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ABSTRACT

Federated Learning (FL) preserves privacy by distributing training across devices.
However, using DNNs is computationally demanding for the low-powered edge at
inference. Edge deployment demands models that simultaneously optimize mem-
ory footprint and computational efficiency, a dilemma where conventional DNNs
fail by exceeding resource limits. Traditional post-training binarization reduces
model size but suffers from severe accuracy loss due to quantization errors. To
address these challenges, we propose FedBNN, a rotation-aware binary neural
network framework that learns binary representations directly during local train-
ing. By encoding each weight as a single bit {+1,−1} instead of a 32-bit float,
FedBNN shrinks the model footprint, significantly reducing runtime (during in-
ference) FLOPs and memory requirements in comparison to federated methods
using real models. Evaluations on multiple benchmark datasets demonstrate that
FedBNN reduces resource consumption greatly while performing similarly to ex-
isting federated methods using real-valued models.

1 INTRODUCTION

Federated Learning (FL) has rapidly emerged as a cornerstone paradigm for privacy-preserving col-
laborative model training across distributed edge devices. In a standard FL workflow, a central
server initializes a global model and communicates its parameters to participating clients. Each
client, equipped with its own private dataset, trains the model locally before transmitting the updates
back to the server, aggregating them to refine the global model iteratively. However, as modern deep
learning models grow in scale and complexity, accommodating resource-constrained clients presents
a fundamental challenge. Ensuring model efficiency is therefore critical during local training and
especially for deployment on edge devices. Moreover, the frequent uplink and downlink communi-
cation inherent to FL often creates a severe bottleneck. Finally, the reliance on compact models in
such settings further amplifies susceptibility to adversarial attacks, underscoring the importance of
communication efficiency, lightweight design, and robustness in federated systems.

Several works focus on mitigating the communication overhead in federated learning. Li et al.
(2025) enhances the efficiency of low-rank FL by addressing three critical challenges in decom-
position by proposing Model Update Decomposition (MUD), Block-wise Kronecker Decomposi-
tion (BKD), and Aggregation-Aware Decomposition (AAD), which are complementary and can be
jointly applied. Their approach demonstrates faster convergence with improved accuracy compared
to prior low-rank baselines. Kim et al. (2024a) address unstable convergence under client hetero-
geneity and low participation by introducing a lookahead-gradient strategy. Their method broad-
casts projected global updates without incurring extra communication costs or memory dependence,
while additionally regularizing local updates to align with the overshot global model. This yields
improved stability and tighter theoretical convergence guarantees, particularly under partial client
participation. Hu et al. (2024) proposes a hybrid gradient compression (HGC) framework designed
to reduce uplink and downlink costs by exploiting multiple forms of redundancy in the training pro-
cess. With compression-ratio correction and dynamic momentum correction, HGC achieves a high
compression ratio with negligible accuracy loss in practice.

Guo & Yang (2024) address generalization under client imbalance through Federated Group DRO
algorithms to balance robustness and communication efficiency. Liu et al. (2024) propose FedLPA, a
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one-shot aggregation framework that infers layer-wise Laplace posteriors to mitigate non-IID effects
without requiring auxiliary data, markedly improving one-round training performance. Crawshaw
& Liu (2024) studies more realistic client participation patterns and proposes Amplified SCAF-
FOLD, which achieves linear speedup and significantly fewer communication rounds via projected
lookahead. Lu et al. (2025) introduces FedSMU, which simplifies communication by symbolizing
updates (i.e., transmitting signs only) while decoupling the Lion optimizer between local and global
steps, tackling communication and heterogeneity. Li et al. (2024) propose Federated Binarization-
Aware Training (FedBAT), which directly learns binary model updates during local training through
a stochastic, learnable operator S(x, α) with trainable step size α. While this approach improves ac-
curacy relative to post-training binarization, local optimization in FedBAT still relies on real-valued
parameters, with binarization applied only to the communicated updates. Also, the final model learnt
after training is real and more complex.

While communication efficiency is critical in federated learning (FL), maintaining lightweight mod-
els after training is equally important for resource-constrained edge devices. Kim et al. (2024b)
proposes SpaFL, which introduces trainable per-filter thresholds to induce structured sparsity, re-
quiring only threshold vectors to be uploaded. This leads to improved accuracy and reduced com-
munication cost relative to sparse baselines. In contrast, our client-side BNNs employ binary filters
({−1,+1}), eliminating large computation and memory overhead. Lee & Jang (2025) develops
BiPruneFL. This framework combines binary quantization with pruning to lower computation and
communication costs, achieving up to two orders of magnitude efficiency gains while retaining ac-
curacy comparable to uncompressed models. Similarly, Shah & Lau (2023) explores sparsification
and quantization to address uplink and downlink communication, demonstrating superior trade-offs
between model compression and accuracy preservation. Yang et al. (2021) specifically studies
BNNs in FL, where clients transmit only binary parameters, and a Maximum Likelihood (ML)
based reconstruction scheme is used to recover real-valued global parameters. Their framework
effectively reduces communication costs while establishing theoretical convergence conditions for
training federated BNNs.

In this work, we address the challenge of reducing runtime computational complexity in federated
learning (FL) models on edge devices while maintaining high performance. Building on the idea of
rotated binary neural networks Lin et al. (2020), we introduce FedBNN, a federated learning strat-
egy inspired by FedAvg, which trains a rotated binary neural network with binary weights while
preserving the same parameter count as its real-valued counterpart. Despite this parity, the binary
representation of the global model yields substantial gains in memory efficiency and runtime com-
putational savings.

Our main contributions are as follows:

1. We propose FedBNN, an FL framework for training Binary Neural Networks (BNNs) that
achieve lower runtime computation and memory complexity compared to real-valued mod-
els.

2. We comprehensively compare FedBNN with state-of-the-art methods, conducting experi-
ments on diverse benchmark datasets including FMNIST, SVHN, and CIFAR-10. We also
consider data heterogeneity and perform comparisons with three types of data distribution.

3. We evaluate the runtime complexity of FedBNN in terms of computation cost and memory
usage, demonstrating its efficiency advantages over existing approaches.

2 PRELIMINARIES

2.1 FEDERATED LEARNING

Federated Learning is a distributed machine learning paradigm that enables multiple clients to col-
laboratively train a shared model while keeping their data decentralized. Unlike traditional central-
ized learning, FL addresses critical challenges including data privacy, communication constraints,
and statistical heterogeneity across participants. McMahan et al. (2017) introduced the Federated
Averaging (FedAvg) algorithm, which combines local stochastic gradient descent on individual
clients with periodic model averaging on a central server. The method addresses the fundamen-
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tal optimization problem:

min
w∈Rd

L(w) where L(w) =
1

Ns

Ns∑
i=1

Li(w) (1)

Here, Li is the loss for a particular sample (xi, yi), w is the model parameter, Ns is the total number
of samples. In the federated setting with Nk clients, this is reformulated as:

L(w) =

Nk∑
k=1

Nsk

Ns
lk(w) where, lk(w) =

1

Nsk

∑
i∈Pk

Li(w) (2)

Here, Pk represents the data partition on client k and Nsk = |Pk|. The FedAvg algorithm operates
by selecting a fraction Ncr of clients each round, having each perform Ne local epochs of SGD with
batch size Nb:

w← w − η∇L(w; b) (3)
for each batch b, followed by server-side weighted averaging:

wt+1 ←
Nk∑
k=1

Nsk

Ns
wk

t+1 (4)

2.2 BINARIZED NEURAL NETWORK

If gϕ(·) is a CNN with L layers, its parameters are given by ϕ = {W1, . . . ,WL}, where Wl ∈
Rco×ci×k×k represents the weight matrix of the lth layer. Here, ci and co represent the input and
output channels, respectively, and k denotes the filter size. In a Binary Neural Network (BNN), both
weights (Wl) and activations (al) are binarized using the sign function:

Wb
l = sign(Wl), abl = sign(al), (5)

and the convolution is approximated using bit-wise operations:

Wl ∗ al ≈Wb
l ⊛ abl , (6)

where ⊛ denotes bit-wise convolution (e.g., XNOR and bit count). Although the forward pass uses
binarized values, real-valued weights and gradients are retained for backpropagation. Due to the
non-differentiability of the sign function, whose derivative is zero almost everywhere, training bi-
narized neural networks poses significant challenges, particularly in backpropagation, where mean-
ingful gradients are required. Hence, a straight-through estimator (STE) is used: if b = sign(r),
then

∇r = ∇b · 1|r|≤1, (7)

where ∇r = ∂C
∂r , ∇b = ∂C

∂b , and C is the cost function. To ensure stable updates, real weights
are clipped to the range [−1, 1]. We adopt the approach from Hubara et al. (2016) to implement
binarized convolution layers, converting floating-point operations into efficient XNOR and bit-count
operations. While this drastically reduces computation and memory usage, it often comes at the cost
of reduced accuracy. One key limitation of BNNs is the quantization error caused by binarizing the
weight vector wl ∈ Rnl , which is the flattened form of Wl, where nl = co · ci ·k2. This error arises
due to the angular bias (ϕ) between wl and its binarized version wb

l , potentially degrading network
performance.

3 PROPOSED METHOD - FEDBNN

3.1 ROTATED BINARY NEURAL NETWORK

3.1.1 TRAINABLE ROTATION WEIGHT WITH GLOBAL MEMORY

To address the angular bias, Lin et al. (2020) proposed applying a rotation matrix Rl ∈ Rnl×nl

at the start of each training epoch to minimize the angle ϕl between (Rl)
Twl and sign((Rl)

Twl).

3
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Figure 1: FedBNN overall architecture.

Building on this for our federated extension, instead of rotating the local client weight wl directly,
we first construct a fused weight w = λlwl +(1−λl)wserver using a trainable parameter λl ∈ [0, 1]
that interpolates between the client and server weight representations. The rotation is then applied
to this fused vector w, thus aligning the quantization with a federated-aware representation. This
rotation is applied to the weights of each layer in every epoch of every round, as shown in Figure 1.
For simplicity, we omit subscripts denoting the layer, client, or epoch in the following discussion.
To minimize the angular bias (ϕ), cos(ϕ) needs to be maximized and formulated as follows:

cos (ϕ) =
sign((R)Tw)T ((R)Tw)

∥ sign((R)Tw)∥2∥((R)Tw)∥2
, (8)

where (R)TR = In is the n-th order identity matrix. Note, ∥ sign((R)Tw)∥2 =
√
n and

∥((R)Tw)∥2 = ∥w∥2. Since the training happens at the beginning of each epoch, we can take
∥w∥2 to be a constant. With the help of algebraic manipulations, we get W′b = sign((R1)

TWR2),
Vec(W) = w, W ∈ Rn1×n2 and

wTR = wT (R1 ⊗R2) = Vec((R2)
T (W)TR1)

where ⊗ is the Kronecker product and the operation Vec(·) vectorizes an input matrix. The final
optimization objective is given by

argmax
W′b,R1,R2

tr(W′b(R2)
T (W)TR1)

s.t. W′b ∈ {+1,−1}n1×n2

(R1)
TR1 = In1

(R2)
TR2 = In2 .

(9)

Since the above optimization is a non convex problem, an alternating optimization approach is used,
where one variable is updated, keeping the other two fixed until convergence. We, therefore, have
three steps in each, as shown in Algorithm 1:

1. The first step is to learn W′b while fixing R1 and R2. It is solved by

W′b = sign((R1)
TWR2) (10)

2. The next step updates R1 while keeping W′b and R2 constant. Performing
SVD

(
W′b(R2)

T (W)T
)
= U1S1(V1)

T , it is solved by
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Algorithm 1: Federated Binary Neural Network (FedBNN) training. The Nk clients are indexed
by k; Nb is the local minibatch size, Ne is the number of local epochs, and η is the learning rate.
Ncr is the number of clients selected per round. NeR is the number of epochs of rotation. NlR

is the number of layers that require rotation. Θ is the set of all trainable parameters.
Server executes:
initialize w0

for round in range(Nr) do
St ← (random set of Ncr clients)
for each client ∈ St in parallel do

wk
t+1 ← ClientUpdate (k,wt)

end
wt+1 =

∑K
k=1

Nsk

Nk
wk

t+1

end

ClientUpdate (k,wserver):
B ← (split Pk into batches of size Nb)
w← wserver
for epoch in range(Ne) do

for eR in range(NeR) do
for l in range(NlR) do

W′b
l ← sign((Rl1)

TWlRl2)

U1,S1,V1 ← SVD(W′b
l (Rl2)

T (Wl)
T )

Rl1 ← V1(U1)
T

U2,S2,V2 ← SVD((Wl)
TRl1W

′b
l )

Rl2 ← U2(V2)
T

end
end
for batch b ∈ B do

for θ ∈ Θ do
θ ← θ − η σθ(b)

end
end

end
return w to server

R1 = V1(U1)
T . (11)

3. Similar to the previous steps, the following step updates R2 while keeping W′b and R1

constant. Performing SVD
(
(W)TR1W

′b
)
= U2S2(V2)

T , it is solved by

R2 = U2(V2)
T (12)

3.1.2 ADJUSTABLE ROTATED WEIGHT VECTOR WITH GLOBAL MEMORY

The optimization steps described above are executed iteratively. As noted in Lin et al. (2020), the
variables W′b, R1, and R2 typically converge within three iterations. However, the process may
still get trapped in a local optimum due to overshooting/undershooting. To mitigate this, Lin et al.
(2020) introduced an adjustable rotated weight vector scheme to further reduce angular bias after the
bi-rotation step. However, in a federated setting, a client may need to align its weights not just with
its own rotated representation but also with wserver. To this end, we propose a generalized update:

w̃ = w + α(RTw −w) + β(wserver −w) (13)

where w is the interpolated weight, α =
∣∣sin(θ)∣∣, β =

∣∣sin(γ)∣∣, θ, γ ∈ R and α, β ∈ [0, 1]. Here,
α and β are learnable parameters controlling the contributions from the rotated and server directions,

5
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respectively. The added regularization term (β(wserver −w)) updates adaptively and fuses local and
global knowledge while correcting angular bias with respect to both. It gathers inspiration from Li
et al. (2020), where a proximal term is added to prevent training divergence due to heterogeneous
data. While the original method in Lin et al. (2020) is designed for centralized training, we extend
this framework to federated learning.

In summary, each client receives the global server weight wserver at the beginning of each round.
We introduce a learnable fusion parameter λl to interpolate between the client and server weights,
forming a federated-aware fused weight w. The bi-rotation is then applied to w instead of wl, al-
lowing angular correction in the shared representation space. Moreover, we introduce two additional
learnable scalars αl and βl to adaptively adjust the influence of the rotated direction and the global
server model, respectively, during the binarization step.

3.1.3 TRAINING AWARE APPROXIMATION FOR FEDERATED LEARNING

To improve upon the STE, Lin et al. (2020) introduced a training-aware approximation function that
serves as a smooth, epoch-dependent surrogate for the sign function, enabling better gradient flow
during early training. Unlike centralized training, where t and k are updated locally each epoch,
our federated setup maintains these values across global rounds to ensure consistent client training
behavior. The approximation is given by:

F (x) =

k ·
(
−sign(x) · t

2x2

2
+
√
2tx

)
, if |x| <

√
2
t ,

k · sign(x), otherwise,
(14)

where the coefficients t and k evolve with training as:

t = 10(Tmin)+
(rNe+e)
NrNe

(Tmax−Tmin) (15)

k = max

(
1

t
, 1

)
(16)

where Tmin = −2, Tmax = 1, Nr the total number of global training rounds, and r the current
round index, Ne the total number of local training epochs, and e the current epoch of training. The
derivative of this function with respect to x is:

F ′(x) =
∂F (x)

∂x
= max

(
k · (
√
2t− |t2x|), 0

)
, (17)

which yields non-zero gradients during early training, allowing effective optimization of both client
and server-side parameters, and progressively transitions to a sign-like function, thus preserving
binarization.

Using this surrogate, we compute gradients of the loss L with respect to both activations a and the
mixed weights w̃ as follows:

σa =
∂L

∂F (a)
· ∂F (a)

a
, (18)

σw =
∂L

∂F (w̃)
· ∂F (w̃)

∂w̃
· ∂w̃
∂w

, (19)

where the mixed-weight Jacobian is defined as:

∂w̃

∂w
= (1− α − β) · In + α ·R⊤, (20)

accounting for both the direct client path and the rotation-aligned correction. The gradients of the
adaptive mixing parameters α and β, which respectively control the contributions from the rotation-
aligned direction and the global server model, are computed as:

σα =
∂L
∂w̃
· (R⊤w −w), (21)

σβ =
∂L
∂w̃
· (wserver −w). (22)

6
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This training-aware formulation plays a critical role in stabilizing federated optimization by align-
ing binarization with geometric orientation and enabling meaningful gradient flow throughout local
client training, as shown in Figure 1. In summary, at the beginning of every training epoch of each
client, the rotation matrices, R1 and R2, are learned for a fixed w. At the training phase, with the
fixed R1 and R2, the NN takes the sign of parameter w̃ for the forward pass and the parameters wl,
α and β are updated during back-propagation. Since α, β are also trainable parameters, it enables
the network to learn a suitable value that further optimizes the application of the rotation in equation
(16).

3.2 AGGREGATION OF ROTATED BNNS AT THE SERVER

At the end of each training round, clients send their locally learned model weights to the server for
aggregation using the FedAvg method. In addition to the layer weights, each client also transmits
the Rotation matrices of its layers. Although this increases communication overhead, incorporating
the aggregated rotation matrices on the client side in the next round leads to significant performance
gains. While the averaged Rotation matrix is no longer orthogonal, it is corrected during the sub-
sequent three-step rotation optimization. Importantly, the aggregated matrix captures information
from all clients, helping to realign the weight vectors and adjust their norms for the next round.
Other variants of the algorithm considered in our study are: 1) enforcing orthogonality of the ag-
gregated Rotation matrix at the start of each round, before client-side rotation optimization, and
2) performing rotation optimization directly on the server, avoiding the transmission overhead of
Rotation matrices after local training. The outcomes of this ablation analysis are summarized in
Table 2. In the previous sections, we described the techniques applied on the client side within the
proposed FedBNN framework. As outlined in Algorithm 1, rotation optimization is carried out at
the start of each epoch to reduce quantization error before binarization. Additionally, constraining
the deviation of the locally learned weight vector from the global model weights (wserver) substan-
tially enhances performance. Furthermore, the aggregated rotation matrix distributed by the server
provides an effective initialization for the rotation optimization at the beginning of each round.

3.3 RUNTIME COMPUTATION SAVINGS FOR BINARY MODELS

From Shankar et al. (2024), we estimate the number of runtime multiplication and addition opera-
tions in a 2D CNN for comparison. For a convolution between real-valued Wl ∈ Rco×ci×k×k and
input al ∈ Rci×hw

in×hh
in , the output is al+1 ∈ Rco×hw

out×hh
out . The number of multiplications is

ci · k2 · hw
out · hh

out · co, and additions are roughly of the same order. Thus, the total FLOPs for the
lth layer is approximately 2 · ci · k2 · hw

out · hh
out · co. Also, we consider every parameter to be of 32

bits. Hence, to calculate the total memory, we multiply the total parameters by 32. By binarizing
weights and activations to {+1,−1}, convolutions are replaced by efficient XNOR and bit-count
operations. And all the weights will only need 1 bit for storage. Rastegari et al. (2016) states that
using binary neural networks results in a FLOPs reduction of 58× and memory savings of 32×.
Hence, to compare FedBNN with real models, we use this conversion factor in FLOPs and memory
to estimate the computation savings.

4 EXPERIMENTAL EVALUATION

4.1 SETUP

All experiments are implemented using the PyTorch framework and executed on an NVIDIA A100
GPU. We conduct federated training with Nc = 100 clients participating in each experiment. The
training follows the standard federated averaging (FedAvg) protocol for model synchronization. We
use stochastic gradient descent with a learning rate of 0.1 for optimization. The Learning rate is
decreased by a multiplicative factor of 2 from round 200 every 50 rounds. Each federated training
round comprises local training on selected clients for 10 epochs (5 epochs for FMNIST) with a
mini-batch size of 64. 10 clients are randomly sampled for local model updates in each round. The
global training process runs for a total of 500 rounds.

7
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Method Dataset Accuracy FLOPs Memory Binarized Accuracy
(Model) IID Non-

IID 1
Non-
IID 2

(MB) IID Non-
IID 1

Non-
IID 2

FedAvg 92.24 91.44 89.28 2.02× 107 1.5635 53.42 63.68 54.72
FedBAT FMNIST 89.12 87.66 85.56 2.02× 107 1.5635 14.34 16.98 8.0
FedMud (CNN4) 89.60 88.60 86.00 2.02× 107 1.6291 63.2 66.5 66.08
FedBNN 88.24 85.80 82.10 3.48× 105 0.0489 73.42 80.58 67.8
FedAvg 92.10 90.60 89.34 3.00× 107 1.5965 28.01 22.56 16.92
FedBAT SVHN 86.01 80.83 75.78 3.00× 107 1.5965 50.35 26.69 34.71
FedMud (CNN4) 86.31 84.38 83.14 3.00× 107 1.6127 69.92 50.87 51.19
FedBNN 85.40 84.42 81.93 5.19× 105 0.0498 84.09 81.94 79.88
FedAvg 90.86 86.28 70.62 4.40× 108 19.6170 17.2 11.38 12.74
FedBAT CIFAR10 89.38 72.80 63.70 4.40× 108 19.6170 13.62 10.94 10.26
FedMud (ResNet- 88.74 84.22 67.22 4.40× 108 19.6170 15.54 10.78 18.98
FedBNN 10) 86.26 76.30 67.82 1.11× 107 0.6130 84.54 70.16 61.58

Table 1: Performance comparison for Nc = 100. The FLOPs and memory values are calculated
during runtime. Binarized accuracy refers to the model’s performance after the weights and activa-
tions have been binarized.

4.2 DATASETS AND PARTITIONING

To comprehensively evaluate the effectiveness of FedBNN, we conduct experiments on three widely
used federated learning benchmarks, namely, FMNIST, SVHN, and CIFAR10. The client models
are trained on the partitioned training data for all experiments. The testing data is split into two equal
sets: validation and testing. The best model is picked at the server after aggregation based on the
validation set. The final performance of the model is reported on the unseen test set. To thoroughly
assess our approach’s data heterogeneity performance, we evaluate under both IID and non-IID
data distribution scenarios, following federated learning benchmarks McMahan et al. (2017). Under
IID partitioning, each client is assigned an equal quantity of randomly sampled data, resulting in
statistically similar local datasets. The non-IID setting comprises two configurations: Non-IID 1 and
Non-IID 2. In Non-IID 1, samples are distributed among clients according to a Dirichlet distribution
Hsu et al. (2019), with the Dirichlet parameter α modulating the degree of statistical skew, set to 0.3
for all the datasets. Non-IID 2 represents an extreme heterogeneity case, where each client receives
data from only a subset of possible labels, specifically, 10 random labels per client for CIFAR-
100 and 3 random labels per client for the other datasets. These partitioning strategies enable a
systematic examination of model performance as data distributions on clients become increasingly
disparate, closely mirroring realistic federated deployment scenarios.

4.3 SIMULATION RESULTS

To showcase the performance of FedBNN, we employ a CNN with four binarized convolution lay-
ers, one fully connected layer for FMNIST and SVHN, and a ResNet10 architecture for CIFAR10.
Table 1 presents the classification accuracy across FMNIST, SVHN, and CIFAR10 datasets under
IID and Non-IID data splits. FedAvg, having no binarization bottleneck in training or communi-
cation, consistently achieves the highest accuracy, with values such as 92.24% (IID, FMNIST) and
92.10% (IID, SVHN). FedBNN, although slightly lower, remains competitive within 10% of all
real-valued methods. For example, on FMNIST under Non-IID 2, FedBNN attains 82.10% com-
pared to 89.28% of FedAvg, a gap of only 7.18%. On SVHN IID data, FedBNN reaches 85.40%
versus 92.10% for FedAvg, a difference of 6.7%, while under Non-IID 1 it achieves 84.42% against
90.60% (gap of 6.18%), and under Non-IID 2 81.93% compared to 89.34% (gap of 7.41%). On
CIFAR10 IID data, FedBNN reaches 86.26% versus 90.86% for FedAvg, a difference of 4.6%.
Notably, on CIFAR10 with Non-IID 1 data, FedBNN achieves 76.30%, which is 3.5% higher than
FedBAT (72.80%). Also, FedBNN outperforms FedBAT by 4.12% for the CIFAR10 dataset NON-
IID 2 distribution. The proposed method can even outperform certain baselines under challenging
data distributions. These results demonstrate that FedBNN preserves reasonable accuracy despite
aggressive compression and binarization.
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Method (Ablation) Dataset Clean Accuracy
(Model) IID Non-IID 1 Non-IID 2

FedBNN (with orthogonal R1 R2 at client) FMNIST 83.64 84.90 77.60
FedBNN (with server R1 R2 computation) (CNN4) 85.28 82.02 76.30

FedBNN 88.24 85.80 82.10
FedBNN (with orthogonal R1 R2 at client) SVHN 82.01 81.05 79.52
FedBNN (with server R1 R2 computation) (CNN4) 76.28 74.32 72.46

FedBNN 85.40 84.42 81.93
FedBNN (with orthogonal R1 R2 at client) CIFAR10 85.64 74.30 65.40
FedBNN (with server R1 R2 computation) (ResNet10) 85.70 68.34 65.78

FedBNN 86.26 76.30 67.82

Table 2: Ablation Study considering different rotation matrix initializations.

A significant advantage of FedBNN is the drastic reduction in runtime computational and memory
requirements. FLOPs are reduced by nearly two orders of magnitude: for example, in FMNIST,
FedBNN requires only 3.48×105 operations compared to 2.02×107 for FedAvg, a∼ 58× reduction.
Similarly, in CIFAR10, FedBNN reduces FLOPs from 4.40× 108 to 1.11× 107, offering a ∼ 40×
improvement. Memory usage follows a similar trend, with FedBNN requiring only 0.0489 MB
for FMNIST compared to 1.5635 MB in FedAvg, i.e., saving 32×. Even for the larger ResNet-10
model on CIFAR10, memory is reduced from 19.6 to 0.613 MB, yielding 32× compression. These
savings are particularly impactful for resource-constrained federated clients. In the next section, we
will compare the performance of methods after post-training binarization.

Post-training binarization of real models will also lead to a binary model at the expense of per-
formance. Since FedBNN incorporates binarization into training, despite the strong compression,
FedBNN achieves superior binarized accuracy compared to other baselines. On FMNIST, FedBNN
records 73.42% under IID, outperforming FedAvg (53.42%) and FedBAT (14.34%) by 20% and
59.08% respectively. For SVHN, FedBNN achieves 84.09% (IID), significantly higher than the
28.01% of FedAvg. Similarly, on CIFAR10, FedBNN maintains 84.54% binarized accuracy under
IID, surpassing all baselines by a wide margin. Even in Non-IID 2 settings, FedBNN reaches 67.8%
(FMNIST), 79.88% (SVHN), and 61.58% (CIFAR10), remaining much closer to the full-precision
performance. These results highlight that FedBNN preserves competitive accuracy while drastically
lowering computation and memory requirements, making it well-suited for federated learning with
limited client resources.

Table 2 reports the results of two FedBNN variants against the standard formulation as discussed
in Section 3.2. On FMNIST, the baseline FedBNN achieves 88.24% (IID), outperforming the or-
thogonal variant by 4.6% and the server-side variant by 2.96%. Similar trends hold under Non-IID
settings, where FedBNN surpasses the server-side approach by 3.78% (Non-IID 1) and 5.8% (Non-
IID 2). On SVHN, FedBNN records 85.40% (IID), a clear gain of 3.39% over the orthogonal variant
and 9.12% over the server-side variant. The benefits persist under Non-IID, with margins of 3.37%
(Non-IID 1) and 9.47% (Non-IID 2) over the server-side approach. For CIFAR10, FedBNN again
provides the best performance, reaching 86.26% (IID), 0.62% higher than the orthogonal variant
and 0.56% higher than the server-side variant. The improvements are more pronounced in hetero-
geneous settings, with gains of 2.0% (Non-IID 1) and 2.04% (Non-IID 2) compared to the next
best method. These results confirm that the proposed client-side rotation with adaptive fusion yields
consistent improvements over alternative design choices.

5 CONCLUSION

We proposed FedBNN, a rotation-aware Binary Neural Network framework for federated learning
that achieves accuracies within 10% of real-valued models while reducing runtime FLOPs by up
to 58× and memory by 32×. FedBNN also surpasses baselines such as FedBAT in some Non-IID
cases and delivers superior post-training binarized accuracy, highlighting the benefits of including
binarization during training. FedBNN strikes a strong balance between accuracy and efficiency,
making it well-suited for scalable, lightweight federated learning. Future work will explore alterna-
tive aggregation strategies and larger architectures.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Method Dataset Accuracy Runtime Memory Binarized Accuracy
(Model) IID Non-

IID 1
Non-
IID 2

FLOPs (MB) IID Non-
IID 1

Non-
IID 2

FedAvg 64.52 63.42 53.36 1.11×109 45.090 1.16 0.88 0.94
FedBAT CIFAR100 42.14 33.88 26.26 1.11×109 45.090 1.10 0.82 1.10
FedMud (ResNet18) 65.14 47.48 52.20 1.11×109 45.090 46.56 22.54 44.08
FedBNN 58.08 52.46 46.58 2.26×107 1.41 57.68 51.42 46.58
FedAvg Tiny- 55.00 52.62 54.54 4.44×109 45.090 0.52 0.52 0.56
FedBAT ImageNet 27.30 32.12 20.90 4.44×109 45.090 0.60 0.48 0.80
FedMud (ResNet18) 47.20 44.16 46.06 4.44×109 45.090 16.24 12.80 15.60
FedBNN 45.68 43.60 45.40 9.05×107 1.41 46.40 43.68 38.08
FedAvg 80.24 81.12 80.32 9.13×108 45.090 2.08 1.66 1.62
FedBAT FEMNIST 76.44 74.31 78.41 9.13×108 45.090 0.38 2.08 2.40
FedMud (ResNet18) 78.79 80.11 76.68 9.13×108 45.090 25.74 0.76 0.80
FedBNN 79.82 79.97 79.59 1.84×107 1.41 76.52 80.03 79.84

Table 3: Performance comparison for Nc = 100. The FLOPs and memory values are calculated
during runtime. Binarized accuracy refers to the model’s performance after the weights and activa-
tions have been binarized.

Across all three datasets, FedBNN demonstrates a favorable clean-accuracy–efficiency profile even
before binarization. Despite using 49× fewer FLOPs (e.g., from 1.11×109 to 2.26×107 on CIFAR-
100) and 32× less memory (45.09 MB to 1.41 MB), its clean accuracy remains reasonably close
to full-precision baselines: on CIFAR-100 it achieves 58.08% (vs. 64.52% for FedAvg), on Tiny-
ImageNet it reaches 45.68% (vs. 55.00%), and on FEMNIST it maintains 79–80%, nearly matching
FedAvg. Thus, even with drastically reduced computational and memory budgets, FedBNN pre-
serves most of the clean accuracy, particularly on FEMNIST, where the trade-off is minimal.

When comparing methods under equal FLOPs and memory, i.e., after binarization, FedBNN be-
comes substantially stronger than all alternatives. On CIFAR-100, its binarized accuracies of
57.68%, 51.42%, and 46.58% across IID, Non-IID 1, and Non-IID 2 translate to improvements
of approximately +56.5%, +50.6%, and +45.6% over FedAvg, despite the same binary compute
and memory constraints. Competing approaches such as FedBAT and FedMud degrade sharply af-
ter binarization, whereas FedBNN retains high discriminative ability. On Tiny-ImageNet, FedBNN
again yields the strongest binarized accuracies (46.40%, 43.68%, 38.08%), while FedAvg collapses
to below 1% and FedBAT suffers nearly a 60× drop. Even under identical lightweight FLOPs
and memory, FedBNN remains exceptionally robust, offering accuracies that are orders of mag-
nitude higher than those of competing methods. On FEMNIST, FedBNN’s binarized accuracies,
76.52%, 80.03%, and 79.84%, almost fully match its clean performance and drastically outperform
FedAvg, which falls to around 1-2% after binarization. This illustrates that FedBNN imposes almost
no penalty when switching from full-precision to binary representations, in contrast to competing
methods whose performance collapses.

Overall, while FedBNN incurs a modest decrease in clean accuracy relative to FedAvg, its combi-
nation of extremely low FLOPs and memory consumption with vastly superior binarized accuracy
makes it the most deployment-efficient and binarization-robust method across all datasets.

A.2 ABLATION STUDY

The ablation study highlights the importance of the regularization terms λ and β in stabilizing train-
ing and improving generalization under heterogeneous client distributions. On the simpler FM-
NIST dataset with a lightweight CNN4 model, the variant without (λ, β) slightly outperforms the
full FedBNN by +0.08%, +0.78%, and +1.14% across the IID, Non-IID 1, and Non-IID 2 set-
tings, indicating that the regularization effect is less critical for low-complexity data. However,
as dataset difficulty and model depth increase, the benefits of our full FedBNN formulation be-
come more pronounced. On CIFAR10 with ResNet10, FedBNN improves accuracy by +0.06%,
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Method (Ablation) Dataset Model Test Accuracy
IID Non-IID 1 Non-IID 2

FedBNN FMNIST CNN4 88.24 85.80 82.10
FedBNN (w/o λ, β) 88.32 86.58 83.24

FedBNN CIFAR10 ResNet10 86.26 76.30 67.82
FedBNN (w/o λ, β) 86.20 73.38 66.86

FedBNN CIFAR100 ResNet18 58.08 52.46 46.58
FedBNN (w/o λ, β) 55.00 51.80 43.86

FedBNN TinyImageNet ResNet18 45.68 43.60 45.40
FedBNN (w/o λ, β) 43.84 40.40 43.70

FedBNN FEMNIST ResNet18 79.82 79.97 78.34
FedBNN (w/o λ, β) 80.47 81.73 80.22

Table 4: Ablation study for λ, β across a variety of datasets.

+2.92%, and +0.96%, demonstrating stronger robustness especially under Non-IID distributions.
For the CIFAR100 dataset trained on ResNet18, FedBNN still proves to be better, especially by
3.08% and 2.72% in the IID and Non-IID 2 settings, respectively. The gains are even larger for
TinyImageNet with ResNet18, where FedBNN surpasses the ablated variant by +1.84%, +3.20%,
and +1.70%, showing that the proposed regularization is essential for maintaining performance in
high-complexity, high-variance visual tasks. On FEMNIST, although the non-regularized version
achieves slightly higher accuracy, FedBNN delivers a stable performance within 2% of the regular-
ized version. Overall, these results confirm that the (λ, β) terms become increasingly important as
both model capacity and dataset complexity rise, enabling FedBNN to achieve more reliable and
consistent improvements under challenging Non-IID federated settings.

A.3 SENSITIVITY TO VARYING ROUNDS AND EPOCHS

S. No. Dataset Model Rounds Epochs IID Non-IID1 Non-IID2
1

500
3 83.36 79.76 78.64

2 5 82.64 80.91 78.59
3 10 85.40 84.42 81.93
4

1000
3 83.46 80.92 79.96

5 SVHN CNN4 5 82.92 80.32 79.59
6 10 83.27 81.35 79.24
7

1500

3 83.45 82.00 80.49
8 5 82.74 81.10 80.19
9 10 82.87 82.08 79.58

10 15 85.45 84.00 82.34
11

500

3 72.96 58.90 58.10
12 5 81.42 68.52 65.26
13 10 86.26 76.30 67.82
14 15 85.84 78.74 70.08
15

1000

3 79.08 68.38 59.94
16 CIFAR10 ResNet10 5 84.28 74.16 65.70
17 10 87.76 80.46 69.50
18 15 88.48 81.66 72.58
19

1500

3 80.82 71.54 63.70
20 5 85.20 72.48 68.58
21 10 88.44 82.00 70.86
22 15 88.82 82.40 72.20

Table 5: Sensitivity to varying rounds and epochs

Table 5 presents a sensitivity analysis of FedBNN with respect to the number of communication
rounds and local epochs for SVHN and CIFAR10. Across both datasets, a clear trend emerges: in-
creasing local epochs generally improves accuracy, but only when coupled with sufficiently many
rounds. For SVHN with a lightweight CNN4 model, the best IID and Non-IID2 accuracies (85.45%
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and 82.34%) occur at 1500 rounds and 15 local epochs, showing that deeper local optimization
becomes effective when global synchronization is frequent. In contrast, too few epochs (3 or 5)
under higher rounds fail to fully exploit the local learning capacity, while too many epochs under
low-round settings lead to client drift. A similar pattern is observed on CIFAR10 with ResNet10,
although the effect is more pronounced due to the higher dataset and model complexity. Accu-
racy steadily increases with both rounds and epochs, achieving the strongest Non-IID2 performance
(72.58%) at 1000 rounds with 15 epochs, and the best IID/Non-IID1 results (88.82%, 82.40%) at
1500 rounds with 15 epochs. These results demonstrate that FedBNN benefits from a balanced com-
bination of local computation and global aggregation, with higher-capacity models requiring more
rounds and epochs to fully stabilize binarized representations under heterogeneous data. Overall,
the method remains robust across a wide range of settings, but performs best when local learning
and communication frequency are scaled proportionally with task complexity.

A.4 COMPARISON WITH A LESS COMPLEX REAL RESNET10

Method Dataset (Model) Accuracy FLOPs Memory
IID Non-

IID 1
Non-
IID 2

(MB)

FedBNN ResNet10 86.26 76.30 67.82 1.11×107 0.61
FedAvg ResNet10 90.86 86.28 70.62 4.40×108 19.62
FedAvg CIFAR10 ResNet10

(less filters)
83.92 78.10 71.48 1.12×107 0.49

FedAvg ResNet10
(memory
matched)

84.12 79.22 66.54 1.35×107 0.59

FedBNN ResNet18 46.20 43.60 45.40 9.05×107 1.41
FedAvg ResNet18 55.00 52.62 54.54 4.44×108 45.09
FedAvg TinyImageNet ResNet18

(less filters)
41.06 37.72 35.66 8.99×107 0.95

FedAvg ResNet18
(memory
matched)

43.16 40.54 39.24 1.33×108 1.40

Table 6: Performance comparison for Nc = 100. The FLOPs and memory values are calculated
during runtime.

Table 6 summarizes the accuracy, FLOPs, and memory usage for FedBNN and multiple FedAvg
baselines across CIFAR10 and TinyImageNet. For CIFAR10 with ResNet10, FedBNN achieves
strong performance across all data settings, reaching 86.26% accuracy in the IID case while main-
taining robustness under Non-IID scenarios. Although full-precision FedAvg with ResNet10 reports
slightly higher accuracy, it requires nearly 40× more FLOPs and over 30× more memory. To en-
sure a fair comparison, we also evaluate reduced-width ResNet10 variants of FedAvg matched to
FedBNN’s FLOP and memory budgets. These models perform significantly worse: the FLOP-
matched variant drops to 83.92% (IID) and the memory-matched variant to 84.12%, with even
larger degradations under Non-IID conditions. This clear gap indicates that FedBNN’s advantage
is not simply due to operating at a lower capacity, but rather from its principled binarization and
rotation-aware design.

A similar trend appears in the TinyImageNet experiments using ResNet18. FedBNN attains 46.20%
accuracy in the IID setting and remains stable under Non-IID partitions, while operating with nearly
50× fewer FLOPs and over 30× less memory compared to full-precision FedAvg. When FedAvg is
constrained to comparable resource budgets using reduced-width ResNet18 models, performance
drops sharply to 41.06% (IID) and deteriorates further under Non-IID settings. The memory-
matched baseline similarly lags behind FedBNN. These results show that even on a substantially
more challenging dataset and with deeper models, FedBNN preserves strong accuracy while offering
dramatic computational savings, outperforming real-valued baselines that operate under equivalent
resource constraints.
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