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Abstract
Matrix-valued optimization tasks, including those involving symmetric positive definite (SPD) ma-
trices, arise in a wide range of applications in machine learning, data science and statistics. Clas-
sically, such problems are solved via constrained Euclidean optimization, where the domain is
viewed as a Euclidean space and the structure of the matrices (e.g., positive definiteness) enters as
constraints. More recently, geometric approaches that leverage parametrizations of the problem as
unconstrained tasks on the corresponding matrix manifold have been proposed. While they exhibit
algorithmic benefits in many settings, they cannot directly handle additional constraints, such as
side information on the solution. A remedy comes in the form of constrained Riemannian opti-
mization methods, notably, Riemannian Frank-Wolfe and Projected Gradient Descent. However,
both algorithms require potentially expensive subroutines that can introduce computational bottle-
necks in practise. To mitigate these shortcomings, we propose a structured regularization frame-
work based on symmetric gauge functions and disciplined geodesically convex programming. We
show that the regularizer preserves crucial structure in the objective, including geodesic convexity.
This allows for solving the regularized problem with a fast unconstrained method with a global
optimality certificate. We demonstrate the effectiveness of our approach in numerical experiments
on two examples, the computation of the Karcher mean of SPD matrices and Optimistic Gaussian
Likelihood estimation.

1. Introduction

We study constrained optimization problems of the form

min
x∈X⊂Pd

ϕ(x) , (1)

where ϕ : Pd → R is a smooth function defined on the symmetric, positive definite matrices Pd and
X ⊂ Pd a subset defined by geometric constraints. Problems of this form arise in many settings,
including the computation of Tyler’s M-estimators [15, 19, 25], robust subspace recovery [27], the
computation of Brascamp-Lieb constants [23], and learning determinantal point processes [12],
among others. We are particularly interested in constraints that encode side information, such as a
coarse estimate of the solution, which can be enforced as a ball constraint X = BR(X̂)

def
= {X ∈

Pd : δ(X, X̂) ≤ ρ} with respect to some metric δ on Pd. A notable example of this problem class
is optimistic likelihood estimation [14].

Classical approaches for this class of problems include constrained Euclidean optimization,
where the domain in problem 1 is viewed as a Euclidean space and the geometric structure of the
problem enters as constraints. However, it is often beneficial to encode the positive definiteness
constraint explicitly in the parametrization of the domain by solving problem 1 as a constrained
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problem on the manifold of symmetric positive definite matrices (SPD manifold). For instance,
if the objective ϕ is geodesically convex with respect to the Riemannian metric, this implies a
global optimality certificate for first-order methods in the Riemannian setting. Consequently, sev-
eral constrained Riemannian optimization methods have been proposed, including variants of Rie-
mannian Projected Gradient Descent (R-PGD) [11] and projection-free Riemannian Frank-Wolfe
(R-FW) methods [21, 22]. However, several shortcomings arise, which limit the applicability of
those methods in practise. First, both R-PGD and R-FW rely on subroutines for implicitly imposing
constraints, which can be costly in the geometric setting. Second, the geometric tools needed to
implement Riemannian optimization methods, including Riemannian gradients, exponential maps,
and parallel transport operators, often introduce significant computational overhead compared to
their Euclidean counterparts.

To mitigate both limitations, we propose a regularization approach based on symmetric gauge
functions, which allows for preserving desirable properties, such as geodesic convexity and dif-
ference of convex (DC) structure in the objective. Optimization tasks with DC objectives can be
solved using Convex-Concave Procedures (short: CCCP), a class of Euclidean solvers that can of-
ten numerically outperform classical first-order methods in practise [18, 25]. In settings where the
DC objectives is geodesically convex, we can leverage a Riemannian analysis to obtain global op-
timality certificates [24]. We will show that this lens applies readily to our regularized objectives,
allowing us to leverage CCCP with global optimality guarantees in the constrained setting. To the
best of our knowledge, this represents the first application of CCCP to constrained, geodesically
convex programs. Importantly, our structured regularizers are highly modular, which enables the
design of new regularizers for a variety of programs. We demonstrate the utility of our approach in
numerical experiments.

2. Background

2.1. Geometry of the SPD manifold

We consider the set of real symmetric square matrices with strictly positive eigenvalues, denoted by

Pd
def
= {X ∈ Rd×d : X ≻ 0}.

A manifoldM is a topological space that is locally Euclidean with a tangent space TxM associated
to each point x ∈ X . If M is smooth and has a smoothly varying inner product ⟨u, v⟩x defined
on TxM for x ∈ M then it is a Riemannian manifold. In particular, if Pd is endowed with the
affine-invariant inner product

⟨A,B⟩X = tr
(
X−1AX−1B

)
X ∈ Pd, A,B ∈ TX (Pd) = Hd ,

the positive definite matrices form a Riemannian manifold. Here, the tangent space Hd is the
space of d × d real symmetric matrices. Under this geometry, given two points A,B ∈ Pd

there is an explicit parametrization for the unique geodesic that interpolates A to B given by
γ(t) = A1/2

(
A−1/2BA−1/2

)t
A1/2 (0 ≤ t ≤ 1). The Riemannian metric corresponding to this

geometry is given by δR(A,B) =
∥∥logA−1/2BA−1/2

∥∥
2
.

The Euclidean geometry of Pd is induced by endowing the symmetric positive definite matrices
with the smooth inner product ⟨A,B⟩ = tr(A⊤B) for all A,B ∈ Pd. In this case, we can view the
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set Pd as a convex cone, i.e., a set closed under conic combinations. This conic perspective lends
itself to convex analysis and optimization [13]. We further use the following convexity notions.

Definition 1 (Geodesic convexity of sets) We say that a set S ⊆ Pd is geodesically convex (short:
g-convex) if for any two points A,B ∈ Pd, the unique geodesic γ : [0, 1] → Pd between them lies
entirely in S, i.e., the image satisfies γ([0, 1]) ⊆ S.

Definition 2 (Geodesic convexity of functions) We say that ϕ : S → R is a geodesically convex
function if S ⊆ Pd is geodesically convex and f ◦ γ : [0, 1] → R is (Euclidean) convex for each
geodesic segment γ : [0, 1]→ Pd whose image is in S with γ(0) ̸= γ(1).

2.2. Difference of Convex (DC) Optimization

Optimization tasks on the SPD manifold frequently exhibit a special structure, where the objective
function can be written as a difference of two convex functions. Formally, we consider instances of
problem 1, where ϕ(x) = f(x)− h(x) with f(·), h(·) Euclidean convex and h(·) smooth. The idea
of convex-concave procedures (short: CCCP) is to iteratively minimize a majorization surrogate
function instead of the original, non-convex objective (see Algorithm 1). Notably, this algorithm
is purely Euclidean and does not require the computation of Riemannian tools, such as exponen-
tial maps or parallel transport operators. With a purely Euclidean analysis one can show that this
algorithm converges asymptotically to a stationary point of the underlying objective [9], but due to
non-convexity, a non-asymptotic convergence analysis is challenging in the general case. However,
if ϕ(·) is in addition geodesically convex, then sublinear, global convergence guarantees can be
obtained for the (purely Euclidean) CCCP algorithm:

Theorem 3 ([24]) Let d(x0, x∗) ≤ R for some x0 ∈ M with ϕ(x) ≤ ϕ(x0). If the functions

Q(x, xk) in Alg. 1 are first-order surrogate functions, then ϕ(xk) − ϕ(x∗) ≤ 2Lα2
M(R)

k+2 (∀k ≥ 1),
where αM depends on the geometry of the manifold and L characterizes the smoothness of h(·).

3. Structured Regularization

Regularization approach The properties of symmetric gauge functions [1, 10] will form the basis
for the design of our structured regularization approach.

Definition 4 (Symmetric Gauge Functions.) A function Φ : Rd → R+ is called a symmetric
gauge function if (1) Φ is a norm; (2) Φ(σd(x)) = Φ(x) for all x ∈ Rd and all permutation maps
σn : Rd → Rd (known as symmetric property); (3) Φ(α1x1, . . . , αdxd) = Φ(x1, . . . , xd) for all
x ∈ Rd and αk ∈ {±1} (known as gauge invariant or absolute property).

With an abuse of notation, we denote Φ : Pd → R as Φ(A)
def
= Φ(λ(A)), i.e., Φ(A) acts on the

eigenspectrum of A. Notably Φ induces metrics dΦ and norms ∥·∥Φ that are particularly well-suited

for our mixed Euclidean-Riemannian perspective. In particular, ∥A∥Φ
def
= Φ(λ(A)) is g-convex; dΦ

is a complete metric on the convex cone of Pd and g-convex. We defer a more detailed discussion
to section C.3.

These observations imply that regularizing problem 1 with a symmetric gauge function (or
its corresponding unitarily invariant norm) will maintain g-convexity. Moreover, since symmet-
ric gauge functions are closed under positive scaling, we can introduce a hyperparameter β > 0
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to control the strength of the regularizer. For the specific example of the ball constraint discussed
above, the regularizer preserves desirable properties: For a g-convex and DC objective ϕ : Pd → R
and an appropriate choice of β > 0 and α ≥ 1, the regularized problem

argmin
X∈Pd

ϕ(X) + βdαΦ(X, X̂)

is g-convex and DC, too.

Designing regularizers via disciplined programming. To design regularizers for a wide range
of constrained tasks, we take a disciplined programming approach [4, 6]: We refer to a repository of
known g-convex functions (for e.g., symmetric gauge functions) and apply g-convexity preserving
operations to construct g-convex functions that act as regularizers. Below, we give two examples to
illustrate this idea. More details on basic g-convex functions and g-convexity preserving operations
can be found in [4].

Proposition 1 The following are g-convex functions [4].

1. All symmetric gauge functions functions Φ : Pd → R defined by Φ(A)
def
= Φ(λ(A)) are

g-convex. This includes the ℓp-Schatten norms for p ≥ 1 and the Ky-fan norms [1].

2. The log-determinant log det : Pd → R++ is both g-convex and g-concave. Moreover,
log det(·) is Euclidean concave.

Proposition 2 The following operations preserve g-convexity [4].

1. If fi : Pd → R are g-convex then f(X) =
∑n

i=1 fi(X) is g-convex for αi ≥ 0.

2. If f : Pd → R is a strictly positive linear map, i.e. f(X) is linear and is positive definite
whenever X is positive definite then the function g(X) = log det f(X) is g-convex.

Example 1 (Diagonal Loading [26]) We can sum the log-det barrier and the trace-inverse regu-

larizer to get the diagonal loading regularizer RΦ(X) : Pd → R defined by RΦ(X)
def
= trX−1 +

log detX = ∥X−1∥Φ + dΦ(X, Id), where Φ is the Schatten 1-norm. Then RΦ(X) is g-convex and
DC.

Example 2 (S-divergence [18]) For fixed Y ∈ Pd, the s-divergence δ2S : Pd → R++ defined by

δ2S(X,Y )
def
= log det

(
X+Y

2

)
− 1

2 log det(XY ) is g-convex and DC.

4. Applications

Karcher Mean The Karcher mean [7, 8] corresponds to the centroid of SPD matrices. Given data
{A1, . . . , Am} ∈ Pd and w ∈ Rm

+ such that
∑m

i=1wi = 1 we solve minX∈Pd

def
=

∑m
i=1wiδ

2
R(X,Ai).

Remarkably, [18] showed that the Karcher mean problem can be reformulated in terms of the s-
divergence, a symmetric gauge function:

min
X∈Pd

ϕ(X)
def
=

m∑
i=1

wiδ
2
S(X,Ai) , (2)
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Importantly, this formulation is g-convex and DC, which allows for deriving an effective CCCP
approach [18]:

X ←

[
m∑
i=1

wi

(
X +Ai

2

)−1
]−1

k = 0, 1, . . . .

We demonstrate the competitive performance of this approach in comparison with first-order Rie-
mannian methods in Fig. 1.
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Figure 1: Karcher Mean for inputs with m = 100 and d = 100. CCCP outperforms Riemannian
first-order methods.

Gaussian optimistic likelihood Consider a set of i.i.d data points x = (x1, . . . , xn) ∈ Rd gener-
ated from one of several Gaussian distributions {N (0,Σc)}c∈C with zero mean and covariance Σc

indexed by c ∈ C where |C| <∞. The true Gaussian distribution can be determined by solving

c⋆ ∈ argmin
c∈C

{
ϕ (Σc;x)

def
=

1

n

n∑
k=1

x⊤k Σ
−1
c xk + log detΣc

}
. (3)

Problem (3) has applications in machine learning (e.g. quadratic discriminant analysis [17]) and in
statistics (e.g. Bayesian inference [16]). In general, Σc is unknown, but we can obtain an estimator
Σ̂c from the data. Problem (3) is highly sensitive to misspecification of the candidate distributions
N (0,Σc), due to which the following constrained formulation can be more effective [14]:

min
Σ∈BR(Σ̂c;ρc)

ϕ(Σ;x) where BR(Σ̂c; ρc)
def
= {Σ ∈ Pd : δR

(
Σ, Σ̂c

)
≤ ρc} . (4)

Problem (4) is an instance of problem 1 with side information. The shared properties of δ2S and
δR (see Apx. C.3) allows for a structured regularization of the form

argmin
Σ∈Pd

{
ϕ̂(Σ)

def
= tr

(
SΣ−1

)
+ log detΣ + βδ2S

(
Σ, Σ̂

)}
. (5)

The regularization preserves the g-convexity and DC structure, which allows for applying a CCCP
approach (see Algorithm 2 in Apx. B.1). Numerical results for this approach can be found in
Figure 2.
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Figure 2: Optimistic Gaussian Likelihood for inputs of size n = 100, d = 30 (left) and n =
1500, d = 100 (right). As we increase β, Algorithm 2 converges to a solution Σ̂β closer
to Σ̂. Increasing β also results in faster convergence. At β = 0, the algorithm converges
to the sample covariance, i.e., Σ̂β = S.

5. Discussion

In this paper we introduced a structured regularization approach for constrained optimization on the
SPD manifold. Our regularizers rely on symmetric gauge functions, whose algebraic properties give
rise to a modular framework that allows for designing regularizers that preserve desirable properties
of the orginial objective, specifically geodesic convexity and difference of convex structure. We il-
lustrate the utility of our approach on a range of data science and machine learning applications. An
extended version of this paper [3] constructs structured regularizers for a wider range of problems
and discusses additional applications.

We believe that our proposed approach opens up new directions for constrained optimization on
Riemannian manifolds that circumvents the costly subroutines of previous constrained Riemannian
optimization approaches. While this paper only discusses constrained optimization on the SPD
manifold, we believe that many of the ideas could be extended to more general Cartan-Hadamard
manifolds.
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Appendix A. CCCP Algorithm

Algorithm 1: Convex-Concave Procedure (CCCP)
Input: x0 ∈M,K
for k = 0, 1, . . . ,K − 1 do

Let Q(x, xk)
def
= f(x)− h(xk)− ⟨∇h(xk), x− xk⟩

xk+1 ← argminx∈M Q(x, xk).
end
Output: xK

Appendix B. Details on Applications

B.1. Optimistic Gaussian Likelihood

Figure 2 was created by following an experimental setup similar to that of [14]. In particular, we
generate the true covariance Σ and its estimate Σ̂ ∈ Pd as follows. First we draw a Gaussian random
matrix A with i.i.d. entries Aij ∼ N (0, 1). Then we symmetrize and ensure it is positive definite
via Σ = 1

2

(
A+A⊤)+ δI . To construct Σ̂ we conduct the eigenvalue decomposition Σ = QΛQ⊤

and replace the eigenvalues in Λ with a random diagonal matrix D̂ whose diagonal elements are
sampled independently and uniformly from {1, 2, . . . , 50}.

The CCCP algorithm applied to the Gaussian optimistic likelihood takes the form of Algo-
rithm 2.

Algorithm 2: CCCP for Optimistic Gaussian Likelihood

Input: Σ0, Σ̂ ∈ Pd, K,L ∈ N, β > 0 and {ηℓ} ⊆ R++

for k = 0, . . . ,K − 1 do

Precompute Σ−1
k + β

(
Σk + Σ̂

)−1

for ℓ = 0, . . . , L− 1 do

Σℓ+1 ← Σℓ − ηℓ

(
−Σ−1

ℓ SΣ−1
ℓ −

β
2Σ

−1
ℓ +Σ−1

k + β
(
Σk + Σ̂

)−1
)

Update Σk+1 ← ΣL

end
end
Output: ΣK

B.2. Experimental Setup

Karcher mean. We sample G1, . . . , Gm random matrices, each with i.i.d standard Gaussian en-
tries, and construct the data points Ak

def
= GkG

⊤
k . A proxy for the true optimum is obtained by

averaging the last iterate of the three algorithms upon convergence. The gap in performance only
widens as m and d increases.
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Optimistic Gaussian Likelihood. We sampled n = 100 independent Gaussian vectors of dimen-
sion d = 30 for the left plot. Meanwhile, the right plot was generated with n = 1500 and d = 100.
We initialized our iterate at our estimate Σ̂. As we increase β, Algorithm 2 converges to a solution
Σ̂β closer to Σ̂. At β = 0, the algorithm converges to the sample covariance, i.e., Σ̂β = S.

Appendix C. Deferred Proofs

C.1. Disciplined Programming with symmetric gauge functions

The following proof shows that symmetric gauge functions are g-convex on Pd.
Proof [Proposition 1] Symmetric gauge functions are g-convex as was proven in the previous propo-
sition. To show that f : Pd → R++ is indeed g-concave with respect to the Euclidean metric we
refer the reader to Section 3.1.5 [2]. Let X,Y ∈ Pd and γ : [0, 1] → Pd be the geodesic segment
connecting γ(0) = A to γ(1) = B. For t ∈ [0, 1]

log det (γ(t)) = log det
(
X1/2(X−1/2Y X−1/2)tX1/2

)
= log

(
det(X) det(X−1)t det(Y )t

)
= log det(X)− t log det(X) + t log det(Y )

= (1− t) log det(X) + t log det(Y ).

Proof [Proposition 2] For the proofs of (1) and (2), we refer the reader to Proposition 1 [4] and
Proposition 5.8 [20], respectively.

Lemma 5 (Proposition 5 [4]) Let f : Pd → R be g-convex. Then g(X) = f(X−1) is also g-
convex.

Proof [Example 1] We can express trX−1 as f(X) = tr(X−1) = ∥X−1∥Φ. By Proposition 3 and
Lemma 5 we have f(X) is g-convex. By Proposition 1, log det(·) is g-convex and the result follows
from that fact that the sum of the two g-convex functions is g-convex.

Proof [Example 2] See the proof of Proposition 10 in [4].

C.2. Properties of symmetric gauge functions

Symmetric gauge functions Φ induces unitarily invariant norms that are g-convex (Proposition 3)
on the Pd manifold and complete metrics dΦ on the convex cone Pd. Hence they play particularly
well with our mixed Riemmanian-Euclidean optimization perspective.

Proposition 3 Let Φ : Rd → R be a symmetric gauge function. Then the unitarily invariant norm
∥ · ∥Φ : Pd → R+ defined by ∥ · ∥Φ = Φ(λ(A)) is geodesically convex.
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Proof [Proposition 3] To show ∥ · ∥Φ is g-convex it suffices to verify midpoint g-convexity. We use
the notation λ↓(A) ⪯ λ↓(B) to denote λj(A) ≤ λj(B) for j = 1, . . . , d for the spectrum ordered
in decreasing order, i.e.,

λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λd(B)

It is known that symmetric gauge functions are monotone [1], that is, if λ↓(A) ⪯ λ↓(B) then

∥A∥Φ = Φ(λ↓(A)) ≤ Φ(λ↓(B)) = ∥B∥Φ ,

where the equalities follow from the permutation invariance property of Φ. For A,B ∈ Pd the
weighted geometric mean satisfies

A#tB ⪯ (1− t)A+ tB for t ∈ [0, 1].

Recall that if A ⪰ B then λ↓(A) ⪰ λ↓(B) which follows from the min-max theorem:

λk(A) = min
U⊂Cn

dim(U)=k

max
x∈U\{0}

x⊤Ax

x⊤x
≥ min

U⊂Cn

dim(U)=k

max
x∈U\{0}

x⊤Bx

x⊤x
= λk(B),

for k ∈ [d] where the inequality follows from the fact that A ⪰ B =⇒ A − B ⪰ 0, that is
x⊤(A−B)x ≥ 0 for all vectors x ̸= 0.

Hence setting t = 1/2 in the geometric mean we have

A#B ⪯ A+B

2
=⇒ λ↓(A#B) ⪯ λ↓

(
A+B

2

)
. (6)

Thus using (6) and applying the monotonicity and permutation invariance of Φ we get

Φ(λ(A#B)) = Φ(λ↓(A#B)) ≤ Φ

(
λ↓

(
A+B

2

))
= Φ

(
λ

(
A+B

2

))
.

Moreover, Exercise II.1.14 [1] implies

λ↓
(
A+B

2

)
≺w λ↓

(
A

2

)
+ λ↓

(
B

2

)
. (7)

Also we know that Φ satisfies the strongly isotone property (see Page 45 [1]), i.e.,

x ≺w y =⇒ Φ(x) ≤ Φ(y) ∀x, y ∈ Rn
+.

Applying permutation invariance of Φ with (7) gives

Φ

(
λ

(
A+B

2

))
= Φ

(
λ↓

(
A+B

2

))
≤ Φ

(
λ↓

(
A

2

)
+ λ↓

(
B

2

))
. (8)

11
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Finally, we have for all A,B ∈ Pd,

∥A#B∥Φ = Φ(λ(A#B))

≤ Φ

(
λ

(
A+B

2

))
(Applying monotonicity of Φ to (6))

≤ Φ

(
λ↓

(
A

2

)
+ λ↓

(
B

2

))
(Apply (8))

= Φ

(
1

2
λ↓(A) +

1

2
λ↓(B)

)
(Property of eigenvalues: λ(A/2) =

1

2
λ(A))

≤ Φ(λ↓(A)) + Φ(λ↓(B))

2
(Φ is a norm; triangle inequ., pos. homogeneity)

=
Φ(λ(A)) + Φ(λ(B))

2
(Remove ↓ by permutation invariance of Φ)

def
=
∥A∥Φ + ∥B∥Φ

2

which proves the midpoint criterion for g-convexity.

Definition 6 For a continuous segment γ : [0, 1]→ Pd we define its length w.r.t a symmetric gauge
function Φ : Rn → R+ as

LΦ(γ)
def
=

∫ 1

0

∥∥∥γ−1/2(t)γ′(t)γ−1/2(t)
∥∥∥
Φ
dt.

We define the distance between A,B ∈ Pd with respect to Φ as

dΦ(A,B)
def
= inf {LΦ(γ) : γ is a path from A to B} .

It turns out that dΦ can be expressed in terms of the unitarily invariant norm ∥ · ∥Φ. Moreover
dΦ is a complete metric on the convex cone of Pd with several nice properties illustrated by the
following theorem.

Theorem 7 (Theorem 2.2 [10]) We have dΦ(A,B) =
∥∥log (A−1/2BA−1/2

)∥∥
Φ

and dΦ is a com-
plete metric distance on the convex cone of Pd such that for A,B ∈ Pd and for invertible matrix
M ,

1. dΦ(A,B) = dΦ
(
A−1, B−1

)
= dΦ (MAM∗,MBM∗);

2. dΦ(A#B,A) = dΦ(A#B,B) = 1
2dΦ(A,B), where A#B = A# 1

2
B;

3. dΦ (A#tB,A#sB) = |s− t|dΦ(A,B) for all t, s ∈ [0, 1];

4. dΦ (A#tB,C#tD) ≤ (1− t)dΦ(A,C) + tdΦ(B,D) for all t ∈ [0, 1].

Theorem 8 (Theorem 2.2 + Proposition 3.5 [10] ) We can explicitly express dΦ(A,B) =
∥∥log (A−1/2BA−1/2

)∥∥
Φ

and dΦ is a complete metric distance on the convex cone of Pd and satisfies

1. Every dΦ-ball is geodesically convex in Pd.

2. The map dαΦ(·, Z) : Pd → R is geodesically convex for any α ≥ 1.

12
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C.3. S-divergence and the Riemannian metric

The computation of the Riemannian metric requires computing the generalized eigenvalues of A
and B, which introduces a computational bottleneck. To address this problem, [5] introduced a
symmetrized log-det based matrix divergence, also known as the S-divergence. Sra et al. [18] dis-
cuss the relationship of the Riemannian metric δR and the S-divergence δ2S and its algorithmic
implications. We present relevant properties of the S-divergence and its relation to the Riemannian
metric δR.

Proposition 4 (Table 4.1 [18]) Let A,B,X ∈ Pd. The S-divergence δ2S satisfies the following
properties

1. Invariant Under Inversions. δS
(
A−1, B−1

)
= δS(A,B)

2. Invariant Under Conjugation. δS(X∗AX,X∗BX) = δS(A,B)

3. Bi-G-convex. δ2S(X,Y ) is g-convex in X,Y

4. Lower Bounded By Shifts. δ2S(A+X,B +X) ≤ δ2S(A,B).

5. Geodesic As S-divergence. A♯B = argminX∈Pd
δ2S(X,A) + δ2S(X,B)

Every property listed in Proposition 4 is also satisfied by the Riemannian metric δR. See Table
4 [18] for more shared properties of δ2S and δR. Moreover, we can relate the size of the metric balls
induced by the δR and δ2S via the following proposition.

Proposition 5 (Theorem 4.19 [18]) Let A,B ∈ Pd. Then, we have the following bound

8δ2S(A,B) ≤ δ2R(A,B).

Proposition 6 Fix Σ̂ ∈ Pd and fix α > 0. Define the sets

BR(Σ̂;α)
def
= {A ∈ Pd : δR(A, Σ̂) ≤ α}

and
BS(Σ̂;α)

def
= {A ∈ Pd : δ2S(A, Σ̂) ≤ α}.

Then the subset-inequality
BR(Σ̂;α) ⊆ BS(Σ̂;Cα)

holds for C ≥ α
8 .

Proof By Proposition 5, we have the inequality

2
√
2δS(A,B) ≤ δR(A,B) ∀A,B ∈ Pd.

Let α > 0 and suppose A ∈ BR(Σ̂;α). By definition and applying the inequality above,

δR(A, Σ̂) ≤ α =⇒ 2
√
2δS(A, Σ̂) ≤ α

=⇒ δ2S(A, Σ̂) ≤
1

8
α2

13
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Hence A ∈ BS(Σ̂;Cα) for any C ≥ α
8 . Since A ∈ BR(Σ̂;α) was arbitrarily selected we have

BR(Σ̂;α) ⊆ BS(Σ̂;Cα) ∀C ≥ α

8
.

This suggests that the S-divergence can be leveraged for an efficient implementation of the
ball constraint regularizer: Suppose we have an optimization problem constrained to lie within a
Riemannian distance ball BR(·;α) of radius α > 0. Since the S-divergence ball BS(·;Cα) is a
superset of the Riemannian distance ball, we can replace the Riemannian distance ball with the S-
divergence ball with radius Cα for some C ≥ α/8. This can be seen as a relaxation of the original
problem. This alludes to a more general relaxation technique which we discuss now.

Computational considerations Computing the S-divergence δ2S(A,B) requires 3 Cholesky fac-
torizations for A + B,A and B, whereas computing the Riemannian metric requires computing
generalized eigenvalues at a cost of 4d3 flops for positive definite matrices. The cost gap between
δ2S and δR only widens when considering their gradients

∇Aδ
2
R(A,B) = A−1 log

(
AB−1

)
∇Aδ

2
S(A,B) = (A+B)−1 − 1

2
A−1.

This is particularly well-illustrated in Table 2 [5].
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