EXPO-GS: EXPOSURE-AWARE SIGNED DISTANCE FUNCTION IN GAUSSIAN SPLATTING FOR HIGH DYNAMIC RANGE

Anonymous authorsPaper under double-blind review

ABSTRACT

High dynamic range novel view synthesis (HDR-NVS) remains challenged by geometric artifacts and radiometric distortions under multi-exposure conditions, primarily due to existing methods ignoring exposure and over-relying on color cues. Inspired by the integrated processing of color and structure of the human visual system (HVS), we propose Expo-GS, a novel framework that decomposes HDR-NVS into three interpretable components, namely, Irradiance Field Training, Geometry Field Training, and Interactive Joint Training. Central to Expo-GS is the exposure-aware signed distance function (Expo-SDF), which dynamically reweights geometric supervision via localized exposure reliability estimation, suppressing noisy gradients from unstable regions while enhancing structure learning in well-exposed areas. Building on this, we design an interactive optimization strategy that synchronizes Gaussian primitive growth and pruning with evolving Expo-SDF cues, enabling exposure-aware density control and eliminating hallucinated structures near exposure transitions. Experiments show that Expo-GS significantly outperforms prior methods on both synthetic and real-world datasets. It achieves a peak PSNR of 39.06 dB under HDR settings and up to 41.38 dB in the LDR-OE configuration, excelling in preserving high-frequency textures and maintaining structural consistency.

1 Introduction

Novel view synthesis (NVS) aims to generate photorealistic renderings from sparse input views Dalal et al. (2024), enabling continuous viewpoint interpolation for applications in virtual reality Xu et al. (2023), autonomous systems Hess et al. (2025), and creation of three-dimensional content Tang et al. (2023). However, conventional 8-bit low dynamic range (LDR) imaging struggles to capture the full radiometric complexity of real-world scenes, especially under extreme exposure, leading to degraded perceptual and geometric fidelity. In contrast, high dynamic range (HDR) imaging employs substantially higher per-channel bit depth to more faithfully capture the physical radiance, thereby mitigating the artifacts introduced by conventional nonlinear compression Chen et al. (2025).

Existing high dynamic range novel view synthesis (HDR-NVS) approaches can be broadly divided into two categories: NeRF-based methods Mildenhall et al. (2021); Martin-Brualla et al. (2021); Huang et al. (2022)) and 3D Gaussian Splatting (3D-GS) techniques (Kerbl et al. (2023); Cai et al. (2024)). NeRF-based models encode scene radiance as continuous volumetric fields, enabling the synthesis of intricate lighting phenomena. Despite their expressiveness, these methods often fail to recover fine structures in shadowed or underexposed regions and suffer from heavy computational demands due to dense ray sampling. In contrast, 3D-GS offers higher rendering efficiency and has recently been adapted for NVS Fei et al. (2024). However, its design remains fundamentally tailored to LDR scenarios. Without explicit mechanisms to account for extreme exposure variations tend to generate hallucinated geometry and ghosting artifacts under challenging illumination conditions.

Current HDR-NVS approaches predominantly emphasize irradiance field modeling Cai et al. (2024), often relying on color regression as the primary strategy to approximate scene appearance under varying exposure conditions Huang et al. (2022). However, this single-modal learning paradigm poses two critical limitations: (i) Optimization driven solely by color cues fails to capture geometric

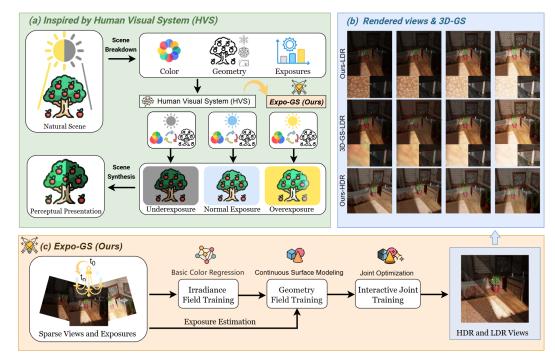


Figure 1: (a) Inspired by the human visual system (HVS), our method (Expo-GS) decomposes the scene into color, geometry, and exposure components to enable robust perception under varying exposure conditions. (b) Visualization comparisons demonstrate that Expo-GS substantially outperforms the baseline 3D-GS Kerbl et al. (2023) method in both LDR and HDR views. (c) Expo-GS devises a three-stage pipeline comprising irradiance field, geometry field, and interactive joint training.

variations induced by exposure disparities; and (ii) Regions with sharp luminance transitions, such as boundaries between illuminated and shadowed areas, are particularly vulnerable to radiance field distortions due to insufficient structural priors. Inspired by the human visual system (HVS), which functionally decouples color and geometry but integrates them for coherent perception, we introduce a biologically inspired framework (Figure 1) that jointly models irradiance and geometric structure.

In this paper, we present a novel framework, Exposure-Aware Signed Distance Function in Gaussian Splatting (Expo-GS), which draws inspiration from the functional organization of the HVS. To address the limitations of existing HDR-NVS approaches, we introduce a disentangled-then-joint training paradigm that adaptively modulates radiometric and geometric supervision based on localized exposure conditions. Expo-GS seamlessly integrates color sensitivity and structural awareness into the GS pipeline, enabling accurate HDR scene reconstruction and robust performance in NVS. Unlike conventional SDF-based methods, our exposure-aware variant dynamically reweights geometric constraints according to the exposure reliability of observed regions. This adaptive mechanism mitigates overfitting in saturated or underexposed areas by down-weighting unreliable radiometric cues, while reinforcing supervision in well-exposed, structurally consistent regions, thus promoting stable and precise geometry estimation under extreme lighting conditions. To model radiance distribution, we adopt a soft forward cumulative rendering strategy during irradiance field training, facilitating efficient Gaussian projection and consistent scene visualization. Moreover, we introduce a joint optimization module to simultaneously refine color fidelity and geometric coherence, fostering a dynamic balance between radiometric precision and structural integrity. Together, these innovations enable Expo-GS to achieve high-fidelity reconstruction and generalization in complex HDR environments.

Our main contributions are summarized as follows:

 We propose a novel framework Expo-GS that, for the first time, conceptually decomposes HDR-NVS into three disentangled components: color, geometry, and exposure. This factorization improves HDR scene interpretability and supports precise, modular optimization.

- We introduce an exposure-aware signed distance function (**Expo-SDF**) that adaptively integrates geometric supervision across multi-exposure inputs. This mechanism enables reliable structural learning and significantly enhances geometric fidelity and consistency.
- We design a joint optimization strategy that couples Expo-SDF-guided geometry with refined irradiance reconstruction, enabling mutual optimization and producing sharper, more coherent results through a balanced integration of radiance fidelity and geometric stability.

2 Related work

 3D Gaussian Splatting (3D-GS). 3D-GS has garnered significant attention for its real-time Qu et al. (2024); Wang et al. (2024); Hyun & Heo (2024); Wu et al. (2024a); Peng et al. (2024), differentiable rendering capabilities Feng et al. (2025); Lee et al. (2024); Yao et al. (2024). Its rapid development has been fueled by hierarchical Gaussian pruning and cross-domain extensions Yu et al. (2024); Chen & Lee (2024); Zhu et al. (2024). However, despite these advances, 3D-GS exhibits inherent limitations when applied to HDR-NVS Kerbl et al. (2023); Cai et al. (2024). Specifically, its reliance on spherical harmonic coefficients limits its ability to represent regions with extreme luminance variation Jiang et al. (2024); Liang et al. (2024). Furthermore, the absence of exposure-aware geometric supervision, due to inadequate regularization or uniform loss weighting across brightness levels, often results in structural artifacts and the loss of fine geometric details. These limitations underscore the necessity of jointly preserving radiometric accuracy and geometric consistency to achieve robust HDR-NVS.

Signed Distance Function (SDF). Neural networks can represent 3D geometry using continuous SDFs Chou et al. (2023); Park et al. (2019); Sitzmann et al. (2020); Choi et al. (2024), where surfaces are implicitly defined as the zero-level set of a neural field Zhang et al. (2024a); Yu et al. (2024); Choi et al. (2024). Integrating SDFs with volumetric rendering (e.g., VolSDF Yariv et al. (2021), NeuS Wang et al. (2021)) or 3D-GS-based methods (e.g., SuGaR Guédon & Lepetit (2024), GSDF Yu et al. (2024)) has demonstrated improved surface sharpness and structural coherence by combining precise geometric modeling with radiance-based robustness Zakharov et al. (2020); Mu et al. (2021); Chen et al. (2024); Cao & Taketomi (2024). However, existing SDF frameworks are inherently exposure-agnostic, as they typically assume fixed-exposure LDR inputs and fail to account for the exposure variations. Consequently, they often struggle to model overexposed or underexposed regions accurately, resulting in hallucinated geometry and blurring artifacts in NVS. This reveals a critical gap: the lack of exposure-aware SDF modeling capable of adapting to the challenges of HDR-NVS. For additional related work, please refer to the appendix B.

3 METHOD

3.1 IRRADIANCE FIELD TRAINING FOR BASIC COLOR REGRESSION

We adopt anisotropic Gaussians as the core representational primitives for HDR scene modeling, serving as fundamental units that enable efficient radiance field and geometric field representation:

$$\mathcal{G} = \{g_i = (\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i, \boldsymbol{\alpha}_i, k_i, \mathcal{M}_{\theta})\}$$
 (1)

where μ_i is the Gaussian center, Σ_i the anisotropic covariance, α_i the radiance coefficients, k_i the scale factor, and \mathcal{M}_{θ} the shared SH parameters for radiance modeling. This formulation enables sub-pixel precision and high-frequency encoding under HDR conditions, while remaining compatible with LDR representations. To capture view-dependent HDR radiance, each Gaussian is assigned compact SH coefficients, yielding the observed radiance $\mathbf{c}_i^{\mathrm{HDR}} \in \mathbb{R}^3$ from direction $\mathbf{v} \in \mathbb{S}^2$:

$$\mathbf{c}_i^{\text{HDR}}(\mathbf{v}) = \exp\left(\mathbf{B}(\mathbf{v})^{\top} \mathbf{k}_i\right) \tag{2}$$

Here, $\mathbf{B}(\mathbf{v}) \in \mathbb{R}^{(L+1)^2}$ denotes the real spherical harmonics (SH) basis evaluated at direction \mathbf{v} , and $\mathbf{k}_i \in \mathbb{R}^{(L+1)^2 \times 3}$ are the SH coefficients for the *i*-th point. To convert HDR radiance into LDR images, we employ a learnable tone mapping network that models the non-linear camera response under varying exposures. Instead of using a fixed function, we define tone mapping as a learnable transformation $\mathcal{M}_{\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ operating in the log domain:

$$\mathbf{c}_{i}^{\mathrm{LDR}}(\Delta t) = \mathcal{M}_{\theta} \left(\log \mathbf{c}_{i}^{\mathrm{HDR}} + \log \Delta t \right) \tag{3}$$

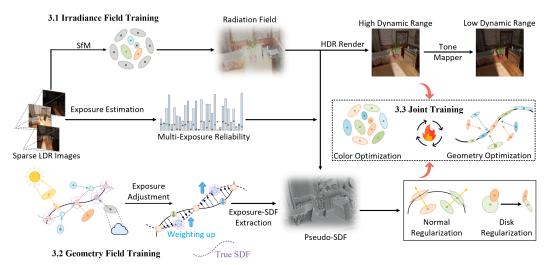


Figure 2: Expo-GS consists of three interpretable components—irradiance field training for color regression, geometry field training for exposure-aware structure modeling, and interactive joint training for refining both radiometric and geometric representations.

Here, Δt denotes the exposure time and the logarithmic formulation stabilizes the dynamic range to facilitate learning. The network \mathcal{M}_{θ} is shared across all Gaussians and channels. We adopt a parallel, fully differentiable rasterization pipeline to project 3D Gaussians onto the 2D image plane. This simulates volumetric accumulation of semitransparent Gaussians. For a pixel p at exposure time Δt , its color is computed using front-to-back soft blending of all overlapping Gaussians:

$$I(p \mid \Delta t) = \sum_{j \in \mathcal{N}_p} \mathbf{c}_j(\Delta t) \cdot \sigma_j \cdot \prod_{k=1}^{j-1} (1 - \sigma_k)$$
 (4)

In this expression, \mathcal{N}_p denotes the depth-sorted set of Gaussians visible at pixel p. The term $\mathbf{c}_j(\Delta t) \in \mathbb{R}^3$ is the RGB radiance of the j-th Gaussian, modulated by exposure time via the learned tone mapping function. The visibility weight $\sigma_j \in [0,1]$ encodes both opacity and projected spatial density. To model soft visibility and volumetric contribution, each Gaussian's support in screen space is represented by a continuous kernel. The visibility weight σ_j at pixel p is defined as:

$$\sigma_j = \alpha_j \cdot \exp\left(-\frac{1}{2}(p - \boldsymbol{\mu}_j)^{\top} \boldsymbol{\Sigma}_j^{-1}(p - \boldsymbol{\mu}_j)\right)$$
 (5)

where α_j is a learnable opacity scalar determining the base contribution of the Gaussian, and the exponential term models a 2D anisotropic Gaussian kernel centered at μ_j , shaped by Σ_j . This formulation supports smooth, differentiable visibility estimation and compactly simulates soft occlusion during rasterization. We adopt a unified photometric loss that supports both HDR and tone-mapped LDR supervision, enabling flexible optimization across radiometric and perceptual domains:

$$\mathcal{L}_{\text{render}} = \sum_{j=1}^{B} \left[\mathcal{L}_{1}(\mathcal{R}_{j}, \mathcal{R}_{j}^{\text{gt}}) + \lambda \cdot \mathcal{L}_{\text{D-SSIM}}(\mathcal{R}_{j}, \mathcal{R}_{j}^{\text{gt}}) \right], \tag{6}$$

where \mathcal{R}_j is the rendered output at the *j*-th viewpoint, and $\mathcal{R}_j^{\text{gt}}$ is the corresponding ground truth, either in HDR or tone-mapped LDR format depending on the training stage. This formulation is robust to exposure variations and promotes alignment in both pixel-wise and perceptual spaces.

3.2 GEOMETRY FIELD TRAINING FOR EXPOSURE-AWARE STRUCTURAL MODELING

To better model continuous geometric structures in HDR scenes, we propose an exposure-aware signed distance field (Expo-SDF) informed by Gaussian visibility. Prior work has shown that explicit

geometric supervision improves irradiance field optimization. Building on this, we introduce an Expo-SDF-based density formulation that attenuates contributions from overexposed or underexposed regions, while emphasizing well-exposed areas to enhance geometric fidelity. To integrate multi-exposure reliability into the geometry field, we first define an exposure estimation function:

$$\mathcal{E}_i(q) = e_i \cdot \max_{c \in \{R, G, B\}} I_{i,c}(q), \tag{7}$$

where q denotes a pixel coordinate in the LDR image I_i, e_i is the exposure factor (exposure time) for image i, and $I_{i,c}(q)$ is the intensity of channel c. This formulation provides a simple yet effective proxy for assessing the radiometric reliability of individual pixels. Additional design analysis is provided in appendix C. We then project each Gaussian center μ_j into image i to retrieve its exposure estimate as $\mathcal{E}(\mu_j) = \mathcal{E}_i(\pi_i(\mu_j))$, where $\pi_i(\cdot)$ denotes the projection function. Using these estimates, we define an exposure-normalized density function that down-weights unreliable contributions:

$$\dot{d}(p) = \sum_{j} \frac{\alpha_{j}}{\mathcal{E}(\boldsymbol{\mu}_{j}) + \epsilon} \cdot \exp\left(-\frac{1}{2}(p - \boldsymbol{\mu}_{j})^{\top} \boldsymbol{\Sigma}_{j}^{-1}(p - \boldsymbol{\mu}_{j})\right), \tag{8}$$

where $\dot{d}(p)$ denotes the exposure-normalized Gaussian density at 3D location p, α_j is the learnable opacity scalar of the j-th Gaussian, $\mu_j \in \mathbb{R}^3$ is its 3D center, $\Sigma_j \in \mathbb{R}^{3 \times 3}$ is the anisotropic covariance matrix encoding its spatial extent and orientation, $\mathcal{E}(\mu_j)$ is the projected exposure value as defined in Eq. (7), and ϵ is a small constant to avoid division by zero. This formulation effectively suppresses the influence of Gaussians located in radiometrically unreliable regions, while preserving the contributions from well-exposed observations. The derivation and proof are provided in appendix A. To estimate surface proximity in regions lacking reliable exposure or dense geometry supervision, we construct a pseudo-Expo-SDF based on the aggregated Gaussian density:

$$f_{\text{HDR}}(p) = \pm s_{q^*} \cdot \sqrt{-2\log \dot{d}(p)},\tag{9}$$

where s_{g^*} denotes the minimum spatial extent of the closest Gaussian along its normal direction, and the sign of $f_{\rm HDR}(p)$ is determined by the relative orientation between point p and the Gaussian surface. This formulation provides a smooth and differentiable approximation of the underlying geometry, even in regions with unreliable exposure, and serves as a practical surrogate for mesh initialization, SDF alignment, and supervision pruning. To ensure geometric consistency between the estimated pseudo-Expo-SDF and the ground-truth surface, we introduce an exposure-aware supervision loss:

$$\mathcal{L}_{\text{SDF}}^{\text{HDR}} = \frac{1}{|P|} \sum_{p \in P} \left| \hat{f}(p) - f_{\text{HDR}}(p) \right|, \tag{10}$$

where $\hat{f}(p)$ denotes the reference signed distance value at point p, obtained via mesh-based rendering or camera-projected depth, and $f_{\rm HDR}(p)$ is the pseudo-Expo-SDF derived from exposure-aware Gaussian density. This loss enables soft geometric supervision in radiometrically challenging areas, leveraging structural priors without requiring complete or noise-free ground-truth annotations. To further guide geometry learning in radiometrically ambiguous regions, we regularize the pseudo-Expo-SDF field with two complementary constraints: normal alignment and spatial flatness. Specifically, we encourage the gradient of the Expo-SDF field at each point $p \in P$ to align with the dominant surface normal \mathbf{n}_{q^*} , promoting local planar consistency:

$$\mathcal{L}_{\text{normal}} = \frac{1}{|P|} \sum_{p \in P} \left(1 - \left\langle \frac{\nabla f_{\text{HDR}}(p)}{\|\nabla f_{\text{HDR}}(p)\|}, \mathbf{n}_{g^*} \right\rangle \right)^2. \tag{11}$$

Moreover, to ensure that each Gaussian approximates a locally planar surface element, we introduce a disk regularization term that promotes disk-like anisotropic configurations. Rather than directly minimizing the smallest principal axis—which may result in unstable gradients—we adopt a differentiable softmin-based formulation to enable smooth and effective optimization:

$$\mathcal{L}_{\text{disk}} = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} -\tau \cdot \log \left(\sum_{i=1}^{3} e^{-s_i^g/\tau} \right), \tag{12}$$

where s_i^g denotes the scale of Gaussian g along its i-th principal axis, and τ is a temperature parameter that controls the sharpness of the softmin approximation. This formulation encourages each Gaussian to adopt a geometrically coherent, anisotropic structure that aligns with the local surface geometry, thereby improving training stability and spatial regularity.

3.3 Interactive Joint Training for Harmonizing Optimization

In this stage, the irradiance and geometry fields are jointly refined via a coupled optimization strategy, which is essential for high-fidelity HDR-NVS. Accurate geometric structures guide light propagation near object boundaries and shadows, while radiometric cues help recover fine-grained geometry. Central to this process is a geometry-aware density control mechanism that dynamically adjusts the spatial distribution of Gaussians based on feedback from the exposure-aware signed distance field $f_{\rm HDR}$. The growth activation for a candidate Gaussian center c is defined as:

$$\epsilon_g = \nabla_g + \omega_s \cdot \exp\left(-\frac{f_{\text{HDR}}(\mathbf{c})^2}{2\sigma^2}\right) + \omega_n \cdot (1 - \|\nabla f_{\text{HDR}}(\mathbf{c})\|), \qquad (13)$$

where ∇_g is the accumulated training gradient, and the remaining terms encourage growth near the zero-level surface while suppressing updates in uncertain regions. Gaussians with $\epsilon_g > \tau_g$ are duplicated with perturbations to refine confident structures. Conversely, pruning is guided by a reliability-based score:

$$\epsilon_p = \sigma_a - \omega_p \cdot \left(1 - \exp\left(-\frac{f_{\text{HDR}}(\mathbf{c})^2}{2\sigma^2}\right)\right),$$
(14)

where σ_a is the accumulated opacity. Gaussians with $\epsilon_p < \tau_p$ are removed from further optimization, reducing clutter and suppressing artifacts. By integrating growth and pruning, the geometry-aware density control aligns the Gaussian layout with the evolving Expo-SDF, reinforcing consistency between appearance and structure. To enable stable joint training under such dynamic updates, we combine radiance and geometry losses into a unified objective:

$$\mathcal{L}_{joint} = \mathcal{L}_{render} + \lambda_{SDF} \cdot \mathcal{L}_{SDF}^{HDR} + \lambda_{normal} \cdot \mathcal{L}_{normal} + \lambda_{disk} \cdot \mathcal{L}_{disk}, \tag{15}$$

where \mathcal{L}_{render} supervises radiance reconstruction, and the remaining terms ensure geometric consistency under varying exposures. The Interactive Joint Training strategy enables geometric structures to inform radiance field modeling, while radiometric cues, in turn, refine fine-grained geometric details. This bidirectional guidance significantly enhances both visual fidelity and structural consistency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. We conduct our experiments using HDR-NeRF Huang et al. (2022), a dataset designed for NVS under HDR conditions. This dataset features multi-view, multi-exposure captures across 8 synthetic scenes and 4 real-world scenes. Each scene is recorded from 35 distinct viewpoints, with five different exposure levels per view. Each synthetic scene is accompanied by a corresponding HDR reference stored in the OpenEXR (.exr) format. Following prior work Cai et al. (2024); Wu et al. (2024b), we use HDR images from 18 viewpoints for training, each paired with one randomly sampled LDR exposure from $\{t_1, t_3, t_5\}$. The remaining 17 viewpoints are reserved for evaluation.

Experimental Details. Our framework is trained in three stages. The initialization of Gaussian point parameters follows the settings in 3D-GS Kerbl et al. (2023), while the tone mapping network is adopted from HDR-GS Cai et al. (2024). We first perform 8,000 iterations of 3D-GS-based warm-up to establish an initial discrete radiance field. This is followed by 12,000 iterations of implicit training on the Expo-SDF to refine the geometry and extract a high-fidelity surface point cloud. Finally, we conduct 10,000 iterations of joint optimization to balance radiance accuracy and geometric consistency. The entire training pipeline is implemented in PyTorch and optimized with Adam Zhang et al. (2024b), running for a total of 30,000 iterations on a single NVIDIA RTX A6000 GPU.

Method	LDR-OE (t_1, t_3, t_5)			LDR-NE (t_2, t_4)			HDR		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
NeRF Mildenhall et al. (2021)	15.63	0.612	0.309	17.83	0.652	0.353	_	_	_
3D-GS Kerbl et al. (2023)	22.37	0.690	0.276	18.97	0.778	0.309	_	_	_
NeRF-W Martin-Brualla et al. (2021)	29.83	0.936	0.047	29.22	0.927	0.050	_	_	_
HDR-NeRF Huang et al. (2022)	39.35	0.979	0.028	37.58	0.954	0.028	36.12	0.908	0.019
HDR-GS Cai et al. (2024)	41.06	0.980	0.013	36.36	0.973	0.019	37.98	0.976	0.014
Expo-GS (Ours)	41.38	0.989	0.010	37.47	0.984	0.014	39.06	0.981	0.010

Table 1: Quantitative comparison on synthetic datasets. LDR-OE and LDR-NE represent LDR-NVS settings using exposure subsets $\{t_1, t_3, t_5\}$ and $\{t_2, t_4\}$, respectively. HDR represents NVS based on complete HDR reconstruction. Our method achieves the best performance across all configurations.

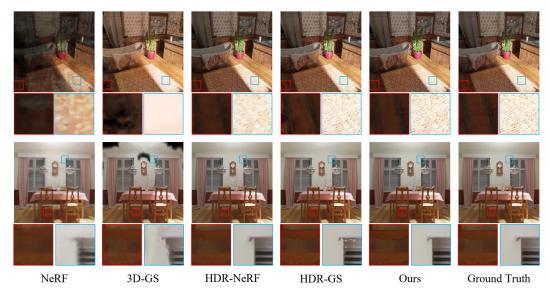


Figure 3: Qualitative comparisons on synthetic datasets. Our method achieves superior color fidelity and geometric accuracy over baseline 3D-GS, with zoom-in regions revealing detailed improvements.

4.2 RESULTS

Quantitative Comparisons on Synthetic Datasets. Table 1 provides a comprehensive quantitative assessment of NVS performance across synthetic datasets under three distinct exposure configurations: LDR with exposure ($\{t_1,t_3,t_5\}$), LDR with exposure ($\{t_2,t_4\}$), and HDR. Our proposed methodology, Expo-GS, demonstrates superior performance compared to existing approaches across virtually all evaluation metrics with the sole exception being PSNR under the LDR-NE configuration. Furthermore, within the HDR domain, Expo-GS exhibits exceptional efficacy, registering a PSNR of 39.06 dB, which exceeds HDR-NeRF Huang et al. (2022) by 2.94 dB and HDR-GS Cai et al. (2024) by 1.08 dB. Our method achieves superior perceptual fidelity, evidenced by the lowest LPIPS and highest SSIM, demonstrating its ability to preserve visual authenticity and geometric consistency.

Qualitative Comparisons on Synthetic Datasets. Figure 3 presents qualitative comparisons across multiple approaches on synthetic scenes. Traditional NeRF Mildenhall et al. (2021) and 3D-GS Kerbl et al. (2023) suffer from severe color smearing and geometric distortions, particularly in regions with challenging illumination. While HDR-NeRF Huang et al. (2022) and HDR-GS Cai et al. (2024) enhance visual realism to some extent, they still exhibit noticeable color inconsistencies and geometric blurring under extreme lighting transitions. In contrast, our Expo-GS method reconstructs both radiance and geometry with high fidelity. Fine-grained textures—such as wood grain, fabric patterns, and shadow boundaries—are clearly preserved and visually aligned with the ground truth.

Quantitative Comparisons on Real-World Datasets. As shown in Table 2, our Expo-GS framework achieves consistently superior performance across all exposure conditions. Under the LDR-OE setting, it attains a PSNR of 35.59 dB, SSIM of 0.981, and LPIPS of 0.020, significantly outperforming HDR-GS Cai et al. (2024) and HDR-NeRF Huang et al. (2022). Even in the more challenging

LDR-NE scenario, it maintains robust performance with the highest PSNR of 32.17 dB and the lowest LPIPS of 0.033. The results demonstrate robust generalization and resilience to exposure changes.

Method	LDR	\mathbf{R} -OE (t_1, t_2)	(t_3, t_5)	LDR-NE (t_2, t_4)			
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
NeRF Mildenhall et al. (2021)	16.21	0.682	0.295	15.84	0.716	0.227	
3D-GS Kerbl et al. (2023)	18.32	0.849	0.113	20.38	0.719	0.161	
NeRF-W Martin-Brualla et al. (2021)	29.39	0.914	0.087	29.17	0.918	0.086	
HDR-NeRF Huang et al. (2022)	32.35	0.939	0.065	32.71	0.947	0.071	
HDR-GS Cai et al. (2024)	34.94	0.962	0.031	31.24	0.953	0.045	
Expo-GS (Ours)	35.59	0.981	0.020	32.17	0.972	0.033	

Table 2: Quantitative comparisons on real-world datasets. Our method attains markedly superior overall performance, demonstrating its practical effectiveness and feasibility in real-world scenarios.

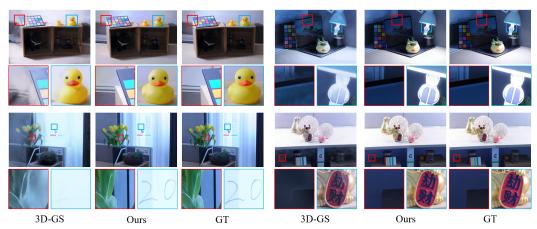


Figure 4: Qualitative comparisons on real-world datasets. Our method achieves superior color fidelity and geometric accuracy over other methods, with zoom-in regions revealing detailed improvements.

Qualitative Comparisons on Real-World Datasets. Figure 4 further demonstrates qualitative improvements over 3D-GS Kerbl et al. (2023). In overexposed regions (e.g., light bulbs, duck), our method suppresses saturation and geometric distortion in overexposed regions and recovers fine detail in underexposed areas; exposure-guided supervision further enhances high-frequency reconstruction, collectively reducing radiometric bias and structural artifacts under challenging real-world settings.

CRF Domain	Linear	Logarithmic	Reinhard	ACES	Expo	osure	$\{t_{3}\}$	$\{t_1, t_5\}$	$\{t_1, t_3, t_5\}$	$\{t_1,\ldots,t_5\}$
HDR	29.57	38.77	38.91	38.82	HDR	-OE	24.17	32.81	38.64	38.98
LDR-OE	33.49	41.33	40.14	40.65	LDR		23.78	35.44	41.66	41.69
LDR-NE	32.82	37.18	36.82	36.64	LDR		23.13	34.25	36.81	37.53

Table 3: Ablation study on distinct CRF methods and exposure time sets on synthetic datasets.

Method	LDR-OE (t_1, t_3, t_5)			LD	\mathbf{R} - \mathbf{NE} $(t_2,$	$, t_4)$	HDR			
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
Baseline	22.37	0.690	0.276	18.97	0.778	0.309	_	_		
Irradiance (8K)	29.17	0.912	0.055	29.86	0.914	0.063	28.86	0.894	0.091	
Geometry (12K)	31.92	0.929	0.049	31.78	0.923	0.057	30.29	0.915	0.086	
Geometry + 1K	36.41	0.961	0.031	35.39	0.955	0.026	34.76	0.963	0.037	
Joint (10K)	41.38	0.989	0.010	37.47	0.984	0.014	39.06	0.981	0.010	

Table 4: Ablation study on training stages highlighting the importance of geometry field training.

Ablation study. In Table 3, the results demonstrate that nonlinear CRFs consistently outperform the linear variant and the Logarithmic transform achieves the highest PSNR scores (41.33 and 37.18 at LDR setting, respectively), suggesting its effectiveness in enhancing LDR image quality through

contrast adjustment. And we evaluate the impact of different exposure time combinations. The results reveal model performance improves progressively with increased diversity in the exposure set. In Table 4, We observed that once the pseudo-SDF is established, the initial iterations of the third stage (Geometry+1k training) exhibit a noticeable improvement in performance. This suggests that the quality of SDF learning indirectly influences the photometric fidelity and geometric consistency of the synthesized views. It means second stage plays an essential intermediary role in the framework.

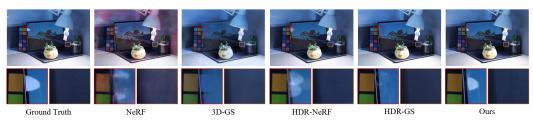


Figure 5: Geometric comparison of different methods in real-world scenes with specular reflections.

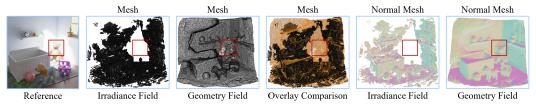


Figure 6: Geometric comparisons of training after first and second stage in synthetic scenarios.

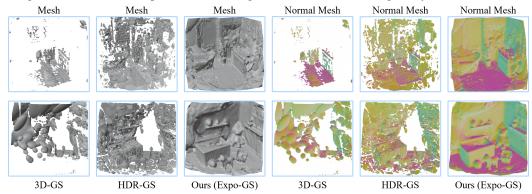


Figure 7: Geometric comparisons of different methods in synthetic scenarios using mesh visualization.

Geometric comparisons. Figure 5 showcases a challenging scenario with pronounced specularities and high-frequency texture. Our Expo-GS framework reconstructs both mirror-like surfaces and adjacent diffuse regions with high fidelity, preserving subtle detail and faithfully modeling non-Lambertian behavior. Figure 6 isolates the contribution of the geometry training stage, showing marked improvements in structural modeling and contour delineation; this stage further refines the point cloud distribution. Figure 7 extends the comparison to prior methods: 3D-GS produces coarse geometry with noise and artifacts, while HDR-GS, despite improved irradiance fidelity, exhibits unstable geometry. In contrast, our approach achieves higher geometric accuracy, smoother surface continuity, and superior normal consistency, thereby distinguishing itself from existing HDR-NVS techniques. Taken together, these results indicate that our method advances irradiance reconstruction while simultaneously delivering robust geometric representation. Additional results in appendix E.

5 CONCLUSION

We present Expo-GS, a biologically inspired HDR-NVS framework that jointly models radiance and geometry under varying exposures. Through Expo-SDF and a decoupled-then-joint training paradigm, our method alleviates radiometric bias and geometric inconsistency caused by illumination extremes. To our knowledge, this is the first framework to unify multi-exposure radiometric and geometric modeling in HDR-NVS, offering novel insights into exposure-aware scene reconstruction.

REFERENCES

- Yael Adini, Dov Sagi, and Misha Tsodyks. Context-enabled learning in the human visual system. *Nature*, 415(6873):790–793, 2002.
- Martin S Banks, Jenny CA Read, Robert S Allison, and Simon J Watt. Stereoscopy and the human visual system. *SMPTE motion imaging journal*, 121(4):24–43, 2012.
 - Yuanhao Cai, Zihao Xiao, Yixun Liang, Minghan Qin, Yulun Zhang, Xiaokang Yang, Yaoyao Liu, and Alan L Yuille. Hdr-gs: Efficient high dynamic range novel view synthesis at 1000x speed via gaussian splatting. *Advances in Neural Information Processing Systems*, 37:68453–68471, 2024.
 - Xu Cao and Takafumi Taketomi. Supernormal: Neural surface reconstruction via multi-view normal integration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20581–20590, 2024.
 - Yu Chen and Gim Hee Lee. Dogs: Distributed-oriented gaussian splatting for large-scale 3d reconstruction via gaussian consensus. *Advances in Neural Information Processing Systems*, 37: 34487–34512, 2024.
 - Zixuan Chen, Yujin Wang, Xin Cai, Zhiyuan You, Zheming Lu, Fan Zhang, Shi Guo, and Tianfan Xue. Ultrafusion: Ultra high dynamic imaging using exposure fusion. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 16111–16121, 2025.
 - Ziyi Chen, Xiaolong Wu, and Yu Zhang. Nc-sdf: Enhancing indoor scene reconstruction using neural sdfs with view-dependent normal compensation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5155–5165, 2024.
 - Jaehoon Choi, Yonghan Lee, Hyungtae Lee, Heesung Kwon, and Dinesh Manocha. Meshgs: Adaptive mesh-aligned gaussian splatting for high-quality rendering. In *Proceedings of the Asian Conference* on Computer Vision, pp. 3310–3326, 2024.
 - Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed distance functions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2262–2272, 2023.
 - Anurag Dalal, Daniel Hagen, Kjell G Robbersmyr, and Kristian Muri Knausgård. Gaussian splatting: 3d reconstruction and novel view synthesis: A review. *IEEE Access*, 12:96797–96820, 2024.
 - Ben Fei, Jingyi Xu, Rui Zhang, Qingyuan Zhou, Weidong Yang, and Ying He. 3d gaussian splatting as new era: A survey. *IEEE Transactions on Visualization and Computer Graphics*, 2024.
 - Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu, Boni Hu, Linning Xu, Zhilin Pei, Hengjie Li, et al. Flashgs: Efficient 3d gaussian splatting for large-scale and high-resolution rendering. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26652–26662, 2025.
 - David J Field, Anthony Hayes, and Robert F Hess. Contour integration by the human visual system: evidence for a local "association field". *Vision research*, 33(2):173–193, 1993.
 - Rainer Goebel, LARS Muckli, and Dae-Shik Kim. Visual system. *The Human Nervous System Elsevier, San Diego*, pp. 1280–1305, 2004.
 - Melvyn A Goodale and Angela Haffenden. Frames of reference for perception and action in the human visual system. *Neuroscience & Biobehavioral Reviews*, 22(2):161–172, 1998.
 - Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5354–5363, 2024.
 - Georg Hess, Carl Lindström, Maryam Fatemi, Christoffer Petersson, and Lennart Svensson. Splatad: Real-time lidar and camera rendering with 3d gaussian splatting for autonomous driving. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 11982–11992, 2025.

- Xin Huang, Qi Zhang, Ying Feng, Hongdong Li, Xuan Wang, and Qing Wang. Hdr-nerf: High dynamic range neural radiance fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18398–18408, 2022.
 - Sangeek Hyun and Jae-Pil Heo. Gsgan: Adversarial learning for hierarchical generation of 3d gaussian splats. *Advances in Neural Information Processing Systems*, 37:67987–68012, 2024.
 - Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin Ma. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5322–5332, 2024.
 - Don H Johnson. Signal-to-noise ratio. Scholarpedia, 1(12):2088, 2006.
 - Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard Szeliski. High dynamic range video. *ACM Transactions On Graphics (TOG)*, 22(3):319–325, 2003.
 - Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.
 - Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali, and Eunbyung Park. Deblurring 3d gaussian splatting. In *European Conference on Computer Vision*, pp. 127–143. Springer, 2024.
 - Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for inverse rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21644–21653, 2024.
 - Zhong-Lin Lu and George Sperling. Three-systems theory of human visual motion perception: review and update. *Journal of the Optical Society of America A*, 18(9):2331–2370, 2001.
 - Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7210–7219, 2021.
 - Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.
 - Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and Xiaolong Wang. A-sdf: Learning disentangled signed distance functions for articulated shape representation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13001–13011, 2021.
 - Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf: Learning continuous signed distance functions for shape representation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 165–174, 2019.
 - C Alejandro Parraga, Tom Troscianko, and David J Tolhurst. The human visual system is optimised for processing the spatial information in natural visual images. *Current Biology*, 10(1):35–38, 2000.
 - Zhexi Peng, Tianjia Shao, Yong Liu, Jingke Zhou, Yin Yang, Jingdong Wang, and Kun Zhou. Rtg-slam: Real-time 3d reconstruction at scale using gaussian splatting. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024.
 - Haoxuan Qu, Zhuoling Li, Hossein Rahmani, Yujun Cai, and Jun Liu. Disc-gs: Discontinuity-aware gaussian splatting. *Advances in Neural Information Processing Systems*, 37:112284–112309, 2024.
 - Erik Reinhard. High dynamic range imaging. In *Computer Vision: A Reference Guide*, pp. 1–6. Springer, 2020.
 - Paul-Antoine Salin and Jean Bullier. Corticocortical connections in the visual system: structure and function. *Physiological reviews*, 75(1):107–154, 1995.

- Helge Seetzen, Wolfgang Heidrich, Wolfgang Stuerzlinger, Greg Ward, Lorne Whitehead, Matthew
 Trentacoste, Abhijeet Ghosh, and Andrejs Vorozcovs. High dynamic range display systems. In
 Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 39–47. 2023.
 - Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf: Meta-learning signed distance functions. *Advances in Neural Information Processing Systems*, 33: 10136–10147, 2020.
 - Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian splatting for efficient 3d content creation. *arXiv preprint arXiv:2309.16653*, 2023.
 - Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the human visual system. *nature*, 381(6582):520–522, 1996.
 - Ahmed T Toosy, Olga Ciccarelli, Geoff JM Parker, Claudia AM Wheeler-Kingshott, David H Miller, and Alan J Thompson. Characterizing function–structure relationships in the human visual system with functional mri and diffusion tensor imaging. *Neuroimage*, 21(4):1452–1463, 2004.
 - Marco Toschi, Riccardo De Matteo, Riccardo Spezialetti, Daniele De Gregorio, Luigi Di Stefano, and Samuele Salti. Relight my nerf: A dataset for novel view synthesis and relighting of real world objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20762–20772, 2023.
 - Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv* preprint arXiv:2106.10689, 2021.
 - Yunsong Wang, Tianxin Huang, Hanlin Chen, and Gim Hee Lee. Freesplat: Generalizable 3d gaussian splatting towards free view synthesis of indoor scenes. *Advances in Neural Information Processing Systems*, 37:107326–107349, 2024.
 - Z Wang. Image quality assessment: Form error visibility to structural similarity. *IEEE Trans. Image Process.*, 13(4):604–606, 2004.
 - Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20310–20320, 2024a.
 - Jiahao Wu, Lu Xiao, Rui Peng, Kaiqiang Xiong, and Ronggang Wang. Hdrgs: High dynamic range gaussian splatting. *arXiv preprint arXiv:2408.06543*, 2024b.
 - Linning Xu, Vasu Agrawal, William Laney, Tony Garcia, Aayush Bansal, Changil Kim, Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder, Aljaž Božič, et al. Vr-nerf: High-fidelity virtualized walkable spaces. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–12, 2023.
 - Yuxuan Yao, Zixuan Zeng, Chun Gu, Xiatian Zhu, and Li Zhang. Reflective gaussian splatting. *arXiv* preprint arXiv:2412.19282, 2024.
 - Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces. *Advances in Neural Information Processing Systems*, 34:4805–4815, 2021.
 - Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xiangli, and Bo Dai. Gsdf: 3dgs meets sdf for improved neural rendering and reconstruction. *Advances in Neural Information Processing Systems*, 37:129507–129530, 2024.
 - Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien Gaidon. Autolabeling 3d objects with differentiable rendering of sdf shape priors. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12224–12233, 2020.
 - Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.

(3):033604–033604, 2009. Wenyuan Zhang, Yu-Shen Liu, and Zhizhong Han. Neural signed distance function inference through splatting 3d gaussians pulled on zero-level set. Advances in Neural Information Processing Systems, 37:101856–101879, 2024a. Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and Jonathan T Barron. Nerfactor: Neural factorization of shape and reflectance under an unknown illumination. ACM Transactions on Graphics (ToG), 40(6):1–18, 2021. Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhiquan Luo. Why transform-ers need adam: A hessian perspective. Advances in Neural Information Processing Systems, 37: 131786-131823, 2024b. Ruijie Zhu, Yanzhe Liang, Hanzhi Chang, Jiacheng Deng, Jiahao Lu, Wenfei Yang, Tianzhu Zhang, and Yongdong Zhang. Motiongs: Exploring explicit motion guidance for deformable 3d gaussian splatting. Advances in Neural Information Processing Systems, 37:101790-101817, 2024.

Song Zhang and Shing-Tung Yau. High dynamic range scanning technique. Optical Engineering, 48

APPENDIX

A THEORETICAL DERIVATIONS

A.1 ANALYSIS OF EQUATION (8)

Equation (8) defines the exposure-normalized Gaussian density:

$$\dot{d}(\mathbf{p}) = \sum_{j} \frac{\alpha_{j}}{E(\boldsymbol{\mu}_{j}) + \varepsilon} \exp\left[-\frac{1}{2}(\mathbf{p} - \boldsymbol{\mu}_{j})^{\mathsf{T}} \boldsymbol{\Sigma}_{j}^{-1} (\mathbf{p} - \boldsymbol{\mu}_{j})\right], \tag{8}$$

where each Gaussian's opacity coefficient α_j is scaled by the estimated exposure $E(\mu_j)$ at its center, with a small constant ε added to ensure numerical stability. This exposure-aware attenuation preserves the influence of well-exposed regions while down-weighting overexposed highlights and severely underexposed, noise-prone areas.

The resulting density field $\dot{d}(\mathbf{p})$ is strictly positive, infinitely differentiable, and globally bounded. Moreover, it is monotonically *decreasing* with increasing exposure, enabling robust structural modeling in HDR conditions. Notably, the scaled negative logarithm of $\dot{d}(\mathbf{p})$ induces a quadratic form in \mathbf{p} , which serves as the foundation for the pseudo-signed distance function defined in Equation (9) and utilized in geometric supervision.

A.2 PROOF OF EQUATION (8)

1. Positivity and smoothness.

Each term in the summation is positive: $\alpha_j > 0$, $E(\mu_j) + \varepsilon > 0$, and the Gaussian exponential kernel is positive and C^{∞} . Therefore, $\dot{d}(\mathbf{p})$ is strictly positive and infinitely differentiable over \mathbb{R}^3 .

2. Global upper bound.

Since the denominator is lower-bounded by ε , we have:

$$\dot{d}(\mathbf{p}) \le \sum_{j} \frac{\alpha_{j}}{\varepsilon},$$

ensuring $\dot{d}(\mathbf{p})$ is globally bounded and $\log \dot{d}(\mathbf{p})$ is finite.

3. Monotonicity with respect to exposure.

Differentiating each term w.r.t. $E(\mu_i)$:

$$\frac{\partial}{\partial E(\boldsymbol{\mu}_j)} \left(\frac{\alpha_j}{E(\boldsymbol{\mu}_j) + \varepsilon} e^{-\frac{1}{2}(\cdots)} \right) = -\frac{\alpha_j}{(E(\boldsymbol{\mu}_j) + \varepsilon)^2} e^{-\frac{1}{2}(\cdots)} < 0,$$

indicating $\dot{d}(\mathbf{p})$ decreases monotonically with local exposure.

4. Local dominance.

When a single Gaussian g_k dominates locally:

$$\dot{d}(\mathbf{p}) \approx \frac{\alpha_k}{E_k + \varepsilon} \exp\left[-\frac{1}{2}(\mathbf{p} - \boldsymbol{\mu}_k)^{\mathsf{T}} \boldsymbol{\Sigma}_k^{-1}(\mathbf{p} - \boldsymbol{\mu}_k)\right], \quad E_k := E(\boldsymbol{\mu}_k).$$

5. Quadratic structure of the log-density.

Taking the negative logarithm:

$$-2\log \dot{d}(\mathbf{p}) = (\mathbf{p} - \boldsymbol{\mu}_k)^{\mathsf{T}} \boldsymbol{\Sigma}_k^{-1} (\mathbf{p} - \boldsymbol{\mu}_k) + C,$$

where $C = -2\log \alpha_k + 2\log(E_k + \varepsilon)$ is constant in **p**.

6. Euclidean upper bound.

Let $\Sigma_k = \text{diag}(s_{k1}^2, s_{k2}^2, s_{k3}^2)$, and define $s_{\min} := \min_i s_{ki}$. Then:

$$-2\log \dot{d}(\mathbf{p}) \ge \frac{\|\mathbf{p} - \boldsymbol{\mu}_k\|_2^2}{s_{\min}^2}.$$

7. Gradient alignment.

The gradient is:

$$\nabla_{\mathbf{p}}\dot{d} = \dot{d}\,\mathbf{\Sigma}_k^{-1}(\boldsymbol{\mu}_k - \mathbf{p}),$$

which aligns with the Gaussian's outward normal, enabling normal-aligned supervision.

8. Conclusion.

Equation (8) defines a well-behaved, exposure-aware surrogate density. Its negative logarithm induces a Mahalanobis distance, forming the mathematical basis for the pseudo-SDF used in Equation (9).

A.3 ANALYSIS OF EQUATION (9)

Equation (9) defines a pseudo-signed distance function (pseudo-SDF):

$$f_{\text{HDR}}(\mathbf{p}) = \pm s_{g^*} \sqrt{-2\log \dot{d}(\mathbf{p})},$$
 (9)

where g^* is the dominant Gaussian near \mathbf{p} , and s_{g^*} is its smallest principal axis scale. This formulation transforms the log-density into a distance-like scalar field whose sign is determined by the orientation of the local surface normal. Consequently, $f_{\rm HDR}(\mathbf{p})$ behaves like a true SDF in well-exposed regions and provides reliable geometric cues in radiometrically ambiguous areas.

A.4 PROOF OF EQUATION (9)

1. Dominant Gaussian assumption.

Assume g^* dominates in the local neighborhood:

$$\dot{d}(\mathbf{p}) \approx \frac{\alpha_{g^*}}{E(\boldsymbol{\mu}_{g^*}) + \varepsilon} \exp\left[-\frac{1}{2}(\mathbf{p} - \boldsymbol{\mu}_{g^*})^{\mathsf{T}} \boldsymbol{\Sigma}_{g^*}^{-1}(\mathbf{p} - \boldsymbol{\mu}_{g^*})\right].$$

2. Log transformation.

Taking $-2\log$:

$$-2\log \dot{d}(\mathbf{p}) = (\mathbf{p} - \boldsymbol{\mu}_{g^*})^{\top} \boldsymbol{\Sigma}_{g^*}^{-1} (\mathbf{p} - \boldsymbol{\mu}_{g^*}) + C.$$

3. Principal axis decomposition.

Diagonalizing Σ_{q^*} :

$$(\mathbf{p} - oldsymbol{\mu}_{g^*})^{\! op} oldsymbol{\Sigma}_{g^*}^{-1} (\mathbf{p} - oldsymbol{\mu}_{g^*}) = \sum_{i=1}^3 rac{\Delta_i^2}{s_{g^*,i}^2}.$$

4. Distance upper bound.

Let $s_{q^*} = \min_i s_{q^*,i}$. Then:

$$-2\log \dot{d}(\mathbf{p}) \ge \frac{\|\mathbf{p} - \boldsymbol{\mu}_{g^*}\|_2^2}{s_{a^*}^2}.$$

5. Distance approximation.

Rescaling gives:

$$s_{g^*}\sqrt{-2\log \dot{d}(\mathbf{p})} \approx \|\mathbf{p} - \boldsymbol{\mu}_{g^*}\|_2.$$

6. Sign function.

Using the local surface normal \mathbf{n}_{g^*} :

$$\operatorname{sign}(f_{\mathrm{HDR}}(\mathbf{p})) = \operatorname{sign}((\mathbf{p} - \boldsymbol{\mu}_{q^*}) \cdot \mathbf{n}_{q^*}).$$

7. Definition of pseudo-SDF.

Combining the above, we define:

$$f_{\text{HDR}}(\mathbf{p}) = \pm s_{g^*} \sqrt{-2 \log \dot{d}(\mathbf{p})}.$$

8. Gradient alignment.

Given

$$\nabla_{\mathbf{p}}\dot{d} = \dot{d}\,\mathbf{\Sigma}_{g^*}^{-1}(\boldsymbol{\mu}_{g^*} - \mathbf{p}),$$

the gradient ∇f_{HDR} is aligned with the local normal \mathbf{n}_{q^*} .

9. Conclusion.

The function $f_{\rm HDR}(\mathbf{p})$ behaves as a smooth, exposure-aware approximation of a signed distance field, suitable for geometry regularization under HDR settings.

B EXTENDED RELATED WORK

High Dynamic Range (HDR) Imaging. Traditional HDR imaging hinges on multi-exposure fusion to reconstruct the full luminance spectrum of a scene Reinhard (2020); Kang et al. (2003). Early methods focused on radiometric calibration to counteract nonlinear camera responses, while recent works integrate deep learning with physical sensor models, using attention-based fusion and physics-inspired tone mapper for enhanced fidelity Seetzen et al. (2023); Zhang & Yau (2009). HDR-NeRF Huang et al. (2022) introduces HDR capabilities into Neural Radiance Fields via inverse gamma correction and HDR-aware training, improving reconstructions in low-light regions. HDR-GS Cai et al. (2024) further advances this by adapting 3D-GSKerbl et al. (2023) to HDR synthesis, leveraging dual dynamic range point cloud modeling and differentiable rasterization for simultaneous HDR-LDR reconstruction with exposure control. However, most HDR methods emphasize pixel-wise radiometric accuracy and rely heavily on color regression, overlooking the intricate coupling between lighting variations and geometry—especially problematic in 3D scenes where structural consistency is crucial.

Human Visual System (HVS). HVS possesses a remarkable ability to perceive both color and structural information of scenes under highly dynamic and varying lighting conditions Thorpe et al. (1996). This capacity arises from several key perceptual mechanisms Parraga et al. (2000); Banks et al. (2012).

First, exposure adaptation allows the human eye to function across a wide luminance range—from dim starlight at night to bright sunlight at noon—through dynamic gain control by photoreceptor cells in the retina Goodale & Haffenden (1998). Second, contrast sensitivity drives the visual system to focus on local edges and changes in luminance rather than absolute pixel intensity Adini et al. (2002). This mechanism is essential for capturing object boundaries and geometric structure. Third, the HVS performs dual-stream processing to separately process color and structure Field et al. (1993). Specifically, cone cells in the retina transmit fine-grained chromatic and texture information through the parvocellular pathway (color stream) to the visual cortex, while rod cells are more sensitive to motion and coarse structure, channeling information through the magnocellular pathway (structure stream) Goebel et al. (2004); Salin & Bullier (1995). These two streams are later recombined in higher-level visual areas to construct a coherent and stable perception of the visual world Toosy et al. (2004); Lu & Sperling (2001).

Inspired by the HVS, a more robust approach is to decouple color (i.e., irradiance) and structure (i.e., geometry) during the training process. Specifically, radiometric and geometric attributes of the scene are modeled separately and then jointly optimized at the perceptual level. This mimics the human strategy of treating different exposure regions with varying sensitivity and integrating information based on local reliability. Thus, the perceptual principles of the HVS provide a biologically grounded motivation for decoupled modeling in HDR-NVS. Emulating the HVS paradigm of "first decomposing, then integrating" enables the development of HDR-NVS systems that are not only photometrically faithful but also geometrically stable across varying lighting conditions.

C In-Depth Design Analysis

In multi-exposure or extreme dynamic range scenarios, geometry optimized solely from pixel color residuals often fails. First, gradients from saturated or underexposed pixels are either zero or unstable, causing the density σ to expand indiscriminately and leading to surface drift. Second, exposure times (Δt) vary across views; after the camera's nonlinear response function, residual magnitudes become imbalanced, further compounding depth inconsistencies.

These issues are well-documented in prior work: *RawNeRF* demonstrates that NeRF fails to recover highlights and shadows under LDR conditions, while *Gaussian-DK* reports severe ghosting artifacts in *3D-GS* under high-contrast lighting. In summary, ignoring exposure reliability and relying solely on color cues hinders robust geometric reconstruction under varying exposure conditions—an observation supported by both physical modeling and empirical evidence.

Although the exposure time Δt is a global setting, the local exposure conditions within a single frame are far from uniform; bright highlights and deep shadows often coexist in our dataset. As early as the HDR fusion method of Debevec&Malik (1997), the pixel weight w(z) was given a bell-shaped

profile to down-weight overexposed and underexposed samples. The spirit is identical here: we assess pixel-wise confidence from exposure, rather than just blindly using the global Δt .

In the bathroom scene of the synthetic dataset, the red flowerpot provides a representative test case. Under normal exposure (t_3) , the average RGB values are approximately $P_a \approx (161, 74, 58)$, with the red channel at 161. Upon inspection, we observed that these pixels retain full weight—and in some cases even receive slightly increased weight—during subsequent computation and training. Under overexposure (t_5) , the same region exhibits average RGB values of $P_b \approx (222, 170, 144)$, with the red channel rising to 222. In this case, the SDF weight assigned to P_b is slightly reduced, which is appropriate given that local highlights introduce noisy color residuals that can destabilize pseudo-SDF supervision.

If a large, uniform area has a high $\max(RGB)$ value, it is beneficial to reduce the weight of its contribution to the SDF. Consider an area that is almost pure red (255, 0, 0) and contains little geometric or textural detail. Assigning the sparsely distributed 3D point cloud to this area is sufficient. Reducing its density does not affect the appearance, and the boundary geometry is still defined by the surrounding well-exposed pixels. Therefore, the weighting scheme does not misclassify vibrant colors; on the contrary, it highlights their geometric value and contributes to more stable optimization. And our goal is not to calculate the precise absolute brightness of pixels but to quickly determine whether a pixel is within a reliable (neither overexposed/underexposed) range for subsequent SDF geometric gradient weighting.

D HYPERPARAMETER CONFIGURATION FOR EXPO-GS TRAINING

We detail the hyperparameter configuration used across the three stages of Expo-GS: irradiance field training, geometry field training, and interactive joint training.

Parameter	Value	Description									
1. General Training Setti	1. General Training Settings										
Optimizer	Adam	Used in all training stages									
Learning Rate (Stage 1)	2.5e-3	Irradiance field training									
Learning Rate (Stage 2)	1.0e-3	Geometry field training									
Learning Rate (Stage 3)	5.0e-4	Joint optimization									
Total Iterations	30,000	8000 (Stage 1) + 12000 (Stage 2) + 10000 (Stage 3)									
Hardware	NVIDIA RTX A6000	49 GB VRAM (49140 MiB), Single-GPU									
Framework	PyTorch 2.x	CUDA 11.8 compatible									
2. Geometry Field Traini	ng Settings										
Expo-SDF Loss	$\lambda_{\text{SDF}} = 0.2$	Geometry field stage									
Normal Alignment Loss	$\lambda_{\text{normal}} = 0.2$	Geometry field stage									
Disk Regularization Loss	$\lambda_{ m disk}=0.1$	Geometry field stage									
3. Joint Optimization Settings											
Expo-SDF Loss	$\lambda_{\text{SDF}} = 0.1$	Joint stage									
Normal Alignment Loss	$\lambda_{ m normal} = 0.1$	Joint stage									
Disk Regularization Loss	$\lambda_{ m disk}=0.05$	Joint stage									

Table 5: Hyperparameter configuration across training stages for Expo-GS, comprising Stage 1 (irradiance field training), Stage 2 (geometry field training), and Stage 3 (interactive joint training).

E EXTENDED RESULTS

Tone mapper. The core limitation of fixed tone mappers lies in their generalizability. Their parameters are empirical, and when faced with cross-scene or extreme exposure conditions, manual re-tuning is often required to avoid color bias and detail loss. In contrast, learnable tone mappers can adaptively map relationships end-to-end without human intervention. Furthermore, nearly all previous HDR-NVS methods (HDR-NeRF, HDR-GS, etc.) inherently rely on learnable tone mappers. If we were to manually select the optimal fixed tone mappers for each of them, it would introduce new unfair

factors. Therefore, we retain the learnable tone mapper to maintain end-to-end properties and ensure that comparisons with existing methods focus on exposure modeling capabilities rather than the tone mapper itself.

Evaluation. To evaluate the performance of HDR-NVS, we adopt three widely used metrics: Peak Signal-to-Noise Ratio (PSNR) Johnson (2006), Structural Similarity Index Measure (SSIM) Wang (2004), and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018). PSNR Johnson (2006) directly quantifies radiometric fidelity through pixel-level differences, while SSIM Wang (2004) and LPIPS Zhang et al. (2018) indirectly reflect geometric coherence by measuring structural and perceptual similarity, respectively. Together, these metrics provide a dual-perspective assessment that captures both irradiance accuracy and geometric consistency.

Method	LDR-OE (t_1, t_3, t_5)			LD	LDR-NE (t_2, t_4)			HDR		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
SuGaR Guédon & Lepetit (2024)	36.10	0.954	0.049	35.28	0.958	0.049	33.36	0.943	0.048	
GSDF Yu et al. (2024)	38.76	0.966	0.026	36.39	0.971	0.022	34.81	0.957	0.033	
PulledGS Zhang et al. (2024a)	39.69	0.971	0.019	36.07	0.965	0.027	35.95	0.962	0.025	
Expo-GS (Ours)	41.38	0.989	0.010	37.47	0.984	0.014	39.06	0.981	0.010	

Table 6: Comparisons with SDF-based methods reveal their limitations under LDR inputs.

Comparisons with SDF-based methods. As shown in Table 6, existing SDF-based methods (e.g., SuGaR Guédon & Lepetit (2024), GSDF Yu et al. (2024), and PulledGS Zhang et al. (2024a)), though effective under fixed-exposure LDR conditions, exhibit suboptimal performance in HDR-NVS scenarios. These methods typically employ dense surface guiding while uniformly weighting multi-exposure inputs, neglecting the exposure disparities inherent in LDR observations. Consequently, they fail to handle the challenging conditions inherent in HDR configurations, leading to the emergence of spurious geometries and degraded radiometric fidelity. Notably, our proposed Expo-GS framework effectively accommodates multi-exposure inputs by incorporating exposure-aware optimization, achieving superior results across all evaluated metrics.

Stage	LDR-OE (t_1, t_3, t_5)			LDR-NE (t_2, t_4)			HDR		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
NeRFactor Zhang et al. (2021)	33.16	0.941	0.038	18.62	0.761	0.325	-	_	_
ReLight-NeRF Toschi et al. (2023)	36.58	0.957	0.029	21.31	0.819	0.292	_	_	_
Expo-GS(Ours)	41.38	0.989	0.010	37.47	0.984	0.014	39.06	0.981	0.010

Table 7: Comparisons with relightable methods reveal their limitations under LDR inputs.

Table 7 reveals that under the LDR-OE setting (exposure levels observed during training), both NeRFactor and ReLight-NeRF deliver reasonable performance owing to their architectural illumination modeling and the availability of ground-truth supervision. The learned mappings between brightness, geometry, and material remain effective within the trained exposure range, yielding relatively high-quality reconstructions. However, under the more challenging LDR-NE setting (unseen exposures), both methods suffer a substantial degradation in performance. This drop is attributed to the absence of explicit exposure modeling, which compels the networks to implicitly approximate brightness differences across views. Consequently, unseen exposure times induce shifts in activation distributions, leading to poor generalization and a sharp decline in image quality.

While NeRFactor and ReLight-NeRF are effective for modeling illumination variations within LDR conditions, their outputs are ultimately governed by apparent brightness. As such, they remain competent for LDR relighting tasks but are unsuitable for HDR-NVS or cross-exposure generalization.

Efficiency Comparison. As shown in Table 8, the moderate increase in training time is due to the second stage (Geometry Field Training). However, combined with the single rendering strategy of the first stage and the lightweight optimization of the third stage, the overall training time is not very long, and our method outperforms other methods in terms of inference speed. In fact, based on the main experimental results of HDR-NVS, our method achieves a balance between performance and efficiency.

Method	Training time (min)	GPU memory (GB)	Inference speed (fps)
HDR-NeRF	517	80	0.128
HDR-GS	33	8	122
Expo-GS (ours)	36 (8 / 21 / 7)	6/11/9	131

Table 8: Training efficiency and inference speed comparison.

Figure 8: Qualitative comparisons on synthetic datasets. Our method achieves superior color fidelity and geometric accuracy over baseline 3D-GS under LDR settings.

Figure 9: Our method achieves superior color fidelity and geometric accuracy under HDR settings.

Qualitative Comparison. Figure 8 illustrates qualitative results on representative synthetic scenes under challenging illumination. The baseline 3D-GS method exhibits prominent artifacts, such as color bleeding, oversaturation, and structure deformation, especially around high-contrast regions like candles, windows, and shadow boundaries. In contrast, our method (Expo-GS) demonstrates significantly improved radiometric accuracy and structural coherence. Reflective surfaces and high-frequency textures (e.g., wallpaper patterns, fabric details, window frames) are faithfully reconstructed,

closely matching the ground truth. These improvements highlight the effectiveness of exposure-aware SDF supervision and joint optimization in mitigating hallucinations and ensuring geometric stability across varying exposure conditions.

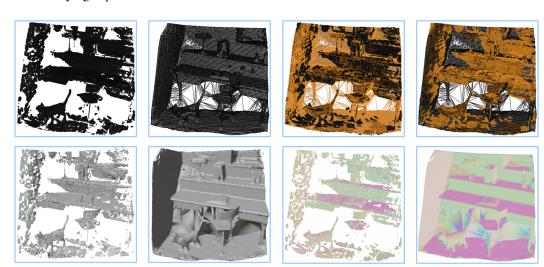


Figure 10: Geometric comparisons of training after first and second stage in synthetic scenarios.

Geometric comparison. As illustrated in the Figure 10, we provide qualitative visualizations of both the mesh and the corresponding normal maps obtained after the first-stage irradiance field training and the subsequent geometry field training. The irradiance field training alone is insufficient for reliable geometric modeling, as the initial triangular mesh derived from the point cloud displays prominent holes and structural discontinuities. By contrast, the geometry field training, enhanced through Expo-SDF optimization, produces a smoother and more coherent scene geometry. The normal visualizations further highlight the improved geometric fidelity, exhibiting strong surface consistency and continuity. Overall, these qualitative results demonstrate that geometry field training effectively captures structural information and reconstructs scene geometry, mitigating noise and stripe artifacts, filling missing regions, and substantially improving both surface smoothness and normal coherence.

Ethics Statement.

We adhere to ethics statement and have no content requiring disclosure.

Reproducibility Sstatement.

Table 5 provides detailed hyperparameter information, and the code will be open-sourced later.

The Use of Large Language Models (LLMs).

We have only used LLM for minor paragraph polishing.