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ABSTRACT

High dynamic range novel view synthesis (HDR-NVS) remains challenged by
geometric artifacts and radiometric distortions under multi-exposure conditions,
primarily due to existing methods ignoring exposure and over-relying on color
cues. Inspired by the integrated processing of color and structure of the human
visual system (HVS), we propose Expo-GS, a novel framework that decomposes
HDR-NVS into three interpretable components, namely, Irradiance Field Training,
Geometry Field Training, and Interactive Joint Training. Central to Expo-GS
is the exposure-aware signed distance function (Expo-SDF), which dynamically
reweights geometric supervision via localized exposure reliability estimation, sup-
pressing noisy gradients from unstable regions while enhancing structure learning
in well-exposed areas. Building on this, we design an interactive optimization
strategy that synchronizes Gaussian primitive growth and pruning with evolving
Expo-SDF cues, enabling exposure-aware density control and eliminating hal-
lucinated structures near exposure transitions. Experiments show that Expo-GS
significantly outperforms prior methods on both synthetic and real-world datasets.
It achieves a peak PSNR of 39.06 dB under HDR settings and up to 41.38 dB in
the LDR-OE configuration, excelling in preserving high-frequency textures and
maintaining structural consistency.

1 INTRODUCTION

Novel view synthesis (NVS) aims to generate photorealistic renderings from sparse input views Dalal
et al. (2024), enabling continuous viewpoint interpolation for applications in virtual reality Xu et al.
(2023), autonomous systems Hess et al. (2025), and creation of three-dimensional content Tang
et al. (2023). However, conventional 8-bit low dynamic range (LDR) imaging struggles to capture
the full radiometric complexity of real-world scenes, especially under extreme exposure, leading to
degraded perceptual and geometric fidelity. In contrast, high dynamic range (HDR) imaging employs
substantially higher per-channel bit depth to more faithfully capture the physical radiance, thereby
mitigating the artifacts introduced by conventional nonlinear compression Chen et al. (2025).

Existing high dynamic range novel view synthesis (HDR-NVS) approaches can be broadly divided
into two categories: NeRF-based methods Mildenhall et al. (2021); Martin-Brualla et al. (2021);
Huang et al. (2022)) and 3D Gaussian Splatting (3D-GS) techniques ( Kerbl et al. (2023); Cai et al.
(2024)). NeRF-based models encode scene radiance as continuous volumetric fields, enabling the
synthesis of intricate lighting phenomena. Despite their expressiveness, these methods often fail to
recover fine structures in shadowed or underexposed regions and suffer from heavy computational
demands due to dense ray sampling. In contrast, 3D-GS offers higher rendering efficiency and has
recently been adapted for NVS Fei et al. (2024). However, its design remains fundamentally tailored
to LDR scenarios. Without explicit mechanisms to account for extreme exposure variations tend to
generate hallucinated geometry and ghosting artifacts under challenging illumination conditions.

Current HDR-NVS approaches predominantly emphasize irradiance field modeling Cai et al. (2024),
often relying on color regression as the primary strategy to approximate scene appearance under
varying exposure conditions Huang et al. (2022). However, this single-modal learning paradigm
poses two critical limitations: (i) Optimization driven solely by color cues fails to capture geometric
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Figure 1: (a) Inspired by the human visual system (HVS), our method (Expo-GS) decomposes the
scene into color, geometry, and exposure components to enable robust perception under varying expo-
sure conditions. (b) Visualization comparisons demonstrate that Expo-GS substantially outperforms
the baseline 3D-GS Kerbl et al. (2023) method in both LDR and HDR views. (c) Expo-GS devises a
three-stage pipeline comprising irradiance field, geometry field, and interactive joint training.

variations induced by exposure disparities; and (ii) Regions with sharp luminance transitions, such as
boundaries between illuminated and shadowed areas, are particularly vulnerable to radiance field
distortions due to insufficient structural priors. Inspired by the human visual system (HVS), which
functionally decouples color and geometry but integrates them for coherent perception, we introduce
a biologically inspired framework (Figure 1) that jointly models irradiance and geometric structure.

In this paper, we present a novel framework, Exposure-Aware Signed Distance Function in Gaussian
Splatting (Expo-GS), which draws inspiration from the functional organization of the HVS. To
address the limitations of existing HDR-NVS approaches, we introduce a disentangled-then-joint
training paradigm that adaptively modulates radiometric and geometric supervision based on localized
exposure conditions. Expo-GS seamlessly integrates color sensitivity and structural awareness into
the GS pipeline, enabling accurate HDR scene reconstruction and robust performance in NVS. Unlike
conventional SDF-based methods, our exposure-aware variant dynamically reweights geometric con-
straints according to the exposure reliability of observed regions. This adaptive mechanism mitigates
overfitting in saturated or underexposed areas by down-weighting unreliable radiometric cues, while
reinforcing supervision in well-exposed, structurally consistent regions, thus promoting stable and
precise geometry estimation under extreme lighting conditions. To model radiance distribution, we
adopt a soft forward cumulative rendering strategy during irradiance field training, facilitating efficient
Gaussian projection and consistent scene visualization. Moreover, we introduce a joint optimization
module to simultaneously refine color fidelity and geometric coherence, fostering a dynamic balance
between radiometric precision and structural integrity. Together, these innovations enable Expo-GS
to achieve high-fidelity reconstruction and generalization in complex HDR environments.

Our main contributions are summarized as follows:

• We propose a novel framework Expo-GS that, for the first time, conceptually decomposes
HDR-NVS into three disentangled components: color, geometry, and exposure. This factor-
ization improves HDR scene interpretability and supports precise, modular optimization.
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• We introduce an exposure-aware signed distance function (Expo-SDF) that adaptively
integrates geometric supervision across multi-exposure inputs. This mechanism enables
reliable structural learning and significantly enhances geometric fidelity and consistency.

• We design a joint optimization strategy that couples Expo-SDF–guided geometry with
refined irradiance reconstruction, enabling mutual optimization and producing sharper, more
coherent results through a balanced integration of radiance fidelity and geometric stability.

2 RELATED WORK

3D Gaussian Splatting (3D-GS). 3D-GS has garnered significant attention for its real-time Qu et al.
(2024); Wang et al. (2024); Hyun & Heo (2024); Wu et al. (2024a); Peng et al. (2024), differentiable
rendering capabilities Feng et al. (2025); Lee et al. (2024); Yao et al. (2024). Its rapid development has
been fueled by hierarchical Gaussian pruning and cross-domain extensions Yu et al. (2024); Chen &
Lee (2024); Zhu et al. (2024). However, despite these advances, 3D-GS exhibits inherent limitations
when applied to HDR-NVS Kerbl et al. (2023); Cai et al. (2024). Specifically, its reliance on spherical
harmonic coefficients limits its ability to represent regions with extreme luminance variation Jiang
et al. (2024); Liang et al. (2024). Furthermore, the absence of exposure-aware geometric supervision,
due to inadequate regularization or uniform loss weighting across brightness levels, often results in
structural artifacts and the loss of fine geometric details. These limitations underscore the necessity
of jointly preserving radiometric accuracy and geometric consistency to achieve robust HDR-NVS.

Signed Distance Function (SDF). Neural networks can represent 3D geometry using continuous
SDFs Chou et al. (2023); Park et al. (2019); Sitzmann et al. (2020); Choi et al. (2024), where surfaces
are implicitly defined as the zero-level set of a neural field Zhang et al. (2024a); Yu et al. (2024);
Choi et al. (2024). Integrating SDFs with volumetric rendering (e.g., VolSDF Yariv et al. (2021),
NeuS Wang et al. (2021)) or 3D-GS-based methods (e.g., SuGaR Guédon & Lepetit (2024), GSDF Yu
et al. (2024)) has demonstrated improved surface sharpness and structural coherence by combining
precise geometric modeling with radiance-based robustness Zakharov et al. (2020); Mu et al. (2021);
Chen et al. (2024); Cao & Taketomi (2024). However, existing SDF frameworks are inherently
exposure-agnostic, as they typically assume fixed-exposure LDR inputs and fail to account for the
exposure variations. Consequently, they often struggle to model overexposed or underexposed regions
accurately, resulting in hallucinated geometry and blurring artifacts in NVS. This reveals a critical
gap: the lack of exposure-aware SDF modeling capable of adapting to the challenges of HDR-NVS.
For additional related work, please refer to the appendix B.

3 METHOD

3.1 IRRADIANCE FIELD TRAINING FOR BASIC COLOR REGRESSION

We adopt anisotropic Gaussians as the core representational primitives for HDR scene modeling,
serving as fundamental units that enable efficient radiance field and geometric field representation:

G = {gi = (µi,Σi,αi, ki,Mθ)} (1)

where µi is the Gaussian center, Σi the anisotropic covariance, αi the radiance coefficients, ki the
scale factor, and Mθ the shared SH parameters for radiance modeling. This formulation enables
sub-pixel precision and high-frequency encoding under HDR conditions, while remaining compatible
with LDR representations. To capture view-dependent HDR radiance, each Gaussian is assigned
compact SH coefficients, yielding the observed radiance cHDR

i ∈ R3 from direction v ∈ S2:

cHDR
i (v) = exp

(
B(v)⊤ki

)
(2)

Here, B(v) ∈ R(L+1)2 denotes the real spherical harmonics (SH) basis evaluated at direction v,
and ki ∈ R(L+1)2×3 are the SH coefficients for the i-th point. To convert HDR radiance into LDR
images, we employ a learnable tone mapping network that models the non-linear camera response
under varying exposures. Instead of using a fixed function, we define tone mapping as a learnable
transformation Mθ : R3 → R3 operating in the log domain:

cLDR
i (∆t) = Mθ

(
log cHDR

i + log∆t
)

(3)

3
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Figure 2: Expo-GS consists of three interpretable components—irradiance field training for color
regression, geometry field training for exposure-aware structure modeling, and interactive joint
training for refining both radiometric and geometric representations.

Here, ∆t denotes the exposure time and the logarithmic formulation stabilizes the dynamic range to
facilitate learning. The network Mθ is shared across all Gaussians and channels. We adopt a parallel,
fully differentiable rasterization pipeline to project 3D Gaussians onto the 2D image plane. This
simulates volumetric accumulation of semitransparent Gaussians. For a pixel p at exposure time ∆t,
its color is computed using front-to-back soft blending of all overlapping Gaussians:

I(p | ∆t) =
∑
j∈Np

cj(∆t) · σj ·
j−1∏
k=1

(1− σk) (4)

In this expression, Np denotes the depth-sorted set of Gaussians visible at pixel p. The term
cj(∆t) ∈ R3 is the RGB radiance of the j-th Gaussian, modulated by exposure time via the learned
tone mapping function. The visibility weight σj ∈ [0, 1] encodes both opacity and projected spatial
density. To model soft visibility and volumetric contribution, each Gaussian’s support in screen space
is represented by a continuous kernel. The visibility weight σj at pixel p is defined as:

σj = αj · exp
(
−1

2
(p− µj)

⊤Σ−1
j (p− µj)

)
(5)

where αj is a learnable opacity scalar determining the base contribution of the Gaussian, and the
exponential term models a 2D anisotropic Gaussian kernel centered at µj , shaped by Σj . This for-
mulation supports smooth, differentiable visibility estimation and compactly simulates soft occlusion
during rasterization. We adopt a unified photometric loss that supports both HDR and tone-mapped
LDR supervision, enabling flexible optimization across radiometric and perceptual domains:

Lrender =

B∑
j=1

[
L1(Rj ,Rgt

j ) + λ · LD-SSIM(Rj ,Rgt
j )
]
, (6)

where Rj is the rendered output at the j-th viewpoint, and Rgt
j is the corresponding ground truth,

either in HDR or tone-mapped LDR format depending on the training stage. This formulation is
robust to exposure variations and promotes alignment in both pixel-wise and perceptual spaces.

3.2 GEOMETRY FIELD TRAINING FOR EXPOSURE-AWARE STRUCTURAL MODELING

To better model continuous geometric structures in HDR scenes, we propose an exposure-aware
signed distance field (Expo-SDF) informed by Gaussian visibility. Prior work has shown that explicit
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geometric supervision improves irradiance field optimization. Building on this, we introduce an
Expo-SDF-based density formulation that attenuates contributions from overexposed or underexposed
regions, while emphasizing well-exposed areas to enhance geometric fidelity. To integrate multi-
exposure reliability into the geometry field, we first define an exposure estimation function:

Ei(q) = ei · max
c∈{R,G,B}

Ii,c(q), (7)

where q denotes a pixel coordinate in the LDR image Ii, ei is the exposure factor (exposure time) for
image i, and Ii,c(q) is the intensity of channel c. This formulation provides a simple yet effective
proxy for assessing the radiometric reliability of individual pixels. Additional design analysis is
provided in appendix C. We then project each Gaussian center µj into image i to retrieve its exposure
estimate as E(µj) = Ei(πi(µj)), where πi(·) denotes the projection function. Using these estimates,
we define an exposure-normalized density function that down-weights unreliable contributions:

ḋ(p) =
∑
j

αj

E(µj) + ϵ
· exp

(
−1

2
(p− µj)

⊤Σ−1
j (p− µj)

)
, (8)

where ḋ(p) denotes the exposure-normalized Gaussian density at 3D location p, αj is the learnable
opacity scalar of the j-th Gaussian, µj ∈ R3 is its 3D center, Σj ∈ R3×3 is the anisotropic
covariance matrix encoding its spatial extent and orientation, E(µj) is the projected exposure value
as defined in Eq. (7), and ϵ is a small constant to avoid division by zero. This formulation effectively
suppresses the influence of Gaussians located in radiometrically unreliable regions, while preserving
the contributions from well-exposed observations. The derivation and proof are provided in appendix
A. To estimate surface proximity in regions lacking reliable exposure or dense geometry supervision,
we construct a pseudo-Expo-SDF based on the aggregated Gaussian density:

fHDR(p) = ±sg∗ ·
√
−2 log ḋ(p), (9)

where sg∗ denotes the minimum spatial extent of the closest Gaussian along its normal direction, and
the sign of fHDR(p) is determined by the relative orientation between point p and the Gaussian surface.
This formulation provides a smooth and differentiable approximation of the underlying geometry,
even in regions with unreliable exposure, and serves as a practical surrogate for mesh initialization,
SDF alignment, and supervision pruning. To ensure geometric consistency between the estimated
pseudo-Expo-SDF and the ground-truth surface, we introduce an exposure-aware supervision loss:

LHDR
SDF =

1

|P |
∑
p∈P

∣∣∣f̂(p)− fHDR(p)
∣∣∣ , (10)

where f̂(p) denotes the reference signed distance value at point p, obtained via mesh-based rendering
or camera-projected depth, and fHDR(p) is the pseudo-Expo-SDF derived from exposure-aware
Gaussian density. This loss enables soft geometric supervision in radiometrically challenging areas,
leveraging structural priors without requiring complete or noise-free ground-truth annotations. To
further guide geometry learning in radiometrically ambiguous regions, we regularize the pseudo-Expo-
SDF field with two complementary constraints: normal alignment and spatial flatness. Specifically,
we encourage the gradient of the Expo-SDF field at each point p ∈ P to align with the dominant
surface normal ng∗ , promoting local planar consistency:

Lnormal =
1

|P |
∑
p∈P

(
1−

〈
∇fHDR(p)

∥∇fHDR(p)∥
, ng∗

〉)2

. (11)

Moreover, to ensure that each Gaussian approximates a locally planar surface element, we introduce a
disk regularization term that promotes disk-like anisotropic configurations. Rather than directly mini-
mizing the smallest principal axis—which may result in unstable gradients—we adopt a differentiable
softmin-based formulation to enable smooth and effective optimization:

Ldisk =
1

|G|
∑
g∈G

−τ · log

(
3∑

i=1

e−sgi /τ

)
, (12)
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where sgi denotes the scale of Gaussian g along its i-th principal axis, and τ is a temperature parameter
that controls the sharpness of the softmin approximation. This formulation encourages each Gaussian
to adopt a geometrically coherent, anisotropic structure that aligns with the local surface geometry,
thereby improving training stability and spatial regularity.

3.3 INTERACTIVE JOINT TRAINING FOR HARMONIZING OPTIMIZATION

In this stage, the irradiance and geometry fields are jointly refined via a coupled optimization strategy,
which is essential for high-fidelity HDR-NVS. Accurate geometric structures guide light propagation
near object boundaries and shadows, while radiometric cues help recover fine-grained geometry.
Central to this process is a geometry-aware density control mechanism that dynamically adjusts the
spatial distribution of Gaussians based on feedback from the exposure-aware signed distance field
fHDR. The growth activation for a candidate Gaussian center c is defined as:

ϵg = ∇g + ωs · exp
(
−fHDR(c)

2

2σ2

)
+ ωn · (1− ∥∇fHDR(c)∥) , (13)

where ∇g is the accumulated training gradient, and the remaining terms encourage growth near
the zero-level surface while suppressing updates in uncertain regions. Gaussians with ϵg > τg are
duplicated with perturbations to refine confident structures. Conversely, pruning is guided by a
reliability-based score:

ϵp = σa − ωp ·
(
1− exp

(
−fHDR(c)

2

2σ2

))
, (14)

where σa is the accumulated opacity. Gaussians with ϵp < τp are removed from further optimization,
reducing clutter and suppressing artifacts. By integrating growth and pruning, the geometry-aware
density control aligns the Gaussian layout with the evolving Expo-SDF, reinforcing consistency
between appearance and structure. To enable stable joint training under such dynamic updates, we
combine radiance and geometry losses into a unified objective:

Ljoint = Lrender + λSDF · LHDR
SDF + λnormal · Lnormal + λdisk · Ldisk, (15)

where Lrender supervises radiance reconstruction, and the remaining terms ensure geometric consis-
tency under varying exposures. The Interactive Joint Training strategy enables geometric structures to
inform radiance field modeling, while radiometric cues, in turn, refine fine-grained geometric details.
This bidirectional guidance significantly enhances both visual fidelity and structural consistency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. We conduct our experiments using HDR-NeRF Huang et al. (2022), a dataset designed
for NVS under HDR conditions. This dataset features multi-view, multi-exposure captures across 8
synthetic scenes and 4 real-world scenes. Each scene is recorded from 35 distinct viewpoints, with
five different exposure levels per view. Each synthetic scene is accompanied by a corresponding
HDR reference stored in the OpenEXR (.exr) format. Following prior work Cai et al. (2024); Wu
et al. (2024b), we use HDR images from 18 viewpoints for training, each paired with one randomly
sampled LDR exposure from {t1, t3, t5}. The remaining 17 viewpoints are reserved for evaluation.

Experimental Details. Our framework is trained in three stages. The initialization of Gaussian point
parameters follows the settings in 3D-GS Kerbl et al. (2023), while the tone mapping network is
adopted from HDR-GS Cai et al. (2024). We first perform 8,000 iterations of 3D-GS-based warm-up
to establish an initial discrete radiance field. This is followed by 12,000 iterations of implicit training
on the Expo-SDF to refine the geometry and extract a high-fidelity surface point cloud. Finally,
we conduct 10,000 iterations of joint optimization to balance radiance accuracy and geometric
consistency. The entire training pipeline is implemented in PyTorch and optimized with Adam Zhang
et al. (2024b), running for a total of 30,000 iterations on a single NVIDIA RTX A6000 GPU.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method LDR-OE (t1, t3, t5) LDR-NE (t2, t4) HDR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF Mildenhall et al. (2021) 15.63 0.612 0.309 17.83 0.652 0.353 – – –
3D-GS Kerbl et al. (2023) 22.37 0.690 0.276 18.97 0.778 0.309 – – –
NeRF-W Martin-Brualla et al. (2021) 29.83 0.936 0.047 29.22 0.927 0.050 – – –
HDR-NeRF Huang et al. (2022) 39.35 0.979 0.028 37.58 0.954 0.028 36.12 0.908 0.019
HDR-GS Cai et al. (2024) 41.06 0.980 0.013 36.36 0.973 0.019 37.98 0.976 0.014
Expo-GS (Ours) 41.38 0.989 0.010 37.47 0.984 0.014 39.06 0.981 0.010

Table 1: Quantitative comparison on synthetic datasets. LDR-OE and LDR-NE represent LDR-NVS
settings using exposure subsets {t1, t3, t5} and {t2, t4}, respectively. HDR represents NVS based on
complete HDR reconstruction. Our method achieves the best performance across all configurations.

Figure 3: Qualitative comparisons on synthetic datasets. Our method achieves superior color fidelity
and geometric accuracy over baseline 3D-GS, with zoom-in regions revealing detailed improvements.

4.2 RESULTS

Quantitative Comparisons on Synthetic Datasets. Table 1 provides a comprehensive quantitative
assessment of NVS performance across synthetic datasets under three distinct exposure configu-
rations: LDR with exposure ({t1, t3, t5}), LDR with exposure ({t2, t4}), and HDR. Our proposed
methodology, Expo-GS, demonstrates superior performance compared to existing approaches across
virtually all evaluation metrics with the sole exception being PSNR under the LDR-NE configuration.
Furthermore, within the HDR domain, Expo-GS exhibits exceptional efficacy, registering a PSNR of
39.06 dB, which exceeds HDR-NeRF Huang et al. (2022) by 2.94 dB and HDR-GS Cai et al. (2024)
by 1.08 dB. Our method achieves superior perceptual fidelity, evidenced by the lowest LPIPS and
highest SSIM, demonstrating its ability to preserve visual authenticity and geometric consistency.

Qualitative Comparisons on Synthetic Datasets. Figure 3 presents qualitative comparisons across
multiple approaches on synthetic scenes. Traditional NeRF Mildenhall et al. (2021) and 3D-GS Kerbl
et al. (2023) suffer from severe color smearing and geometric distortions, particularly in regions
with challenging illumination. While HDR-NeRF Huang et al. (2022) and HDR-GS Cai et al.
(2024) enhance visual realism to some extent, they still exhibit noticeable color inconsistencies and
geometric blurring under extreme lighting transitions. In contrast, our Expo-GS method reconstructs
both radiance and geometry with high fidelity. Fine-grained textures—such as wood grain, fabric
patterns, and shadow boundaries—are clearly preserved and visually aligned with the ground truth.

Quantitative Comparisons on Real-World Datasets. As shown in Table 2, our Expo-GS framework
achieves consistently superior performance across all exposure conditions. Under the LDR-OE setting,
it attains a PSNR of 35.59 dB, SSIM of 0.981, and LPIPS of 0.020, significantly outperforming
HDR-GS Cai et al. (2024) and HDR-NeRF Huang et al. (2022). Even in the more challenging

7
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LDR-NE scenario, it maintains robust performance with the highest PSNR of 32.17 dB and the lowest
LPIPS of 0.033. The results demonstrate robust generalization and resilience to exposure changes.

Method LDR-OE (t1, t3, t5) LDR-NE (t2, t4)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF Mildenhall et al. (2021) 16.21 0.682 0.295 15.84 0.716 0.227
3D-GS Kerbl et al. (2023) 18.32 0.849 0.113 20.38 0.719 0.161
NeRF-W Martin-Brualla et al. (2021) 29.39 0.914 0.087 29.17 0.918 0.086
HDR-NeRF Huang et al. (2022) 32.35 0.939 0.065 32.71 0.947 0.071
HDR-GS Cai et al. (2024) 34.94 0.962 0.031 31.24 0.953 0.045
Expo-GS (Ours) 35.59 0.981 0.020 32.17 0.972 0.033

Table 2: Quantitative comparisons on real-world datasets. Our method attains markedly superior
overall performance, demonstrating its practical effectiveness and feasibility in real-world scenarios.

Figure 4: Qualitative comparisons on real-world datasets. Our method achieves superior color fidelity
and geometric accuracy over other methods, with zoom-in regions revealing detailed improvements.

Qualitative Comparisons on Real-World Datasets. Figure 4 further demonstrates qualitative
improvements over 3D-GS Kerbl et al. (2023). In overexposed regions (e.g., light bulbs, duck), our
method suppresses saturation and geometric distortion in overexposed regions and recovers fine detail
in underexposed areas; exposure-guided supervision further enhances high-frequency reconstruction,
collectively reducing radiometric bias and structural artifacts under challenging real-world settings.

CRF Domain Linear Logarithmic Reinhard ACES

HDR 29.57 38.77 38.91 38.82
LDR-OE 33.49 41.33 40.14 40.65
LDR-NE 32.82 37.18 36.82 36.64

Exposure {t3} {t1, t5} {t1, t3, t5} {t1, . . . , t5}
HDR 24.17 32.81 38.64 38.98
LDR-OE 23.78 35.44 41.66 41.69
LDR-NE 23.13 34.25 36.81 37.53

Table 3: Ablation study on distinct CRF methods and exposure time sets on synthetic datasets.

Method LDR-OE (t1, t3, t5) LDR-NE (t2, t4) HDR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Baseline 22.37 0.690 0.276 18.97 0.778 0.309 — — —
Irradiance (8K) 29.17 0.912 0.055 29.86 0.914 0.063 28.86 0.894 0.091
Geometry (12K) 31.92 0.929 0.049 31.78 0.923 0.057 30.29 0.915 0.086
Geometry + 1K 36.41 0.961 0.031 35.39 0.955 0.026 34.76 0.963 0.037
Joint (10K) 41.38 0.989 0.010 37.47 0.984 0.014 39.06 0.981 0.010

Table 4: Ablation study on training stages highlighting the importance of geometry field training.

Ablation study. In Table 3, the results demonstrate that nonlinear CRFs consistently outperform the
linear variant and the Logarithmic transform achieves the highest PSNR scores (41.33 and 37.18 at
LDR setting, respectively), suggesting its effectiveness in enhancing LDR image quality through
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contrast adjustment. And we evaluate the impact of different exposure time combinations. The results
reveal model performance improves progressively with increased diversity in the exposure set. In
Table 4, We observed that once the pseudo-SDF is established, the initial iterations of the third stage
(Geometry+1k training) exhibit a noticeable improvement in performance. This suggests that the
quality of SDF learning indirectly influences the photometric fidelity and geometric consistency of
the synthesized views. It means second stage plays an essential intermediary role in the framework.

Figure 5: Geometric comparison of different methods in real-world scenes with specular reflections.

Figure 6: Geometric comparisons of training after first and second stage in synthetic scenarios.

Figure 7: Geometric comparisons of different methods in synthetic scenarios using mesh visualization.

Geometric comparisons. Figure 5 showcases a challenging scenario with pronounced specularities
and high-frequency texture. Our Expo-GS framework reconstructs both mirror-like surfaces and
adjacent diffuse regions with high fidelity, preserving subtle detail and faithfully modeling non-
Lambertian behavior. Figure 6 isolates the contribution of the geometry training stage, showing
marked improvements in structural modeling and contour delineation; this stage further refines the
point cloud distribution. Figure 7 extends the comparison to prior methods: 3D-GS produces coarse
geometry with noise and artifacts, while HDR-GS, despite improved irradiance fidelity, exhibits
unstable geometry. In contrast, our approach achieves higher geometric accuracy, smoother surface
continuity, and superior normal consistency, thereby distinguishing itself from existing HDR-NVS
techniques. Taken together, these results indicate that our method advances irradiance reconstruction
while simultaneously delivering robust geometric representation. Additional results in appendix E.

5 CONCLUSION

We present Expo-GS, a biologically inspired HDR-NVS framework that jointly models radiance
and geometry under varying exposures. Through Expo-SDF and a decoupled-then-joint training
paradigm, our method alleviates radiometric bias and geometric inconsistency caused by illumination
extremes. To our knowledge, this is the first framework to unify multi-exposure radiometric and
geometric modeling in HDR-NVS, offering novel insights into exposure-aware scene reconstruction.
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APPENDIX

A THEORETICAL DERIVATIONS

A.1 ANALYSIS OF EQUATION (8)

Equation (8) defines the exposure-normalized Gaussian density:

ḋ(p) =
∑
j

αj

E(µj) + ε
exp
[
− 1

2 (p− µj)
⊤Σ−1

j (p− µj)
]
, (8)

where each Gaussian’s opacity coefficient αj is scaled by the estimated exposure E(µj) at its center,
with a small constant ε added to ensure numerical stability. This exposure-aware attenuation preserves
the influence of well-exposed regions while down-weighting overexposed highlights and severely
underexposed, noise-prone areas.

The resulting density field ḋ(p) is strictly positive, infinitely differentiable, and globally bounded.
Moreover, it is monotonically decreasing with increasing exposure, enabling robust structural model-
ing in HDR conditions. Notably, the scaled negative logarithm of ḋ(p) induces a quadratic form in p,
which serves as the foundation for the pseudo-signed distance function defined in Equation (9) and
utilized in geometric supervision.

A.2 PROOF OF EQUATION (8)

1. Positivity and smoothness.
Each term in the summation is positive: αj > 0, E(µj) + ε > 0, and the Gaussian
exponential kernel is positive and C∞. Therefore, ḋ(p) is strictly positive and infinitely
differentiable over R3.

2. Global upper bound.
Since the denominator is lower-bounded by ε, we have:

ḋ(p) ≤
∑
j

αj

ε
,

ensuring ḋ(p) is globally bounded and log ḋ(p) is finite.

3. Monotonicity with respect to exposure.
Differentiating each term w.r.t. E(µj):

∂

∂E(µj)

(
αj

E(µj) + ε
e−

1
2 (··· )

)
= − αj

(E(µj) + ε)2
e−

1
2 (··· ) < 0,

indicating ḋ(p) decreases monotonically with local exposure.

4. Local dominance.
When a single Gaussian gk dominates locally:

ḋ(p) ≈ αk

Ek + ε
exp
[
− 1

2 (p− µk)
⊤Σ−1

k (p− µk)
]
, Ek := E(µk).

5. Quadratic structure of the log-density.
Taking the negative logarithm:

−2 log ḋ(p) = (p− µk)
⊤Σ−1

k (p− µk) + C,

where C = −2 logαk + 2 log(Ek + ε) is constant in p.

6. Euclidean upper bound.
Let Σk = diag(s2k1, s

2
k2, s

2
k3), and define smin := mini ski. Then:

−2 log ḋ(p) ≥ ∥p− µk∥22
s2min

.
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7. Gradient alignment.
The gradient is:

∇pḋ = ḋΣ−1
k (µk − p),

which aligns with the Gaussian’s outward normal, enabling normal-aligned supervision.
8. Conclusion.

Equation (8) defines a well-behaved, exposure-aware surrogate density. Its negative loga-
rithm induces a Mahalanobis distance, forming the mathematical basis for the pseudo-SDF
used in Equation (9).

A.3 ANALYSIS OF EQUATION (9)

Equation (9) defines a pseudo-signed distance function (pseudo-SDF):

fHDR(p) = ±sg∗

√
−2 log ḋ(p), (9)

where g∗ is the dominant Gaussian near p, and sg∗ is its smallest principal axis scale. This formulation
transforms the log-density into a distance-like scalar field whose sign is determined by the orientation
of the local surface normal. Consequently, fHDR(p) behaves like a true SDF in well-exposed regions
and provides reliable geometric cues in radiometrically ambiguous areas.

A.4 PROOF OF EQUATION (9)

1. Dominant Gaussian assumption.
Assume g∗ dominates in the local neighborhood:

ḋ(p) ≈ αg∗

E(µg∗) + ε
exp
[
− 1

2 (p− µg∗)⊤Σ−1
g∗ (p− µg∗)

]
.

2. Log transformation.
Taking −2 log:

−2 log ḋ(p) = (p− µg∗)⊤Σ−1
g∗ (p− µg∗) + C.

3. Principal axis decomposition.
Diagonalizing Σg∗ :

(p− µg∗)⊤Σ−1
g∗ (p− µg∗) =

3∑
i=1

∆2
i

s2g∗,i

.

4. Distance upper bound.
Let sg∗ = mini sg∗,i. Then:

−2 log ḋ(p) ≥ ∥p− µg∗∥22
s2g∗

.

5. Distance approximation.
Rescaling gives:

sg∗

√
−2 log ḋ(p) ≈ ∥p− µg∗∥2.

6. Sign function.
Using the local surface normal ng∗ :

sign(fHDR(p)) = sign ((p− µg∗) · ng∗) .

7. Definition of pseudo-SDF.
Combining the above, we define:

fHDR(p) = ±sg∗

√
−2 log ḋ(p).

8. Gradient alignment.
Given

∇pḋ = ḋΣ−1
g∗ (µg∗ − p),

the gradient ∇fHDR is aligned with the local normal ng∗ .
9. Conclusion.

The function fHDR(p) behaves as a smooth, exposure-aware approximation of a signed
distance field, suitable for geometry regularization under HDR settings.
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B EXTENDED RELATED WORK

High Dynamic Range (HDR) Imaging. Traditional HDR imaging hinges on multi-exposure
fusion to reconstruct the full luminance spectrum of a scene Reinhard (2020); Kang et al. (2003).
Early methods focused on radiometric calibration to counteract nonlinear camera responses, while
recent works integrate deep learning with physical sensor models, using attention-based fusion and
physics-inspired tone mapper for enhanced fidelity Seetzen et al. (2023); Zhang & Yau (2009).
HDR-NeRF Huang et al. (2022) introduces HDR capabilities into Neural Radiance Fields via inverse
gamma correction and HDR-aware training, improving reconstructions in low-light regions. HDR-
GS Cai et al. (2024) further advances this by adapting 3D-GSKerbl et al. (2023) to HDR synthesis,
leveraging dual dynamic range point cloud modeling and differentiable rasterization for simultaneous
HDR-LDR reconstruction with exposure control. However, most HDR methods emphasize pixel-wise
radiometric accuracy and rely heavily on color regression, overlooking the intricate coupling between
lighting variations and geometry—especially problematic in 3D scenes where structural consistency
is crucial.

Human Visual System (HVS). HVS possesses a remarkable ability to perceive both color and
structural information of scenes under highly dynamic and varying lighting conditions Thorpe et al.
(1996). This capacity arises from several key perceptual mechanisms Parraga et al. (2000); Banks
et al. (2012).

First, exposure adaptation allows the human eye to function across a wide luminance range—from
dim starlight at night to bright sunlight at noon—through dynamic gain control by photoreceptor
cells in the retina Goodale & Haffenden (1998). Second, contrast sensitivity drives the visual system
to focus on local edges and changes in luminance rather than absolute pixel intensity Adini et al.
(2002). This mechanism is essential for capturing object boundaries and geometric structure. Third,
the HVS performs dual-stream processing to separately process color and structure Field et al. (1993).
Specifically, cone cells in the retina transmit fine-grained chromatic and texture information through
the parvocellular pathway (color stream) to the visual cortex, while rod cells are more sensitive to
motion and coarse structure, channeling information through the magnocellular pathway (structure
stream) Goebel et al. (2004); Salin & Bullier (1995). These two streams are later recombined in
higher-level visual areas to construct a coherent and stable perception of the visual world Toosy et al.
(2004); Lu & Sperling (2001).

Inspired by the HVS, a more robust approach is to decouple color (i.e., irradiance) and structure
(i.e., geometry) during the training process. Specifically, radiometric and geometric attributes of the
scene are modeled separately and then jointly optimized at the perceptual level. This mimics the
human strategy of treating different exposure regions with varying sensitivity and integrating infor-
mation based on local reliability. Thus, the perceptual principles of the HVS provide a biologically
grounded motivation for decoupled modeling in HDR-NVS. Emulating the HVS paradigm of “first
decomposing, then integrating” enables the development of HDR-NVS systems that are not only
photometrically faithful but also geometrically stable across varying lighting conditions.

C IN-DEPTH DESIGN ANALYSIS

In multi-exposure or extreme dynamic range scenarios, geometry optimized solely from pixel color
residuals often fails. First, gradients from saturated or underexposed pixels are either zero or unstable,
causing the density σ to expand indiscriminately and leading to surface drift. Second, exposure times
(∆t) vary across views; after the camera’s nonlinear response function, residual magnitudes become
imbalanced, further compounding depth inconsistencies.

These issues are well-documented in prior work: RawNeRF demonstrates that NeRF fails to recover
highlights and shadows under LDR conditions, while Gaussian-DK reports severe ghosting artifacts
in 3D-GS under high-contrast lighting. In summary, ignoring exposure reliability and relying
solely on color cues hinders robust geometric reconstruction under varying exposure conditions—an
observation supported by both physical modeling and empirical evidence.

Although the exposure time ∆t is a global setting, the local exposure conditions within a single frame
are far from uniform; bright highlights and deep shadows often coexist in our dataset. As early as
the HDR fusion method of Debevec&Malik (1997), the pixel weight w(z) was given a bell-shaped
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profile to down-weight overexposed and underexposed samples. The spirit is identical here: we
assess pixel-wise confidence from exposure, rather than just blindly using the global ∆t.

In the bathroom scene of the synthetic dataset, the red flowerpot provides a representative test case.
Under normal exposure (t3), the average RGB values are approximately Pa ≈ (161, 74, 58), with
the red channel at 161. Upon inspection, we observed that these pixels retain full weight—and in
some cases even receive slightly increased weight—during subsequent computation and training.
Under overexposure (t5), the same region exhibits average RGB values of Pb ≈ (222, 170, 144),
with the red channel rising to 222. In this case, the SDF weight assigned to Pb is slightly reduced,
which is appropriate given that local highlights introduce noisy color residuals that can destabilize
pseudo-SDF supervision.

If a large, uniform area has a high max(RGB) value, it is beneficial to reduce the weight of its
contribution to the SDF. Consider an area that is almost pure red (255, 0, 0) and contains little
geometric or textural detail. Assigning the sparsely distributed 3D point cloud to this area is sufficient.
Reducing its density does not affect the appearance, and the boundary geometry is still defined by
the surrounding well-exposed pixels. Therefore, the weighting scheme does not misclassify vibrant
colors; on the contrary, it highlights their geometric value and contributes to more stable optimization.
And our goal is not to calculate the precise absolute brightness of pixels but to quickly determine
whether a pixel is within a reliable (neither overexposed/underexposed) range for subsequent SDF
geometric gradient weighting.

D HYPERPARAMETER CONFIGURATION FOR EXPO-GS TRAINING

We detail the hyperparameter configuration used across the three stages of Expo-GS: irradiance field
training, geometry field training, and interactive joint training.

Parameter Value Description

1. General Training Settings

Optimizer Adam Used in all training stages
Learning Rate (Stage 1) 2.5e-3 Irradiance field training
Learning Rate (Stage 2) 1.0e-3 Geometry field training
Learning Rate (Stage 3) 5.0e-4 Joint optimization

Total Iterations 30,000 8000 (Stage 1) + 12000 (Stage 2) + 10000 (Stage 3)
Hardware NVIDIA RTX A6000 49 GB VRAM (49140 MiB), Single-GPU

Framework PyTorch 2.x CUDA 11.8 compatible

2. Geometry Field Training Settings

Expo-SDF Loss λSDF = 0.2 Geometry field stage
Normal Alignment Loss λnormal = 0.2 Geometry field stage
Disk Regularization Loss λdisk = 0.1 Geometry field stage

3. Joint Optimization Settings

Expo-SDF Loss λSDF = 0.1 Joint stage
Normal Alignment Loss λnormal = 0.1 Joint stage
Disk Regularization Loss λdisk = 0.05 Joint stage

Table 5: Hyperparameter configuration across training stages for Expo-GS, comprising Stage 1
(irradiance field training), Stage 2 (geometry field training), and Stage 3 (interactive joint training).

E EXTENDED RESULTS

Tone mapper. The core limitation of fixed tone mappers lies in their generalizability. Their parameters
are empirical, and when faced with cross-scene or extreme exposure conditions, manual re-tuning is
often required to avoid color bias and detail loss. In contrast, learnable tone mappers can adaptively
map relationships end-to-end without human intervention. Furthermore, nearly all previous HDR-
NVS methods (HDR-NeRF, HDR-GS, etc.) inherently rely on learnable tone mappers. If we were
to manually select the optimal fixed tone mappers for each of them, it would introduce new unfair
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factors. Therefore, we retain the learnable tone mapper to maintain end-to-end properties and ensure
that comparisons with existing methods focus on exposure modeling capabilities rather than the tone
mapper itself.

Evaluation. To evaluate the performance of HDR-NVS, we adopt three widely used metrics: Peak
Signal-to-Noise Ratio (PSNR) Johnson (2006), Structural Similarity Index Measure (SSIM) Wang
(2004), and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018). PSNR Johnson
(2006) directly quantifies radiometric fidelity through pixel-level differences, while SSIM Wang
(2004) and LPIPS Zhang et al. (2018) indirectly reflect geometric coherence by measuring structural
and perceptual similarity, respectively. Together, these metrics provide a dual-perspective assessment
that captures both irradiance accuracy and geometric consistency.

Method LDR-OE (t1, t3, t5) LDR-NE (t2, t4) HDR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SuGaR Guédon & Lepetit (2024) 36.10 0.954 0.049 35.28 0.958 0.049 33.36 0.943 0.048
GSDF Yu et al. (2024) 38.76 0.966 0.026 36.39 0.971 0.022 34.81 0.957 0.033
PulledGS Zhang et al. (2024a) 39.69 0.971 0.019 36.07 0.965 0.027 35.95 0.962 0.025
Expo-GS (Ours) 41.38 0.989 0.010 37.47 0.984 0.014 39.06 0.981 0.010

Table 6: Comparisons with SDF-based methods reveal their limitations under LDR inputs.

Comparisons with SDF-based methods. As shown in Table 6, existing SDF-based methods (e.g.,
SuGaR Guédon & Lepetit (2024), GSDF Yu et al. (2024), and PulledGS Zhang et al. (2024a)),
though effective under fixed-exposure LDR conditions, exhibit suboptimal performance in HDR-NVS
scenarios. These methods typically employ dense surface guiding while uniformly weighting multi-
exposure inputs, neglecting the exposure disparities inherent in LDR observations. Consequently, they
fail to handle the challenging conditions inherent in HDR configurations, leading to the emergence of
spurious geometries and degraded radiometric fidelity. Notably, our proposed Expo-GS framework
effectively accommodates multi-exposure inputs by incorporating exposure-aware optimization,
achieving superior results across all evaluated metrics.

Stage LDR-OE (t1, t3, t5) LDR-NE (t2, t4) HDR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRFactor Zhang et al. (2021) 33.16 0.941 0.038 18.62 0.761 0.325 – – –
ReLight-NeRF Toschi et al. (2023) 36.58 0.957 0.029 21.31 0.819 0.292 – – –
Expo-GS(Ours) 41.38 0.989 0.010 37.47 0.984 0.014 39.06 0.981 0.010

Table 7: Comparisons with relightable methods reveal their limitations under LDR inputs.

Table 7 reveals that under the LDR-OE setting (exposure levels observed during training), both
NeRFactor and ReLight-NeRF deliver reasonable performance owing to their architectural illumi-
nation modeling and the availability of ground-truth supervision. The learned mappings between
brightness, geometry, and material remain effective within the trained exposure range, yielding rela-
tively high-quality reconstructions. However, under the more challenging LDR-NE setting (unseen
exposures), both methods suffer a substantial degradation in performance. This drop is attributed to
the absence of explicit exposure modeling, which compels the networks to implicitly approximate
brightness differences across views. Consequently, unseen exposure times induce shifts in activation
distributions, leading to poor generalization and a sharp decline in image quality.

While NeRFactor and ReLight-NeRF are effective for modeling illumination variations within
LDR conditions, their outputs are ultimately governed by apparent brightness. As such, they remain
competent for LDR relighting tasks but are unsuitable for HDR-NVS or cross-exposure generalization.

Efficiency Comparison. As shown in Table 8, the moderate increase in training time is due to the
second stage (Geometry Field Training). However, combined with the single rendering strategy of
the first stage and the lightweight optimization of the third stage, the overall training time is not very
long, and our method outperforms other methods in terms of inference speed. In fact, based on the
main experimental results of HDR-NVS, our method achieves a balance between performance and
efficiency.
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Method Training time (min) GPU memory (GB) Inference speed (fps)

HDR-NeRF 517 80 0.128
HDR-GS 33 8 122
Expo-GS (ours) 36 (8 / 21 / 7) 6 / 11 / 9 131

Table 8: Training efficiency and inference speed comparison.

Figure 8: Qualitative comparisons on synthetic datasets. Our method achieves superior color fidelity
and geometric accuracy over baseline 3D-GS under LDR settings.

Figure 9: Our method achieves superior color fidelity and geometric accuracy under HDR settings.

Qualitative Comparison. Figure 8 illustrates qualitative results on representative synthetic scenes
under challenging illumination. The baseline 3D-GS method exhibits prominent artifacts, such as
color bleeding, oversaturation, and structure deformation, especially around high-contrast regions
like candles, windows, and shadow boundaries. In contrast, our method (Expo-GS) demonstrates
significantly improved radiometric accuracy and structural coherence. Reflective surfaces and high-
frequency textures (e.g., wallpaper patterns, fabric details, window frames) are faithfully reconstructed,
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closely matching the ground truth. These improvements highlight the effectiveness of exposure-aware
SDF supervision and joint optimization in mitigating hallucinations and ensuring geometric stability
across varying exposure conditions.

Figure 10: Geometric comparisons of training after first and second stage in synthetic scenarios.

Geometric comparison. As illustrated in the Figure 10, we provide qualitative visualizations of both
the mesh and the corresponding normal maps obtained after the first-stage irradiance field training
and the subsequent geometry field training. The irradiance field training alone is insufficient for
reliable geometric modeling, as the initial triangular mesh derived from the point cloud displays
prominent holes and structural discontinuities. By contrast, the geometry field training, enhanced
through Expo-SDF optimization, produces a smoother and more coherent scene geometry. The
normal visualizations further highlight the improved geometric fidelity, exhibiting strong surface
consistency and continuity. Overall, these qualitative results demonstrate that geometry field training
effectively captures structural information and reconstructs scene geometry, mitigating noise and
stripe artifacts, filling missing regions, and substantially improving both surface smoothness and
normal coherence.
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