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ABSTRACT

Low-Rank Adaptation (LoRA), a prominent parameter-efficient fine-tuning (PEFT)
method, offers an effective strategy for adapting large pre-trained models to specific
tasks with minimal computational overhead. LoRA achieves this by introducing
low-rank parameter matrices to the frozen pre-trained models. However, despite
their efficiency, LoRA and its variants modify all elements of a parameter block,
which is unnecessary as LoRA primarily aims to adjust a small set of subspaces
that capture task-specific knowledge. Drawing inspiration from the Lottery Ticket
Hypothesis (LTH), which posits that dense neural networks contain sparse sub-
networks capable of performing similarly to fully-parameterized models, we in-
vestigate whether similar sparse subnetworks exist for low-rank adapters. We
demonstrate that such subnetworks, often referred to as "winning tickets" in the
context of LTH, indeed exist for low-rank adapters. We introduce a method to
identify this sparse subset of weights for each layer by relating the top subspaces of
the pretrained parameter block to the elements of the corresponding weight matrix.
This subset is then fine-tuned using LoRA. We show that this sparse subset is not
necessarily unique; as long as sparsity is kept within a certain bound defined by the
task, random subnetworks with similar sparsity can act as winning tickets. Building
on this discovery, we propose a novel approach called Partial-LoRA, which adds
sparse low-rank parameters to pre-trained models. Through extensive experiments
on 8 vision and 4 language tasks, we demonstrate that Partial-LoRA can reduce
trainable parameters by up to 87% while maintaining or even improving model
performance in some cases. Our work thus reduces memory needs and theoretically
grounds sparse LoRAs.

1 INTRODUCTION

Parameter-efficient fine-tuning (PEFT) methods (Xin et al., 2024) have emerged as a compelling
approach to adapt large pre-trained models to specific tasks without the computational overhead of
training all model parameters. These methods are crucial for efficiency, reduced energy consump-
tion, lower costs, deployment on resource-limited devices, and allow for democratization of large
foundation models. These methods are in contrast to traditional fine-tuning approaches which often
involve adding special-purpose layers (Mengde Xu, 2023), adjusting normalization (Giannou et al.,
2023), retraining, or introducing parallel layers (Chen et al., 2022). Low-rank adaptation (LoRA) (Hu
et al., 2022), as the most prominent PEFT approach, strikes a middle ground between efficiency and
performance by adjusting a subset of weight subspaces using low-rank matrices, thereby intending to
impact only a small portion of the information embedded in a model.

Despite these advancements, fine-tuning using LoRAs still involves modifying every element of the
original weight matrix, even when employing low-rank residual matrices. However, large pre-trained
models have low intrinsic dimensionality, allowing for effective finetuning with fewer parameters
(Aghajanyan et al., 2020; Hu et al., 2022). This, combined with the lottery ticket hypothesis (LTH)
(Frankle & Carbin, 2019), suggests smaller sub-networks (‘winning tickets’) may achieve similar
performance, i.e., for fine-tuning, only a small subset of weights in each layer needs modification.

Aiming to find these smaller sub-networks, we extend the theoretical work on LTH and random
masking (Gadhikar et al., 2023) to low-rank adaptation. We show that for each layer, randomly
masking the weights of a low-rank adapter leads to a sufficiently tight bound on the residuals added
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≈

Figure 1: Process of sparsifying LoRAs is shown on the left. We extract sparsity ratios from the
pretrained model and use them to sample random masks for the components of the low-rank adapter.
This leads to outputs similar to the fully-parameterized LoRA while significantly lowering the number
of trainable parameters as shown on the right for both vision and language tasks.

on top of the outputs of the layer through the adapter. This mask’s sparsity may depend on the
model’s required capacity to perform accurately on a downstream task. This way, we show LoRA
residuals may be significantly sparsified while maintaining performance, similar to random pruning
of full models (Chijiwa et al., 2022), thereby delivering a winning ticket. These subnetworks are
therefore not unique and as long as the sparsity is kept within the identified bound, any randomly
masked LoRA bearing the same sparsity can obtain similar results to a standard LoRA.

Motivated by these theoretical findings, we propose a method to identify the per-layer sparsity
ratio required for a given downstream task. With our proposed approach, we aim to relate the top
subspaces of the pre-trained weights to the specific elements of the weight matrix and extract the
sparsity ratio for that weight matrix. This allows us to limit fine-tuning of the pre-trained weights
to these sub-networks using our approach which we name Partial-LoRA. This process is visualized
in Figure 1. We also explore the available methods in the literature of pruning (Lee et al., 2019;
Molchanov et al., 2019) to assign importance values to the elements of the pre-trained weight matrix
as sparsity ratio derivation alternatives and show the similarity between our approach and these
methods. We also demonstrate that our approach can extract the sparsity ratio without the need to
compute the output gradients with respect to the weights.

Our experiments with visual and language tasks demonstrate that random masking using our approach
reduces the number of parameters needed for residuals by up to 87% while maintaining performance
in most cases and even noticeably improving accuracy in some instances in the visual domain. We
compare results from Partial-LoRA, where low-rank residuals are randomly sparsified, to cases where
specific subnetworks are targeted through deterministic pruning approaches. This way, we show that
Partial-LoRA obtains a better performance on average compared to targeting specific subnetworks.
This confirms that the precise selection of specific weights might be less critical if the overall quantity
of trainable parameters (sparsity factor) is maintained within strategic limits, which we determine for
each layer using the importance values derived through the pretrained model.

We also perform ablation studies on the rank and the magnitude of the residuals to study the behavior
of masked LoRAs. Moreover, we extend our experiments to compare few-shot training to training on
the entire dataset. We find that masked LoRAs maintain similar performance to LoRAs, indicating
robustness across dataset sizes. We also explore a shift from deterministic to stochastic methods in
our sub-network extraction, treating importance scores as probabilistic to sample parameters to show
the minimal impact of this sampling procedure. Our main contributions are as follows.

• We provide a theoretical ground for the existence of lottery tickets in LoRAs, demonstrating that
randomly masked LoRAs can achieve performance on par with fully parameterized LoRAs across
a wide range of datasets and modalities. This shows that even with significant sparsification, the
performance can be maintained, highlighting the robustness of our approach.

• We show that principled sub-network selection is not strictly necessary. Given access to a sufficient
number of elements, LoRAs can effectively adjust the key subspaces of the pre-trained weight
matrix, ensuring efficient fine-tuning in LoRAs. This holds for commonly used importance
measures from the pruning literature and the proposed SVD-based method targeting the top
subspaces of the pretrained weights.
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• Our experiments demonstrate that random masking of LoRAs can allow for up to a 70% reduction
in the number of parameters on ImageNet1k and up to 87% in the case of MRPC with minimal
changes in performance, even outperforming LoRAs in some instances. This effectively reduces the
number of trainable parameters from 110 million in the case of full-rank fine-tuning of ViT-B-16 to
120k, allowing fine-tuning without specialized hardware, further democratizing personalization of
large models. This substantial decrease in parameter use, combined with robust performance across
varied dataset sizes and LoRA ranks, validates the effectiveness of random masking strategies.

2 RELATED WORK

Parameter Efficient Fine-Tuning (PEFT) methods adapt large, overparameterized models with fewer
trainable parameters than full retraining requires. A commonly used PEFT approach, namely
Low-Rank Adaptation (LoRA) (Hu et al., 2022), uses trainable low-rank matrices added to each
layer, significantly reducing the training parameter count. AdaLoRA (Zhang et al., 2023c) refines
LoRAs by adaptively modifying the rank of the residual matrices during training, enhancing the
performance of LoRAs. Conversely, DoRA (Liu et al., 2024) and LoRA+ (Hayou et al., 2024)
address discrepancies between low-rank and full-rank fine-tuning, pointing out limitations in LoRA’s
training dynamics. Our method builds on LoRAs and AdaLoRAs but could also complement other
LoRA-based advancements, potentially matching the dynamics of full-rank fine-tuning and achieving
similar model optimization.

Building on the foundation set by LoRAs, works such as LoRAPrune (Zhang et al., 2023b) and
LoRA-Shear (Chen et al., 2023) propose approaches to model pruning. LoRAPrune introduces a
LoRA-guided pruning method that utilizes the weights and gradients of LoRA adaptors rather than
pre-trained weights for importance estimation, coupled with a structured iterative pruning process.
LoRAShear employs a structured pruning strategy that initially creates dependency graphs over
LoRA modules to identify minimally removable structures. It should be noted that both methods
deal with pruning the original model and do not focus on masking LoRAs. Alternatively, aiming to
tailor the rank value in a layer-specific manner for the task at hand, PRILoRA (Benedek & Wolf,
2024) linearly allocates a different rank for the residuals at each layer. While this approach obtains
some improvements in performance, there is no guarantee for reduction of the number of parameters.
Additionally, the same rank value can be used alongside our approach to tailor the masked LoRAs for
each layer given the same layer-rank schedule.

More in line with the parameter reduction perspective of our work, IncreLoRA (Zhang et al.,
2023a) separates the components of the adapter into multiple rank-1 modules that add up to the full
residual, enabling the addition of more modules based on the task requirements. Moreover, there are
upperbounds implemented for these additions to prevent overparamterization. Unlike IncreLoRA
our approach focuses on using randomized masking within the existing LoRA parameters. While
IncreLoRA seeks to enhance parameter efficiency by dynamically adjusting ranks to better fit task-
specific demands, our method strategically masks parameters for layers based on the requirements
of the task, thus maintaining more streamlined implementation and lower computational costs.
(Kopiczko et al., 2024) uses a pair of frozen low-rank matrices shared across layers and adapts
them with trainable scaling vectors, demonstrating similar performance to LoRA while reducing
trainable parameters. However, the overall parameters are increased during training depending on
the size and number of weight matrices involved. A more directly comparable work would be (Xu
& Zhang, 2024), where LoRA residuals are randomly masked out and gradients are not applied
to the masked parameters. These random masks are generated at the start of training based on
a predetermined sparsity. This is in contrast to our work where we use the pretrained model to
determine the sparsity required for each layer, making our approach adaptive based on the task’s
required capacity in a principled manner. Additionally, while approaches like PEFT-Masking (Xu
& Zhang, 2024), LoRAPrune, LoRA-Shear, PRILoRA, IncreaLoRA and VeRA improve parameter
efficiency or adaptively distribute ranks, they lack theoretical bounds for maintaining approximation
quality. Our work bridges this gap by providing a formal theoretical bound on the difference between
outputs of masked and unmasked LoRAs.

From a theoretical perspective, (Gadhikar et al., 2023)–building up on the previous work from
(Burkholz et al., 2022; Burkholz, 2022)–proved the existence of strong lottery tickets in randomly
masked variants of large overparameterized models. This is done by building on subset sum approxi-
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mation (Lueker, 1998) (a computational approach that addresses the challenge of selecting a subset
of numbers that sum up to a specific target). While previous proofs required the original model to
be comprised of double the layers of the target model, (Gadhikar et al., 2023) used a one-for-one
layer approach where only L+ 1 layers are required from the original model for the target (winning
ticket) model to be approximated through pruning. In this work, we extend this proof to show that the
original formulation still holds in the domain of low-rank adaptation.

3 BACKGROUND

Given a model M parameterized by W, b with depth L, LoRA (Hu et al., 2022) fine-tunes the weight
matrix Wl ∈ Rm×n at layer l by introducing a low-rank residual trainable matrix ∆Wl ∈ Rm×n.
This residual is added to the weight matrix Wl of the frozen pre-trained model M . While no bias
terms are added to the layer, the only trainable parameters of the fine-tuning process are the residuals
added at each layer. This results in each layer of the new model being formulated as:

hl = σ((Wl +∆Wl)x+ bl) , (1)

where hl is the output of the layer and bl represents the bias term at layer l from the original pre-
trained model. σ and x represent the layer nonlinearity and input, respectively. The matrix ∆Wl

itself is defined as:
∆Wl = BlAl, Bl ∈ Rm×d, Al ∈ Rd×n , (2)

where Bl and Al are two low-rank trainable matrices. Using this formulation of the residual, the
number of trainable parameters is reduced from m× n to m× d+ n× d where d≪ min(m,n).

4 METHODOLOGY

Here, we outline our work divided into two key subsections. section 4.1 extends the theoretical
framework of Strong Lottery Tickets (SLT) to Low-Rank Adapters (LoRAs). We demonstrate that
assuming a target low-rank adapter (the winning ticket) performing well on a given task exists, a
pretrained model finetuned using a randomly masked LoRAs can approximate this target LoRA if
the unmasked adapter is wider by a logarithmic margin. In section 4.2 we describe the process of
extracting subnetworks (masks for LoRAs) from pretrained models using a small number of labeled
instances. This involves determining the importance of each element in the weight matrix of the
pretrained model and selectively pruning them from the adapter while maintaining accuracy.

4.1 EXISTENCE OF LOTTERY TICKETS IN LORA RESIDUALS

In this section, we extend the existing theoretical work on Strong Lottery Tickets (SLT) (Gadhikar
et al., 2023) to show that a randomly pruned LoRA can approximate a target LoRA (winning ticket),
provided the unpruned LoRA is wider by a logarithmic margin. In other words, the pruned LoRA
represents a subnetwork of the fully parameterized one, capable of approximating a target network
without requiring the initial overparameterized model.

Theorem 4.1 Define a network fT of depth L, parameterized by pretrained weights and biases Wl

and bl, with low-rank adapters at each layer parameterized by residuals ∆W l
T . Additionally, define

a pruned network fLoRA of depth L+ 1, parameterized by ∆W l · U , where U ∼ B(pl) is a mask
sampled from a Bernoulli distribution, and the same Wl, bl as the target model. This pruned model
consists of sparsity factors pl at layer l, and the residuals ∆W l

ij ∼ U([−1, 1]). Both networks have
nT,l and nLoRA,l neurons at layer l. Then, given variables ϵ, δ ∈ (0, 1), with failure probability
1 − δ, there exists a mask U such that, for all x ∈ D within the compact space D, it holds that
maxx∈D ||fT (x; ∆WT )− fLoRA(x; ∆W · U)|| ≤ ϵ if:

nLoRA,l ≥ C
nT,l

log(1/1 − pl+1)
log(

1

min(ϵl, δ/ρ)
). (3)

Where C is a distribution dependent constant and ρ and ϵl are defined in Appendix A following
(Gadhikar et al., 2023; Burkholz, 2022). The proof is provided in Appendix A and hinges on the idea
that after multiplying the neurons in the target network by a certain factor, we can ensure that at least
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one edge remains unpruned after pruning the original model, preserving the network’s functionality.
We show the changes to each layer made by the trainable residuals of LoRAs does not alter the proof
in (Gadhikar et al., 2023; Burkholz, 2022).

A concern with this masking approach is flow preservation (Burkholz, 2022). In some randomly
pruned models, two consecutive layers can end up with mismatched pruned weights, causing any
input to those layers to result in a zero output due to a discontinuity. This happens when non-zero
outputs from the first layer are multiplied by pruned elements in the second layer. To address this, a
common modification is to adjust the non-zero indices to maintain input flow. However, in this work,
this step is unnecessary because the pretrained model’s frozen layers remain unchanged, ensuring
that flow is preserved even if the low-rank residual weights are set to zero.

Theorem 4.1 shows that given a full-parameter adapter, there exists a randomly masked adapter
dependent on layer width capable of delivering performance that matches the full-parameter adapter
while using fewer parameters. In practice, we show that while the exact ratio of this reduction in
the number of parameters is unknown beforehand (since the target LoRA is unknown), importance
measuring criterion from the pruning literature may be used as a proxy to obtain this ratio. We name
this ratio the capacity at each layer required to learn the task at hand.

4.2 FINDING SUBNETWORKS IN PRETRAINED MODELS

To extract sparsity ratios from pretrained models, we propose a two-step approach. First, we present
an algorithm for deriving sparsity ratios based on the model’s performance on a small subset of labeled
instances. Then, we discuss various importance measures that can be used to rank the significance of
elements in the weight matrix. This section details both the algorithmic approach (section 4.2.1) and
the importance measures (section 4.2.2) used in our method.

4.2.1 DERIVING SPARSITY RATIOS

We start by randomly sampling a small subset of labeled instances from the dataset in a few-shot
scenario. This subset, Dt, with m samples from the dataset D, is used to measure the pre-trained
model’s accuracy as a baseline. Importance measures are then employed to rank the significance
of each element in the weight matrix. The process for importance measures is detailed in section
4.2.2. Starting with the least important elements, weights are progressively masked until the model’s
accuracy drops below 90% of the baseline, using the same few-shot dataset Dt. This iterative
masking is applied to the pre-trained model, yielding a sparsity ratio for each layer, as outlined in
Algorithm 1. Random masks are then generated using these ratios by sampling from a Bernoulli
distribution. During low-rank finetuning, only the unmasked elements of weight matrices at each
layer are modified.

Algorithm 1 Sparsity ratio derivation for a single layer

Pretrained model M , weight matrix Wl for layer l of M , input-output data pairs (x,y) forming
dataset Dt, where Dt ⊂ D consists of m shots randomly sampled per class from D

1: µ← 1
N

∑
(x,y)∈Dt

I[M(x,W) = y] ▷ Determine few-shot accuracy on Dt

2: ŷ←M(x) ▷ Compute model output for x ∈ Dt

3: I l ← importance(ŷ,y,Wl) ▷ Compute importance scores for every element of Wl

4: U← 1 ▷ Initialize mask matrix with ones
5: while 0.9× µ ≤ 1

N

∑
(x,y)∈Dt

I[M(x,Wl ⊙U) = y] do
6: I l ← I l \ argmin(I l) ▷ Remove least important index from I l

7: Uij ← 0 for all (i, j) /∈ I l ▷ Update mask matrix to zero out less important weights
8: end while
9: return |I l|

4.2.2 IMPORTANCE MEASURES

Commonly used importance measures (Lee et al., 2019; Molchanov et al., 2019) focus on an element-
level computation deriving a scalar value for each element in a weight matrix. However, based
on the formulation of low-rank adaptation detailed in section 3, it is enough to infer the important
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rows and columns of the weight matrix and there is no necessity to focus on specific elements when
dealing with LoRAs. This is because for every element of the residual we have ∆wij =

∑d
k bi,kak,j .

Therefore, rather than masking the residual weights ∆W = BA we can opt to instead mask B and
A separately which removes any requirement for computing a large matrix that will be masked before
the forward pass of the inputs. This implies that the unimportant rows of W will lead to masking
rows of B while unimportant columns will lead to masking A. To this end, we compute the singular
value decomposition of the weight matrix W = PΛQ where P, Q, and Λ represent the left and
right singular vectors and the singular values, respectively. Then, we use the similarity of the rows or
columns of the matrix with the right singular vectors as a proxy for importance. We start by deriving
the weighted right singular vectors of the pretrained weight matrix as follows:

V = QΛ , (4)

Then, to derive the importance values for rows of Wl, the following equation is used:

I lSV D = ||WlV||2, (5)

Where I lSV D represents the importance of each row index. The same process may be repeated for
WT to infer the column importance values. I lSV D can then be used in Algorithm 1 to extract the
importance values. Alternatively, any importance measure in the pruning literature such as SNIP (Lee
et al., 2019) or IMP (Molchanov et al., 2019) may be used. SNIP, as a single-shot pruning approach,
uses the absolute value of the gradient of the output with respect to the weight matrix at every layer
as a proxy for the importance which makes the method dependent on the pairs of samples passed
through the network. IMP, on the other hand, scales the gradients by the weights to also consider the
magnitude of weights alongside their gradient. Both of these approaches compute the importance in
an element-wise manner. Therefore, to derive the indices required for adaptation, we can take the
row-wise or column-wise sum over the importance values. Regardless of the importance criterion, to
derive the mask U in Algorithm 1, we sample row and column masks urow and ucol according to
|I l| obtained from Algorithm 1 where:

∆W = (urow ·B)(ucol ·A) . (6)

Here, urow ∼ Bernoulli(prow) and ucol ∼ Bernoulli(pcol), where prow and pcol are determined
based on the ratio of |I l| over the row or column size of W.

Therefore, our approach to importance measures leverages these criteria to extract the capacity needed
to finetune the pretrained model on a downstream task using LoRAs. This is the proxy for the sparsity
ratio mentioned in Theorem 4.1 that allows us to sample masks while the output of both masked and
unmasked LoRAs remains bounded. We refer to this approach as Partial-LoRA in the remainder of
this paper. Alternatively, specific locations extracted using this method can also be used to generate
masks. We name this approach Targeted-LoRA and compare against it in the experiments section.

5 EXPERIMENTS

Datasets and Models. We use OpenAI CLIP for all our image classification experiments, adding
a linear classifier on top of the image features and initializing it with language prompts from the
text encoder. We use OxfordIIITPet (Pets) (Parkhi et al., 2012), CIFAR-10 (Krizhevsky, 2009),
CIFAR-100 (Krizhevsky, 2009), Flowers (Tung, 2020), FER2013 (Zahara et al., 2020), GTSRB
(Stallkamp et al., 2011), FGVC-Aircraft (Maji et al., 2013) and ImageNet-1k (Russakovsky et al.,
2015) datasets, with respective class counts of 37, 10, 100, 101, 7, 43, 102, and 1000 representing
tasks with varying levels of complexity. Each dataset uses 16 shots, except Flowers, which uses 6
shots due to its smaller size. We employ a similar sized validation set for early stopping. For our tests
on language models, we use Deberta-V3-Base (He et al., 2021). We perform similar experiments to
vision on datasets from the GLUE benchmark (Wang et al., 2018). For the number of shots, 2% of the
smaller datasets and 5% of the larger datasets are used for determining the sparsity ratios. For training
on vision datasets, the same few-shot dataset for sparsity ratio derivation is used. For language,
while a few-shot dataset is used for deriving the ratios, the whole dataset is used during training to
match the workflow used by the SoTA methods. Models are trained with AdamW optimizer and a
cosine annealing learning rate scheduler. We run all our experiments on 4 Nvidia A100 GPUs. We
conduct training sessions with different seeds and initial learning rates range of {0.0001-0.005},
resulting in 20 models per method, and report mean accuracy of the top 5 models based on validation
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Figure 2: Accuracy against trainable parameters for LoRA, AdaLoRA, Partial-LoRA and Partial-
AdaLoRA across vision and language datasets.

scores. For the language models, it should be noted that we report results on the development sets of
the GLUE benchmark.

Setting and Baselines. In our experiments, we apply our method to both LoRA (Hu et al., 2022)
and AdaLoRA (Zhang et al., 2023c) resulting in Partial-LoRA and Partial-AdaLoRA. AdaLoRA,
a state-of-the-art (SotA) PEFT approach built on LoRA, adaptively adjusts the rank of low-rank
residuals during training to match the task’s requirements. We apply our method to both approaches
as a baseline, demonstrating the potential for sparsification in any subsequent methods based on
LoRA. To compare against other SotA methods focused on PEFT performance, we report results for
LoRA+ and DoRA. Additionally, we include results for VeRA, another SotA PEFT method based on
LoRA that focuses on reducing the number of trainable parameters. For baselines involving random
masking-based pruning, we use the Pyramidal (Liu et al., 2022) and Balanced (Frankle & Carbin,
2019) random pruning methods. The Pyramidal method determines the sparsity factor for each layer
based on its depth, using the formula pl = pl, where p is the predetermined sparsity factor for the
first layer, and l represents the layer depth. The Balanced approach assigns a fixed sparsity factor to
each layer, regardless of depth. Although neither method offers a principled approach for deriving
the sparsity factor, and both prune the model without considering each layer’s specific requirements,
we still find it beneficial to visualize the impact of varying sparsity factors on accuracy and compare
them to our approach.

5.1 SPARSIFYING LORAS

Here we analyze the impact of sparsifying LoRA and AdaLoRA, resulting in Partial-LoRA and
Partial-AdaLoRA, using methods detailed in section 4.2 through our proposed SVD-based approach.
As shown in Figure 2, our method significantly reduces the number of trainable parameters across
both vision and language tasks. For vision tasks, we observe an average reduction of over 60%, with
a maximum of 80% for the Pets dataset. Language tasks show even greater reductions, averaging 82%
with a maximum of 87% for MRPC. Importantly, these reductions are achieved while maintaining
accuracy compared to the unmasked LoRA and AdaLoRA models across both modalities. An
exception is the Flowers dataset where we see a significant increase in accuracy which we discuss
later in section 5.2. As mentioned, the results in Figure 2 for vision datasets are obtained by training
on a few-shot dataset. We also report the results of training on the whole dataset in Appendix B to
show that the performance is maintained when trained on the whole dataset as well.

5.2 COMPARISON TO THE SOTA

We compare the results of sparsified LoRA and AdaLoRA to their full-parameter counterparts
alongside DoRA, LoRA+, and VeRA as the state-of-the-art PEFT approaches. These results are
visualized in Figure 3 for vision datasets and Figure 4 for language datasets. We provide the same
results in quantitative format in Appendix I. LoRA+, AdaLoRA, and DoRA have roughly the same
number of parameters and obtain similar performance across all datasets and modalities, with LoRA
falling slightly behind in performance. This is expected since the three former methods are the more
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recent PEFT approaches. As shown in section 5.1, Partial variants of AdaLoRA and LoRA obtain
similar results to their full-parameter counterparts which means the performance obtained from the
Partial variants is competitive with the SoTA methods with a much lower parameter count.
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Figure 3: Comparison against the SoTA for vision datasets

Compared to VeRA, a method aimed at lowering the number of PEFT parameters, our approach
obtains competitive results while significantly outperforming this method on GTSRB and FGVC-
Aircraft datasets. We attribute this to how our method can strike a balance between the num-
ber of parameters and performance using the pretrained model as a source for deriving the
capacity needed for finetuning. Moreover, VeRA can only modify the number of parameters
through changing the rank of the low-rank matrices and sharing low-rank matrices across layers.
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Figure 4: Comparison against the
SoTA for language datasets

While both can be done using our approach, our method also
allows for sparsification of the low-rank matrices themselves.
Therefore, using the accuracy threshold discussed in section
4, another degree of freedom is added to allow for more flex-
ibility in sparsification of PEFT residuals. The performance
on Flowers is one of the more notable ones across all datasets
since the methods with lower parameter counts obtain a better
performance. We believe this is due to the overparameteriza-
tion of other methods causing overfitting since Flowers has a
much smaller training set compared to the other datasets. As
mentioned in section 4.1, the preservation of flow from the
pruning literature may be a concern for the sparsified LoRAs
due to how the preserved weights are determined for each layer
in an isolated manner independent of the other layers. To show
this is not a concern for our work due to the additive nature of
LoRA residuals, we report the results of an ablation study where
we compare the accuracy when employing flow preservation
techniques. These results are provided in Appendix H.

5.3 SWEEPING THROUGH SPARSITY RATIOS

We use two methods to sweep through different sparsity ratios
to observe the obtained accuracy across different number of
parameters. To this end, we use Balanced and Pyramidal prun-
ing methods. For the Balanced method, we sweep the sparsity
ratio on the range of 0.1 to 0.9 and use it at each turn to prune
every layer with the same sparsity. For Pyramidal pruning, the
sparsity is increased exponentially as depth increases to allow
for more parameters at the start and fewer at the later layers.
As shown in Figure 5, the Pets dataset allows for a consistent
reduction in the number of parameters without a significant loss
in performance. This is while Flowers shows improvements
with sparsity which confirms that overparameterization was
leading to overfitting as discussed in section 5.2. Note that while these visualizations do confirm that
the reduction in PEFT parameters does not lower performance, the Balanced and Pyramidal methods
do not necessarily provide a way to derive the sparsity ratio before sweeping.
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Table 2: Different sparsity ratio derivations

Dataset LoRA Targeted-LoRA Partial-LoRA Inverted
(SVD) (SVD) (SNIP) (IMP)

Pets 94.06 93.44 93.86 93.95 93.82 94.00
Flowers 93.18 95.01 95.21 95.24 94.48 93.71
CIFAR-10 94.50 94.45 94.35 94.22 93.89 94.59
CIFAR-100 80.90 80.85 81.10 80.97 80.51 80.58
FER2013 57.96 58.51 58.61 58.86 57.94 58.43
GTSRB 95.04 94.64 94.72 94.53 94.90 94.40
FGVC-Aircraft 54.34 53.44 54.58 55.09 54.21 51.86

Average 81.42 81.48 81.78 81.84 81.39 81.08

5.4 LARGER MODELS

In this section, we experiment with LLAMA2-7b to investigate the effectiveness of our approach on
large language models. Table 1 shows that compared to the full fine-tuning and unmasked LoRAs, our
approach obtains similar accuracy and the performance remains close to the unmasked counterpart.

Table 1: Evaluation Using LLAMA2-7b

Task FT LoRA Masking (0.001%) Partial-LoRA (0.001%)
SST-2 94.7 (6.7B) 95.4 (4.2M) 95.5 (68K) 94.9 (68K)

While (Xu & Zhang, 2024) re-
sorts to sweeping the sparsity ra-
tios to find the 0.001% sparsity,
through our sparsity ratio deriva-
tion method proposed in Section
4.2.1, we obtain a sparsity of
0.001% without the need for searching over this parameter or training the mask itself. Mean-
while, our method with the derived sparsity achieves a comparable performance to (Xu & Zhang,
2024), as the SotA masking approach.

5.5 SPARSITY RATIO DERIVATION ABLATION

Partial-LoRA and Targeted-LoRA: As mentioned in section 4.2.2, while the results in sec-
tion 5.1 are obtained using random sampling of masks, the specific locations of the weights
derived by the importance measuring criteria I l may also be used to generate masks which
we call Targeted-LoRA. Regardless of the dataset, the number of parameters for Targeted-
LoRAs is the exact same as Partial-LoRAs. We report the results of Targeted-LoRA in Table 2.
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Figure 5: Sweeping sparsity ratio.

In terms of average accuracy, Targeted-LoRA scores simi-
lar to LoRA while slightly falling behind Partial-LoRA. The
case-by-case accuracy of both approaches is also close for
most datasets. However, for FGVC-Aircraft, Partial-LoRA
outperforms Targeted-LoRA by 1%, with Targeted-LoRA
falling behind LoRA by a similar margin. This shows that
targeting specific subnetworks is unnecessary and the capac-
ity required at each layer for the downstream task is the only
important factor. We provide a deeper analysis of the behav-
ior of Partial-LoRA and Targeted-LoRA compared to LoRAs
in Appendix C. We use the norm of the residuals to show
the similarity of Targeted and Partial methods in the magni-
tude of residuals across layers. We show that the changes in
magnitude for both these methods across layers, while being
similar to each other, vary compared to LoRAs signaling po-
tential differences in the finetuning dynamic. Additionally, to
explore a middle ground between random and deterministic
sampling of masks, we treat the importance values as a dis-
tribution and sample subnetworks from this distribution. The
result of training these subnetworks is provided in Appendix
D where we show slight improvements in accuracy compared to Partial and Targeted-LoRAs.

Importance Measuring Criterion: Aside from the proposed method in section 4.2.2, we can also
use aforementioned importance measuring criterion from the pruning literature such as SNIP or IMP
to infer the sparsity ratio. The columns named SNIP and IMP under Partial-LoRA in Table 2 represent
the results of these methods. SVD and SNIP-based methods obtain a similar performance while IMP
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falls slightly behind due to a lower performance across multiple datasets. To get a deeper insight
into the similarity between these methods, we visualize the overlap of the subnetworks extracted by
these methods in a pair-wise setting. This visualization is provided in Appendix E where there is
a large overlap between the three methods in the first 6 layers of the model. The relatively smaller
overlap in the later layers is mainly due to how small the size of the subnetwork itself is. We provide
a visualization on the relative size of the subnetworks across layers for all three importance measures
in Appendix G. The initial layers have the smallest sparsity ratio for most datasets while this sparsity
grows as we move towards the final layers. For Pets, the sparsity is similar across all layers potentially
due to the high performance of the pretrained model prior to finetuning.

Inverted Masks: The proposed sparsity ratio derivation methods in the case of Targeted-LoRA
generate masks that result in sparse residuals for the adapter. As an ablation, we run the same
experiments with these masks inverted. This way, a significant reduction in the fine-tuned performance
would show the importance of the masks. Due to how sparse Targeted-LoRAs are, the inverted masks
will result in a larger number of parameters during training compared to Partial-LoRAs. The results
are reported in Table 2. In the case of Pets and CIFAR-10, the performance of the inverted masks is
better than that of Targeted-LoRA while for the rest this method results in competitive or degraded
performance. Overall, this shows targeting specific subnetworks of the pretrained model does not
necessarily result in better performance.

5.6 ABLATION ON THE LORA RANK
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Figure 6: Rank ablation with parame-
ter count for each dataset in millions.

We examine whether the results from section 5.1 depend
on the LoRA rank. We set LoRA ranks to 1, 4, 16, 32,
and 64, showing the average performance as a solid line
alongside the maximum and minimum performance based
on multiple training sessions in Figure 6 for CIFAR-100 and
FGVC-Aircraft, with CIFAR-10 and GTSRB in Appendix F.
Although the top-performing method varies by dataset, the
relative behavior observed in section 5.1 remains consistent.
Partial and Targeted methods do not significantly degrade
performance and improve it for FGVC-Aircraft across most
ranks. Thus, the results are not dependent on the rank.

6 DISCUSSION AND CONCLUSION

In this study, we explored the efficacy of random masking in
LoRAs for fine-tuning large pre-trained models. Building on
the lottery ticket hypothesis, we showed that highly sparse
"winning ticket" subnetworks within LoRA and its state-of-the-art variants can match the performance
of fully parameterized counterparts. Our experiments on vision and language modalities confirmed
that our proposed approach named Partial-LoRAs can achieve similar performance to SotA methods
with significantly fewer trainable parameters, reducing them by up to 87%. Key contributions include
establishing a theoretical basis for lottery tickets within LoRA residuals and demonstrating the
effectiveness of random masking. We found that targeting specific locations of large pretrained
models for parameter-efficient finetuning in an effort to prune LoRAs is unnecessary. As long as
the per-layer sparsity of the LoRA residuals is kept within a bound determined by our proposed
sparsity ratio derivation method, the performance of pruned LoRAs is maintained while the number
of parameters decrease significantly. Our ablation studies further validated the robustness of random
masking strategies. We showed that strategies like preserving activation flow between layers, crucial
for full model pruning, are unnecessary for LoRA masking due to the residual update formulation.
Our method can be implemented on top of existing and future LoRA-based PEFT methods by pruning
the components of the low-rank matrices as shown in this work to maintain the advantages of those
works while reducing the computational load. Our work highlights the potential for significant
computational savings in parameter-efficient fine-tuning. We pave the way for more sustainable
and accessible deployment of large pre-trained models. Future work will optimize sparsity factors,
exploring the middle ground between deterministic and stochastic pruning methods. Another potential
future trajectory is the analysis of the training dynamics for Partial-LoRAs.
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A PROOF OF THEOREM 1

Theorem A.1 Define a network fT of depth L parameterized by pretrained weights and biases Wl

and bl with low-rank adapters at each layer parameterized by the residuals ∆WT
l . Additionally,

define a pruned network fLoRA of depth L+1 parameterized by ∆Wl ·U and the same Wl, bl as the
target model. The pruned model consists of sparsity factors pl for layer l and ∆wl

ij ∼ U([−1, 1]).
Both networks have nT,l and nLoRA,l neurons at layer l. Then given variables ϵ, δ ∈ (0, 1), with
failure probability 1 − δ, it holds that maxx∈D ||fT (x; ∆WT ) − fLoRA(x; ∆W · U)|| ≤ ϵ for
compact space D, if

nLoRA,l ≥ C
nT,l

log(1/1 − pl+1)
log(

1

min(ϵl, δ/ρ)
) (7)

Proof We extend the proof by (Gadhikar et al., 2023) for the existence of strong lottery tickets (SLTs)
in Erdős-Rényi (ER) networks to low-rank adapters. As mentioned in Section 3, for each layer of
a model, after the application of the low-rank adapter the output of the layer previously defined as
f(x) = Wx+ b becomes f(x) = (W +∆W )x+ b where W and b are the weight and bias of the
pretrained layer and ∆W represents the learnable residuals. Therefore for both the pruned LoRA and
target LoRA we have the following.

fT (x) = (W +∆WT )x+ b. (8)

Whereas for the pruned layer, we have,

fLoRA(x) = (W +∆W · U)x+ b. (9)

Where U represents the mask randomly sampled from a Bernoulli distribution. Given that W and
b are the same frozen parameters from the pretrained model, and hence will remain unchanged
throughout the training and across both LoRA and PaLoRA, we have the following.

fT (x)− fLoRA(x) = ∆WTx− (∆W · U)x (10)

The remaining elements of fT and fLoRA can be rephrased as new layers without a bias parameter
with the weights of the residuals and Wx + b as the new bias parameter. Therefore according to
(Gadhikar et al., 2023),

P[max
x∈D
||gT (x; ∆WT )− gLoRA(x; ∆W · U)|| ≤ ϵ] ≥ 1− δ. (11)

Where ϵ, δ ∈ (0, 1), gT and gLoRA represent the new layers, ρ =
CN1+γ

T

log(1/(1−minl pl))
1+γ log (1/min {minl ϵl, δ}) for any γ ≥ 0 with C as a distribution depen-

dent constant. NT represents the number of non-zero parameters of the model. ϵl is defined as
follows (Burkholz, 2022).

ϵl =
ϵ

nLoRA,LL

[
(1 +Bl−1)

(
1 +

ϵ

L

) L−1∏
k=l+1

(∥∥∥WT
(k)

∥∥∥
∞

+
ϵ

L

)]−1

, Bl := sup
x∈D

∥∥∥x(l)
LoRA

∥∥∥
1
.

(12)
Where xl

LoRA represents the features of the pruned LoRA at layer l.
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B FROM LOW DATA REGIME TO TRAINING ON THE WHOLE DATASET

As shown in section 5.1, the number of trainable parameters is significantly reduced for for Partial-
LoRAs. Here, we assess if the performance similarity between LoRAs and Partial-LoRAs is due
to the large number of parameters relative to the small training dataset size. Table 3 shows the
performance of each method compared to LoRAs when trained on the entire training set D instead of
a few-shot subset Dt. The performance similarity between the three methods in Table 3 is consistent
with the few-shot results in section 5.1. Therefore, pruned LoRAs perform similarly to LoRAs,
regardless of dataset size.

Table 3: Performance of training on the whole dataset

Dataset LoRA Targeted-LoRA Partial-LoRA

CIFAR-10 96.68 97.68 97.79
CIFAR-100 87.16 87.47 87.59
GRSRB 99.12 99.02 99.08
FGVC-Aircraft 65.61 64.93 65.65
Average 87.14 87.28 87.53

C MAGNITUDE OF RESIDUALS

While LoRAs modify all weights, Partial-LoRAs modify only a small subset. We study the impact of
this reduction in the number of trainable parameters on the magnitude of the residuals obtained through
fine-tuning. Figure 7 shows the norm of the residual matrix across the 12 layers of the transformer
model, focusing on the first fully connected layer of each block, with additional visualizations for
CIFAR-100 and GTSRB datasets visualized in Figure 8. Moreover, Figure 9 and Figure 10 visualize
the same norms for the second fully connected layer and attention projection layers, respectively.
Alongside Partial-LoRA and Targeted-LoRA derived using our proposed SVD-based method, we
also provide the visualization for SNIP and IMP based Targeted-LoRAs as well.

The norm of the residual matrix from Targeted-LoRA behaves similarly to the Partial-LoRA method
across all importance measures, indicating the importance of the number of modified parameters over
the specific elements. Additionally, we note differences between LoRAs and masked LoRAs. Neither
masking approach achieves magnitudes similar to LoRAs, changing the model’s overall behavior. For
example, LoRA shows an uptick in norm for the final layer of the Pets dataset, while masked models
show the opposite. In CIFAR-10, LoRA maintains consistent norm values across layers, whereas
masked LoRAs exhibit drastic changes. This pattern remains consistent across the datasets with the
norm value going down significantly for the final layer. Additionally, the norm for Partial-LoRA
follows the Targeted method closely across each layer for every importance measure. This gives us
insights on how the randomly masked LoRAs bearing the same capacity as the Partial LoRAs can
modify the pretrained weights in a similar manner.
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Figure 7: Normalized magnitude of residualsfor CIFAR-10 and Pets for the first fully-connected layer
of every transformer block.
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Here we provide the visualization of the residual norms for two other datasets that are CIFAR-10 and
GTSRB.
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Figure 8: Magnitude of the residuals for datasets CIFAR-100 and GTSRB for the first fully-connected
layer of every transformer block. The magnitude goes down as layer depth increases.
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Figure 9: Magnitude of the residuals for datasets CIFAR-100 and GTSRB for the second fully-
connected layer of every transformer block. The general pattern follows that of the first layer of the
transformer block.
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Figure 10: Magnitude of the residuals for datasets CIFAR-100 and GTSRB for the attention layer
(inward projection) of every transformer block. The pattern is opposite of that of the fully-connected
layers. This could be due to how the attention layer is itself made of 3 layers, namely, the query, key
and value projections.

D EXPLORING DETERMINISTIC AND STOCHASTIC UTILIZATION OF
IMPORTANCE MEASURES

In Section 5.1, Targeted-LoRA methods used deterministic approaches to select elements for modifi-
cation based on importance scores. Here, we treat these scores probabilistically, sampling indices for
modification. We introduce randomness by passing importance values through a softmax function and
explore the effects by varying the temperature parameter. Then, we sample masks using the derived
distribution. Table 11 shows that the stochastic IMP approach achieves accuracy close to LoRAs
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for Pets and improves performance on CIFAR-100 across temperatures. However, the SVD-based
method’s performance degrades with randomness, possibly due to its dependence on the SVD of the
pretrained matrix, unlike the IMP method, which extracts scores from gradient magnitudes, allowing
for a more meaningful interpretation of this stochasticity.
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Figure 11: Stochastic approach to subnetwork extraction has minimal effects on performance.

E AGREEMENT IN THE SUB-NETWORK EXTRACTION.

In this section, we aim to determine the similarity between sub-networks extracted by SVD, SNIP, and
IMP. We hypothesize that if there is a meaningful set of elements in each weight matrix responsible
for a model’s performance, there would be some overlap between the sub-networks identified by
these different methods. The results for CIFAR-10, Pets, CIFAR-100 and GTSRB are provided in the
following.

Overlap of layers on different methods: In Figure 12, the overlap for CIFAR-10 and Pets is larger
than 50% in the first 6 layers of the model when we compare the sub-network extracted by SVD-based
and gradient-based methods. This suggests that using importance measures to infer the number of
elements to modify is effective, highlighting the similarity between the SVD-based and gradient-based
methods. Similar results are shown in Figure 14 for CIFAR-100 and GTSRB. Interestingly, the
overlap between the SVD-based method and the gradient-based methods is different from the other
datasets. For Pets, the overlap is consistently low across the layers. This could potentially be due
to the fine granular information required to be modified by the LoRA. If so, a larger portion of the
top singular vectors would be used for the subnetwork extraction phase, leading to a smaller overlap
across all layers.

Overlap of layers on the same method but different shots: We compare each method using
different shots from each dataset to complete these observations. Shared concepts should be reflected
in overlaps of sub-networks across different shots. As shown in Figure 13, the SVD-based method
shows a large overlap between different seeds, with full overlap for GTSRB across all layers. This
is expected since SVD starts with the top singular vectors. Surprisingly, the gradient-based method
also shows significant overlap across different shots for both datasets. Therefore, considering the
results in Table 2, while specific indices may not be optimal for training, the sparsity factor can be
effectively determined using importance measuring methods, as shown by the comparisons between
different importance methods. Similar results are shown in Figure 15 for CIFAR-100 and GTSRB.

F RANK ABLATION STUDY FOR OTHER DATASETS

In this section, we provide the visualizations for the ablation study on the rank of the low-rank
residuals for CIFAR-10 and GTSRB. Fig. 16, visualizes the accuracy values across ranks of 1, 4,
16, 32 and 64. Similar to the results for CIFAR-100 and FGVC-Aircraft, the relative performance
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Figure 12: Overlap of top indices across different importance measures for CIFAR-10 and Pets.
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Figure 13: Overlap of top indices across different shots for CIFAR-10 and Pets.

between LoRAs and pruned counterparts is consistent showing that performance of pruned LoRAs is
not dependent on rank.

G IMPORTANT ELEMENTS ACROSS DIFFERENT LAYERS

In this section, we visualize the fraction of elements in the subnetwork extracted by SNIP, SVD and
IMP across the layers. These visualizations are provided in Figure 17. As mentioned in Appendix
E, the number of elements chosen to be preserved in the extracted subnetwork decreases as depth
increases, causing a smaller overlap between the importance measures.

H EFFECTS OF FLOW PRESERVATION

In the pruning literature, it is common to modify the masks resulting from importance measures to
preserve the flow of information throughout the layers of the model. This is due to the possibility that
if two layers are pruned independently of each other, the activations resulting from one layer might
encounter weights that have been masked out, leading to a vector of zeros as the output of the second
layer. Here we show that in the fine-tuning setting where LoRAs adjust the pretrained layers, this
step is not necessary. We use the IMP importance method and infer the masked elements for each
layer independent of other layers. Then, we use the same approach but for each layer, the calculated
scores are added to the scores of the next layer to reweigh the importance of each element in favor
of important elements from the next layer. The performance of both methods is reported in Table 4.
The results with flow preservation are named Continuous and the results without this alteration of
the importance measure are named Isolated. Both the individual datasets and the overall average are
consistently close confirming that flow preservation is not necessary in the case of our work.

I DETAILED RESULTS FROM QUANTITATIVE EVALUATION

Here we provide the same results from Figure 3 and Figure 4 in tabular format. Table 5 and Table 6
show the performance of each method on each dataset tested in our work.
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Figure 14: Overlap of top indices across different importance measures for CIFAR-100 and GTSRB.
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Figure 15: Overlap of top indices across different shots for CIFAR-100 and GTSRB.
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Figure 16: Ablation on the rank of the low-rank residual weights. Regardless of rank, random masking
allows for reduction in the number of parameters without significant reduction in performance.

Table 4: Comparison of Isolated and Continuous Data Accuracy

Dataset Isolated (%) Continuous (%)

Pets 93.82 93.64
CIFAR-10 93.89 94.20
CIFAR-100 80.51 80.86
GTSRB 94.90 94.75
FGVC-Aircraft 54.21 54.67
Average 83.47 83.58
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Figure 17: Fraction of the number of elements in the extracted subnetwork from different importance
measures over the number of parameters in the pretrained model. The number of important elements
goes down in deeper layers suggesting narrowing of the high-level knowledge required to infer
accurately on a task.

Table 5: Performance Comparison Across Vision Tasks (Parameter Count)

Method Pets Flowers CIFAR10 CIFAR100 FER2013 GTSRB FGVC-Aircraft ImageNet
LoRA 94.06 (0.67M) 93.18 (0.67M) 94.50 (0.67M) 80.90 (0.67M) 57.96 (0.67M) 95.04 (0.67M) 54.34 (0.67M) 71.01 (0.67M)
Partial-LoRA 93.86 (0.14M) 95.21 (0.32M) 94.35 (0.17M) 81.10 (0.30M) 58.61 (0.21M) 94.72 (0.26M) 54.58 (0.31M) 70.90 (0.23M)
VeRA 94.23 (0.10M) 94.91 (0.10M) 95.23 (0.10M) 81.60 (0.10M) 58.81 (0.10M) 91.23 (0.10M) 52.29 (0.10M) 73.56 (0.10M)
LoRA+ 94.07 (0.67M) 94.35 (0.67M) 94.22 (0.67M) 81.28 (0.67M) 59.51 (0.67M) 93.03 (0.67M) 51.46 (0.67M) 72.31 (0.67M)
DoRA 93.55 (0.77M) 93.64 (0.77M) 94.78 (0.77M) 81.19 (0.77M) 59.10 (0.77M) 94.62 (0.77M) 53.41 (0.75M) 71.60 (0.75M)
AdaLoRA 93.91 (0.67M) 94.36 (0.67M) 94.72 (0.67M) 81.54 (0.67M) 59.32 (0.67M) 94.13 (0.67M) 52.74 (0.67M) 72.68 (0.67M)
Partial-AdaLoRA 93.38 (0.12M) 94.62 (0.26M) 94.11 (0.15M) 81.02 (0.29M) 58.77 (0.21M) 93.79 (0.25M) 52.22 (0.30M) 72.79 (0.22M)

Table 6: Performance Comparison Across Language Tasks (Parameter Count)

Method SST-2 QNLI MRPC CoLA
LoRA 94.95 (1.33M) 93.87 (1.33M) 89.95 (1.33M) 69.82 (1.33M)
Partial-LoRA 95.60 (0.18M) 93.85 (0.28M) 89.87 (0.14M) 70.86 (0.31M)
Partial-AdaLoRA 96.00 (0.20M) 94.31 (0.33M) 90.68 (0.17M) 71.63 (0.34M)
Vera 95.64 (0.10M) 94.05 (0.10M) 90.44 (0.10M) 71.28 (0.10M)
LoRA+ 95.98 (1.33M) 93.87 (1.33M) 90.60 (1.33M) 70.85 (1.33M)
DoRA 96.10 (1.41M) 94.14 (1.41M) 90.68 (1.41M) 72.11 (1.41M)
AdaLoRA 96.10 (1.32M) 94.55 (1.32M) 90.69 (1.32M) 71.45 (1.32M)
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