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ABSTRACT

Diffusion models have emerged as the de facto choice for generating high-quality
visual signals across various domains. However, training a single model to predict
noise across various levels poses significant challenges, necessitating numerous
iterations and incurring significant computational costs. Various approaches, such
as loss weighting strategy design and architectural refinements, have been intro-
duced to expedite convergence and improve model performance. In this study, we
propose a novel approach to design the noise schedule for enhancing the training
of diffusion models. Our key insight is that the importance sampling of the log-
arithm of the Signal-to-Noise ratio (log SNR), theoretically equivalent to a modi-
fied noise schedule, is particularly beneficial for training efficiency when increas-
ing the sample frequency around log SNR = 0. This strategic sampling allows
the model to focus on the critical transition point between signal dominance and
noise dominance, potentially leading to more robust and accurate predictions. We
empirically demonstrate the superiority of our noise schedule over the standard
cosine schedule. Furthermore, we highlight the advantages of our noise schedule
design on the ImageNet benchmark, showing that the designed schedule consis-
tently benefits different prediction targets. Our findings contribute to the ongoing
efforts to optimize diffusion models, potentially paving the way for more efficient
and effective training paradigms in the field of generative Al

1 INTRODUCTION

Diffusion models have emerged as a pivotal technique for generating high-quality visual signals
across diverse domains, including image synthesis (Ramesh et al., 2022} [Saharia et al., 2022; |Rom-
bach et al., [2022)) , video generation (Ho et al.l |2022; |Singer et al., [2023} Brooks et al., 2024), and
even 3D object generation (Wang et al., 2022} Nichol et al.|,[2022)). One of the key strengths of diffu-
sion models lies in their ability to approximate complex distributions, where Generative Adversarial
Networks (GANs) may encounter difficulties. Despite the substantial computational resources and
numerous training iterations required for convergence, improving the training efficiency of diffu-
sion models is essential for their application in large-scale scenarios, such as high-resolution image
synthesis and long video generation.

Architectural enhancements offer a promising path to improve both the training speed and perfor-
mance of diffusion models. For instance, the use of Adaptive Layer Normalization (Gu et al.,|2022),
when combined with zero initialization in the Transformer architecture as demonstrated by |Pee-
bles & Xie|(2023), represents such an improvement. MM-DiT (Esser et al., 2024)) further extends
the vanilla DiT model to multi-modality by employing separate sets of weights for vision and text
processing. Similarly, the adoption of U-shaped skip connections within Transformers, as outlined
in previous works (Hoogeboom et al., [2023; [Bao et al., [2022; (Crowson et al.l 2024]), also boosts
efficiency. In a parallel development, Karras et al.| (2024) have contributed to this endeavor by
reengineering the layers of ADM UNet (Dhariwal & Nichol, 2021) to preserve the magnitudes of
activations, weights, and updates, ensuring a more efficient learning process.

Concurrently, various loss weighting designs have been implemented to accelerate the convergence
of training. Previous works, such as eDiff-I (Balaji et al., 2022)) and Ernie-ViLG 2.0 (Feng et al.,
2022), found that the training of diffusion models may encounter conflicts among various noise
intensities and address these training difficulties by employing a Mixture of Experts approach. (Choi
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Figure 1: TIllustration of the probability density functions of different noise schedules.

(2022) prioritize specific noise levels during training to enhance learning of visual concepts.
Min-SNR (Hang et al [2023) reduces weights of noisy tasks, pursuing the Pareto Optimality in
different denoising tasks, validated its effectiveness on multiple datasets and architectures. A softer
version of this approach, aiming to further enhance high-resolution image synthesis within hourglass
diffusion models, was introduced by [Crowson et al| (2024). SD3 (Esser et al.} 2024) empirically
found that it’s crucial to increase the sampling weight of the intermediate noise intensities, which
has demonstrated the effectiveness during training the diffusion models.

In this study, we present a novel method to enhance the training of diffusion models by strategically
redefining the noise schedule, which is a function that determines how much noise is added to the
input data at each timestep ¢ during the training process, controlling the distribution of noise lev-
els that the neural network learns to remove. However, empirical evidence suggests that allocating
more computation costs (FLOPs) to mid-range noise levels (around log SNR = 0) yields superior
performance compared to increasing loss weights during the same period, particularly under con-
strained computational budgets. We experimentally analyze the performance of several different
noise schedules, including Laplace, Cauchy, and the Cosine Shifted/Scaled, which are visualized in
Figure[I] Notably, the Laplace schedule exhibits favorable performance. Based on our findings, we
recommend the adoption of this noise schedule in future research and applications.

Our innovative framework provides a more unified perspective for analyzing noise schedules and
importance sampling in diffusion models. Based on this framework, we propose a straightforward
method for designing noise schedules: by identifying a curve in the p(\) distribution and assigning
higher probabilities to intermediate noise levels. We demonstrate the effectiveness of this approach
through comprehensive experiments using the ImageNet benchmark, with a consistent training bud-
get of 500K iterations (about 100 epochs). Evaluation using the Fréchet Inception Distance (FID)
metric reveals that noise schedules with a concentrated probability density around log SNR = 0
consistently outperform alternative schedules, as evidenced at both 256 x 256 and 512 x 512 reso-
lutions with different prediction target. Our findings significantly contribute to the advancement of
efficient training techniques for diffusion models, offering valuable insights for optimizing model
performance within constrained computational resources.

2 METHOD

2.1 PRELIMINARIES

Diffusion models (Ho et al,2020; [Yang et al} 2021) learn to generate data by iteratively reversing
the diffusion process. We denote the distribution of data points as X ~ pga(x). The diffusion
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process systematically introduces noise to the data in a progressive manner. In a continuous setting,
the noisy data at timestep ¢ is defined as follows:

x; = ayX + o€, where €~ N(0,1), (1)

where a; and oy are the coefficients of the adding noise process, essentially representing the noise
schedule. For the commonly used prediction target velocity: v; = o€ — oyx (Salimans & Hol
2022)), the diffusion model vy is trained through the Mean Squared Error (MSE) loss:

L(8) = Exroppua (0 Etmp() [w(t)||[Vo(oux + ov€,t,¢) — vi 3], ()

where w(t) is the loss weight, ¢ denotes the condition information. In the context of class-
conditional generation tasks, c represents the class label. Common practices sample ¢ from the uni-

2
Qy

form distribution /[0, 1]. Kingma et al.|(2021)) introduced the Signal-to-Noise ratio as SNR(¢) = >

to measure the noise level of different states. Notably, SNR(¢) monotonically decreases with increas-
ing t. Some works represent the loss weight from the perspective of SNR (Salimans & Ho, 2022;
Hang et al.| 2023} |Crowson et al., 2024). To simplify, we denote A = log SNR to indicate the noise
intensities. In the Variance Preserving (VP) setting, the coefficients in Equation [I]can be calculated

2 _ _exp(A) 2 _ 1
by oy = exp(A)+1° 0t = exp(A)+1°

2.2 IMPROVED NOISE SCHEDULE DESIGN

Given that the timestep ¢ is a random variable sampled from uniform distribution, the noise sched-
ule implicitly defines the distribution of importance sampling on various noise levels (Bishop &
Nasrabadi, [2006). The sampling probability of noise intensity A is:

dt
A)=pt)|=—]. 3
p(N) = p(t) | 35 3)
Considering that ¢ satisfies uniform distribution, and X is monotonically decreasing with ¢, we have:
dt
A)=——. 4
) =-33 )

We take cosine noise schedule (Nichol & Dhariwal, 2021) as an example, where a; = cos ( %t),

o, = sin (%t). Then we can deduce that A = —2log tan(wt/2) and t = 2/ arctane~*/2. Thus
the distribution of A is: p(A) = —dt/d\ = sech(\/2)/2x. This derivation illustrates the process of
obtaining p(A) from a noise schedule A(¢). On the other hand, we can derive the noise schedule from
the sampling probability of different noise intensities p(\). By integrating Equation 4] we have:

tl/ApQMAP@L 5)

A=P7 Y1), (6)

where P()) represents the cumulative distribution function of A. Thus we can obtain the noise
schedule \ by applying the inverse function P~!. In conclusion, during the training process, the
importance sampling of varying noise intensities essentially equates to the modification of the noise
schedules. Using the Laplace distribution as an example, we can derive the cumulative distribu-

tion function P(A) = 1 — [ & exp (—‘*%) dA = L (14 sgn(A — w)(1 — exp(—|A — pl/b))).
Subsequently, we can obtain the inverse function to express the noise schedule in terms of A:
A= p—bsgn(0.5 —t) In(1 — 2|t — 0.5]). Here, sgn(-) denotes the signum function, which equals 1
for positive inputs, —1 for negative inputs. The pseudo-code for implementing the Laplace schedule
in the training of diffusion models is presented in the Appendix.

2.3  UNIFIED FORMULATION FOR DIFFUSION TRAINING

VDM++ (Kingma & Gaol |[2023)) proposes a unified formulation that encompasses recent prominent
frameworks and loss weighting strategies for training diffusion models, as detailed below:

1 w(A) |,
['w(g) = iEwa,GNN(O,I),)\Np()\) p((/\)) ||€9(X)\; >‘) - eHg ) (N
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Noise Schedule p(\) At)

Cosine sech (A\/2) /2m  2logcot (%)

Laplace e IA;b”‘/Qb u— bsgn(0.5 — t) log(1 — 2]t — 0.5|)
Cauchy lm u—l—vtan (% 1—2t )

Cosine Shifted  5-sech (%) p+ 2log (cot (%))

Cosine Scaled 5-sech (%) % log (cot (%t))

Table 1: Overview of various Noise Schedules. The table categorizes them into five distinct types:
Cosine, Laplace, Cauchy, and two variations of Cosine schedules. The second column p(\) denotes
the sampling probability at different noise intensities A\. The last column A(¢) indicates how to
sample noise intensities for training. We derived their relationship in Equation ] and Equation [6]

where D signifies the training dataset, noise € is drawn from a standard Gaussian distribution, and
p(A) is the distribution of noise intensities. This formulation provides a flexible framework that can
accommodate various diffusion training strategies. Different predicting targets, such as xy and v,
can also be re-parameterized to e-prediction. w(\) denotes the loss weighting strategy. Although
adjusting w(\) is theoretically equivalent to altering p(\). In practical training, directly modifying
p(A) to concentrate computational resources on training specific noise levels is more effective than
enlarging the loss weight on specific noise levels. Given these insights, our research focuses on
how to design an optimal p(\) that can effectively allocate computational resources across different
noise levels. By carefully crafting the distribution of noise intensities, we aim to improve the overall
training process and the quality of the resulting diffusion models.

2.4 PRACTICAL SETTINGS

Stable Diffusion 3 (Esser et al., [2024)), EDM (Karras et al., [2022)), and Min-SNR (Hang et al.| 2023},
Crowson et al.,|2024) find that the denoising tasks with medium noise intensity is most critical to
the overall performance of diffusion models. Therefore, we increase the probability of p(\) when A
is of moderate size, and obtain a new noise schedule according to Section

Specifically, we investigate four novel noise strategies, named Cosine Shifted, Cosine Scaled,
Cauchy, and Laplace respectively. The detailed setting are listed in Table [} Cosine Shifted use
the hyperparameter p to explore where the maximum probability should be used. Cosine Scaled
explores how much the noise probability should be increased under the use of Cosine strategy to
achieve better results. The Cauchy distribution, provides another form of function that can adjust
both amplitude and offset simultaneously. The Laplace distribution is characterized by its mean p
and scale b, controls both the magnitude of the probability and the degree of concentration of the
distribution. These strategies contain several hyperparameters, which we will explore in Section[3.5]
Unless otherwise stated, we report the best hyperparameter results.

By re-allocating the computation resources at different noise intensities, we can train the complete
denoising process. During sampling process, we adopted the same inference strategy as the cosine

schedule to ensure a fair comparison. Specifically, first we sample {tq,t1,...,ts} from uniform
2 2

distribution ¢[0, 1], then get the corresponding SNRs from Cosine schedule: {% a%, . aés }.

’ o ’ of

According to Equation [6] we get the corresponding {¢{,t},...,t.} by inverting these SNR values
through the respective noise schedules. Finally, we use DDIM (Song et al.| [2021)) to sample with
these new calculated {¢'}. It is important to note that, from the perspective of the noise schedule,
how to allocate the computation resource during inference is also worth reconsideration. We will
not explore it in this paper and leave this as future work.
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Method w(N) p(A)

Cosine e N2 sech(\/2)
Min-SNR e M2 . min{1,ye~*} sech(\/2)
Soft-Min-SNR e M2 y/(eM 4+ ) sech(\/2)

FM-OT (1 + e *)sech?(\/4) sech’(\/4)/8

EDM (14e7)(0.52 + e N (X;2.4,2.4%) (052 + e MN(A;2.4,2.42)

Table 2: Comparison of different methods and related loss weighting strategies. The w(\) is intro-
duced in Equation 7| The original p()\) for Soft-Min-SNR (Crowson et al., 2024) was developed
within the EDM’s denoiser framework. In this study, we align it with the cosine schedule to ensure
a fair comparison.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Dataset. We conduct experiments on ImageNet (Deng et al., [2009) with 256 x 256 and 512 x 512
resolution. For each image, we follow the preprocessing in [Rombach et al.[ (2022) to center crop
and encode images to latents. The resulting compressed latents have dimensions of 32 x 32 x 4 for
2562 images and 64 x 64 x 4 for 5122 images, effectively reducing the spatial dimensions while
preserving essential visual information.

Network Architecture. We adopt DiT-B from [Peebles & Xie| (2023) as our backbone. We replace
the last AdaLLN Linear layer with vanilla linear. Others are kept the same as the original implemen-
tation. The patch size is set to 2 and the projected sequence length of 32 x 32 x 4 is 32—2 . % = 256.
The class condition is injected through the adaptive layernorm. In this study, our primary objective
is to demonstrate the effectiveness of our proposed noise schedule compared to existing schedules
under a fixed training budget, rather than to achieve state-of-the-art results. Consequently, we do not

apply our method to extra-large (XL) scale models.

Training Settings. We adopt the Adam optimizer (Kingma & Bal [2014) with constant learning rate
1 x 10~%. We set the batch size to 256 following Peebles & Xie|(2023) and |Gao et al.|(2023). Each
model is trained for 500K iterations (about 100 epochs) if not specified. Our implementation is
primarily based on OpenDiT (Zhao et al.l|2024) and experiments are mainly conducted on 8 x 16G
V100 GPUs. Different from the default discrete diffusion setting with linear noise schedule in the
code base, we implement the diffusion process in a continuous way. Specifically, we sample ¢ from
uniform distribution /[0, 1].

Baselines and Metrics. We compare our proposed noise schedule with several baseline settings in
Table[2] For each setting, we sample images using DDIM (Song et al.| 2021)) with 50 steps. Despite
the noise strategy for different settings may be different, we ensure they share the same A = log SNR
at each sampling step. This approach is adopted to exclusively investigate the impact of the noise
strategy during the training phase. Moreover, we report results with different classifier-free guidance
scales(Ho & Salimans| |[2021), and the FID is calculated using 10K generated images.

3.2 COMPARISON WITH BASELINE SCHEDULES AND LOSS WEIGHT DESIGNS

This section details the principal findings from our experiments on the ImageNet-256 dataset, focus-
ing on the comparative effectiveness of various noise schedules and loss weightings in the context
of CFG values. Table [3|illustrates these comparisons, showcasing the performance of each method
in terms of the FID-10K score.

The experiments reveal that our proposed noise schedules, particularly Laplace, achieve the most
notable improvements over the traditional cosine schedule, as indicated by the bolded best scores
and the blue numbers representing the reductions compared to baseline’s best score of 10.85.

We also provide a comparison with methods that adjust the loss weight, including Min-SNR and Soft-
Min-SNR. Unless otherwise specified, the hyperparameter « for both loss weighting schemes is set
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Figure 2: Comparison between adjusting the noise schedule, adjusting the loss weights and baseline
setting. The Laplace noise schedule yields the best results and the fastest convergence speed.

to 5. We find that although these methods can achieve better results than the baseline, they are still
not as effective as our method of modifying the noise schedule. This indicates that deciding where
to allocate more computational resources is more efficient than adjusting the loss weight. Compared
with other noise schedules like EDM (Karras et al.,|2022) and Flow (Lipman et al.}[2022)), we found
that no matter which CFG value, our results significantly surpass theirs under the same training
iterations.

Method CFG=1.5 CFG=2.0 CFG=3.0
Cosine (Nichol & Dhariwall, [2021)) 17.79 10.85 11.06
EDM (Karras et al.| |2022) 26.11 15.09 11.56
FM-OT (Lipman et al., [2022) 24.49 14.66 11.98
Min-SNR (Hang et al.,2023) 16.06 9.70 10.43
Soft-Min-SNR (Crowson et al., [2024) 14.89 9.07 10.66
Cosine Shifted (Hoogeboom et al[2023) 19.34 11.67 11.13
Cosine Scaled 12.74 8.04 11.02
Cauchy 12.91 8.14 11.02
Laplace 16.69 9.04 7.96 (-2.89)

Table 3: Comparison of various noise schedules and loss weightings on ImageNet-256, showing
the performance (in terms of FID-10K) of different methods under different CFG values. The best
results highlighted in bold and the blue numbers represent the improvement when compared with
the baseline FID 10.85. The line in gray is our suggested noise schedule.

Furthermore, we investigate the convergence speed of these method, and the results are shown in
Figure 2] It can be seen that adjusting the noise schedule converges faster than adjusting the loss
weight. Additionally, we also notice that the optimal training method may vary when using different
CFG values for inference, but adjusting the noise schedule generally yields better results.

3.3 ROBUSTNESS ON DIFFERENT PREDICTING TARGETS

We evaluate the effectiveness of our designed noise schedule across three commonly adopted pre-
diction targets: €, Xg, and v. The results are shown in Table El

We observed that regardless of the prediction target, our proposed Laplace strategy significantly out-
performs the Cosine strategy. It’s noteworthy that as the Laplace strategy focuses the computation
on medium noise levels during training, the extensive noise levels are less trained, which could po-
tentially affect the overall performance. Therefore, we have slightly modified the inference strategy
of DDIM to start sampling from ¢,,x = 0.99.
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Predict Target Noise Schedule 100K 200k 300k 400k 500k

X0 Cosine 3520 17.60 1337 11.84 11.16
Laplace (Ours) 21.78 10.86 9.44 873 848
v Cosine 25770 14.01 11.78 11.26 11.06
Laplace (Ours) 18.03  9.37 8.31 8.07 7.96
€ Cosine 28.63 1580 1249 11.14 1046

Laplace (Ours) 27.98 1392 11.01 10.00 9.53

Table 4: Effectiveness evaluated using FID-10K score on different predicting targets: xg, €, and
v. The proposed Laplace schedule performs better than the baseline Cosine schedule along with
training iterations.

3.4 ROBUSTNESS ON HIGH RESOLUTION IMAGES

To explore the robustness of the adjusted noise schedule to different resolutions, we also designed
experiments on Imagenet-512. As pointed out by |Chen|(2023), the adding noise strategy will cause
more severe signal leakage as the resolution increases. Therefore, we need to adjust the hyperpa-
rameters of the noise schedule according to the resolution.

Specifically, the baseline Cosine schedule achieves the best performance when the CFG value equals
to 3. So we choose this CFG value for inference. Through systematic experimentation, we explored
the appropriate values for the Laplace schedule’s parameter b, testing within the range {0.5, 0.75,
1.0}, and determined that b = 0.75 was the most effective, resulting in an FID score of 9.09. This
indicates that despite the need for hyperparameter tuning, adjusting the noise schedule can still stably
bring performance improvements.

Noise Schedule Cosine Laplace
FID-10K 11.91  9.09 (-2.82)

Table 5: FID-10K results on ImageNet-512. All models are trained for 500K iterations.

3.5 ABLATION STUDY

We conduct an ablation study to analyze the impact of hyperparameters on various distributions of
p(A), which are enumerated below.

Laplace distribution, known for its simplicity and exponential decay from the center, is straight-
forward to implement. We leverage its symmetric nature and adjust the scale parameter to center
the peak at the middle timestep. We conduct experiments with different Laplace distribution scales
b € {0.25,0.5,1.0,2.0,3.0}. The results are shown in Figure 3| The baseline with standard cosine
schedule achieves FID score of 17.79 with CFG=1.5, 10.85 with CFG=2.0, and 11.06 with CFG=3.0
after 500K iterations. We can see that the model with Laplace distribution scale b = 0.5 achieves
the best performance 7.96 with CFG=3.0, which is relatively 26.6% better than the baseline.

Cauchy distribution is another heavy-tailed distribution that can be used for noise schedule design.
The distribution is not symmetric when the location parameter is not 0. We conduct experiments
with different Cauchy distribution parameters and the results are shown in Table[6] Cauchy(0, 0.5)
means %W with 4 = 0,7 = 0.5. We can see that the model with © = 0 achieve better
performance than the other two settings when fixing v to 1. It means that the model with more
probability mass around A = 0 performs better than others biased to negative or positive directions.

Cosine Shifted (Hoogeboom et al.,[2023) is the shifted version of the standard cosine schedule. We
evaluate the schedules with both positive and negative p values to comprehensively assess its impact
on model performance. Shifted with ;1 = 1 achieves FID-10k score {19.34,11.67,11.13} with
CFG {1.5,2.0, 3.0}. Results with shifted value p = —1 are {19.30, 11.48,11.28}. Comparatively,
both scenarios demonstrate inferior performance relative to the baseline cosine schedule (u = 0).
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Figure 3: FID-10K results on ImageNet-256 with different Laplace distribution scales b in
{0.25,0.5,1.0,2.0,3.0}. The location parameter p is fixed to 0. Baseline denotes standard co-
sine schedule.

Cauchy(0, 0.5) Cauchy(0, 1) Cauchy(-1,1) Cauchy(l, 1)

CFG=1.5 12.91 14.32 18.12 16.60
CFG=2.0 8.14 8.93 10.38 10.19
CFG=3.0 11.02 11.26 10.81 10.94

Table 6: FID-10k results on ImageNet-256 with different Cauchy distribution parameters.

Additionally, by examining the data presented in Table [6] we find concentrated on A = 0 can best
improve the results.

Cosine Scaled is also a modification of Cosine schedule. When s is equal to 1, it becomes the
standard Cosine version. s > 1 means sampling more heavily around A = 0 while s < 1 means
sampling more uniformly of all A. We report related results in Table [/l Our experimental results
reveal a clear trend: larger values of s(s > 1) consistently outperform the baseline, highlighting
the benefits of focused sampling near A = 0. However, it’s crucial to note that s should not be
excessively large and must remain within a valid range to maintain stable training dynamics. For
example, decreasing 1/s from 0.5 to 0.25 hurts the performance and cause the FID score to drop.
Striking the right balance is key to optimizing performance. In our experiments, a model trained
with s = 2 achieved a remarkable score of 8.04, representing a substantial 25.9% improvement
over the baseline.

The experiments with various noise schedules, including Laplace, Cauchy, Cosine Shifted, and Co-
sine Scaled, reveal a shared phenomenon: models perform better when the noise distribution or
schedule is concentrated around X\ = 0. For the Laplace distribution, a scale of b = 0.5 yielded
the best performance, outperforming the baseline by 26.6%. In the case of the Cauchy distribution,
models with a location parameter . = 0 performed better than those with y values biased towards
negative or positive directions. The Cosine Shifted schedule showed inferior performance when
shifted away from p = 0, while the Cosine Scaled schedule demonstrated that larger values of s
(sampling more heavily around A = 0) consistently outperformed the baseline, with an optimal im-
provement of 25.9% at s = 2. This consistent trend suggests that focusing the noise distribution
or schedule near A = 0 is beneficial for model performance. While these different schedules take
various mathematical forms, they all achieve similar optimal performance when given equivalent
training budgets. The specific mathematical formulation is less crucial than the underlying design
philosophy: increasing the sampling probability of intermediate noise levels. This principle provides
a simple yet effective guideline for designing noise schedules.
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1/s 1.3 1.1 0.5 0.25

CFG=1.5 39.74 22.60 12774 15.83
CFG=2.0 2338 1298 8.04 8.64
CFG=3.0 1394 11.16 11.02 8.26

Table 7: FID-10k results on ImageNet-256 with different scales of Cosine Scaled distribution.

4 RELATED WORKS

EFFICIENT DIFFUSION TRAINING

Generally speaking, the diffusion model uses a network with shared parameters to denoise different
noise intensities. However, the different noise levels may introduce conflicts during training, which
makes the convergence slow. P2 (Choi et al., 2022) improves image generation performance by
prioritizing the learning of perceptually rich visual concepts during training through a redesigned
weighting scheme. Min-SNR (Hang et al., |2023) seeks the Pareto optimal direction for different
tasks, achieves better convergence on different predicting targets. HDiT (Crowson et al.l [2024)
propose a soft version of Min-SNR to further improve the efficiency on high resolution image syn-
thesis. Stable Diffusion 3 (Esser et al.,|2024) puts more sampling weight on the middle timesteps by
multiplying the distribution of logit normal distribution.

On the other hand, architecture modification is also explored to improve diffusion training.
DiT (Peebles & Xie, [2023)) proposes adaptive Layer Normalization with zero initialization to im-
prove the training of Transformer architectures. Building upon this design, MM-DiT (Esser et al.,
2024])) extends the approach to a multi-modal framework (text to image) by incorporating separate
sets of weights for each modality. HDiT (Crowson et al.l 2024) uses a hierarchical transformer
structure for efficient, linear-scaling, high-resolution image generation. A more robust ADM UNet
with better training dynamics is proposed in EDM2 (Karras et al., |2024) by preserving activation,
weight, and update magnitudes. In this work, we directly adopt the design from DiT (Peebles &
Xiel [2023)) and focus on investigating the importance sampling schedule in diffusion models.

NOISE SCHEDULE DESIGN FOR DIFFUSION MODELS

The design of the noise schedule plays a critical role in training diffusion models. In DDPM, |[Ho
et al.[ (2020) propose linear schedule for the noise level, which was later adopted by Stable Dif-
fusion (Rombach et al., [2022) version 1.5 and 2.0. However, the linear noise schedule introduces
signal leakage at the highest noise step (Lin et al.l 2024} |Tang et al.l [2023)), hindering performance
when sampling starts from a Gaussian distribution. Improved DDPM (Nichol & Dhariwall, [2021])
introduces a cosine schedule aimed at bringing the sample with the highest noise level closer to
pure Gaussian noise. EDM (Karras et al.l [2022) proposes a new continuous framework and make
the logarithm of noise intensity sampled from a Gaussian distribution. Flow matching with optimal
transport (Lipman et al.l 2022} |Liu et al., |2022)) linearly interpolates the noise and data point as the
input of flow-based models. |Chen|(2023) underscored the need for adapting the noise schedule
according to the image resolution. [Hoogeboom et al. (2023)) found that cosine schedule exhibits
superior performance for images of 32 x 32 and 64 x 64 resolutions and propose to shift the cosine
schedule to train on images with higher resolutions.

5 CONCLUSION

In this paper, we present a novel method for enhancing the training of diffusion models by strate-
gically redefining the noise schedule. Our theoretical analysis demonstrates that this approach is
equivalent to performing importance sampling on the noise. Empirical results show that our pro-
posed Laplace noise schedule, which focuses computational resources on mid-range noise levels,
yields superior performance compared to adjusting loss weights under constrained computational
budgets. This study not only contributes significantly to the development of efficient training tech-
niques for diffusion models but also offers promising potential for future large-scale applications.
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A APPENDIX

A.1 DETAILED IMPLEMENTATION FOR NOISE SCHEDULE

We provide a simple PyTorch implementation for the Laplace noise schedule and its application in
training. This example can be adapted to other noise schedules, such as the Cauchy distribution,
by replacing the laplace_noise_schedule function. The model accepts noisy samples x;,
timestep ¢, and an optional condition tensor c as inputs. This implementation supports prediction of

{x0, Vv, €}.

import torch

def laplace_noise_schedule (mu=0.0, b=0.5) :

efe t able 1

t: mu - b * torch.sign(0.5 — t) * \
torch.log(l - 2 % torch.abs(0.5 - t))
snr_func = lambda t: torch.exp (lmb(t))
alpha_func = lambda t: torch.sqrt (snr_func(t) / (1 + snr_func(t)))
sigma_func = lambda t: torch.sqgrt(l / (1 + snr_func(t)))

lmb = lambda

return alpha_func, sigma_func

def training_losses (model, x, timestep, condition, noise=None,
predict_target="v", mu=0.0, b=0.5):

if noise is None:
noise = torch.randn_like (x)

alpha_func, sigma_func = laplace_noise_schedule (mu, b)

alphas = alpha_func (timestep)

sigmas = sigma_func (timestep)

x_t = alphas.view(-1, 1, 1, 1) % x + sigmas.view(-1, 1, 1, 1) * noise
v_t = alphas.view(-1, 1, 1, 1) * noise - sigmas.view(-1, 1, 1, 1) * x

model_output = model (x_t, timestep, condition)
if predict_target == "v"
loss = (v_t - model_output) *x 2
elif predict_target == "x0":
loss = (x — model_output) *x 2
else: # predict_target == "noise":
loss = (noise - model_output) xx 2

return loss.mean ()

A.2 DETAILS FOR PROPOSED LAPLACE AND CAUCHY DESIGN

For a Laplace distribution with location parameter ; and scale parameter b, the probability density
function (PDF) is given by:

1 A —
PN = o exp (_'b“') (®)

The cumulative distribution function (CDF) can be derived as follows:
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1t/;p(x)d1’
([;;fm(_m;M>dx
% (1 + sgn(A — ) (1 — €xp (_M_IJM>>)

To obtain A as a function of ¢, we solve the inverse function:
A= p—bsgn(0.5 —t)In(1 — 2|t — 0.5])

For a Cauchy distribution with location parameter ;. and scale parameter +y, the PDF is given by:

A—\2
FOm,7) = % [1 u (7“> ] ©)

The corresponding CDF is:

1 1 —
F(\p,y) = 3 + - arctan <M> (10)

2

To derive A(t), we proceed as follows:

1—t=F(\pu") (11

1 1 A—
1—t= -+ —arctan <N> (12)

2 ¥
=1 L ctan (W) (3)

2 7 ol

Solving for )\, we obtain:
0

A(t) = pu + v tan (5(1 —2t)) (14)

A.3 COMBINATION BETWEEN NOISE SCHEDULE AND TIMESTEP IMPORTANCE SAMPLING

We observe that incorporating importance sampling of timesteps into the cosine schedule bears
similarities to the Laplace schedule. Typically, the distribution of timestep ¢ is uniform /[0, 1].
To increase the sampling frequency of middle-level timesteps, we propose modifying the sampling
distribution to a simple polynomial function:

N[Ot t' <
p(t)_{C~(1—t’)n7 t/Z

where C' = (n 4 1)2" is the normalization factor ensuring that the cumulative distribution function
(CDF) equals 1 att = 1.

==

5)

27

To sample from this distribution, we first sample ¢ uniformly from (0, 1) and then map it using the
following function:

(16)

~
=
I
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=
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We incorporate the polynomial sampling of ¢ into the cosine schedule A = —2logtan %t, whose
inverse function is t = 2 arctan exp (—3). Let us first consider the situation where ¢ < 1:
1) 2 A
— t7# = = arctan exp | —= (17
2 ™ 2
9 A n+1
t=2" ( arctan exp (—)> (18)
s 2

We then derive the expression with respect to dA:

A A" 1 1
a = 2 <7‘r) (TL + 1) <arctanexp (2)> HTP(—A)S eXp(f)\/2) (19)

B 4n n A\ exp(— % A)
p()\) = (n + 1)m arctan exXp <_2) HTP(—)\) (20)
21
Considering symmetry, we obtain the final distribution with respect to A as follows:
_ 4" n AL exp(=3A))
p()\) = (n + ].)W arctan exp <_2) m (22)

We visualize the schedule discussed above and compare it with Laplace schedule in Figure [d We
can see that b = 1 for Laplace and n = 2 for cosine-ply matches well. We also conduct experiments
on such schedule and present results in Table [§] They perform similar and both better than the
standard cosine schedule.

We visualize the schedules discussed above and compare them with the Laplace schedule in Fig-
ure [ The results demonstrate that Laplace with b = 1 and cosine-ply with n = 2 exhibit a close
correspondence. To evaluate the performance of these schedules, we conducted experiments and
present the results in Table[8] Both the Laplace and cosine-ply schedules show similar performance,
and both outperform the standard cosine schedule.

Iterations | 100,000 200,000 300,000 400,000 500,000
Cosine-ply (n = 2) 28.65 13.77 10.06 8.69 7.98
Laplace (b = 1) 28.89 13.90 10.17 8.85 8.19

Table 8: Performance comparison of cosine-ply (n = 2) and Laplace (x = 1) schedules over
different iteration counts

A.4 FLOW MATCHING WITH LOGIT-NORMAL SAMPLING

In Stable Diffusion 3 (Esser et al.,[2024)) and Movie Gen (Polyak et al.|[2024), logit-normal sampling
is applied to improve the training efficiency of flow models. To better understand this approach, we
present a detailed derivation from the logit-normal distribution to the probability density function of
logSNR .

Let the Logit transformation X = logit(¢) of random variable ¢ follow a normal distribution:
X ~ N (, 02) (23)

Then, the probability density function of ¢ is:

' - 1 _ (logit(t) — p)?
p(t,u,a)—g.t.(l_t).mexp( gt ), te(0,1) (24)
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0.5 —— Cosine: ;ech()\/Q)/(Qﬂ')
A

—— Cosine ply: n- —

qn n _
+r arctan cxp( ) Trexp(—) 0 =

2
By

041 Cosine ply: n - %:—1— arctan” exp (_TI> ICIZ)E;(%J\AA‘\)) n=2
—— Laplace: g5 exp(—|A— p|/b),p=0,b=1
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Figure 4: Visualization of p() for Laplace schedule and cosine schedule with polynomial timestep

sampling.

where logit(t) = log (ﬁ), and p and o are constants.

A =2log <1t_t>

Consider the variable transformation:

Our goal is to find the probability density function p(\) of random variable A.

First, we solve for ¢ in terms of \:

x 11—t
ez = —_—
t
1—t=te?
1=t (1 n e%)
1
t()‘) = X
1+ ez
Next, we calculate the Jacobian determinant |§—f\
1
t()‘) = X
1+e2
a_ ety
A (1+e2)
A

5l s
dA[ 21+ e2)?

Using the variable transformation formula:

p(A) = p(t(A); p, o) - ’:j;

16
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We calculate p(t(A); u, 0):

. t(/\) _ 1+e% _ é
logit(t(A\)) = log (1 — t()\)) = log 3 =5
1+e%
1+e2)2 A+ 3)?
p(t(\); p,0) = ( X ) exp (—( 22)
oge2+/21 20

Multiplying by the Jacobian determinant:

(1+e2) (1 +3)° e
AN)=-————"2"exp| — .
P 0‘6%\/27T P 202

I S (_(/\+2u)2>
2027 P 802

Therefore, the probability density function of \ is:

1 (A + 2,u)2>
A) = exp| ———1], A€ (—0o0,+0 27
] = (=00, +20) @
This shows that A follows a normal distribution with mean —2 and variance 402:
A~ N (—2p,40?) (28)
The mean and variance are:
E[A] = —2u
Var()\) = 40>

To verify normalization, we integrate p(\) over its domain:

+o0 +o0 1 (>\+2,U)2
A)dA = a2 PN
/m p(A) /m 20+/2m eXp( 807 )

A+2
Letz = + Méd/\:%ﬁadz
2v/20
2\/50 oo _ 2
= — e % dz
2021 J_ oo
1
VG

Thus, p(\) satisfies the normalization condition for probability density functions.

We compare the standard cosine scheudle (Nichol & Dhariwall 2021), Flow Matching (Liu et al.|
2022 [Lipman et all [2022), and Flow Matching with Logit-normal sampling 2024
Polyak et al.,[2024). The probability density functions of these schedules are visualized in Figure
Our analysis reveals that Flow Matching with Logit-normal sampling concentrates more probability
mass around A = 0 compared to both the standard Cosine and Flow Matching schedules, resulting
in improved training efficiency (Esser et al.,[2024}; [Polyak et al., [2024).

A.5 IMPORTANCE OF TIME INTERVALS

To investigate the significance of training intervals, we conducted controlled experiments using a
simplified setup. We divided the time range (0, 1) into four equal segments: bin; = (%, 221) i =

0,1,2,3. We first trained a base model M over the complete range (0, 1) for 1M iterations, then
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Probability Density Functions

0.200 —— Flow Matching w/ Logit-Normal 7]

0.175 F —— Flow Matching w/o Logit-Normal ]
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= 0.100F
=Y
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0.000 b
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Figure 5: Comparison of probability density functions for different flow matching approaches. The
plot shows three distributions: Flow Matching with Logit-Normal sampling (blue), Flow Matching
without Logit-Normal sampling (green), and the Cosine schedule (orange).

fine-tuned it separately on each bin for 140k iterations to obtain four specialized checkpoints m;, i =
0,1,2,3.

For evaluation, we designed experiments using both the base model M and fine-tuned checkpoints
m;. To assess the importance of each temporal segment, we selectively employed the corresponding
fine-tuned checkpoint during its specific interval while maintaining the base model for remaining
intervals. For example, when evaluating bing, we used mg within its designated interval and M
elsewhere.

The FID results across these four experimental configurations are presented in Figure[6] Our anal-
ysis reveals that optimizing intermediate timesteps (binl and bin2) yields superior performance,
suggesting the critical importance of these temporal regions in the diffusion process.

Results on ImageNet-256

— Bin0
—— Binl
Bin2
—— Bin3
—— DBaseline
—— All Tuned

{

1
A\

10t

9.19

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Classifier Free Guidance (CFG)

Figure 6: Comparative analysis of interval-specific fine-tuning effects. When sampling within inter-
val (%, %), “Binl” indicates the use of fine-tuned weights m;, while M is used for other intervals.
“Baseline” represents the use of base model M throughout all intervals, and “All Tuned” denotes
the application of interval-specific fine-tuned models within their respective ranges.
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A.6 IMPORTANCE SAMPLING AS LOSS WEIGHT

We investigate the comparative effectiveness of our approach when applied as a noise schedule
versus a loss weighting mechanism. We adopt Equation [22] as our primary noise schedule due to
its foundation in the cosine schedule and demonstrated superior FID performance. To evaluate its
versatility, we reformulate the importance sampling as a loss weighting strategy and compare it
against established weighting schemes, including Min-SNR and Soft-Min-SNR.

Cosine  Cosine-Ply (n=2) Min-SNR  Soft-Min-SNR  Cosine-Ply as weight
FID-10K  10.85 7.98 9.70 9.07 8.88

Table 9: Quantitative comparison of different noise scheduling strategies and loss weighting
schemes. Lower FID scores indicate better performance.

Figure[7]illustrates the loss weight derived from Cosine-Ply (n=2) schedule alongside Min-SNR and
Soft-Min-SNR. We can observe that under the setting of predict target as v, Min-SNR and Soft-Min-
SNR can be seemed as putting more weight on intermediate levels, aligning with our earlier findings
on the importance of middle-level noise densities.

T T

0.0030 —— Min-SNR

—— Soft-Min-SNR
0.0025 N Cosine-Ply(n = 2) |
0.0020 /
0.0015 / \
0.0010 /
0.0005 //
\

0.0000 -
0.0 0.2 0.4 0.6 0.8 1.0

Weight value

Figure 7: Visualization of different loss weight schemes.

A.7 ADDITIONAL VISUAL RESULTS

We present addition visual results in Figure [ to demonstrate the differences in generation quality
between models trained with Cosine and our proposed Laplace schedule. Each case presents two
rows of outputs, where the upper row shows results from the cosine schedule and the lower row
displays results from our Laplace schedule. Each row contains five images corresponding to models
trained for 100k, 200k, 300k, 400k, and 500k iterations, illustrating the progression of generation
quality across different training stages. For each case, the initial noise inputs are identical. As
shown in the results, our method achieves faster convergence in both basic object formation (at
100k iterations) and fine detail refinement, demonstrating superior learning efficiency throughout
the training process.
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Figure 8: Visual comparison of results generated by model trained by cosine schedule and our
proposed Laplace. For each case, the above row is generated by cosine schedule, the below is
generated by Laplace. The 5 images from left to right represents the results generated by the model
trained for 100k, 200k, 300k, 400k, and 500k iterations.
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