
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDERATED LEARNING WITH BINARY NEURAL NET-
WORKS: COMPETITIVE ACCURACY AT A FRACTION OF
THE COST

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) preserves privacy by distributing training across devices.
However, using DNNs is computationally demanding for the low-powered edge at
inference. Edge deployment demands models that simultaneously optimize mem-
ory footprint and computational efficiency, a dilemma where conventional DNNs
fail by exceeding resource limits. Traditional post-training binarization reduces
model size but suffers from severe accuracy loss due to quantization errors. To
address these challenges, we propose FedBNN, a rotation-aware binary neural
network framework that learns binary representations directly during local train-
ing. By encoding each weight as a single bit {+1,−1} instead of a 32-bit float,
FedBNN shrinks the model footprint, significantly reducing runtime (during in-
ference) FLOPs and memory requirements in comparison to federated methods
using real models. Evaluations on multiple benchmark datasets demonstrate that
FedBNN reduces resource consumption greatly while performing similarly to ex-
isting federated methods using real-valued models.

1 INTRODUCTION

Federated Learning (FL) has rapidly emerged as a cornerstone paradigm for privacy-preserving col-
laborative model training across distributed edge devices. In a standard FL workflow, a central
server initializes a global model and communicates its parameters to participating clients. Each
client, equipped with its own private dataset, trains the model locally before transmitting the updates
back to the server, aggregating them to refine the global model iteratively. However, as modern deep
learning models grow in scale and complexity, accommodating resource-constrained clients presents
a fundamental challenge. Ensuring model efficiency is therefore critical during local training and
especially for deployment on edge devices. Moreover, the frequent uplink and downlink communi-
cation inherent to FL often creates a severe bottleneck. Finally, the reliance on compact models in
such settings further amplifies susceptibility to adversarial attacks, underscoring the importance of
communication efficiency, lightweight design, and robustness in federated systems.

Several works focus on mitigating the communication overhead in federated learning. Li et al.
(2025) enhances the efficiency of low-rank FL by addressing three critical challenges in decom-
position by proposing Model Update Decomposition (MUD), Block-wise Kronecker Decomposi-
tion (BKD), and Aggregation-Aware Decomposition (AAD), which are complementary and can be
jointly applied. Their approach demonstrates faster convergence with improved accuracy compared
to prior low-rank baselines. Kim et al. (2024a) address unstable convergence under client hetero-
geneity and low participation by introducing a lookahead-gradient strategy. Their method broad-
casts projected global updates without incurring extra communication costs or memory dependence,
while additionally regularizing local updates to align with the overshot global model. This yields
improved stability and tighter theoretical convergence guarantees, particularly under partial client
participation. Hu et al. (2024) proposes a hybrid gradient compression (HGC) framework designed
to reduce uplink and downlink costs by exploiting multiple forms of redundancy in the training pro-
cess. With compression-ratio correction and dynamic momentum correction, HGC achieves a high
compression ratio with negligible accuracy loss in practice.

Guo & Yang (2024) address generalization under client imbalance through Federated Group DRO
algorithms to balance robustness and communication efficiency. Liu et al. (2024) propose FedLPA, a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

one-shot aggregation framework that infers layer-wise Laplace posteriors to mitigate non-IID effects
without requiring auxiliary data, markedly improving one-round training performance. Crawshaw
& Liu (2024) studies more realistic client participation patterns and proposes Amplified SCAF-
FOLD, which achieves linear speedup and significantly fewer communication rounds via projected
lookahead. Lu et al. (2025) introduces FedSMU, which simplifies communication by symbolizing
updates (i.e., transmitting signs only) while decoupling the Lion optimizer between local and global
steps, tackling communication and heterogeneity. Li et al. (2024) propose Federated Binarization-
Aware Training (FedBAT), which directly learns binary model updates during local training through
a stochastic, learnable operator S(x, α) with trainable step size α. While this approach improves ac-
curacy relative to post-training binarization, local optimization in FedBAT still relies on real-valued
parameters, with binarization applied only to the communicated updates. Also, the final model learnt
after training is real and more complex.

While communication efficiency is critical in federated learning (FL), maintaining lightweight mod-
els after training is equally important for resource-constrained edge devices. Kim et al. (2024b)
proposes SpaFL, which introduces trainable per-filter thresholds to induce structured sparsity, re-
quiring only threshold vectors to be uploaded. This leads to improved accuracy and reduced com-
munication cost relative to sparse baselines. In contrast, our client-side BNNs employ binary filters
({−1,+1}), eliminating large computation and memory overhead. Lee & Jang (2025) develops
BiPruneFL. This framework combines binary quantization with pruning to lower computation and
communication costs, achieving up to two orders of magnitude efficiency gains while retaining ac-
curacy comparable to uncompressed models. Similarly, Shah & Lau (2023) explores sparsification
and quantization to address uplink and downlink communication, demonstrating superior trade-offs
between model compression and accuracy preservation. Yang et al. (2021) specifically studies
BNNs in FL, where clients transmit only binary parameters, and a Maximum Likelihood (ML)
based reconstruction scheme is used to recover real-valued global parameters. Their framework
effectively reduces communication costs while establishing theoretical convergence conditions for
training federated BNNs.

In this work, we address the challenge of reducing runtime computational complexity in federated
learning (FL) models on edge devices while maintaining high performance. Building on the idea of
rotated binary neural networks Lin et al. (2020), we introduce FedBNN, a federated learning strat-
egy inspired by FedAvg, which trains a rotated binary neural network with binary weights while
preserving the same parameter count as its real-valued counterpart. Despite this parity, the binary
representation of the global model yields substantial gains in memory efficiency and runtime com-
putational savings.

Our main contributions are as follows:

1. We propose FedBNN, an FL framework for training Binary Neural Networks (BNNs) that
achieve lower runtime computation and memory complexity compared to real-valued mod-
els.

2. We comprehensively compare FedBNN with state-of-the-art methods, conducting experi-
ments on diverse benchmark datasets including FMNIST, SVHN, and CIFAR-10. We also
consider data heterogeneity and perform comparisons with three types of data distribution.

3. We evaluate the runtime complexity of FedBNN in terms of computation cost and memory
usage, demonstrating its efficiency advantages over existing approaches.

2 PRELIMINARIES

2.1 FEDERATED LEARNING

Federated Learning is a distributed machine learning paradigm that enables multiple clients to col-
laboratively train a shared model while keeping their data decentralized. Unlike traditional central-
ized learning, FL addresses critical challenges including data privacy, communication constraints,
and statistical heterogeneity across participants. McMahan et al. (2017) introduced the Federated
Averaging (FedAvg) algorithm, which combines local stochastic gradient descent on individual
clients with periodic model averaging on a central server. The method addresses the fundamen-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tal optimization problem:

min
w∈Rd

L(w) where L(w) =
1

Ns

Ns∑
i=1

Li(w) (1)

Here, Li is the loss for a particular sample (xi, yi). In the federated setting with Nk clients, this is
reformulated as:

L(w) =

Nk∑
k=1

Nsk

Ns
lk(w) where, lk(w) =

1

Nsk

∑
i∈Pk

Li(w) (2)

Here, Pk represents the data partition on client k and Nsk = |Pk|. The FedAvg algorithm operates
by selecting a fraction Ncr of clients each round, having each perform Ne local epochs of SGD with
batch size Nb:

w← w − η∇L(w; b) (3)
for each batch b, followed by server-side weighted averaging:

wt+1 ←
Nk∑
k=1

Nsk

Ns
wk

t+1 (4)

2.2 BINARIZED NEURAL NETWORK

If gϕ(·) is a CNN with L layers, its parameters are given by ϕ = {W1, . . . ,WL}, where Wl ∈
Rco×ci×k×k represents the weight matrix of the lth layer. In a Binary Neural Network (BNN), both
weights and activations are binarized using the sign function:

Wb
l = sign(Wl), abl = sign(al), (5)

and the convolution is approximated using bit-wise operations:

Wl ∗ al ≈Wb
l ⊛ abl , (6)

where ⊛ denotes bit-wise convolution (e.g., XNOR and bit count). Although the forward pass uses
binarized values, real-valued weights and gradients are retained for backpropagation. Due to the
non-differentiability of the sign function, whose derivative is zero almost everywhere, training bi-
narized neural networks poses significant challenges, particularly in backpropagation, where mean-
ingful gradients are required. Hence, a straight-through estimator (STE) is used: if b = sign(r),
then

∇r = ∇b · 1|r|≤1, (7)

where ∇r = ∂C
∂r , ∇b = ∂C

∂b , and C is the cost function. To ensure stable updates, real weights
are clipped to the range [−1, 1]. We adopt the approach from Hubara et al. (2016) to implement
binarized convolution layers, converting floating-point operations into efficient XNOR and bit-count
operations. While this drastically reduces computation and memory usage, it often comes at the cost
of reduced accuracy. One key limitation of BNNs is the quantization error caused by binarizing the
weight vector wl ∈ Rnl , which is the flattened form of Wl, where nl = co · ci ·k2. This error arises
due to the angular bias between wl and its binarized version wb

l , potentially degrading network
performance.

3 PROPOSED METHOD - FEDBNN

3.1 ROTATED BINARY NEURAL NETWORK

3.1.1 TRAINABLE ROTATION WEIGHT WITH GLOBAL MEMORY

To address the angular bias, Lin et al. (2020) proposed applying a rotation matrix Rl ∈ Rnl×nl

at the start of each training epoch to minimize the angle ϕl between (Rl)
Twl and sign((Rl)

Twl).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: FedBNN overall architecture.

Building on this for our federated extension, instead of rotating the local client weight wl directly,
we first construct a fused weight w = λlwl +(1−λl)wserver using a trainable parameter λl ∈ [0, 1]
that interpolates between the client and server weight representations. The rotation is then applied
to this fused vector w, thus aligning the quantization with a federated-aware representation. This
rotation is applied to the weights of each layer in every epoch of every round, as shown in Figure 1.
For simplicity, we omit subscripts denoting the layer, client, or epoch in the following discussion.
To minimize the angular bias (ϕ), cos(ϕ) needs to be maximized and formulated as follows:

cos (ϕ) =
sign((R)Tw)T ((R)Tw)

∥ sign((R)Tw)∥2∥((R)Tw)∥2
, (8)

where (R)TR = In is the n-th order identity matrix. Note, ∥ sign((R)Tw)∥2 =
√
n and

∥((R)Tw)∥2 = ∥w∥2. Since the training happens at the beginning of each epoch, we can take
∥w∥2 to be a constant. With the help of algebraic manipulations, we get W′b = sign((R1)

TWR2),
Vec(W) = w and

(w)T (R1 ⊗R2) = Vec((R2)
T (W)TR1)

where ⊗ is the Kronecker product and the operation Vec(·) vectorizes an input matrix. The final
optimization objective is given by

argmax
W′b,R1,R2

tr(W′b(R2)
T (W)TR1)

s.t. W′b ∈ {+1,−1}n1×n2

(R1)
TR1 = In1

(R2)
TR2 = In2

.

(9)

Since the above optimization is a non convex problem, an alternating optimization approach is used,
where one variable is updated, keeping the other two fixed until convergence. We, therefore, have
three steps in each, as shown in Algorithm 1:

1. The first step is to learn W′b while fixing R1 and R2. It is solved by

W′b = sign((R1)
TWR2) (10)

2. The next step updates R1 while keeping W′b and R2 constant. Performing
SVD

(
W′b(R2)

T (W)T
)
= U1S1(V1)

T , it is solved by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: Federated Binary Neural Network (FedBNN) training. The Nk clients are indexed
by k; Nb is the local minibatch size, Ne is the number of local epochs, and η is the learning rate.
Ncr is the number of clients selected per round. NeR is the number of epochs of rotation. NlR

is the number of layers that require rotation. Θ is the set of all trainable parameters.
Server executes:
initialize w0

for round in range(Nr) do
St ← (random set of Ncr clients)
for each client ∈ St in parallel do

wk
t+1 ← ClientUpdate (k,wt)

end
wt+1 =

∑K
k=1

Nsk

Nk
wk

t+1

end

ClientUpdate (k,wserver):
B ← (split Pk into batches of size Nb)
w← wserver
for epoch in range(Ne) do

for eR in range(NeR) do
for l in range(NlR) do

W′b
l ← sign((Rl1)

TWlRl2)

U1,S1,V1 ← SVD(W′b
l (Rl2)

T (Wl)
T)

Rl1 ← V1(U1)
T

U2,S2,V2 ← SVD((Wl)
TRl1W

′b
l)

Rl2 ← U2(V2)
T

end
end
for batch b ∈ B do

for θ ∈ Θ do
θ ← θ − η σθ(b)

end
end

end
return w to server

R1 = V1(U1)
T . (11)

3. Similar to the previous steps, the following step updates R2 while keeping W′b and R1

constant. Performing SVD
(
(W)TR1W

′b
)
= U2S2(V2)

T , it is solved by

R2 = U2(V2)
T (12)

3.1.2 ADJUSTABLE ROTATED WEIGHT VECTOR WITH GLOBAL MEMORY

The optimization steps described above are executed iteratively. As noted in Lin et al. (2020), the
variables W′b, R1, and R2 typically converge within three iterations. However, the process may
still get trapped in a local optimum due to overshooting/undershooting. To mitigate this, Lin et al.
(2020) introduced an adjustable rotated weight vector scheme to further reduce angular bias after the
bi-rotation step. However, in a federated setting, a client may need to align its weights not just with
its own rotated representation but also with wserver. To this end, we propose a generalized update:

w̃ = w + α(RTw −w) + β(wserver −w) (13)

where w is the interpolated weight, α =
∣∣sin(θ)∣∣, β =

∣∣sin(γ)∣∣, θ, γ ∈ R and α, β ∈ [0, 1]. Here,
α and β are learnable parameters controlling the contributions from the rotated and server directions,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

respectively. The added regularization term (β(wserver −w)) updates adaptively and fuses local and
global knowledge while correcting angular bias with respect to both. It gathers inspiration from Li
et al. (2020), where a proximal term is added to prevent training divergence due to heterogeneous
data. While the original method in Lin et al. (2020) is designed for centralized training, we extend
this framework to federated learning.

In summary, each client receives the global server weight wserver at the beginning of each round.
We introduce a learnable fusion parameter λl to interpolate between the client and server weights,
forming a federated-aware fused weight w. The bi-rotation is then applied to w instead of wl, al-
lowing angular correction in the shared representation space. Moreover, we introduce two additional
learnable scalars αl and βl to adaptively adjust the influence of the rotated direction and the global
server model, respectively, during the binarization step.

3.1.3 TRAINING AWARE APPROXIMATION FOR FEDERATED LEARNING

To improve upon the STE, Lin et al. (2020) introduced a training-aware approximation function that
serves as a smooth, epoch-dependent surrogate for the sign function, enabling better gradient flow
during early training. Unlike centralized training, where t and k are updated locally each epoch,
our federated setup maintains these values across global rounds to ensure consistent client training
behavior. The approximation is given by:

F (x) =

k ·
(
−sign(x) · t

2x2

2
+
√
2tx

)
, if |x| <

√
2/t,

k · sign(x), otherwise,
(14)

where the coefficients t and k evolve with training as:

t = 10(Tmin) +
(rNe + e)

NrNe
(Tmax − Tmin) (15)

k = max

(
1

t
, 1

)
(16)

where Tmin = −2, Tmax = 1, Nr the total number of global training rounds, and r the current
round index, Ne the total number of local training epochs, and e the current epoch of training. The
derivative of this function with respect to x is:

F ′(x) =
∂F (x)

∂x
= max

(
k · (
√
2t− |t2x|), 0

)
, (17)

which yields non-zero gradients during early training, allowing effective optimization of both client
and server-side parameters, and progressively transitions to a sign-like function, thus preserving
binarization.

Using this surrogate, we compute gradients of the loss L with respect to both activations a and the
mixed weights w̃ as follows:

σa =
∂L

∂F (a)
· ∂F (a)

a
, (18)

σw =
∂L

∂F (w̃)
· ∂F (w̃)

∂w̃
· ∂w̃
∂w

, (19)

where the mixed-weight Jacobian is defined as:

∂w̃

∂w
= (1− α − β) · In + α ·R⊤, (20)

accounting for both the direct client path and the rotation-aligned correction. The gradients of the
adaptive mixing parameters α and β, which respectively control the contributions from the rotation-
aligned direction and the global server model, are computed as:

σα =
∂L
∂w̃
· (R⊤w −w), (21)

σβ =
∂L
∂w̃
· (wserver −w). (22)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This training-aware formulation plays a critical role in stabilizing federated optimization by align-
ing binarization with geometric orientation and enabling meaningful gradient flow throughout local
client training, as shown in Figure 1. In summary, at the beginning of every training epoch of each
client, the rotation matrices, R1 and R2, are learned for a fixed w. At the training phase, with the
fixed R1 and R2, the NN takes the sign of parameter w̃ for the forward pass and the parameters wl,
α and β are updated during back-propagation. Since α, β are also trainable parameters, it enables
the network to learn a suitable value that further optimizes the application of the rotation in equation
(16).

3.2 AGGREGATION OF ROTATED BNNS AT THE SERVER

At the end of each training round, clients send their locally learned model weights to the server for
aggregation using the FedAVG method. In addition to the layer weights, each client also transmits
the Rotation matrices of its layers. Although this increases communication overhead, incorporating
the aggregated rotation matrices on the client side in the next round leads to significant performance
gains. While the averaged Rotation matrix is no longer orthogonal, it is corrected during the sub-
sequent three-step rotation optimization. Importantly, the aggregated matrix captures information
from all clients, helping to realign the weight vectors and adjust their norms for the next round.
Other variants of the algorithm considered in our study are: 1) enforcing orthogonality of the ag-
gregated Rotation matrix at the start of each round, before client-side rotation optimization, and
2) performing rotation optimization directly on the server, avoiding the transmission overhead of
Rotation matrices after local training. The outcomes of this ablation analysis are summarized in
Table 2. In the previous sections, we described the techniques applied on the client side within the
proposed FedBNN framework. As outlined in Algorithm 1, rotation optimization is carried out at
the start of each epoch to reduce quantization error before binarization. Additionally, constraining
the deviation of the locally learned weight vector from the global model weights (wserver) substan-
tially enhances performance. Furthermore, the aggregated rotation matrix distributed by the server
provides an effective initialization for the rotation optimization at the beginning of each round.

3.3 RUNTIME COMPUTATION SAVINGS FOR BINARY MODELS

From Shankar et al. (2024), we estimate the number of runtime multiplication and addition opera-
tions in a 2D CNN for comparison. For a convolution between real-valued Wl ∈ Rco×ci×k×k and
input al ∈ Rci×hw

in×hh
in , the output is al+1 ∈ Rco×hw

out×hh
out . The number of multiplications is

ci · k2 · hw
out · hh

out · co, and additions are roughly of the same order. Thus, the total FLOPs for the
lth layer is approximately 2 · ci · k2 · hw

out · hh
out · co. Also, we consider every parameter to be of 32

bits. Hence, to calculate the total memory, we multiply the total parameters by 32. By binarizing
weights and activations to {+1,−1}, convolutions are replaced by efficient XNOR and bit-count
operations. And all the weights will only need 1 bit for storage. Rastegari et al. (2016) states that
using binary neural networks results in a FLOPs reduction of 58× and memory savings of 32×.
Hence, to compare FedBNN with real models, we use this conversion factor in FLOPs and memory
to estimate the computation savings.

4 EXPERIMENTAL EVALUATION

4.1 SETUP

All experiments are implemented using the PyTorch framework and executed on an NVIDIA A100
GPU. We conduct federated training with Nc = 100 clients participating in each experiment. The
training follows the standard federated averaging (FedAvg) protocol for model synchronization. We
use stochastic gradient descent with a learning rate of 0.1 for optimization. The Learning rate is
decreased by a multiplicative factor of 2 from round 200 every 50 rounds. Each federated training
round comprises local training on selected clients for 10 epochs (5 epochs for FMNIST) with a
mini-batch size of 64. 10 clients are randomly sampled for local model updates in each round. The
global training process runs for a total of 500 rounds.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Dataset Accuracy FLOPs Memory Binarized Accuracy
(Model) IID Non-

IID 1
Non-
IID 2

(MB) IID Non-
IID 1

Non-
IID 2

FedAvg 92.24 91.44 89.28 2.02× 107 1.5635 53.42 63.68 54.72
FedBAT FMNIST 89.12 87.66 85.56 2.02× 107 1.5635 14.34 16.98 8.0
FedMud (CNN4) 89.60 88.60 86.00 2.02× 107 1.6291 63.2 66.5 66.08
FedBNN 88.24 85.80 82.10 3.48× 105 0.0489 73.42 80.58 67.8
FedAvg 92.10 90.60 89.34 3.00× 107 1.5965 28.01 22.56 16.92
FedBAT SVHN 86.01 80.83 75.78 3.00× 107 1.5965 50.35 26.69 34.71
FedMud (CNN4) 86.31 84.38 83.14 3.00× 107 1.6127 69.92 50.87 51.19
FedBNN 85.40 84.42 81.93 5.19× 105 0.0498 84.09 81.94 79.88
FedAvg 90.86 86.28 70.62 4.40× 108 19.6170 17.2 11.38 12.74
FedBAT CIFAR10 89.38 72.80 63.70 4.40× 108 19.6170 13.62 10.94 10.26
FedMud (ResNet- 88.74 84.22 67.22 4.40× 108 19.6170 15.54 10.78 18.98
FedBNN 10) 86.26 76.30 67.82 1.11× 107 0.6130 84.54 70.16 61.58

Table 1: Performance comparison for Nc = 100. The FLOPs and memory values are calculated
during runtime. Binarized accuracy refers to the model’s performance after the weights and activa-
tions have been binarized.

4.2 DATASETS AND PARTITIONING

To comprehensively evaluate the effectiveness of FedBNN, we conduct experiments on three widely
used federated learning benchmarks, namely, FMNIST, SVHN, and CIFAR10. The client models
are trained on the partitioned training data for all experiments. The testing data is split into two equal
sets: validation and testing. The best model is picked at the server after aggregation based on the
validation set. The final performance of the model is reported on the unseen test set. To thoroughly
assess our approach’s data heterogeneity performance, we evaluate under both IID and non-IID
data distribution scenarios, following federated learning benchmarks McMahan et al. (2017). Under
IID partitioning, each client is assigned an equal quantity of randomly sampled data, resulting in
statistically similar local datasets. The non-IID setting comprises two configurations: Non-IID 1 and
Non-IID 2. In Non-IID 1, samples are distributed among clients according to a Dirichlet distribution
Hsu et al. (2019), with the Dirichlet parameter α modulating the degree of statistical skew, set to 0.3
for all the datasets. Non-IID 2 represents an extreme heterogeneity case, where each client receives
data from only a subset of possible labels, specifically, 10 random labels per client for CIFAR-
100 and 3 random labels per client for the other datasets. These partitioning strategies enable a
systematic examination of model performance as data distributions on clients become increasingly
disparate, closely mirroring realistic federated deployment scenarios.

4.3 SIMULATION RESULTS

To showcase the performance of FedBNN, we employ a CNN with four binarized convolution lay-
ers, one fully connected layer for FMNIST and SVHN, and a ResNet10 architecture for CIFAR10.
Table 1 presents the classification accuracy across FMNIST, SVHN, and CIFAR10 datasets under
IID and Non-IID data splits. FedAvg, having no binarization bottleneck in training or communi-
cation, consistently achieves the highest accuracy, with values such as 92.24% (IID, FMNIST) and
92.10% (IID, SVHN). FedBNN, although slightly lower, remains competitive within 10% of all
real-valued methods. For example, on FMNIST under Non-IID 2, FedBNN attains 82.10% com-
pared to 89.28% of FedAvg, a gap of only 7.18%. On SVHN IID data, FedBNN reaches 85.40%
versus 92.10% for FedAvg, a difference of 6.7%, while under Non-IID 1 it achieves 84.42% against
90.60% (gap of 6.18%), and under Non-IID 2 81.93% compared to 89.34% (gap of 7.41%). On
CIFAR10 IID data, FedBNN reaches 86.26% versus 90.86% for FedAvg, a difference of 4.6%.
Notably, on CIFAR10 with Non-IID 1 data, FedBNN achieves 76.30%, which is 3.5% higher than
FedBAT (72.80%). Also, FedBAT outperforms FedBAT by 4.12% for the CIFAR10 dataset NON-
IID 2 distribution. The proposed method can even outperform certain baselines under challenging
data distributions. These results demonstrate that FedBNN preserves reasonable accuracy despite
aggressive compression and binarization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method (Ablation) Dataset Clean Accuracy
(Model) IID Non-IID 1 Non-IID 2

FedBNN (with orthogonal R1 R2 at client) FMNIST 83.64 84.90 77.60
FedBNN (with server R1 R2 computation) (CNN4) 85.28 82.02 76.30

FedBNN 88.24 85.80 82.10
FedBNN (with orthogonal R1 R2 at client) SVHN 82.01 81.05 79.52
FedBNN (with server R1 R2 computation) (CNN4) 76.28 74.32 72.46

FedBNN 85.40 84.42 81.93
FedBNN (with orthogonal R1 R2 at client) CIFAR10 85.64 74.30 65.40
FedBNN (with server R1 R2 computation) (ResNet10) 85.70 68.34 65.78

FedBNN 86.26 76.30 67.82

Table 2: Ablation Study considering different rotation matrix initializations.

A significant advantage of FedBNN is the drastic reduction in runtime computational and memory
requirements. FLOPs are reduced by nearly two orders of magnitude: for example, in FMNIST,
FedBNN requires only 3.48×105 operations compared to 2.02×107 for FedAvg, a∼ 58× reduction.
Similarly, in CIFAR10, FedBNN reduces FLOPs from 4.40× 108 to 1.11× 107, offering a ∼ 40×
improvement. Memory usage follows a similar trend, with FedBNN requiring only 0.0489 MB
for FMNIST compared to 1.5635 MB in FedAvg, i.e., saving 32×. Even for the larger ResNet-10
model on CIFAR10, memory is reduced from 19.6 to 0.613 MB, yielding 32× compression. These
savings are particularly impactful for resource-constrained federated clients. In the next section, we
will compare the performance of methods after post-training binarization.

Post-training binarization of real models will also lead to a binary model at the expense of per-
formance. Since FedBNN incorporates binarization into training, despite the strong compression,
FedBNN achieves superior binarized accuracy compared to other baselines. On FMNIST, FedBNN
records 73.42% under IID, outperforming FedAvg (53.42%) and FedBAT (14.34%) by 20% and
59.08% respectively. For SVHN, FedBNN achieves 84.09% (IID), significantly higher than the
28.01% of FedAvg. Similarly, on CIFAR10, FedBNN maintains 84.54% binarized accuracy under
IID, surpassing all baselines by a wide margin. Even in Non-IID 2 settings, FedBNN reaches 67.8%
(FMNIST), 79.88% (SVHN), and 61.58% (CIFAR10), remaining much closer to the full-precision
performance. These results highlight that FedBNN preserves competitive accuracy while drastically
lowering computation and memory requirements, making it well-suited for federated learning with
limited client resources.

Table 2 reports the results of two FedBNN variants against the standard formulation as discussed
in Section 3.2. On FMNIST, the baseline FedBNN achieves 88.24% (IID), outperforming the or-
thogonal variant by 4.6% and the server-side variant by 2.96%. Similar trends hold under Non-IID
settings, where FedBNN surpasses the server-side approach by 3.78% (Non-IID 1) and 5.8% (Non-
IID 2). On SVHN, FedBNN records 85.40% (IID), a clear gain of 3.39% over the orthogonal variant
and 9.12% over the server-side variant. The benefits persist under Non-IID, with margins of 3.37%
(Non-IID 1) and 9.47% (Non-IID 2) over the server-side approach. For CIFAR10, FedBNN again
provides the best performance, reaching 86.26% (IID), 0.62% higher than the orthogonal variant
and 0.56% higher than the server-side variant. The improvements are more pronounced in hetero-
geneous settings, with gains of 2.0% (Non-IID 1) and 2.04% (Non-IID 2) compared to the next
best method. These results confirm that the proposed client-side rotation with adaptive fusion yields
consistent improvements over alternative design choices.

5 CONCLUSION

We proposed FedBNN, a rotation-aware Binary Neural Network framework for federated learning
that achieves accuracies within 10% of real-valued models while reducing runtime FLOPs by up
to 58× and memory by 32×. FedBNN also surpasses baselines such as FedBAT in some Non-IID
cases and delivers superior post-training binarized accuracy, highlighting the benefits of including
binarization during training. FedBNN strikes a strong balance between accuracy and efficiency,
making it well-suited for scalable, lightweight federated learning. Future work will explore alterna-
tive aggregation strategies and larger architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael Crawshaw and Mingrui Liu. Federated learning under periodic client participation and
heterogeneous data: A new communication-efficient algorithm and analysis. Advances in Neural
Information Processing Systems, 37:8240–8299, 2024.

Zhishuai Guo and Tianbao Yang. Communication-efficient federated group distributionally robust
optimization. Advances in Neural Information Processing Systems, 37:23040–23077, 2024.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Sixu Hu, Linshan Jiang, and Bingsheng He. Practical hybrid gradient compression for federated
learning systems. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, Jeju, Republic of Korea, pp. 3–9, 2024.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient federated learning with ac-
celerated client gradient. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12385–12394, 2024a.

Minsu Kim, Walid Saad, Merouane Debbah, and Choong S Hong. Spafl: Communication-efficient
federated learning with sparse models and low computational overhead. Advances in Neural
Information Processing Systems, 37:86500–86527, 2024b.

Sangmin Lee and Hyeryung Jang. Biprunefl: Computation and communication efficient federated
learning with binary quantization and pruning. IEEE Access, 13:42441–42456, 2025. doi: 10.
1109/ACCESS.2025.3547627.

Shiwei Li, Wenchao Xu, Haozhao Wang, Xing Tang, Yining Qi, Shijie Xu, Weihong Luo, Yuhua Li,
Xiuqiang He, and Ruixuan Li. Fedbat: communication-efficient federated learning via learnable
binarization. arXiv preprint arXiv:2408.03215, 2024.

Shiwei Li, Xiandi Luo, Haozhao Wang, Xing Tang, Shijie Xu, Weihong Luo, Yuhua Li, Xiuqiang
He, and Ruixuan Li. The panaceas for improving low-rank decomposition in communication-
efficient federated learning. arXiv preprint arXiv:2505.23176, 2025.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang,
and Chia-Wen Lin. Rotated binary neural network. Advances in Neural Information Processing
Systems, 33, 2020.

Xiang Liu, Liangxi Liu, Feiyang Ye, Yunheng Shen, Xia Li, Linshan Jiang, and Jialin Li. Fedlpa:
One-shot federated learning with layer-wise posterior aggregation. Advances in Neural Informa-
tion Processing Systems, 37:81510–81548, 2024.

Xinyi Lu, Hao Zhang, Chenglin Li, Weijia Lu, Zhifei Yang, Wenrui Dai, Xiaofeng Ma, Can Zhang,
Junni Zou, Hongkai Xiong, et al. Fedsmu: Communication-efficient and generalization-enhanced
federated learning through symbolic model updates. International Conference on Machine Learn-
ing, 2025.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Suhail Mohmad Shah and Vincent K. N. Lau. Model compression for communication efficient
federated learning. IEEE Transactions on Neural Networks and Learning Systems, 34(9):5937–
5951, 2023. doi: 10.1109/TNNLS.2021.3131614.

Nitin Priyadarshini Shankar, Deepsayan Sadhukhan, Nancy Nayak, Thulasi Tholeti, and Sheetal
Kalyani. Binarized resnet: Enabling robust automatic modulation classification at the resource-
constrained edge. IEEE Transactions on Cognitive Communications and Networking, 10(5):
1913–1927, 2024. doi: 10.1109/TCCN.2024.3391325.

Yuzhi Yang, Zhaoyang Zhang, and Qianqian Yang. Communication-efficient federated learning with
binary neural networks. IEEE Journal on Selected Areas in Communications, 39(12):3836–3850,
2021.

11

	Introduction
	Preliminaries
	Federated Learning
	Binarized Neural Network

	Proposed Method - FedBNN
	Rotated Binary Neural Network
	Trainable rotation weight with global memory
	Adjustable rotated weight vector with global memory
	Training aware approximation for federated learning

	Aggregation of Rotated BNNs at the server
	Runtime computation savings for binary models

	Experimental Evaluation
	Setup
	Datasets and Partitioning
	Simulation results

	Conclusion

