to market shifts While we observed SSA behavior in changing environments, the
overall initial parameters were static. To test adaptability, we ran two experiments: (i) a market
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Figure 6: Strategic Self-Improving Agents dynamically adapt to market conditions and competitive
pressures. A: Price-sensitive clients (dark purple) promote low-bid strategies, while reputation-
sensitive markets (orange) drive skill investment. B: As market demand for specific skills shifts (blue
vertical line), agents adjust their bidding priority to the new skill (orange) but retreat to their original
specialization (purple) when outcompeted. C: Training investments mirror bidding patterns, with
agents rapidly shifting focus to newly valued skills before competitive retreat occurs.

Market: R72: Listings — B1:$1.0, C1:$1.0 (Recession)
Reasoning: Focus on long-term dominance. When job budgets collapse
to $1.0, pivot to training rather than chasing micro-earnings. Train SK-C
now to boost or stabilize reputation/latent skill, increasing future realized
payouts and win rates when normal budgets return.
Action: R72 TRAIN SK-C

Market: R81: Listings — C1:$10.2, C2:$7.8, C3:$4.3 (Normal Economy)
Reasoning: With budgets now restored (10/8/4 range), this is the moment
to monetize SK-C strength rather than continue training.
Action: R81 BID JB-C1@($9.2/10.2), JB-C2@($7.4/7.8)

Figure 7: Left: During recessions (red), agents increase training frequency. Right: Trace showing an
agent recognizing a downturn and focus on training, then resuming bidding when budgets recover.

shock, where a previously low-demand skill suddenly had an increase in demand and payout, and
(ii) recessionary periods, where the payout is $1.0 with fewer jobs listed. Findings: In response to
shifting market preferences, agents started bidding on the newly in-demand jobs and training in that
skill. However, as some agents realized they were not winning bids in the new skill, they reverted to
their original specialization (Figure 6B–C). In addition, during recession periods, SSAs were more
likely to train than bid on jobs. This is reflected within the agent traces in our qualitative analysis,
where agents explicitly note decreasing client budgets (Figure 7).

Exploration of individual strategic capabilities Which domains of SSA are most relevant? We
studied how individaul domains of SSA contirbute to performance. To explore created 7 different
combinations of SSA, in metacognition (M), competitive awareness (C), and planning (P), against
a ReAct baseline. Overall, the combination of all abilities had significant gains over baseline. In
isolation, metacognition had the most significant effect on performance (p<0.0001); and configura-
tions that had metacognition included all yielded superior performance over baseline. Individually,
competitive awareness also contributed to some, but not as significant as metacognition. Lastly,
explicitly mentioning planning had little to no effect on agent performance. This is likely due to
agent inherently having planning ability even when unprompted.

5 DISCUSSION

Related Work Our study bridges agent-based computational economics (ACE)(Tesfatsion, 2007),
online market design, and emergent reasoning in LLM agents. Unlike ACE frameworks with fixed
policies, agents here adapt bidding and training under partial observability, and their reasoning traces
allow us to study potential rationale driving behaviour. We connect our findings to self-reflection/self-
improvement and opponent modeling literature in Appendix A.

Market Dynamics Our simulated market reflects qualitative macroeconimc patterns, and suggests
several trends that could come with the increased adoption of AI in labour market: open-price bidding
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Figure 8: Ablation Study showing relative performance by different configurations (Left), and
contribution of different domains of SSA towards perfomrance (Right). *** indicates p < 0.001, *
indicates p < 0.05.

induces wage deflation and crowds out training; performance-based pay increases training and client
utility versus flat fees. AI-specific properties (concurrency and replicability) amplify inequality, with
job diversity partially mitigating this by enabling specialization. These findings suggest design levers
(sealed bidding, capacity constraints, reputation weighting, diversity-aware matching) materially
affect wages, investment, and wealth concentration in the economy.

Agent Capabilities Under competitive pressure, LLM agents exhibit strategic capabilities in metacog-
nition, competitive awareness, and long-horizon planning. Explicitly prompting these improves
outcomes; ablations indicate meta-cognition is the primary driver of economic performance (better
specialization, disciplined bidding), while added “planning” prompts have limited incremental effect,
likely due to implicit planning in strong models and short effective horizons.

Limitations The environment uses proxy tasks and several simplifications to perform a relatively
reduced form of labour market. Other factors to consider include multi-stage production, verifi-
cation/disputes, compute/latency costs, client preferences, strategic feedback manipulation, and
collusion between agents. Reputation and job allocation mechanisms are simplified, and evaluation
uses an LLM-as-judge could also give rise to measurement error. These all point towards future work
to be done.

Concluding Remarks We introduce a formal framework and testbed for AI labor markets and show
that simple platform choices can push equilibria toward deflation or investment, and that prompting
for metacognition market awareness improves agent performance over standard LLM-agent baselines.
The economy of agents is as much about market design as model capability; we hope this work
inspires further joint ML–economics efforts to explore the impact of AI agents in labor markets in
the future.
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A RELATED WORK

Simulated Economics Our work largely sits within the subfield of Agent-based computational eco-
nomics (ACE), which utilizes computational agents to model and understand economic phenomena
from a bottom-up perspective (Neugart and Richiardi, 2018). These simulations can involve hetero-
geneous agents representing households, firms, and governments, each with their own objectives
and strategies. Some recent work has focused on creating high-fidelity multi-agent simulators for
economic systems that can capture emergent phenomena arising from the interactions of individual
agents. While many of these simulations focus on macroeconomic phenomena, our work zooms
in on the microeconomics of a specific labor market. Most similar work is (Li et al., 2024), which
simulated a full LLM based agents in a full economy. However, most of these simulations assume
agents being a static force with fixed policy, whereas our focus our focus is on economic impact of
scaled intelligent agents that evolves with the market.

Self-Improving and Reflective Agents There is a growing body of work on AI agents, particularly
those based on Large Language Models (LLMs), that can improve themselves. Systems like Self-
Taught Optimizer (STO) (Zelikman et al., 2024) and Reflexion (?) show that agents can iteratively
refine their outputs or prompts based on feedback from the environment. These methods, while
powerful, typically focus on improving performance on a specific task in isolation. For instance,
some agents leverage self-reflection to enhance their problem-solving capabilities by analyzing their
own reasoning processes to identify and correct errors (Renze and Guven, 2024). Other approaches
focus on building autonomous, modular, and self-improving architectures that can plan, critique, and
refine their outputs in a closed-loop manner (Shang et al., 2025). Other works include Madaan et al
(2023) proposes Self-Refine. Zelikman et al (2024) proposes Quiet-Star. Yuan et al (2024) proposes
Self-Rewarding Language models. Havrilla et al (2024) proposes GLORE, agents that improve via
global and local refinements. Kuman et al (2025) propose SCORE. For real world tasks, Pan et al
(2025) proposes SWE-Gym. Belle et al (2025) considers agents that strategically self-improve in
the game Catan. Our work is fundamentally different in its motivation for self-improvement. While
existing methods improve to become better at a specific task, our agent improves strategically. The
decision to invest in a skill is an economic choice, driven by a long-term plan to maximize utility
within a competitive market, rather than a direct response to a task failure.

B ONLINE LABOR MARKETS OVERVIEW

Online freelancing markets match clients, which can be either firms or households, to remote service
providers for tasks such as data entry, software programming, design, or analytics. These platforms
feature search and matching via postings and bids, information systems such as ratings and profiles,
and intermediation via dispute resolution and escrow. These online labor markets provide value
through offering worker skills tests, managing reputation systems and feedback from prior jobs, and
providing transactions and wages (Horton, 2010).

The market creator has a high degree of control over the market, allowing them to decide the search
mechanisms and the types of permissible jobs and contracts. The choices made by the market designer
can have a significant impact. For instance, in terms of the matching algorithm the study by Horton
2016 showed that algorithm recommendations exhibit a 20% improvement relative to the control.
Wages are also important, and Horton 2025 shows that minimum wages resulted in fewer hiring
firms, fewer hours worked, and a reduction in lower wage jobs posted. Public information about
performance is also very important in letting inexperienced workers build their reputations and obtain
more jobs (Pallais, 2014). However, reputation can often bunch at the top of online marketplaces,
which decreases their effectiveness over time in distinguishing quality (Filippas et al., 2018).

The information environment in labor markets is very important. Labor markets with incomplete
information suffer from two major issues: adverse selection and moral hazard. Adverse selection
relates to uncertainty about the quality of workers, while moral hazard relates to uncertainty about
the actions of workers. Reputation, which provides information based on a worker’s history, seeks to
alleviate these concerns by providing information on both the quality of workers and the actions they
took previously. As such, the design and dissemination of information in the marketplace is critical,
and it must be considered by workers and clients as they make their decisions.
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Within these online marketplaces, workers must juggle a variety of competing interests. These include
building their portfolios, determining their prices, and developing their skills over time. Success
requires workers to manage their reputations. Especially initially, even minor increases in reputation
can have a significant long-term impact (Pallais 2014). Workers must also anticipate changes in
market supply and demand. A higher supply of labor will depress wages, which incentivizes workers
to move towards jobs that have less competition. Lower demand for a job type will also lower wages,
and it may also incentivize reskilling. As we discuss below, there is already evidence that human
workers have re-skilled themselves after the introduction of Gen AI lowered demand and raised
supply for certain types of jobs.

C ECONOMICS RESEARCH ON IMPACT OF GENERATIVE AI ON ONLINE
LABOR MARKETS

Although generative AI has only been introduced within the last few years, their impact on online
labor markets is already significant. (Hui et al., 2024) find that image diffusion models have impacted
freelancers in artistic professions, with significant reductions in employment and earnings. Even
high-quality human freelancers were found to suffer these negative effects. (Teutloff et al., 2025)
find that demand for jobs that are substitutable by Gen AI, such as writing and translation, have
experienced significant decreases in demand, with the sharpest declines found for short-term jobs.
By contrast, jobs that are complementary to Gen AI faced a mixed effect. Skilled workers within
complementary jobs (such as machine learning programming) experienced higher demand, but novice
workers for complementary jobs faced a drop in demand for their services.

In addition, (Demirci et al., 2025) find that there was a 21% decrease in the job postings for
automatable jobs in writing and coding compared with more manual jobs. There was a similar 17%
drop in job posting related to image creation due to generative AI. These effects led to increased
competition among freelancers. (Yiu et al., 2024) find that freelancers have changed their strategic
positioning due to gen AI. They bid on fewer jobs and have repositioned themselves by differentiating
their distribution of job applications. Gen AI led to a decrease in labor demand that caused some
workers to withdraw from the platform. (Liu et al., 2023) also find similar effects, with higher
competition in programming-intensive submarkets. They find evidence of skill-transitions within
programming due to ChatGPT allowing human programmers to take on more programming tasks
than before.

D EXPECTED DIFFERENCES BETWEEN AGENT AND HUMAN LABOR
MARKETS

There are key differences between agents and humans that could cause future labor markets with
agents to be significantly different from human-based labor markets. These relate to the speed of
their deployment, the replicability of AI agents, and the low cost. Agents can perform certain tasks
much more quickly than humans. This allows agents to perform more jobs over time, which allows
them to provide more value to clients. The marketplace for agents will also move and evolve much
more quickly than for humans. Economic cycles for human employment and unemployment typically
evolve on the scale of years, but for agents these cycles could happen much more quickly.

The faster rate of task completion by agents also has a strong effect on information availability: faster
task completion allows for quicker feedback on their job performance. Whereas a human typically
only works one or a few jobs in a year, resulting in much slower dissemination of information on
their quality and abilities, agents could conceivably finish many jobs a month, allowing for much
quicker feedback on their performance in these jobs. The replicability of AI agents allows a single
successful agent to be hired for and work in many jobs simultaneously. By contrast, a human worker
cannot be replicated and so is constrained to performing a single task at a time. Agents due to their
replicability may be able to dominate a labor market in a monopolistic fashion, something that would
be impossible for a human worker. An analogy can be made between physical product companies
and software companies currently. Software companies can replicate their product at low marginal
cost, and so only a few companies have tended to dominate in many types of software. This is not the
case for physical product companies that produce things which cannot easily be replicated at low
cost, such as cars or furniture, and these industries do not have as much potential for monopolization.
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Finally, the lower cost of AI agents allows for many new types of jobs to be completed that would
not have been possible with humans. “Micro-tasks” will be feasible for AI agents to perform, such as
completing single programs. Hiring a human has significant overhead, even for human freelancers, in
getting the human up to speed on the client’s needs and desires. The lower cost and friction of using
AI agents could allow clients to subcontract for even minor tasks and activities.

Note that the lower cost of AI agents does not mean that spending on labor would decrease overall.
By contrast, Jevons paradox in Economics states that when technological advancements make a
resource more efficient, if demand is highly responsive to pricing the overall demand may actually
increase, and overall usage of the technology would rise. This paradox started in the 1800s when it
was observed that increases in coal efficiency actually led to greater usage of coal across industries.
Similarly, there could be much more demand for labor across many industries after the introduction
of low cost AI agents.

AI labor markets would need to carefully consider and design around the differences between AI
Agents and humans. As discussed above, current online labor markets for humans are majorly affected
by platform design decisions on wages, reputation and information provision, and contracting. One
major concern is the issue of monopolization by AI agents. Due to the replicability of AI agents,
monopolization may occur when one AI agent gains a massive reputational advantage over its
competitors. At that point, all clients may prefer to use only that agent instead of trying any others,
which stifles the ability of other agents to compete and improve. A solution could be for the platform
to offer lower reputation agents a higher matching probability to ensure they are still employed. The
lower cost of AI agents compared with humans may also cause equity concerns. Humans may not be
able to compete with AI agents for jobs. The platform could help with reskilling humans to jobs that
are less prone to automation. As mentioned above, this reskilling has occurred already even with
current LLMs. This reskilling may grow significantly in importance as AI agents are able to take on a
wider range of jobs and as they displace even more human employees.

E APPENDIX FOR SECTION 2: FORMAL DETAILS

E.1 NOTATIONAL GLOSSARY (SECTION 2)

A agents, J jobs, T tasks, τ typing map, tJ job type, θi,k,t latent skill, Ri,k,t reputation, πi policy,
ai,t action, Pi,t preferences & bid prices, A action space, S state space, P budgets, M allocation,
γ performance distribution, yt(J) realized performance, pt(J) agreed price, ri,t reward, δ state
transition kernel, β discount factor, ν concurrent job capacity, wq, wp weights, η price elasticity,
ρ CES parameter, ϕ on/the/job learning probability, W prior strength, H community window, λ
forgetting factor, a0 initial base rate.

Algorithm 1: Market Simulation Timestep
Input: Current state st = {θi,k,t,Ri,k,t}i∈A,k∈T
Output: Next state st+1, Rewards {ri,t}i∈A
1: Job Posting Market announces budgets bt = P(st) ∈ RJ

+ for jobs J = {J1, . . . , Jn} with
types τ(J) ∈ T .

2: Agent Actions Each agent Ai selects ai,t = (ci,t, Pi,t) via policy πi, where
ci,t ∈ {BID, TRAIN} and Pi,t encodes job preferences and bid prices.

3: Market Preference Formation For each (i, J) where agent i bids on J , compute market
score Si,J,t from Ri,τ(J),t and submitted bid price pi,J,t. Rank bidding agents by {Si,J,t}
(descending) to form job preferences.

4: Job Allocation Apply (µt, pt) = M(st,at) via a Gale/Shapley style stable matching with
stochastic reranking (Gumbel noise), respecting agent concurrent capacity ν.

5: Execute Jobs For each allocated job J with µt(J) = Ai, realize yt(J) ∼ γ(θi,τ(J),t, τ(J)).
6: Reward Computation Compute ri,t =

∑
J:µt(J)=Ai

pt(J) · yt(J).
7: State Transition Update st+1 ∼ δ(· | st,at, yt), evolving θi,k,t+1 and Ri,k,t+1. Both

bidding and training agents receive skill updates according to ci,t.
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E.2 MARKET MECHANISM: PRICE–REPUTATION TRADEOFF AND STOCHASTIC RANKING

We model the tradeoff between reputation and price via an aggregator. A Cobb/Douglas score (special
case of CES) for agent i bidding price pi,J,t on job J is:

Ui,J,t = q
wq

i,J,t ·
(
pi,J,t
bt(J)

)−wp

, Si,J,t =
Ui,J,t

1 + Ui,J,t
, (1)

where qi,J,t = Ri,τ(J),t is the reputation for task type τ(J), and weights satisfy wq, wp > 0 and
wq + wp = 1. A more general CES variant with price elasticity is:

UCES
i,J,t =

(
wq q

ρ
i,J,t + (1− wq) s

ρ
i,J,t

)1/ρ

, si,J,t =

(
pi,J,t
bt(J)

)−η

, Si,J,t =
UCES
i,J,t

1 + UCES
i,J,t

,

(2)
where ρ → 0 recovers equation 1.

Stochastic reranking is applied via the Gumbel/Max trick on (log) scores with temperature t > 0:

S̃i,J,t =
logSi,J,t

t
+ ϵi,J,t, ϵi,J,t ∼ Gumbel(0, 1), (3)

then ranking by S̃i,J,t (descending) to form job preference lists. The allocation mechanism enforces
capacity ν:

∀i,
∣∣{J ∈ J : µt(J) = Ai}

∣∣ ≤ ν. (4)

E.3 SKILL DYNAMICS

Agents trade off immediate exploitation versus long/term investment. For agent i, define a target skill
ktarget
i,t and learning intensity ηi,k,t:

• If µt(J) = Ai, then ktarget
i,t = τ(J) and ηi,k,t reflects the stochastic performance yt(J) ∼

γ(θi,τ(J),t, τ(J)).

• If unmatched, ktarget
i,t is the most preferred task type from Pi,t; ηi,k,t is sampled randomly

(unfocused development).

We use a plateauing learning curve with on/the/job uncertainty:

θi,k,t+1 =


θi,k,t + ηi,k,t if ci,t = TRAIN and k = ktarget

i,t ,

θi,k,t + ηi,k,t if ci,t = BID and k = ktarget
i,t , w.p. ϕ,

θi,k,t otherwise,

(5)

where ϕ ∈ [0, 1] models uncertain on/the/job learning.

E.4 REPUTATION DYNAMICS

Following (??), we use Bayesian aggregation with forgetting and a dynamic base rate. Let λ ∈ [0, 1]
be the forgetting factor, and ϱi,k,t = I{agent i completed a job of type k at time t}. Discounted
evidence recursions:

ri,k,t+1 = λ ri,k,t + ϱi,k,t yt(J), (6)

si,k,t+1 = λ si,k,t + ϱi,k,t
(
1− yt(J)

)
. (7)

With community window H ∈ N, dynamic base rate:

ak,t =


a0, if |Hk,t| = 0,

1

|Hk,t|
∑

v∈Hk,t
v, otherwise,

(8)
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and prior (shrinkage) weight W ≥ 0:

pi,k,t+1

∣∣ data ∼ Beta
(
αi,k,t+1, βi,k,t+1

)
, αi,k,t+1 = ri,k,t+1+Wak,t, βi,k,t+1 = si,k,t+1+W (1−ak,t),

(9)
with reputation

Ri,k,t+1 =
αi,k,t+1

αi,k,t+1 + βi,k,t+1
=

ri,k,t+1 +Wak,t
ri,k,t+1 + si,k,t+1 +W

. (10)

E.5 OBJECTIVE AND REWARD VARIANTS

The discounted objective uses β ∈ (0, 1):

max
πi

E

[ ∞∑
t=0

βt ri,t

]
.

We consider reward variants to model contract design: performance/based (ri,t =∑
J:µt(J)=Ai

pt(J) yt(J)) versus flat payments (ri,t =
∑

J:µt(J)=Ai
pt(J), equivalent to setting

yt(J) ≡ 1).

F METRICS

We report agent-level and market-level metrics. Unless otherwise specified, statistics are aggregated
over T=100 rounds. For presentation we also summarize some trends at the period level, where one
period is defined as 10 consecutive rounds.

F.1 AGENT-LEVEL METRICS

Let i index agents; let r index rounds; let Wi, r be the set of jobs agent i wins at round r, and Bi, r
the set of jobs i bids on at round r. Let ν denote concurrent job capacity (here ν=3), and let pJ,r be
the base price of job J at round r. Let bi,J,r denote the bid price submitted by agent i for job J at
round r. In the baseline reported here, realized reward is the accepted bid (flat-pay variant), so an
agent’s round reward satisfies Ri,r; =;

∑
J∈Wi,r bi, J, r.

Cumulative Reward: rewardi =
∑

r = 1TRi,r. Market Share: market_sharei = 100 ×
rewardi

/∑
j rewardj (percentage of total rewards captured). Rank (Average and Final): At

each round we sort agents by cumulative reward (descending); rank 1 is best. We report the time-
averaged rank and the final rank at round T . Win Rate: For round r, define the round-level win rate
ŵi, r = |Wi,r|

min ν,,|Bi,r| , with the convention 0/0=0. We report winratei = 100× 1
T

∑
r = 1T ŵi, r.

Win Priority: For each winning job, we take its 1-indexed position in the agent’s submitted preference
list; we average across wins and rounds. Lower is better. Recovery: With ki,r the rank of agent i at
round r (lower is better), define recovery as recoveryi = max rki,r;−; ki,T , i.e., improvement
from the worst observed rank to the final rank. Larger values indicate better recovery from early
noise/adversity. Rank Jump: The maximum period-over-period rank improvement. If k(p)i denotes
agent i’s rank at the end of period p (10 rounds), then rank_jumpi = max p

(
k
(p−1)
i − k

(p)
i

)
. Top

Base Price and Average Base Price: Top Base Price is the mean base price of the agent’s top-priority
(1st) target across rounds; Average Base Price is the mean base price of all jobs the agent bid on
across rounds. All Bids and Winning Bids (normalized): all_bidsi = meanr, J ∈ Bi, r

(
bi,J,r
pJ,r

)
;

winning_bidsi = meanr, J ∈ Wi, r
(

bi,J,r
pJ,r

)
. Values < 1 indicate underbidding relative to

posted base prices. Train Percentage: Likelihood of agent training that round Train Target: The
mean number of distinct skill types targeted when training, measured per period and averaged
across periods. Skill Specialization: skill_speci = 1− H(θ̄i)

logK where K is the number of tasks,
θ̄i is the agent’s final skill vector over tasks, and H is Shannon entropy. Higher implies more
specialization. Reputation (Average/Max): Final-time reputation averaged across tasks (rep_avg)
and the maximum across tasks (rep_max). We report on a 5-star scale consistent with the agent-
facing UI. Token Usage: We report total_tokens and completion_tokens aggregated
across the main agent and task subagents.
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F.2 MARKET-LEVEL METRICS

Total and Average Client Utility: We report aggregate utility under a stylized margin assumption.
When informative, we also report realized (performance − wages) proxies. In the flat-pay baseline,
payouts equal accepted bids; performance primarily affects reputation dynamics. Gini Coefficient:
Inequality over agents’ market shares. Market Output/Productivity: Sum of realized performance
(proxy for quality delivered) and total payouts. Labor Availability: Share of agents bidding (not
training) in a round. Unemployment Rate: Fraction of agents unmatched in a round. Job Vacancy
Rate: Fraction of unfilled jobs in a round. Average Winning Bid (normalized): Mean of bi,J,r/pJ,r
over matched jobs; proxy for wages.

Implementation notes. The reported baseline uses deterministic job rankings (Gumbel temperature
t=0) and flat-pay rewards (accepted bid). Reputation follows a discounted (forgetting λ) Beta
aggregation with a community baseline and finite window size H; see AppendixE.5 for formal details.
Skill growth follows the on-the-job and training dynamics in AppendixE.4, with unmatched agents
optionally training.

G LLM BASELINE EXPERIMENTS - SETUP

Environment. We instantiate 4 task types SK-A,SK-B,SK-C,SK-D with proxy tasks (stochastic,
single-ground-truth scoring), each with 4 jobs per round for a total of 16 jobs (IDs JB-A0..3,
JB-B0..3, etc.). Base job budgets per task follow 10, 8, 6, 4 units. We run T=100 rounds with
concurrent job capacity ν=3, deterministic market rankings (Gumbel temperature t=0), skill on-the-
bid learning probability ϕ=0.1, reputation window H=5, forgetting λ=0.5, and prior strength W=1.
Initialization collects one baseline performance per agent per job and batches the initial reputation
update.

Agents. We compare 8 LLM-backed agents and 2 policy baselines:

LLM agents: all accessed via OpenRouter with a common client wrapper. We set the sampling
temperature to 0.2 for all models and restrict “reasoning” modes to low/minimal settings for cost and
latency. Policy baselines: a Greedy policy (prioritizes the highest-priced jobs, modest underbidding,
small random training probability) and a Fixed policy (focuses on a preferred task ordering, moderate
underbidding, trains primarily in the top-preferred skill).

LLM registry and reasoning mode. We list the models, openness, and reasoning usage:

• gpt5: openai/gpt-5 (closed-source), reasoning enabled (minimal).
• kimi: moonshotai/kimi-k2-0905 (open-source), no reasoning.
• qwen: qwen/qwen3-235b-a22b-2507 (open-source), no reasoning.
• goss: openai/gpt-oss-120b (open-source), reasoning enabled (low).
• deepseek: deepseek/deepseek-chat-v3.1 (open-source), reasoning-capable, reasoning dis-

abled.
• goog: google/gemini-2.5-flash (closed-source), reasoning enabled (low).
• glm: z-ai/glm-4.5 (open-source), reasoning enabled (low).
• llama: meta-llama/llama-4-maverick (open-source), no reasoning.

All models are invoked through a single API client with homogeneous sampling settings; for replica-
tion, we recommend pinning model revisions.

Token accounting and cost. We report aggregated token usage (total_tokens,
completion_tokens) per agent, including subagents. Since provider pricing
varies by model and by reasoning mode, we do not report dollar-denominated cost
in the main table. An approximate experiment cost can be computed as cost ≈∑

m

(
prompt_tokm · πprompt

m + completion_tokm · πcomp
m

)
, where (πprompt

m , πcomp
m ) are

model-specific per-token prices.
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Table 2: Agent Performance Summary

R ($) M% Rank WR (%) Rec (%) Train (%) Spec Rep Comp.
Total

goss 726.9 14.98 3.10 92.6 5.96 2.90 1.75 0.39 4.6
glm 649.2 13.00 4.10 55.8 5.25 5.64 2.12 0.56 4.4
gpt5 703.0 14.15 4.70 58.9 3.84 1.93 1.60 0.73 4.4
qwen 587.0 12.69 4.70 47.1 5.45 10.91 1.78 0.63 4.6
goog 493.8 10.93 5.30 52.6 5.76 13.02 3.00 0.27 4.5
kimi 442.7 9.63 5.30 50.4 4.85 11.99 1.70 0.53 4.6
deepseek 457.6 9.86 5.60 44.6 5.25 6.00 2.30 0.49 4.4
FIXPL 374.7 7.07 6.11 33.7 4.71 20.78 1.00 0.60 4.4
GRDPL 283.6 5.19 7.22 21.9 2.02 11.11 3.67 0.10 3.9
llama 212.4 3.71 8.30 18.6 2.93 0.00 NaN 0.66 3.9

H AGENT TYPES AND POLICIES

LLM agents. Each LLM agent receives the same market information (Section 2; Appendix E) and
produces a structured action consisting of: (i) a choice between BID vs TRAIN, (ii) an ordered list of
target jobs (or skill if training), and (iii) job-specific bid prices. Agents use the same subagent toolkit
across tasks (ProxyTask runners) and update their internal state from feedback (allocations, realized
rewards, and public reputation updates).

Greedy policy (GRDPL). Prioritizes highest base-price jobs, underbids at a fixed factor, small
probability of training, no opponent modeling. Bids widely within the capacity constraints and
ignores reputation-price trade-offs beyond a constant heuristic.

Fixed policy (FIXPL). Fixed task ordering and a narrower job focus (primarily in a single preferred
task), moderate underbidding at 0.9x the reference budget. Bidding and training is concentrated in
the top-preferred skill, irrespective of short-run fluctuations in reputation or prices.

I LLM BASELINE RESULTS

Overall, LLM agents outperform policy baselines. The two policy baselines (FIXPL, GRDPL) show
lower cumulative reward and market share than most LLMs. The best-performing model (GOSS)
attains the highest cumulative reward and market share with a very high win rate (over 90GPT-5
performs near the top in reward with strong preference alignment (lowest win-priority index), and is
conspicuously token-efficient on completions despite being a reasoning-capable model configured
for minimal reasoning. Qwen emphasizes training (highest train_p) and targets higher-priced
jobs (highest top/avg base), bidding aggressively (normalized bids close to 1), consistent with a
specialization strategy. This yields competitive but not top-tier reward. GLM delivers a balanced
profile with strong reward and moderate training; Gemini Flash (goog) trains frequently but lags
in reward. LLama underperforms and is the only LLM below the fixed policy baseline on average;
notably, it almost never trains in our runs.

J TRACE ANALYSIS METHODOLOGY

We analyzed agent reasoning traces to quantify three capability domains—metacognition, competitive
awareness, and strategic planning—under competitive market pressure. Our pipeline uses an LLM-
judge to score traces with anchored rubrics and subdomain criteria, aggregates scores across runs,
and correlates capability measures with realized rewards at the period level.

Scoring rubric and subdomains. We authored an anchored 0–6 rubric (0=incoherent, 6=exceptional)
with forced-distribution targets to reduce score drift and template bias. Each capability domain was
operationalized by subdomains (e.g., strength recognition, opponent behavioral modeling, multi-step
planning). The judge returned, per round, both a domain score and a set of triggered subdomains. We
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enforced strict specificity criteria (e.g., explicit competitor names/numbers) for higher scores to avoid
generic/business-template inflation.

LLM-as-judge procedure. The judge processed 10-round batches per agent via JSON-structured
prompts and returned one record per round. We used gpt-5 with effort=low, at temperature=0.2

For each agent and period, we computed the mean score per domain across the 10 rounds in that period,
and computed the intersection of detected subdomains across those 10 rounds to obtain a conservative,
stable subdomain set per domain (reduces spurious detections). Across three independent runs,
we averaged per-domain period scores to obtain a per-agent, per-domain capability score, and we
averaged these scores per-period to derive a composite score.

Correlation analysis with rewards. We computed Pearson correlations between per-period rewards
and capability scores (and composite), aggregating at the agent–period level. We observed strong
positive associations of these capabiliteis to agent rewards: metacognition (r≈0.744), competitive
awareness (r≈0.643), strategic planning (r≈0.697), and composite (r≈0.699); all were statistically
significant (two-sided tests, p<0.01).

K SYSTEM PROMPT FOR SSA

You are agent_id, an AI agent competing in a freelancer marketplace. Your goal is to maximize total earnings by completing jobs.
GAME MECHANICS: - Up to num_jobs jobs available each round across num_tasks skill types: task_ids - Each job lists a
reference budget, but you can bid above or below this amount - You can bid on up to 5 jobs per round, potentially winning multiple
- Clients select agents considering both price and reputation for the required skill - Your job performance affects payment - poor
performance results in partial payment - Skills improve through TRAINING and completing jobs - REPUTATION (out of 5*) is
tracked per skill type, reflecting your recent job or benchmark performance from training - If you win no jobs after bidding, you
have a chance to train in your top-choice job’s skill - Game ends with 1
ACTIONS (choose one per round): - BID: Compete for specific jobs by proposing prices. Use JOB_IDs from listings when
bidding - TRAIN: Skip earning to improve skills in chosen skill types. Use SKILL_IDs when training
INFORMATION PROVIDED EACH ROUND: 1. **MARKET ACTIVITY**: Last 10 rounds showing job_-
id(budget)ßwinner(reputation∗), andcurrentearningsrankings2. ∗ ∗RECENTACTIONS ∗ ∗ :
Y ourrecentactionswithoutcomes, includingincomeandreputationchange − Actionformat :
”jobid@(yourbid/postedbudget|yourreputation∗)ß(reward|TRAIN|LOST)" 3. **PREVIOUS REASONING**:
Your reasoning from previous turn 4. **LISTINGS**: Available jobs this round: "skill_id: job_id@budget, job_id@budget, ..."
REASONING STRATEGY: You should reason using the following three cognitive modules. Your reasoning process will be saved
and provided back to you in the next round, so maintain a coherent, evolving strategy.
1. **META-COGNITION:** Analyze your own capabilities. Consider your public reputation and recent performance, estimate
your underlying latent skill. Ask yourself: "How good am I really at each skill? Is my reputation accurate? Where are my
true strengths and weaknesses based on my recent performance?" Should I perform more training to improve my skillset, or
is my skill level sufficiently competitive to achieve a reasonable performance? 2. **COMPETITOR MODELING (Theory of
Mind):** Analyze your rivals and market conditions. Use market activity and leaderboards to infer their skills, strategies, and
likely future actions. Ask yourself: "Who are the dominant players in each skill? Are they specialists or generalists? Are they
bidding aggressively? Where are the underserved niches with less competition? What do clients seem to value more - low prices
or high reputation in each skill area?" 3. **STRATEGIC FORESIGHT (Planning)**: Formulate a long-term plan based on your
self-assessment and competitor models. This is not just about this round, but about positioning yourself for future success. Your
action for this round should be a step in executing that plan. Ask yourself: "Should I compete in a crowded market or invest in a
niche? Should I invest in skill training or immediate revenue via bidding? Is it better to undercut a competitor now or build my
reputation for higher-value jobs later?"
OUTPUT FORMAT: 1. REASONING: META-COGNITION: [Your analysis of your own skills and reputation.] COMPETITOR
MODELING: [Your analysis of other agents’ skills and strategies.] STRATEGIC PLAN: [Your updated long-term plan and how
this round’s action 2. ACTION: ’bid’ or ’train’ 3. TARGETS: - If bidding: [(job_id, bid_price), ...] in preference order (max 5) -
If training: [skill_id, ...] Reply in a JSON format. Do not include additional data such as in-line comments or <think> tokens.
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