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ABSTRACT

Energy landscapes play a crucial role in shaping dynamics of many real-world
complex systems. System evolution is often modeled as particles moving on a
landscape under the combined effect of energy-driven drift and noise-induced dif-
fusion, where the energy governs the long-term motion of the particles. Estimat-
ing the energy landscape of a system has been a longstanding interdisciplinary
challenge, hindered by the high operational costs or the difficulty of obtaining su-
pervisory signals. Therefore, the question of how to infer the energy landscape in
the absence of true energy values is critical. In this paper, we propose a physics-
informed self-supervised learning method to learn the energy landscape from the
evolution trajectories of the system. It first maps the system state from the obser-
vation space to a discrete landscape space by an adaptive codebook, and then ex-
plicitly integrates energy into the graph neural Fokker-Planck equation, enabling
the joint learning of energy estimation and evolution prediction. Experimental re-
sults across interdisciplinary systems demonstrate that our estimated energy has a
correlation coefficient above 0.9 with the ground truth, and evolution prediction
accuracy exceeds the baseline by an average of 17.65%. The code is available at
github.com/tsinghua-fib-lab/PESLA.

1 INTRODUCTION

Energy landscapes are inherent in many stochastic dynamical systems in nature, such as the potential
energy surface of protein conformations (Norn et al., 2021), the fitness landscape of species evolu-
tion (Papkou et al., 2023; Poelwijk et al., 2007), and the fractal energy landscapes of soft glassy
materials. The evolution of these systems can be modeled as particles moving on the landscape
under the combined effect of energy-driven drift and noise-induced diffusion. The structure of the
energy landscape governs the long-term motion of particles, forming the deterministic aspect of the
dynamics, while inherent random noise disrupts the movement along the energy gradient, driving
exploration across energy barriers (Blount et al., 2018; Kryazhimskiy et al., 2014). When multiple
low-energy regions exist in the landscape, the combined effect of the energy gradient and noise in-
duces high-frequency movement within individual regions and low-frequency transitions between
different regions (Lin et al., 2024). In this context, energy landscapes have been applied to guide
the generation of stable molecular structures (Noé et al., 2019) and direct the evolution of pro-
teins (Packer & Liu, 2015; Greenbury et al., 2022), and more recently, they have been incorporated
as physical knowledge into deep learning for predicting system evolution (Guan et al., 2024; Wang
et al., 2024b; Ding et al., 2024).
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Due to its fundamental role in governing the system dynamics, estimating the energy landscape
of dynamical systems has become an essential research problem across various disciplines. Couce
et al. (2024) cultivate 50,000 generations of bacteria to measure the fitness effects of mutations,
while Sarkisyan et al. (2016) measure tens of thousands of luminescent protein genotypic sequences
to construct the functional landscape. These manual experimental approaches are not only costly
but also heavily reliant on expert knowledge. With the success of deep learning in numerous dis-
ciplines (Jumper et al., 2021; Han et al., 2023; Wang et al., 2023; Chen et al., 2024), several deep
learning models have been proposed to estimate energy or equivalent quantities based on molec-
ular spatial structures (Zhang et al., 2018), species genotypes (Tonner et al., 2022), or population
compositions (Skwara et al., 2023). These methods still require high-cost annotations to provide
supervisory signals for energy, which limits their practicality. In real-world scenarios, it is typi-
cally more accessible to obtain abundant low-cost evolutionary trajectories of the system, which
inherently embeds information about energy-driven drift (Weinstein et al., 2022). Therefore, an im-
portant research question arises: can we estimate the energy landscape only based on the system’s
evolution trajectories in a data-driven manner?

However, estimating the energy landscape from evolutionary trajectories remains a complicated
problem with the following challenges. First, observable evolutionary trajectories typically cover
only a limited portion of the vast state space. For instance, there are approximately 1011 potential
triple mutants of a typical protein, while available high-throughput measurement techniques can only
handle around 104 to 107 distinct genotypes, covering just a small fraction of the mutational space
surrounding the natural sequence (Tonner et al., 2022). Second, distilling energy information from
evolutionary trajectories requires building a model incorporating the energy landscape and the dis-
tribution of trajectory data, thereby establishing connections between them. Classical Markov state
models (Noé et al., 2019) establish this connection by strictly assuming that sampled data follow a
Boltzmann distribution derived from the energy, which unrealistically demands that trajectories are
fully sampled from a thermodynamic equilibrium state. In contrast, existing self-supervised learn-
ing methods (Kamyshanska & Memisevic, 2014) treat neural networks as black-box models to fit
data distributions, completely disregarding the guidance of physical knowledge in terms of energy
and system evaluation. Currently, there is still no effective model that organically integrates AI
techniques and physical knowledge for energy estimation without supervisory signals.

In this paper, we propose a Physics-informed Energy Self-supervised Landscape Analysis (PESLA)
method to estimate the energy landscape from historical evolution trajectories in a self-supervised
manner. PESLA maps the system state from the observed space to a discretized latent space via vec-
tor quantization techniques (Van Den Oord et al., 2017). Through adaptively learning a codebook
to partition the vast state space, our model concentrates on the essential shapes of the energy land-
scape in discrete domains, thus disregarding the negligible information of the energy landscape and
overcoming the challenge posed by limited observations. Then, PESLA utilizes the self-supervision
signal from the prediction error of the system state to guide energy estimation. In this process, a
graph neural ODE inspired by the Fokker-Planck equation is utilized to model the time evolution
of probability distributions across different discretized states, and a physics-inspired regularization
constraint is employed to integrate the prior knowledge of Boltzmann distribution of long-term dy-
namics (Sato & Nakagawa, 2014), without relying on the assumption of thermodynamic equilib-
rium sampling. These physics-inspired architectures serve as the bridge to distill information of the
energy landscape from the system dynamics, thereby enabling the self-supervised learning of the
system’s energy landscape.

Our contribution can be summarized as follows:

• We develop a novel framework to estimate the energy landscape of the system only utilizing the
self-supervision signal from predicting the system state, where the physics-information archi-
tecture of graph neural Fokker-Planck equation and physics-inspired regularization serves as the
bridge to distill information of energy landscape from the system dynamics.

• We develop a discrete encoding method of the system state to coarsen the continuous energy
landscape using a codebook obtained through vector quantization techniques. It allows our
model to concentrate on the essential shapes of the energy landscape, effectively disregarding its
negligible information and enhancing the sample efficiency of limited observational data.

• Experimental results across interdisciplinary systems demonstrate that PESLA reliably estimates
system energy with absolute correlation coefficients above 0.9 and achieves 17.65% higher evo-
lution prediction accuracy compared to state-of-the-art baselines.
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2 BACKGROUND AND PROBLEM SETUP

Let us consider a stochastic dynamical process which can be described by the following differential
equation:

dst = f(st)dt+ σ(st, t)dW (t), (1)

xt = g(st). (2)

Specifically, it represents a system with latent state variable st ∈ S whose evolution is driven
by a deterministic drag force f(st) and a random force described by white noise σ(st, t)dW (t).
While the state variable st is hidden and cannot be observed directly, the observable measurement
xt ∈ X of the system is derived through a transformation g : S → X , which can be either linear
or nonlinear and can even represent a mapping from continuous space to discrete space, thereby
describing systems with discrete observable metrics, such as ecological evolution.

More specifically, we focus on systems where the force f(st) is conservative. This implies the
existence of an energy function E(st), also referred to as the energy landscape, such that f(st) =
−∇E(st). Then, the dynamic equation 1 can be be rewritten as:

dst = −∇E(st)dt+ σ(st, t)dW (t), (3)

The energy landscapes measure the thermodynamic stability of a given state. Low-energy regions
induce a drift that draws the system state into them with greater probability and duration, manifesting
thermodynamically as the Boltzmann distribution, p ∝ e−E(s)/kT , where k is Boltzmann constant
and T represents temperature. For evolution starting from any initial state distribution, the system’s
long-term dynamics will eventually drift toward the Boltzmann distribution defined by the energy
landscape. Examples of such energy landscapes in different disciplines include fitness landscapes
in ecology Papkou et al. (2023), potential energy in molecular dynamics Chmiela et al. (2017), and
free energy in glassy materials Charbonneau et al. (2014).

Learning problem In this paper, our primary objective is to estimate the energy landscape of a
stochastic dynamical system based on its evolution trajectories, without the true energy as a super-
visory signal. More formally, the input of this learning problem is a set of the N -step evolution
trajectory XN = {xti}N−1

i=0 of the stochastic dynamical system in the D-dimensional observation
space X . Then, for an arbitrary observable state x, the objective of this learning problem is twofold:
(1) building a transformation E to map the observable measurement to a latent feature c = E(x) that
determines the energy of the system; (2) estimating the energy Ê(E(x)) as an approximation of the
true energy E(g−1(x)). Since the true energy E(g−1(x)) is unavailable as a supervisory signal in
the learning process, the estimated energy Ê(E(x)) is only required to be a linear transformation of
the true energy.

3 METHOD

In this section, we introduce a Physics-informed Energy Self-supervised Landscape Analysis
(PESLA) method, which learns to predict the energy landscape through a self-supervised evolu-
tion prediction task, as shown in Figure 1. First, we develop an adaptive codebook learning module
to instantiate the mapping E from the observed space to the energy landscape. This approach inte-
grates concepts from reduced-order modeling of complex systems to mitigate uncertainties caused
by limited sample coverage. Next, we explicitly incorporate the energy function into a graph neural
Fokker-Planck equation to model the system’s evolution on the energy landscape. Additionally, we
introduce physics-inspired regularization constraints into the optimization objective to eliminate the
assumption of thermodynamic equilibrium sampling.

3.1 ADAPTIVE CODEBOOK LEARNING

Constructing the energy landscape involves learning the transformation E from the observed space
X to the latent space S where the energy landscape resides. Previous studies have shown that,
despite the high dimensionality of the state space, the long-term dynamics of systems unfold on a
very low-dimensional manifold in the form of reduced-order model (Vlachas et al., 2022; Thibeault
et al., 2024; Li et al., 2024). This suggests that the energy landscape, which shapes the system’s
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Figure 1: Framework of PESLA. (a) The energy landscape with evolution trajectories; (b) Parti-
tioning the state space with an adaptive codebook to form the codewords with a graph topology
and modeling the time evolution of probability across neighboring regions by graph neural Fokker-
Planck equation.

long-term evolution, has inherently low dimensionality. Similar phenomena have been observed in
natural language processing and image representation, where a set of discrete codewords is sufficient
to capture the essential representation of the original data (Van Den Oord et al., 2017; Razavi et al.,
2019). Therefore, modeling the energy landscape as a discrete reduced-order model in the latent
space S offers a promising approach to addressing the challenge of the vast state space (Noé et al.,
2009).

To implement such reduced-order approach and identify the energy landscape in the latent space S,
we enhance the autoencoder with a learnable codebook C = {ci ∈ Rd | i = 1, 2, ...,K} to discretize
the latent space of the encoded data. The transformations E and g between the observed space and
the latent space are parameterized by Ξ and Ω, respectively. Specifically, after a sample x is encoded
into a latent vector s, it is mapped to the most similar codeword ci, which then serves as the input
to the probabilistic decoder Ω for reconstructing x. This k-nearest neighbor (KNN) style discrete
aggregation partitions the latent space into multiple local regions (as shown in Figure 1b), each
uniquely represented by the energy of a codeword, thereby forming the low-dimensional landscape
space. The encoding function Ξ maps the original space to the landscape space, capturing semantic
features to ensure similar states fall into the same codeword region, thereby reducing reconstruction
error. We emphasize that this design allows for optimal scaling of the state space partitioning from
the limited coverage of observed data, rather than simple equidistant grid binning, as shown in
Figure 3a (center). This adaptive scaling ensures the maximal utilization of codewords, enhancing
the robustness to the preset number of codewords. Through the adaptive codebook encoding, the
observed trajectories are mapped onto the energy landscape in the form of codewords, i.e., {cti}N−1

i=0 .

3.2 GRAPH NEURAL FOKKER-PLANCK EQUATION

In the latent space S, the time evolution of the system state is influenced by the combined effect
of energy-driven drift and diffusion caused by inherent random noise, theoretically modeled by
the Fokker-Planck equation (Risken, 1996). On the discretized energy landscape, we extend the
traditional Fokker-Planck equation into a graph neural differential equation, enabling joint learning
of energy estimation and evolution prediction.

We construct the codeword topology A = (aij)K×K based on the adjacency relationships of the
codeword regions (as shown in Figure 1) and estimate the energy of each codeword as E(ci) as the
energy landscape G = {A,C,E(∗)} of system evolution. At this point, we have projected the origi-
nal observed trajectory onto a low-dimensional energy landscape, obtaining the transition trajectory
of the system state on the codeword topology. Predicting the temporal evolution of the system means
modeling the time-dependent evolution of the probability distribution over the codewords. The ef-
fects of energy and noise on this evolution are modeled by the Graph Fokker-Planck equation Chow
et al. (2012) as:
dpi
dt

=
∑

j∈N(i),Eji>0

((Eji + β log
pj
pi

)pj+
∑

j∈N(i),Eji<0

((Eji + β log
pj
pi

)pi+
∑

j∈N(i),Eji=0

β(pj − pi),

(4)
where pi denotes the probability of node i and Eji = Ej − Ei. β is a positive constant which
governs the noise strength. Denoting p(ct0) as K-dimensional probability distribution at time t0,
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one can naively obtain the conditional probability distribution p(ct0+∆t|ct0) after a diffusion time
of δt by performing a time integration of the Fokker-Planck equation on the initial condition p(ct0).

However, considering that the evolution of a node’s state often depends on its neighbors, projecting
the one-dimensional probability vector into a higher-dimensional space with stronger representa-
tional capacity helps capture this rich relational structure. We employ a graph convolutional neural
networks (GCN) based probability encoder, H(t0) = Φ(p(ct0)), introducing neighborhood infor-
mation through positional encoding (Chamberlain et al., 2021b; Yuan et al., 2024a) to lift the one-
dimensional probability vector into a high-dimensional representation. Thus, the time evolution of
conditional state probabilities p(xt0+∆t|xt0) on the energy landscape G is modeled as a graph neural
diffusion process (Chamberlain et al., 2021a; Yuan et al., 2024b), formalized as

H(t0 +∆t) = H(t0) +

∫ t0+∆t

t0

∂H(t)

∂t
dt,

p(ct0+∆t|ct0) = Ψ(H(t0 +∆t)).

(5)

We extend Chow et al. (2012)’s theory by designing a graph neural Fokker-Planck equation to ex-
plicitly model state diffusion driven by energy differences between neighboring codewords as

∂

∂t
Hci =

∑
j

Wij [Eji + βξ(logHcj − logHci)] ◦ [σ(kEji)Hcj + (1− σ(kEji))Hci ], (6)

where Wij is calculated by neighborhood attention. The learnable coefficient βξ represents the
strength of noise acting between neighboring codewords, while k is the scaling factor for the sigmoid
activation function. The ablation study can be found in Appendix E, where we demonstrate that
modeling in the encoded probability space performs significantly better than directly modeling the
probability vector.

3.3 TRAINING

The trainable parameters include the encoder Ξ, decoder Ω, codebook C, probability encoder Φ,
probability decoder Ψ, neighborhood attention weights W , coefficient vector βξ, and energy func-
tion E(∗). The detailed model architecture is provided in Appendix A.2. In the following, we
introduce the training procedure for the model.

Adaptive codebook learning and evolution prediction form a joint learning task. The optimization
objective for the former is to minimize the negative log-likelihood of the reconstructed distribution,
i.e., Lreconstruct = − logqΞ,Ω,C(x). In our experiments, we use a Gaussian prior distribution de-
coder with negative log-likelihood loss for continuous systems, and cross-entropy loss for discrete
systems. Additionally, the loss function Lvq for updating codeword is consistent with the one pro-
posed by Van Den Oord et al. (2017). Similarly, we minimize the negative log-likelihood in both
the latent space and the landscape space for the evolution prediction task. In the latent space, we
minimize the L2 error Llatent = ||Φ(p(ct+∆t)) − Ψ(H(t + ∆t))||, while in the landscape space,
we use cross-entropy Lcode = −p(ct+∆t) logq(ct+∆t).

With the mapping of adaptive codebook, we can estimate the distribution p(ci) of observed sam-
ples within the landscape space and employ the corresponding negative log-probability as reference
energies to guide energy estimation. However, this approach fails when evolution trajectories are
not sampled from a thermodynamic equilibrium state. Proven by statistical mechanics, the state
probability distribution evolving in the form of Fokker-Planck equation converges to the Boltzmann
distribution. Although we cannot expect all sample data to be drawn from a thermodynamic equi-
librium state, the long-term evolution of states will eventually converge to the Boltzmann distribu-
tion. This suggests incorporating a regularization term into the long-term prediction task, expressed
as the KL divergence between the empirical distribution p and the Boltzmann distribution q, i.e.,
Lphy = DKL(p∥q) =

∑K
i=0 p(ci) log

(
p(ci)
q(ci)

)
. Overall, we conduct the training process by opti-

mizing the aforementioned objectives L = Lreconstruct + Lvq + Llatent + Lcode + Lphy . Detailed
training strategies are provided in Section 4.1 and ablation studies can be found in Appendix E.
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(b)
Ecological Evolution
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Figure 2: Visualization of the results on the energy estimation. (a): full-space energy correlation ρF
as a function of data size (top), and comparison across different methods (bottom); (b): trajectory
energy correlation ρT as a function of data size (top), and comparison across different methods
(bottom).

4 EXPERIMENTS

We conduct experiments on three classic dynamical systems from different disciplines to evaluate
the accuracy of PESLA in (1) energy estimation and (2) evolution prediction. For fairness, we use the
same data preprocessing and apply grid search to fine-tune the learning rates and hyperparameters
for all models. We perform 10 independent training and testing runs for each model to calculate the
mean and standard deviation of all evaluation metrics in each experiment.

4.1 SETUP

Baselines For the energy estimation task, we employ the Markov state model (MSM) (Majewski
et al., 2023) and autoencoder potential energy (APE) (Kamyshanska & Memisevic, 2014) as base-
lines. For the evolution prediction task, we compare PESLA with NeuralMJP (Seifner & Sánchez,
2023), T-IB (Federici et al., 2024), VAMPNets (Mardt et al., 2018), and SDE-Net (Kong et al.,
2020). Details on the implementation and hyperparameter searching of these baseline algorithms
can be found in Appendix A.3.

Evaluation Metrics We evaluate the accuracy of energy estimation from two perspectives. The
trajectory energy correlation ρT represents the Pearson correlation coefficient between the predicted
and true energies for all samples along a new trajectory, assessing predictive performance within
the regions covered by training data. The full-space energy correlation ρF measures the correlation
coefficient for the energy of system states uniformly across the entire state space, accounting for
unseen areas during training. For the evolution prediction task, all metrics are measured from M
reference trajectories Xτ

N
M unfolding from randomly initialized system states, where τ denotes the

lag time of each step. All models are tasked with predicting evolution trajectories starting from these
initial states, covering the same time span as the reference trajectories. We evaluate the accuracy
of the predicted distributions by calculating the Jensen-Shannon divergence between the marginal
(MJS) and transition (TJS@τ ) probability distributions of the predicted and reference trajectories
across all states. For systems with a continuous state space, we discretize it into evenly spaced grid
partitions, following previous work Federici et al. (2024); Arts et al. (2023). Further details can be
found in Appendix A.5.

Training strategy We first train encoder Ξ, decoder Ω and the feature vectors of the codewords C
to construct the landscape topology. Then, we freeze them and train the parameters of the graph
neural Fokker-Planck equation and energy function E(∗) on the landscape. For all models, we use
the Adam optimizer, with the learning rate decaying exponentially by a factor of 0.99 each epoch.
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Figure 3: Visualization of the results on the 2D Prinz Potential. (a): potential surface and short sam-
ple trajectory (left), codebook distinguished by color and shape (center), and comparison between
estimated energy and ground truth (right). Blue/red represents low/high values in the heatmap; (b):
measures of marginal and transition JS divergence for unfolded sequences at the lag time τ of 100;
(c): The impact of the preset number of codewords on evolution prediction accuracy (top), energy
estimation accuracy (center), and codeword occupancy (bottom).

4.2 2D PRINZ POTENTIAL

We first apply PESLA to the 2D particle movement system on an asymmetric potential energy
surface (Mardt et al., 2018; Federici et al., 2024). The particle displacement is governed by the
stochastic differential equation as dXt = ∇V (Xt)dr + σdWt, where the potential energy function
V , defined by V (x) = (x4

1−
x3
1

16−2x2
1+

3x1

16 )+(x4
2−

x3
1

8 −2x2
1+

3x1

8 ), consists of four interconnected
low-energy regions, as shown in Figure 3a (left). A total of 10 trajectories with 100K time steps are
generated and details on the generation and preprocessing can be found in Appendix A.4. The results
of energy estimation and evolution prediction are presented in Figure 2a (bottom) and Figure 3b,
respectively, where PESLA significantly outperforms the baseline methods in both tasks.

Figure 3a (center) visualizes the adaptive codebook learned by PESLA from historical trajecto-
ries, with different codewords distinguished by color and shape, representing their mapped regions
in the original state space. The varying density of codewords at different locations directly re-
flects PESLA’s adaptive scaling partitioning. We emphasize that the adaptive codebook captures the
dynamical knowledge of the energy landscape, which is fundamentally different from the simple
equidistant grid-based binning approach. At a macro level, the codebook divides the plane into an
approximate 2×2 region corresponding to the four potential wells. The high energy barriers between
potential wells serve as the boundaries of the four codeword regions. Low-energy wells are assigned
more codewords (e.g., the bottom-left well), suggesting that the model recognizes the importance
of low-energy regions as long-term dynamic attractors and allocates more attention to them, which
aligns with the higher accuracy observed in low-energy regions shown in Figure 3a (right). We
present the codebooks of multiple independent experiments in Appendix B, demonstrating that this
is not a coincidental phenomenon. At a finer level, multiple codewords are assigned to the center
of each potential well, while the outer areas are divided into mapped regions approximately perpen-
dicular to the equipotential lines. This indicates that the random walk behavior induced by noise is
effectively captured through the differences between codewords.

We examine the sensitivity of PESLA to data size and hyperparameters. Figure 2a (top) illustrates
the impact of training data size on performance when all energy estimation algorithms are required
to estimate across full-space samples. Due to the coarse-graining of adaptive codebook, PESLA
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Figure 4: Visualization of the results on the Ecological Evolution. (a): fitness landscape and short
sample trajectory (left), codebook distinguished by color and shape (center), and energy landscape
fitted by RANSAC regression from estimated energy (right). Blue/red represents low/high values
in the heatmap; (b): measures of marginal and transition JS divergence for unfolded sequences at
the lag time τ of 10; (c): The impact of the preset number of codewords on evolution prediction
accuracy (top), energy estimation accuracy (center), and codeword occupancy (bottom).

maintains optimal performance even with reduced data. In contrast, baseline methods are signifi-
cantly limited by insufficient sample coverage in the state space. As shown in Figure 2a (top), as the
data volume increases, the performance of MSM improves due to the enhanced sample coverage.
Figure 3c reports the robustness of PESLA concerning the preset number of codewords. Although
the number of preset codewords can be continuously increased, the actual number of occupied code-
words converges automatically, and the accuracy of energy and evolution predictions reaches its
peak.

4.3 ECOLOGICAL EVOLUTION

We examine the strong selection weak mutation system within eco-evolutionary dynamics, which is
widely studied in ecology to understand the adaptive evolution of populations in specific environ-
ments (Kryazhimskiy et al., 2009; Bank et al., 2016). The fixation probability of a candidate state j
(new mutation) with fitness fj is governed by the Kimura formula derived from the Wright–Fisher
model, given by pi→j = 1−e2si(j)

1−e2Nsi(j)
, where N represents the population size and si(j) =

fj
fi

− 1

is the selection coefficient. Sella & Hirsh (2005) have mathematically demonstrated that the loga-
rithmic fitness of such evolutionary systems aligns with the energy of thermodynamic systems. We
simulate 1K trajectories, each with 100 time steps, under the two-locus setting where each locus
has 64 possible mutation types as our dataset. Figure 2b (bottom) and Figure 4b respectively report
PESLA’s superior predictive performance for fitness and system evolution.
In ecology, fitness measures the relative advantage of a genotype and is negatively correlated with
energy (Sella & Hirsh, 2005). PESLA estimates the energy function of genotypes with a correla-
tion coefficient close to -1. The predicted energy is fitted with a RANSAC regression model (see
Appendix A.5) and visualized in Figure 4a (right). The distribution pattern of codewords within
the codebook indicates that PESLA successfully identifies the set of genotypes with high fitness in
eco-evolutionary dynamics. Moreover, since the genotype space is characterized by the Hamming
distance, states in the same row or column of the codebook are more likely to be mapped to the same
codeword (Figure 4a (center)). This indicates that the adaptive codebook incorporates knowledge of
system dynamics rather than relying on simple equidistant grid binning.
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Figure 5: Visualization of the results on the Protein Folding. (a): reference energy landscapes of
each protein; (b): adaptive codebooks of each protein; (c): trajectory correlation coefficients ρT
between predicted and reference energy.

We also examine the impact of data size and the preset number of codewords on PESLA in this
system. For the energy estimation within the sample-covered region (measured by ρT ), PESLA
shows minimal sensitivity to data size, as shown in Figure 2b (top). The influence of the preset
number of codewords is similar to that observed in last case, which validates PESLA’s robustness.

4.4 PROTEIN FOLDING

We apply PESLA to the folding data of five fast-folding proteins simulated by the Anton supercom-
puter (Lindorff-Larsen et al., 2011). Each protein has two folding trajectories of equal length, used
for model training and testing, respectively. Due to the lack of true energy, we estimate the reference
energy using Time-lagged Independent Component Analysis (TICA) and the Markov State Model
(MSM) based on the complete dataset (three times larger than the training data), consistent with pre-
vious studies (Majewski et al., 2023; Mardt et al., 2018). For each protein, the lag time used in TICA
processing and experiments is based on the mean transition path time reported by Lindorff-Larsen
et al. (2011). The reference energy distribution on the 2D principal component plane identified by
TICA is shown in Figure 5a, with implementation details provided in Appendix A.4. Each protein
features a varying number (1 to 4) of low-energy regions with different distributions, posing chal-
lenges for energy estimation. Figure 5b shows PESLA’s partitioning of the state space for each pro-
tein on the TICA principal component plane, demonstrating that PESLA differentiates low-energy,
high-energy, and unknown energy regions with varying codeword aggregation rates. This automatic
scaling ensures that PESLA’s energy predictions remain consistent with reference values (as shown
in Figure 5c), even in challenging protein folding problems. Additionally, PESLA achieved the best
performance in the evolution prediction task (see Appendix C).
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5 RELATED WORK

5.1 ENERGY ESTIMATION

Estimating the energy landscape is a crucial problem across multiple disciplines. The most funda-
mental approach involves collecting data through modern sequencing techniques and manual exper-
iments. Sarkisyan et al. (2016) measured tens of thousands of Aequorea victoria (avGFP) deriva-
tive genotypes to construct the local fitness landscape of green fluorescent proteins. Chen et al.
(2022) analyzed the fitness of all single mutations in VIM-2 β-lactamase across a 64-fold range of
ampicillin concentrations. Additionally, Wang et al. (2024a) conducted high-throughput functional
genomics on Salmonella to identify gene networks related to adaptive effects. There have been
many similar efforts (Starr et al., 2018). However, these manual experiments are often associated
with high operational costs, making machine learning a promising solution to improve this process
in a data-driven manner (Rupp et al., 2012; Han et al., 2023). Zhang et al. (2018) introduce the
deep potential molecular dynamics method, using neural networks to model interatomic forces and
potential energy. To mitigate overfitting issues in deep neural networks, Aghazadeh et al. (2021)
apply sparse recovery algorithms from coding theory for spectral regularization. Zhang et al. (2022)
employ high-speed atomic force microscopy to collect data for training a U-net model to predict
the energy landscape of spatial angles on the DHR10-micaN protein. Additionally, Tonner et al.
(2022) and Skwara et al. (2023) offer interpretable predictions of mutation effects and population
functions through hierarchical Bayesian modeling and polynomial regression, respectively. More
recently, Du et al. (2024) developed a graph neural network to model intermolecular interactions,
predicting Gibbs free energy in solute-solvent interactions. Despite these efforts, these models often
depend on true energy values or molecular force fields as supervisory signals. In contrast to these
methods, our PESLA does not require supervisory signals for energy; instead, it learns to estimate
energy through a self-supervised evolution prediction task. An additional benefit of this approach is
that the predicted energy effectively enhances the accuracy of evolution prediction.

5.2 EVOLUTION PREDICTION

Predicting the evolution of stochastic dynamical systems is challenging due to the unknown un-
derlying energy landscape. Vlachas et al. (2022) employ dimensionality reduction techniques to
construct reduced-order models that capture essential macroscopic information, thereby simplifying
the analysis of large-scale systems. To handle the challenge of modeling long-term dynamics, ap-
proaches such as learning time-invariant representations have been explored (Federici et al., 2024;
Kostic et al., 2024b; Li et al., 2023). Furthermore, Kostic et al. (2022; 2024a) extend Koopman op-
erator theory to map system states into a Hilbert space, facilitating the learning and interpretation of
nonlinear dynamics. Wu et al. (2018) and Seifner & Sánchez (2023) represent stochastic dynamical
processes as discrete state transitions within a Markov process framework. In contrast to existing
methods, PESLA utilizes energy landscape knowledge to guide system dynamics modeling.

6 CONCLUSION

In this paper, we propose the PESLA method to estimate the energy landscape from historical evolu-
tion trajectories in a self-supervised manner. By integrating adaptive codebook learning and a graph
neural Fokker-Planck equation, PESLA collaboratively models the energy landscape and system dy-
namics, even with limited observational data. We introduce physics-inspired regularization to help
PESLA move beyond the reliance on thermodynamic equilibrium sampling. Experimental results
across various systems demonstrate that PESLA outperforms state-of-the-art methods in both energy
estimation and evolution prediction. PESLA does not require supervisory signals for energy, making
it a powerful data-driven tool for understanding and predicting stochastic dynamical systems.

Limitations and Future work This work focuses on estimating the energy landscape of a class of
energy-driven evolutionary systems. However, when a system is driven by non-conservative forces,
an energy landscape does not exist, as in the case of motion in viscous fluids. Additionally, inferring
energy landscapes becomes more challenging when the landscape is time-varying, such as in cases
where climate change alters species fitness. Future work will need to explore additional model
designs to accommodate the dynamics of time-varying landscapes, where E(∗) needs to adapt to
E(∗, t).
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A EXPERIMENTAL DETAILS

We provide details on the experimental systems, baselines, evaluation metrics, and implementation
to ensure clarity and reproducibility of the reported results.

A.1 INTRODUCTION AND IMPLEMENTATION OF BASELINES

Our baselines cover both the energy estimation and evolution prediction tasks. For the energy esti-
mation task, we have:

• Markov State Model (MSM) is a commonly used method for estimating the relative
energy of system states based on statistical probabilities. It discretizes the system using
equidistant grid binning and then calculates the negative log of the frequency distribution
for all states in the dataset as the reference energy. This approach is often limited by the
inefficiency of Monte Carlo sampling. When the dataset fails to cover the entire sample
space, some state frequencies become zero, making it impossible to infer unobserved sam-
ples from the existing data. In our experiments, we used nearest-neighbor interpolation to
compute the full-space energy correlation coefficient ρF for quantitative evaluation.

• Autoencoder Potential Energy (APE). Kamyshanska & Memisevic (2014) demonstrate
that an autoencoder can estimate the energy of a sample by treating the reconstruction
error as a proxy for energy, where a lower reconstruction error indicates that the sample
lies in a high-probability, low-energy region of the learned manifold, while a higher error
corresponds to a higher energy. For an autoencoder with sigmoid activations, with weights
W , hidden biases bh, and reconstruction biases br, the energy function is given by:

E(x) =
∑
k

log(1 + exp(WT
k x+ bhk

))− 1

2
∥x− br∥2 + const,

where WT
k x represents the linear combination of inputs, bhk

is the hidden bias term for the
k-th hidden unit, and br is the reconstruction bias.

For the evolution prediction task, we compare PESLA with:

• Neural MJP. Seifner & Sánchez (2023) introduce Neural MJP as an alternative variational
inference algorithm for Markov jump processes, which relies on neural ordinary differen-
tial equations in the form of the master equation. Neural MJP predefines the number of
discrete states and encodes observed states into a one-hot vector representing the discrete
state distribution as the starting point for state evolution. The key difference between these
predefined discrete states and PESLA’s codewords is that Neural MJP does not character-
ize them by energy but instead relies on a black-box neural network to fit the transition
probabilities. The number of preset discrete states is treated as a hyperparameter.

• T-IB (Federici et al., 2024) captures time-invariant representations of continuous dynami-
cal systems using a representation learning objective derived from information bottleneck
theory and models state transitions in the representation space through a conditional flow
model. This efficient representation allows T-IB to filter out high-frequency fluctuations as
noise and model long-term dynamics over extended time spans.

• VAMPnet (Mardt et al., 2018) captures the dynamics of molecular systems by directly
learning a transformation from molecular configurations to a Markov state model using a
deep neural network that maximizes a variational score. This end-to-end approach allows
it to identify slow dynamical processes and long-timescale kinetics effectively.

• SDE-Net (Kong et al., 2020) explicitly models the drift and noise diffusion terms of
stochastic dynamical systems by parameterizing these two mechanisms within a neural dif-
ferential equation, enhancing the representational capacity of the neural network. However,
SDE-Net does not treat the dynamical system as a Markov process, making it challenging
to capture transition characteristics between metastable states. Despite this limitation, it
serves as a benchmark for all models.
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A.2 ARCHITECTURE OF PESLA MODEL

We summarize all components of the PESLA model and the parameter shapes of each component
in Table 1, where D is the dimension of the observed state, K is the preset number of codewords,
and r is the proportion of activated codewords.

Table 1: Module and layer specifications.

Module Layer name Parameter shape
i. Adaptive Codebook Learning

Encoder Ξ Layer-FC [D, 64, 32]

Codebook C [K, 32]

Gaussian Decoder Ω
Layer-FC [32, 64, 64]

Linear (mu) [64, D]

Linear-Sigmoid (std) [64, D]

ii. Graph Neural Fokker-Planck Equation

Energy Function E(*) Layer-FC [32, 64, 1]

Probability Encoder Φ
Positional Encoding [rK, 3]

GCN-FC1 [3+1+1, 64]

GCN-FC2 [64, 64]

Neighborhood Attention W
Linear (q) [3, 64]

Linear (k) [3, 64]

Coefficient Vector βξ [64,]

Probability Decoder Ψ
GCN-FC1 [64, 64]

GCN-FC2 [64, 1]

A.3 GRID SEARCHING FOR HYPERPARAMETERS

To ensure a fair comparison across all models, we used the same batch size, optimizer, and learning
rate decay strategy during training, conducting grid search only on the learning rate and model-
specific hyperparameters to achieve optimal performance. The range and targets of the hyperparam-
eter search are detailed in Table 2.

Table 2: Hyperparameter search settings.

Model Learning Rate Specific Hyperparameters Description
NeuralMJP 0.01 – 0.0001 10 – 1000 The preset number of discrete states
T-IB 0.01 – 0.0001 0.01 – 1.0 Information bottleneck coefficient
VAMPNet 0.01 – 0.0001 10 – 1000 Output dimensionality of the encoder
SDE-Net 0.01 – 0.0001 0.01 – 1.0 Intensity coefficient of noise term
PESLA 0.01 – 0.0001 10 – 1000 The preset number of codewords

A.4 DATA GENERATION OR PREPROCESSING

Consistent with previous studies, we simulate the 2D Prinz potential and ecological evolution sys-
tems to obtain the datasets. For protein folding, we use the official data provided by the authors, as
described in Table 3. For the first two systems, the training and testing sets are split in a 7:3 ratio.
For the protein data, each protein has two trajectories of equal length, one used for training and the
other for testing.
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Figure 6: Visualization of the adaptive codebooks from five independent experiments of PESLA on
the 2D Prinz potential.

The folding data for the five proteins includes 3D spatial coordinates of 28 to 73 alpha-carbon
atoms. We performed TICA implemented by Deeptime (Hoffmann et al., 2021), extracting the
linear projections of the top two principal time components for each protein as preprocessing, which
were then used for estimating reference energy and testing all models.

Table 3: Protein folding dataset.

Homeodomain BBL BBA NTL9 A3D
C-atom Num 52 47 28 39 73

Trajectory Length (µs) 100 100 200 300 300
Time unit (ns) 10 10 10 10 10

A.5 EVALUATION METRICS CALCULATION

For the evolution prediction task, we test each model using the following steps:

1. Randomly initialize M initial states and predict N future steps using the model to obtain
Xτ

N
M ;

2. Discretize each dimension into a K × K state space using a uniform grid, resulting in a
finite set of discrete states;

3. Compute the marginal and transition probability distributions for each state across all M
trajectories;

4. Calculate the Jensen-Shannon divergence of the marginal and transition probabilities for
each trajectory and take the average.

We set K to 5, 8, and 8 for the 2D Prinz potential, ecological evolution, and protein folding systems,
respectively.

For the trajectory energy correlation reported in Figure 4a (right), we used the Random Sample
Consensus (RANSAC) regression algorithm to fit the maximum likelihood expression Epred =
f(Etrue) of the true energy and PESLA’s predicted energy. We then mapped the data from Figure 4a
(left) using f and visualized it in Figure 4a (right).

B SUPPLEMENTARY EXPERIMENTAL RESULTS FOR 2D PRINZ POTENTIAL

We provide the codebooks from five independent experiments on the 2D Prinz potential in Figure 6,
showing that PESLA consistently learns similar codeword distribution patterns.

C SUPPLEMENTARY EXPERIMENTAL RESULTS FOR PROTEIN FOLDING

We provided a supplementary comparison of the predictive performance of all models using the
BBA protein as an example, as shown in Table 4.
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Table 4: Predictive performance of all models on the BBA protein data with a lag time of 0.7 µs and
8×8 grid discretization. All experiments are run 10 times to obtain statistical values.

MJS ↓ TJS ↓
NeuralMJP 0.0231± 0.0048 0.3637± 0.0051
T-IB 0.0388± 0.0053 0.4327± 0.0083
VAMPNet 0.0411± 0.0021 0.4566± 0.0228
SDE-Net 0.0561± 0.0181 0.5502± 0.0611
PESLA 0.0207± 0.0061 0.2468± 0.0215

D SUPPLEMENTARY EXPERIMENTAL RESULTS FOR ADDITIONAL
EXPERIMENTS

D.1 INTERPRETABILITY

Our PESLA synergistically estimates energy and predicts trajectories to simultaneously improve the
accuracy of both. Although the quality of evolution prediction directly influences the precision of
energy estimation, it remains unclear how the accuracy of energy estimation, in turn, impacts evo-
lution prediction. Here, we investigate how the correlation between the estimated energy landscape
and the true energy landscape influences the evolution prediction. Specifically, we aim to clarify the
degree of correlation required between the predicted energy and the true energy to ensure accurate
evolution prediction.

We disable the energy prediction module of PESLA, replacing the predicted energy of each code-
word with a dummy energy value. When the Pearson correlation coefficient, denoted as ρ, equals
1.0, the dummy energy is derived from the mean true energy values of all samples within the region
of each codeword. We gradually introduce noise to the dummy energy to reduce its correlation with
the true energy, as illustrated in the first row of Figure 7. Subsequently, we train PESLA under
various dummy energy conditions and evaluate the prediction error. As shown in Figure 7, the pre-
diction error progressively increases as the correlation coefficient between the dummy energy and
the true energy decreases. When the correlation coefficient drops below 0.5, PESLA’s predictive
performance begins to lag behind the optimal baseline algorithm (NeuralMJP). This indicates that
the quality of evolution prediction is directly influenced by the accuracy of energy estimation.

D.2 CONSISTENCY

Although the degree of discretization of the state space depends on the predefined number of code-
words, a robust prediction model should yield consistent energy landscapes across different settings.
We evaluate the correlation between energy values predicted by PESLA under various hyperparam-
eter settings (predefined number of codewords K) and random seeds. As shown in the correlation
matrix in Figure 8, the energy landscapes identified by PESLA remain consistent not only across par-
allel experiments with different random seeds but also across different choices of hyperparameters
K.

D.3 NOISE ROBUSTNESS

Considering that real-world trajectory data is usually noisy and sparse, the robustness of a predic-
tive model to noise and limited data determines its practical utility. As reported in Figure 2a of
the main text, PESLA outperforms all baselines when available data is reduced. Here, we further
evaluate PESLA’s robustness to noisy data. Specifically, we add Gaussian noise of varying strength
to the dataset, with a noise amplitude equal to the original data magnitude when the strength is set
to 1.0. The results in Figure 9 indicate that PESLA remains sufficiently robust to noise until the
noise strength exceeds 0.6. PESLA’s robustness to noise can be attributed to its adaptive codebook
learning model, which incorporates a reduced-order approach. By identifying a low-dimensional,
compact representation of the original state space, PESLA inherently possesses the ability to filter
out uncertainties such as noise-related errors.
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(a) (b)

Figure 8: Correlation matrix of energy values predicted by PESLA for BBA protein at different (a)
preset numbers of codewords K and (b) random seeds.
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Figure 9: Energy and evolution prediction accuracy on the 2D Prinz potential as functions of noise
strength. All experiments are run 10 times to obtain statistical values.

D.4 TRANSFERABILITY

Here, we explore the transferability of PESLA. Although the energy landscapes of different evo-
lutionary systems are inherently distinct, PESLA’s modules can be partially reused in similar state
spaces by learning a generalized spatial mapping mechanism. We proceed by evaluating PESLA’s
transferability across five different protein-folding datasets.

Due to differences in sequence length and arrangement, the folding processes of different proteins
occur within their unique energy landscapes, which means that the energy function E(∗) and transi-
tion model need to be specifically trained for each type of protein. However, the mapping functions
Ξ and Ω between the observed space X and the latent space S have the potential for transferabil-
ity. By learning a universal encoder Ξ, decoder Ω and codebook C, it is promising to project the
structures of various proteins onto a unified latent space.

To test such transferability, we conduct cross-protein experiments for each protein. Specifically, for
a given protein i, we train the encoder Ξ, decoder Ω, and codebook C using data from the other
four proteins. We then freeze their parameters and use a single folding trajectory of protein i to train
the energy function E(∗) and the Graph Neural Fokker-Planck equation. Finally, we evaluate the
accuracy of energy and evolution predictions on unseen folding trajectories of protein i. The results
are presented in Table 5. Although the predictive performance in all cross-protein transfer experi-
ments is lower than that achieved by training on specific proteins, the average transfer performance
ρt for energy prediction across all proteins reaches over 80% of the performance of specifically
trained models. Additionally, the transfer performance of evolution prediction is significantly better
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than that of the optimal baseline under the same training settings. We believe that as the number
of available proteins increases, the model’s transferability will show promising improvement. The
validation experiments in this section demonstrate its feasibility.

Table 5: Comparison of mean ρt, MJS, and TJS metrics for encoder Ξ, decoder Ω, and codebook C
trained on specific protein data versus cross-protein data for Homeodomain, BBL, BBA, NTL9, and
A3D. All experiments are run 10 times to obtain mean values.

Homeodomain BBL BBA
ρt MJS TJS ρt MJS TJS ρt MJS TJS

PESLA-specific 0.9341 0.0203 0.2342 0.9014 0.0200 0.2322 0.9179 0.0207 0.2468
PESLA-cross 0.8583 0.0875 0.3510 0.7014 0.0775 0.4362 0.6665 0.1055 0.4065

NeuralMJP-cross – 0.5837 0.7724 – 0.5303 0.6703 – 0.4382 0.5651
NTL9 A3D

ρt MJS TJS ρt MJS TJS

PESLA-specific 0.8867 0.0167 0.2625 0.8186 0.0414 0.3055
PESLA-cross 0.7443 0.1089 0.4597 0.6235 0.2068 0.6034

NeuralMJP-cross – 0.3539 0.4525 – 0.7340 0.7983

D.5 SCALABILITY

To investigate the relationship between the size of the state space and the codebook size, we evaluate
the impact of the preset number of codewords K on energy and evolution prediction in protein
folding datasets with varying numbers of alpha-C atoms, as shown in Figure 10. As K increases
from 10 to 1000, the relative performance of the model improves. For the BBA protein, which has
only 28 alpha-C atoms, the prediction accuracy for energy reaches over 90% of the performance
observed at K = 1000 when K = 100. For larger proteins, such as A3D, the model’s predictive
performance converges at K = 500. In fact, protein size increases the complexity of the state space,
thereby adding to the modeling challenge. For larger proteins or other systems with complex state
spaces, the codebook size needs to be sufficiently large to ensure PESLA’s modeling capacity. For
the systems studied in this paper, we recommend setting the preset number of codewords K to 1000.
For other unfamiliar systems, starting with a relatively large K value is generally advisable.

Furthermore, as analyzed in Appendix F, the time complexity for training and inference grows sub-
linearly with the increase in K. Since only a limited number of codewords are activated in the preset
codebook, the size of the energy landscape constructed by PESLA is at most K. Consequently, when
modeling the state transition distribution over the landscape using the Graph Neural Fokker-Planck
equation, the number of codewords to be considered does not necessarily increase linearly with K.
This design allows users to efficiently explore and select appropriate values for K.

E ABLATION STUDIES

PESLA comprises multiple loss function terms and submodules. Here, we introduce additional ab-
lation studies to elucidate the individual contribution of each component to the overall performance.

As summarized in Section 3.3, the training process involves five loss function terms: Lrec, Lvq ,
Llatent, Lcode, and Lphy . The Lrec and Lvq terms jointly guide the adaptive codebook learning
module, while Llatent and Lcode direct the synergistic learning process for energy and evolution
prediction. Additionally, the Lphy term incorporates physical knowledge to further inform energy
estimation. Beyond the essential loss terms, we individually evaluate the performance impact of the
auxiliary terms, Llatent and Lphy . The results are presented in Table 6.

We firstly remove the Llatent term, training the prediction module solely with the Lcode term. The
results indicate that, without the predictive constraint from the latent space, the accuracy of evo-
lution prediction deteriorates, and the precision of energy estimation is also affected. Next, upon
removing the Lphy term, PESLA’s performance in both energy and evolution prediction declined
significantly. This suggests that, although self-supervised learning on the evolution prediction task
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(a) Evolution Prediction (b) Energy Prediction

(c) Minimum codebook for evolution (d) Minimum codebook for energy

Figure 10: Mean (a) MJS and (b) ρt for proteins of different sizes as a function of codebook size
K, normalized by the metric at K = 1000. (c) and (d) report the minimum codebook size required
to achieve 90% prediction performance for different proteins. All experiments are run 10 times to
obtain mean values.

can drive energy estimation, physical knowledge remains crucial for guiding this joint optimization
task effectively.

In Section 3.2, we enhance the model’s capability by encoding one-hot probability vectors as initial
conditions for the Graph Neural Fokker-Planck equation. Here, we validate this design. By deacti-
vating the encoder Φ and decoder Ψ, we require the neural Fokker-Planck equation to directly model
the diffusion of the probability vector. As shown in Table 6, when Φ and Ψ are deactivated, PESLA’s
performance in both energy and evolution prediction deteriorates, confirming the importance of the
high-dimensional encoded space for effective graph neural diffusion modeling.

Table 6: Ablation study on the loss function and submodule for 2D Prinz Potential and Ecological
Evolution. w/o * indicates the absence of the loss function * or module *. All experiments are run
10 times to obtain statistical values.

2D Prinz potential
ρt ρf MJS TJS

PESLA 0.9290± 0.0342 0.7419± 0.0318 0.1031± 0.0125 0.1796± 0.0234
w/o Lphy 0.0641± 0.0182 0.003± 0.0928 0.1435± 0.0102 0.2559± 0.0358
w/o Llatent 0.8089± 0.0672 0.7192± 0.0291 0.1270± 0.0334 0.2010± 0.0327
w/o Φ&Ψ 0.8994± 0.0477 0.6925± 0.0903 0.1675± 0.0089 0.3535± 0.0122

Ecological Evolution
ρt ρf MJS TJS

PESLA −0.9067± 0.0100 −0.7582± 0.0241 0.3111± 0.0397 0.3277± 0.0424
w/o Lphy −0.0271± 0.0281 −0.002± 0.0817 0.4455± 0.0865 0.4683± 0.0257
w/o Llatent −0.8982± 0.0071 −0.6912± 0.0182 0.3228± 0.0441 0.3441± 0.0232
w/o Φ&Ψ −0.8980± 0.0075 −0.7018± 0.0202 0.3564± 0.0236 0.4685± 0.0227

F COMPUTATIONAL COST

We denote the sample size and the preset number of codewords as N and K, respectively. The
training process of PESLA consists of two modules: adaptive codebook learning and the graph neu-
ral Fokker-Planck equation. The former includes encoding and decoding each sample, as well as
codeword matching operations. The computational complexity of encoding and decoding is O(N),
while codeword matching, which involves similarity calculations with each codeword, has a time
complexity of O(NK). In the second module, all computations occur on the codeword topology
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with a size of O(rK), where r is the proportion of activated codewords. Since the encoding, decod-
ing, and diffusion processes for the probability vector, as described in Equations 4 and 5, involve
operations over the entire topology, the computational complexity is O(rNK). Therefore, the over-
all time complexity during training is O(N +NK + rNK) = O(NK).

Once training is complete, the model only needs to retain the activated codewords, resulting in an
inference time complexity of O(rNK). In the worst case, r = 100%, meaning a 100% codeword
activation ratio. However, as reported in Section 4.3, for a discrete state space of size 10,000,
fewer than 100 codewords are typically sufficient for reliable prediction. Thus, r is usually a low
value, making the model’s inference cost manageable. Additionally, our encoder Ξ employs an MLP
architecture, with a time complexity that scales linearly with the dimension of the observed state.

We evaluate the training time of all algorithms across three datasets, with batch size and epochs
uniformly set to 128 and 10, respectively, to ensure fairness. The experiments are conducted on
a hardware platform equipped with an Intel i5-14600KF CPU and an NVIDIA RTX 4060Ti GPU.
As shown in Figure 11, the total runtime of PESLA’s two phases is shorter than that of the optimal
baseline, NeuralMJP, reported in the main text. Additionally, PESLA’s time bottleneck is clearly
concentrated in phase 1 (adaptive codebook learning), with phase 2 (graph neural Fokker-Planck
equation) accounting for less than half of the total training time, aligning with the conclusions of
previous analysis.
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Figure 11: Total training time of all algorithms across the three datasets. All experiments are run 10
times to obtain mean values.

G DEGRADED OBSERVATION

In Equation 2 of the main text, the system’s intrinsic state evolving on the energy landscape is
mapped to the observation space via the observation function g, which serves as the input to PESLA.
In the main experiments, the observation state xt retains the primary information of st; however, this
may not hold under certain lossy observation functions. In complex systems modeling, the time-
delay embedding method reconstructs the manifold of system’s evolution by embedding multi-step
trajectories of a high-dimensional system in a limited-dimensional space (Wu et al., 2024). Here, we
supplement a set of degraded observation experiments to verify that PESLA can leverage a similar
idea, modeling the energy landscape using multi-step historical observations.

Table 7: Energy prediction as a function of lookback steps.

lookback 1 2 3 4 5

ρt 0.7087 0.7338 0.7916 0.8037 0.8056

Specifically, we applied an observation function g(x, y) =
[
cos(π4 ) sin(π4 )

] [x
y

]
to the 2D Prinz

Potential used in the main text, projecting the 2-dimensional system state coordinates onto the 1-
dimensional diagonal of the energy landscape as a degraded observation state. We tested the perfor-
mance of PESLA’s energy prediction as a function of the historical observation step length, as shown
in Table 1. The prediction performance is poor when using only a single observation step, as the
one-dimensional degraded observation lacks complete information about the energy. As the input
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lookback steps increase, the model gains access to the system’s past evolution trajectories, improv-
ing prediction performance to over 85% of that under lossless observations. The results indicate that
degraded observations can be mitigated by incorporating multi-step historical trajectories, aligning
with the consensus in the field.
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