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ABSTRACT

As their size increases, Large Languages Models (LLMs) are natural candidates
for network pruning methods: approaches that drop a subset of network weights
while striving to preserve performance. Existing methods, however, require either
retraining, which is rarely affordable for billion-scale LLMs, or solving a weight
reconstruction problem reliant on second-order information, which may also be
computationally expensive. In this paper, we introduce a novel, straightforward yet
effective pruning method, termed Wanda (Pruning by Weights and activations),
designed to induce sparsity in pretrained LLMs. Motivated by the recent observa-
tion of emergent large magnitude features in LLMs, our approach prunes weights
with the smallest magnitudes multiplied by the corresponding input activations,
on a per-output basis. Notably, Wanda requires no retraining or weight update,
and the pruned LLM can be used as is. We conduct a thorough evaluation of our
method Wanda on LLaMA and LLaMA-2 across various language benchmarks.
Wanda significantly outperforms the established baseline of magnitude pruning and
performs competitively against recent method involving intensive weight update.
Code is available at https://github.com/locuslab/wanda.

1 INTRODUCTION

Large language models (Brown et al., 2020; OpenAI, 2023) have recently reshaped the field of NLP
with their remarkable performance across a range of complex language benchmarks (Bommarito &
Katz, 2022; Wei et al., 2022a; Bubeck et al., 2023). However, these models, with their billions of
parameters, usually require significant computational resources. To democratize LLMs, considerable
efforts have been taken to mitigate their high computational cost. Many of the notable advancements
to date have centered on model quantization, a process where parameters are quantized into lower
bit-level representations. The fast pace of LLM quantization research (Dettmers et al., 2022; Frantar
et al., 2023a; Xiao et al., 2023; Ahmadian et al., 2023) has led to substantial resource savings for
these models (Sheng et al., 2023; Lin et al., 2023).

Network pruning (LeCun et al., 1989; Hassibi et al., 1993; Han et al., 2015), on the other hand,
shrinks network sizes by removing specific weights from the model – essentially setting them to
zero. Along with quantization, it is often considered another popular approach for compressing
neural networks. However, it has received relatively little focus in compressing LLMs. This seems
to contradict the trend of model compression in the pre-LLM era, where both approaches have
received large amounts of research effort. A quick review of existing pruning methods reveals a
possible reason: they typically require retraining (Liu et al., 2019; Blalock et al., 2020), training
from random initializations (Zhu & Gupta, 2017; Louizos et al., 2018; Gale et al., 2019) or even
an extensive iterative process (Frankle & Michael, 2019; Renda et al., 2020). The sheer amount of
computational resources required by LLMs limits these methods. A recent LLM pruning approach,
SparseGPT (Frantar & Alistarh, 2023), does not require traditional retraining, but still demands a
computationally intensive weight update process.

The argument concerning the need for retraining and weight update does not fully capture the chal-
lenges of pruning LLMs. One might reasonably expect to obtain a fairly high-performing initialization
point for retraining using existing popular pruning methods. However, a recent study (Frantar &
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Figure 1: Illustration of our proposed method Wanda (Pruning by Weights and activations), compared
with the magnitude pruning approach. Given a weight matrix W and input feature activations X,
we compute the weight importance as the product between the weight magnitude and the norm of
the corrsponding input activations (|W| · ∥X∥2). Weight importance scores are compared on a
per-output basis (within each row in W), rather than globally across the entire matrix.

Alistarh, 2023) finds that magnitude pruning (Han et al., 2015), a well-established pruning approach,
fails dramatically on LLMs even with relatively low levels of sparsity. Considering the past success
of magnitude pruning on smaller networks, this result suggests that LLMs, despite having 100 to
1000 times more parameters, are substantially more difficult to prune directly.

In this work, we address this challenge by introducing a straightforward and effective approach,
termed Wanda (Pruning by Weights and activations). This technique successfully prunes LLMs to
high degrees of sparsity without any need for modifying the remaining weights. We are motivated
by an observation from a recent study (Dettmers et al., 2022), where a small subset of hidden state
features are exceptionally large in magnitude, a property unique to LLMs. We find that augmenting
the standard weight magnitude pruning metric with the input activations, is surprisingly effective as
a measure for evaluating the weight importance. Specifically, we introduce a novel pruning metric,
where each weight is evaluated by the product of its magnitude and the norm of the corresponding
input activations, estimated using a small set of calibration data. Our method uses this metric to
induce sparsity in pretrained LLMs by comparing weights locally within each output of linear layers
and removing lower priority weights. Our approach is computationally efficient, able to be executed
in a single forward pass, and requires minimal memory overhead.

We empirically evaluate Wanda on the widely adopted LLaMA (Touvron et al., 2023a) and LLaMA-
2 (Touvron et al., 2023b) model families. Our results demonstrate Wanda can find efficient sparse
networks from pretrained LLMs, without any retraining or weight update. Our approach Wanda
outperforms the standard magnitude pruning by a large margin and also competes favorably with the
prior best LLM pruning method (Frantar & Alistarh, 2023), while requiring a lower computational
cost. We hope our work serves as a baseline for future work in this area, and encourages further
exploration in understanding sparsity in LLMs.

2 PRELIMINARIES

Magnitude Pruning (Han et al., 2015) is a standard pruning technique to induce sparsity in neural
networks. It removes individual weights based on their magnitudes, where weights with magnitudes
below a certain threshold are removed. In practice, this threshold is typically determined by comparing
weights locally within each layer or globally across the whole network. Despite its simplicity,
magnitude pruning has been used to find extremely sparse networks (Frankle & Michael, 2019) and
now stands out as a strong baseline approach (Blalock et al., 2020) for neural network sparsification.

Emergent Large Magnitude Features have been observed in Transformer-based large language
models. Dettmers et al. (2022) discover that once LLMs reach a certain scale (in practice, around
6B parameters), a small set of hidden state features emerges with significantly larger magnitudes
than the remaining ones. These outlier features exhibit several intriguing characteristics. First, they
have very large magnitudes, about 100 times larger than typical hidden state values. Second, they are
usually sparse and exist in certain feature dimensions. Finally, these outlier features are essential for
the predictive capability of LLMs: zeroing out these features at inference time results in significant
degradation of language modeling performance.
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3 WANDA: PRUNING BY WEIGHTS AND ACTIVATIONS

In this section, we motivate and describe our pruning method, Wanda (Pruning by Weights and
activations), which consists of two simple but essential components. First, we propose a novel
pruning metric that incorporates both weights and input activations into the computation of weight
importance. Second, we compare weights on a per-output basis instead of across the whole layer,
which we find is crucial for pruning LLMs effectively. An overview of Wanda is shown in Figure 1.

A Motivating Example. Consider a neuron with two inputs and corresponding weights: y =
w1x1 +w2x2, where |w1| ≤ |w2|. Now suppose the goal is to select one weight for removal while
incurring less change on the output. The standard approach of magnitude pruning would always
remove weight w1, which may be a good strategy if input features x1 and x2 have similar magnitudes.
However, as recently observed in LLMs (Dettmers et al., 2022), the two input features can differ
significantly in scale. For instance, it is possible that |x1| ≫ |x2|, and as a result, |w1x1| ≫ |w2x2|.
In this case, we should remove weight w2 instead, because this removal clearly exerts a smaller
influence on the neuron output y than removing weight w1.

This motivating example with the simplest linear layer hints at a major limitation of magnitude
pruning: it does not take into account input activations, which could play an equally important role as
weight magnitudes in determining the neuron output. For pruning LLMs, this is especially critical
considering the emergent large magnitude features found within them. Thus, as the first part of our
method, we propose a pruning metric designed explicitly for LLMs to handle such a limitation, while
also maintaining the simplicity of magnitude pruning.

Pruning Metric. Consider a linear layer with weight W of shape (Cout, Cin). For language models,
this linear layer takes in input activations X with a shape of (N × L,Cin), where N and L are
batch and sequence dimensions respectively. For each individual weight, we propose to evaluate its
importance by the product of its magnitude and the corresponding input feature norm. Specifically,
the score for the current weight Wij is defined by:

Sij = |Wij | · ∥Xj∥2 (1)

where | · | represents the absolute value operator, ∥Xj∥2 evaluates the ℓ2 norm of jth features
aggregated across N ×L different tokens, and the final score is computed by the product of these two
scalar values. We find that ℓ2 norm tends to work better than other norm functions (e.g., ℓ1 and ℓ∞)
in measuring activation magnitudes. This is possibly because ℓ2 norm is generally a smoother metric.

This metric is interesting in several aspects. First, when the input channel of the considered weight
has large magnitude features, the weight itself tends to be assigned a larger importance score even if
it has a low magnitude. This tackles the problem we encounter in the motivating example. The effect
can be seen in Figure 1, where weights corresponding to the large magnitude feature are more likely
to be preserved with Wanda. Second, its computation is straightforward. Once we obtain the norm
vector of input feature activations, the weight importance can be calculated using an element-wise
dot product. Last, we find empirically that this metric is robust and can be easily estimated using a
modest number of calibration samples, without access to the original training data.

Comparison Group. Generally, in a pruning method, each weight is first assigned an importance
score, such as the pruning metric we discussed above. These weights are then grouped into comparison
groups where weights within each group are compared against one another. Within each comparison
group, weights with lower importance scores are pruned. Most previous pruning methods default to
comparing weights locally within each layer or globally across the whole network.

While layer-wise and whole-network comparisons have been the popular options, we find that pruning
LLMs could benefit from a more localized grouping. In our method, we compare and remove weights
on a per-output basis (per row in Figure 1), where weight importance scores are compared locally
within each output neuron. Specifically, for a weight Wij that connects input j to output i inside the
linear layer, we define the comparison group for this weight as all weights connecting to output i:

Gij = {Wuv |u = i} (2)

Under this comparison group, for a pre-defined sparsity ratio s%, we eliminate s% of the weights
connected to each output. This practice may seem counter-intuitive, since we are basically pruning
under a stricter sparsity pattern. However, we find that it is consistently better than layer-wise pruning
for LLMs. Notably, this holds true not only for our proposed pruning metric (Equation 1) but also
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the standard magnitude metric. This shows that maintaining a balanced pruning ratio across output
features is important for pruning LLMs effectively.

To see if the superiority of pruning per output over per layer holds true in general, we evaluate on
image classifiers. However, we do not observe similar trend in image classification models, suggesting
that our observations regarding pruning per output might be unique to LLMs. We hope this intriguing
observation encourages practitioners to be more cautious in choosing the comparison group.

Algorithm 1 PyTorch code for Wanda
# W: weight matrix (C_out, C_in);
# X: input matrix (N * L, C_in);
# s: desired sparsity, between 0 and 1;

def prune(W, X, s):
metric = W.abs() * X.norm(p=2, dim=0)

_, sorted_idx = torch.sort(metric, dim=1)
pruned_idx = sorted_idx[:,:int(C_in * s)]
W.scatter_(dim=1, index=pruned_idx, src=0)

return W

Procedure. Wanda can be implemented and
integrated seamlessly within a single forward
pass of the LLM model, where feature norm
statistics ∥Xj∥2 are estimated with a set of
calibration data. We provide the PyTorch
code of our approach in Algorithm 1. Given
a pretrained LLM, we compute our pruning
metric from the initial to the final layers of
the network. After pruning a preceding layer,
the current layer receives the updated input
activations, obtained on the pruned weights of
the previous layer. Then the pruning metrics
are computed. A recent method for pruning
LLMs, SparseGPT (Frantar & Alistarh, 2023), requires a sophisticated weight update procedure in an
iterative pruning process, while Wanda does not induce any additional weight update.
Structured N:M Sparsity. While Wanda so far has been developed for unstructured sparsity, it can be
easily extended to structured N:M sparsity (Mishra et al., 2021). Structured N:M sparsity requires that
at most N out of every M contiguous weights to be non-zero. It can leverage NVIDIA’s sparse tensor
cores to accelerate matrix multiplication in practice. Wanda can be naturally extended to structured
N:M sparsity, where we compare weights using the same metric among every M consecutive weights,
for all weights connected to an output.
Remark. We discuss the connection between Wanda and a few existing works. SparseGPT formalizes
the problem of pruning LLMs by solving a local layer-wise reconstruction problem, where their
pruning metric and weight update procedure is inspired from Optimal Brain Surgeon (OBS) (Hassibi
et al., 1993). The pruning metric in SparseGPT is:

Sij =
[
|W|2/diag

(
(XTX+ λI)−1

)]
ij

(3)

Here XTX + λI in the denominator is the Hessian H for the layer-wise reconstruction problem
and λ is the Hessian dampening factor to avoid the collapse of inverse computation. With careful
inspection, we observe that our metric in Equation 1 is similar to the above when λ is 0 and only the
diagonal elements of the Hessian matrix XTX+ λI are retained. Starting from the pruning metric in
Equation 3, we show the exact reduction steps and corresponding reduction conditions as follows:

Sij
λ=0
=

[
|W|2/diag

(
(XTX)−1

)]
ij

diagonal
=

approx.

[
|W|2/

(
diag(XTX)

)−1]
ij

=
(
|Wij | · ∥Xj∥2

)2
In the last reduction step, the jth diagonal of XTX is ∥Xj∥22, and thus the denominator can be
simplified to (∥Xj∥22)−1. This simplification substantially reduces the required computation of
weight importance, eliminating the need for computing any matrix inverses.

In the 1980s, LeCun et al. (1989) have set up a pioneering framework for neural network pruning
named Optimal Brain Damage (OBD). It uses second-order information without off-diagonal elements
in Hessians for faster approximation. Later, Optimal Brain Surgeon (OBS) develops upon OBD
partly by taking into account the off-diagonal elements. Wanda can be seen as a renaissance of
OBD – it may be viewed as applying a process similar to OBD to each neuron, with local output
reconstruction as the objective function, whereas the original OBD uses the global training objective.
This is analogous to the relationship between SparseGPT and OBS.

A comparison of LLM pruning methods can be found in Table 1. Computing the pruning metric of
Wanda has a reduced time complexity compared to SparseGPT, because it does not involve inverse
computation. Overall, our method Wanda (Pruning by Weights and activations) has several attractive
properties as an approach for pruning LLMs:
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Method Weight Update Calibration Data Pruning Metric Sij Complexity
Magnitude ✗ ✗ |Wij| O(1)

SparseGPT ✓ ✓
[
|W|2/diag

[
(XXT + λI)−1

]]
ij

O(d3hidden)

Wanda ✗ ✓ |Wij| · ∥Xj∥2 O(d2hidden)

Table 1: Comparison of Wanda with existing pruning algorithms on LLMs.

1. It maintains the simplicity of magnitude pruning in the pre-LLM era, requiring no gradient
computation via back-propagation or any second-order Hessian inverses, but is also highly
effective in discovering sparse networks in pretrained LLMs.

2. Wanda can be done with a single forward pass of the LLM. At each layer, the pruned weights
can be decided in one shot without an iterative procedure. In practice, computing the pruning
metric of Wanda can be 300 times faster in pruning LLMs compared with SparseGPT.

3. Unlike SparseGPT, our approach entails no weight update on pruned networks, suggesting
that LLMs have effective sparse sub-networks that are exact, instead of them merely existing
in the neighborhood of the original weights.

4 EXPERIMENTS

Models and Evaluation. We evaluate Wanda on the two most widely adopted LLM model families:
LLaMA 7B/13B/30B/65B (Touvron et al., 2023a) and LLaMA-2 7B/13B/70B (Touvron et al., 2023b)
(LLaMA-2 34B is not released). Results for prior LLM families can be found in Appendix B. We
measure the performance of pruned models on zero-shot tasks and language modeling. For zero-shot
evaluation, we use seven tasks from EleutherAI LM Harness (Gao et al., 2021). Following previous
works on LLM compression (Xiao et al., 2023; Frantar & Alistarh, 2023), we evaluate the perplexity
on the held-out WikiText (Merity et al., 2016) validation set.
Baselines. We compare Wanda with two prior pruning approaches. Magnitude pruning (Han et al.,
2015) is a simple and strong baseline in which weights are discarded based on their magnitudes.
SparseGPT (Frantar & Alistarh, 2023) is a second-order pruning method for LLMs, based on solving
a layer-wise reconstruction problem. In Appendix C, we compare with additional pruning methods.

Both Wanda and SparseGPT require calibration data to estimate input statistics (see Table 1). To
control this variable factor, we use the exact same set of calibration data as SparseGPT, which consists
of 128 sequences with context length size sampled from C4 training set (Raffel et al., 2020). In
Appendix D.1, we provide additional analysis on the number of calibration samples.
Sparsity. For all pruning methods, we focus on pruning the linear layers (skipping the first embedding
layer and the final classification head), which account for around 99% of the total LLM parameters.
We impose a uniform sparsity for all linear layers. We evaluate three types of sparsity: unstructured
sparsity, structured 4:8 and 2:4 sparsities. The magnitude pruning baseline is extended to structured
N:M sparsity in a similar spirit to our method, as described in the previous section.

4.1 ZERO-SHOT TASKS

Comparison with Baselines. In Table 2, we show the mean zero-shot accuracies on 7 zero-shot
tasks of pruned LLaMA and LLaMA-2 models. We refer the reader to Appendix D for task-wise
performance. Across both unstructured and structured sparsities, Wanda outperforms the well-
established magnitude pruning approach by a large margin, while also rivals with the previous best
approach SparseGPT. Given that no fine-tuning takes place, there is a noticeable gap between sparse
pruned LLMs and the original dense LLMs. However, as the model size increases, this accuracy gap
diminishes. Remarkably, unstructured 50% sparse LLaMA-65B and LLaMA-2-70B is able to match
the zero-shot accuracies of their dense counterparts.
Large Sparse vs. Small Dense. It might be of interest to some readers on the comparison between
large sparse LLMs and small dense LLMs with similar parameter counts. For zero-shot performance,
we find the trend differs across the types of sparsity. For unstructured sparsity, large sparse LLMs are
often better than small dense LLMs on zero-shot performance: unstructured 50% sparse LLaMA-
65B (66.67%) outperforms dense LLaMA-30B (65.38%); unstructured 50% sparse LLaMA-2-13B
(60.83%) outperforms dense LLaMA-7B (59.71%). Intriguingly, this gap is much larger for few-shot
tasks (see Appendix D). For structured sparsity, the trend is reversed: without any fine-tuning, large
sparse LLMs have worse zero-shot performance than small dense LLMs in general.
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LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B
Dense - 0% 59.99 62.59 65.38 66.97 59.71 63.03 67.08
Magnitude ✗ 50% 46.94 47.61 53.83 62.74 51.14 52.85 60.93
SparseGPT ✓ 50% 54.94 58.61 63.09 66.30 56.24 60.72 67.28
Wanda ✗ 50% 54.21 59.33 63.60 66.67 56.24 60.83 67.03
Magnitude ✗ 4:8 46.03 50.53 53.53 62.17 50.64 52.81 60.28
SparseGPT ✓ 4:8 52.80 55.99 60.79 64.87 53.80 59.15 65.84
Wanda ✗ 4:8 52.76 56.09 61.00 64.97 52.49 58.75 66.06
Magnitude ✗ 2:4 44.73 48.00 53.16 61.28 45.58 49.89 59.95
SparseGPT ✓ 2:4 50.60 53.22 58.91 62.57 50.94 54.86 63.89
Wanda ✗ 2:4 48.53 52.30 59.21 62.84 48.75 55.03 64.14

Table 2: Mean zero-shot accuracies (%) of pruned LLaMA and LLaMA-2 models. Wanda performs
competitively against prior best method SparseGPT, without introducing any weight update.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B
Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12
Magnitude ✗ 50% 17.29 20.21 7.54 5.90 14.89 6.37 4.98
SparseGPT ✓ 50% 7.22 6.21 5.31 4.57 6.51 5.63 3.98
Wanda ✗ 50% 7.26 6.15 5.24 4.57 6.42 5.56 3.98
Magnitude ✗ 4:8 16.84 13.84 7.62 6.36 16.48 6.76 5.54
SparseGPT ✓ 4:8 8.61 7.40 6.17 5.38 8.12 6.60 4.59
Wanda ✗ 4:8 8.57 7.40 5.97 5.30 7.97 6.55 4.47
Magnitude ✗ 2:4 42.13 18.37 9.10 7.11 54.59 8.33 6.33
SparseGPT ✓ 2:4 11.00 9.11 7.16 6.28 10.17 8.32 5.40
Wanda ✗ 2:4 11.53 9.58 6.90 6.25 11.02 8.27 5.16

Table 3: WikiText perplexity of pruned LLaMA and LLaMA-2 models. Wanda performs competi-
tively against prior best method SparseGPT, without introducing any weight update.

4.2 LANGUAGE MODELING

In Table 3, we report the perplexity of pruned LLaMA and LLaMA-2 models. For robustness analysis
under random sampling of the calibration data, see Appendix D.

Without any weight update, Wanda outperforms the established pruning approach of magnitude
pruning by a large margin. For instance, for LLaMA-7B, Wanda is able to find sparse networks with a
perplexity of 7.26, significantly better than the magnitude pruning baseline 17.29. This result suggests
that exact and effective sparse sub-networks exist for LLMs. For unstructured 50% sparsity, Wanda
performs on par with the prior best approach SparseGPT. We provide results for higher sparsity
levels (60% and 80%) in Appendix D. The comparison between Wanda and SparseGPT is mixed for
structured sparsity. On smaller models (e.g., 7B), SparseGPT outperforms Wanda on 2:4 sparsity.
Wanda is more favorable for larger models, e.g., LLaMA-30B (2:4 and 4:8) and LLaMA-2-70B (2:4).

4.3 SPEEDUP

Pruning Speed. The theoretical computational complexity of Wanda is lower than SparseGPT
(Table 1). Here we compare their empirical pruning speed. Specifically, we measure the accumulated
time for computing the pruning metric at each layer (excluding the forward pass process shared by
both methods) on NVIDIA A6000 GPUs. Results are shown in Table 4. Wanda incurs negligible time
overhead relative to SparseGPT. The fast speed of Wanda is particularly useful when pruning needs
to be performed on a real-time basis, e.g., training sparse models from scratch (Evci et al., 2020) and
finding the optimal sparsity (Jin et al., 2022).
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Inference Speed. We evaluate the inference speedup for structured 2:4 sparsity on NVIDIA A6000
GPUs. Following the evaluation setup of Frantar & Alistarh (2023), we measure the latency of matrix
multiplication in linear layers. We perform simulation analysis using the high-performance GEMM
kernel in NVIDIA CUTLASS library. Results for LLaMA-65B (batch size of 1) can be found in
Table 5. Structured 2:4 sparsity is able to bring notable inference speedup (around 1.6×) for linear
layers in LLMs. For end to end latency, we observe a speedup of 1.24× on LLaMA-7B (251ms as
compared to 312ms). Last, we emphasize that the inference speedup is not unique to our pruning
method but is delivered by the inherent power of sparsity for speeding up computation.

LLaMA

Method 7B 13B 30B 65B
SparseGPT 203.1 339.0 810.3 1353.4
Wanda 0.54 0.91 2.9 5.6

Table 4: Computing the pruning metric of Wanda
can be much faster (seconds) than SparseGPT.

LLaMA Layer Dense 2:4 Speedup
q/k/v/o_proj 3.49 2.14 1.63×
up/gate_proj 9.82 6.10 1.61×
down_proj 9.92 6.45 1.54×

Table 5: Speedup of matrix multiplication (ms)
in LLaMA-65B, for structured 2:4 sparsity.

5 ANALYSIS

We study several aspects of Wanda to better understand its effectiveness in pruning LLMs. We use
the LLaMA-7B model and prune to unstructured 50% sparsity, unless otherwise specified.

Fine-tuning. We study how fine-tuning could recover the performance drop of pruned LLMs, as
observed in the previous section. We investigate two strategies for fine-tuning LLMs: LoRA (Hu
et al., 2021) fine-tuning and full parameter dense fine-tuning. Fine-tuning is conducted on C4 training
dataset and the objective is the pre-training auto-regressive loss. The pruned mask is kept fixed during
fine-tuning. We fine-tune pruned LLaMA-7B with all three types of sparsities: unstructured 50%,
structured 4:8 and 2:4. Table 6 summarizes the results for mean zero-shot accuracies and perplexity
after fine-tuning Wanda pruned LLaMA-7B models. See Appendix D for task-wise performance.

Evaluation Dense Fine-tuning 50% 4:8 2:4

Zero-Shot 59.99
✗ 54.21 52.76 48.53

LoRA 56.53 54.87 54.46
Full 58.15 56.65 56.19

Perplexity 5.68
✗ 7.26 8.57 11.53

LoRA 6.84 7.29 8.24
Full 5.98 6.63 7.02

Table 6: Fine-tuning can mitigate the gap to dense LLM.

LoRA Fine-tuning. We enforce a lim-
ited computational budget (1 GPU and 12
hours). The low rank (r = 8) adapter is ap-
plied on the query and value projection ma-
trices in attention layers. For LLaMA-7B,
LoRA introduces only around 0.06% ad-
ditional parameters, leaving the total spar-
sity level still around 50%. With LoRA
fine-tuning, we are able to restore the per-
formance of pruned LLMs by a non-trivial
amount. One notable instance is that LoRA
fine-tuning improves the zero-shot performance of structured 2:4 sparse LLaMA-7B from 48.53% to
54.46%, outperforming the original unstrucutred 50% sparse LLaMA-7B (54.21%).

Full Parameter Fine-tuning. We conduct full parameter dense fine-tuning. We enforce a limited
computational budget (4 GPU and 3 days). Compared to LoRA fine-tuning, full parameter dense
fine-tuning is able to mitigate the gap between pruned LLMs and dense LLMs even further. For
unstructured 50% sparsity, full parameter fine-tuning could improve pruned LLaMA-7B from 54.21%
to 58.15% in terms of zero-shot accuracy, close to that of dense LLaMA-7B (59.99%).

Pruning Configuration. Wanda differs from previous methods in both the pruning metric and the
comparison group. We conduct ablation experiments to better understand their impact. The three
pruning metrics can be found in Table 1. SparseGPT adopts a local comparison group inside a
layer, where weights connected to 128 consecutive input channels form a group. Wanda groups
weights connected with a single output channel. Therefore, we ablate two blocksize options (128
and 1) and the input/output choice. For simplicity, we use (input/output, blocksize) to denote each
local comparison group, e.g., (input, 1). For this experiment, we do not perform the weight update
procedure in SparseGPT to focus on the pruning configuration.
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Comparison Group

Pruning Metric layer (input, 1) (input, 128) (output, 1) (output, 128)
Magnitude: |Wij | 17.29 8.86 16.82 13.41 17.47
SparseGPT:

[
|W|2/diag(H−1)

]
ij

7.91 8.86 8.02 7.41 7.74
Wanda: |Wij | · ∥Xj∥ 7.95 8.86 8.12 7.26 7.71

Table 7: Ablation on the pruning configuration. Bold results denote the best comparison group for
each pruning metric. Underscored results indicate the default pruning configuration of each method.

The results are shown in Table 7. We refer the reader to Appendix A for analysis on image classifiers
and Appendix D for analysis on previous LLMs. The default pruning configuration of Wanda delivers
the best pruned model (perplexity 7.26). Interestingly, for the magnitude metric, comparing weights
of the same input neuron (input, 1) yields a perplexity of 8.86, significantly better than other grouping
options. Three methods also produce equivalent pruning results as under this comparison group –
the input is the same, thus weight ranking only depends on weight magnitude. This finding further
highlights the importance of using a proper comparison group for pruning LLMs, even for the
classical magnitude pruning approach.

1 2 8 16 32 64 128 256
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LLaMA-7B

SparseGPT
Wanda

Figure 2: Wanda is more robust with less data.

Robustness to Calibration Samples. We vary the
number of calibration samples by selecting different
sample sizes ranging between 1 and 256. Results are
summarized in Figure 2. We see a clear difference in
trend as the size of calibration data changes, where
Wanda is much more robust when there are few
calibration samples. Notably, even with a single
sample, pruned networks obtained by Wanda have a
perplexity of 7.66. This may be because input norm
statistics ∥Xj∥ could be much easier to estimate
than the full inverse hessian H−1 of the local layer-
wise reconstruction problem.
Weight Update. We characterize the conditions under which the weight update process in SparseGPT
can improve the effectiveness of pruning LLMs. We experiment with two ways of applying weight
update: sequential and iterative. A sequential update means that at each layer, the full pruned mask is
first computed and weight update is performed on the remaining weights. An iterative update means
that the pruning and weight update steps proceed iteratively within each layer. SparseGPT adopts an
iterative update procedure every 128 input channels, as it was found to give more accurate results.
Effects of the weight update on magnitude pruning and Wanda are summarized in Table 8. We study
these two pruning methods because they do not involve any weight update by default. An iterative
update changes the comparison group for unstructured pruning, which we denote in the table as
(input, 128). We make several interesting observations:
• For all considered sparsities, weight update can improve magnitude pruning by a large margin.
• For unstructured 50% and 4:8 sparsities, weight update does not bring any improvement to Wanda.
• For 2:4 sparsity, the improvement (from 11.53 to 10.89) is marginal. Note that the best 2:4 sparse

model (10.89) we obtained here is better than that obtained by SparseGPT (11.00 in Table 3).
• At 70% sparsity, weight update can bring notable improvement to Wanda (from 84.50 to 29.65),

while the resulting pruned model (29.65) deteriorates a lot compared to dense LLaMA-7B (5.68).

Pruning Configuration Weight Update Sparsity

Pruning Metric Comparison Group 50% 70% 4:8 2:4

Magnitude: |Wij |
layer ✗ 17.59 5e4 16.84 42.13
layer Sequential 12.56 1e3 13.37 21.36

(input, 128) Iterative 26.77 3e2 36.98 47.61

Wanda : |Wij | · ∥Xj∥
(output, 1) ✗ 7.26 84.50 8.57 11.53
(output, 1) Sequential 7.32 35.92 8.59 10.89

(input, 128) Iterative 7.26 29.65 8.68 11.43

Table 8: Effects of the weight update. It offers little or negligible improvement to Wanda.

8



Published as a conference paper at ICLR 2024

6 RELATED WORK

Network Pruning and Sparsity. Pruning is a popular technique for compressing neural networks
through the elimination of weights, yielding sparse networks (LeCun et al., 1989; Hassibi et al.,
1993). It can be broadly categorized into structured and unstructured approaches.

Structured pruning methods (Liu et al., 2017; Molchanov et al., 2019; Fan et al., 2020; Shen et al.,
2022; Xia et al., 2022; Fang et al., 2023; Nova et al., 2023), sometimes referred to as activation
pruning (Gale et al., 2019; Dhillon et al., 2018), remove entire structured components of a network,
facilitating efficient GPU speedups. Some existing methods (Babaeizadeh et al., 2016; Dubey
et al., 2018) have explored structured pruning based on activation statistics of neuron/filter output,
e.g. percentage of zero activations (Hu et al., 2016) and activation mean (Molchanov et al., 2017).
Recently, Ma et al. (2023) have studied structured pruning of LLMs. Bansal et al. (2023); Liu
et al. (2023b) and Elena Voita (2023) have demonstrated the existence of prompt-dependent and
task-specific sparsity in the structural components of LLMs, e.g., attention heads and MLP neurons.

Unstructured methods (Han et al., 2015; 2016; Paul et al., 2023; Hoang et al., 2023; Gadhikar et al.,
2023; Liu et al., 2023a) like magnitude pruning operate at the individual weight level, maintaining
performance even at higher sparsity levels. Existing pruning methods usually require either modi-
fications to the training procedure (Sanh et al., 2020; Kusupati et al., 2020), retraining the pruned
networks to regain accuracy (Liu et al., 2019; Zhou et al., 2023), or an even more computationally
intensive iterative retraining process (Renda et al., 2020; Frankle et al., 2020). However, scaling these
methods to LLMs with billions of parameters presents a challenge, as the required training process
demands substantial computational resources (Hoffmann et al., 2022; Zhang et al., 2022).

Pruning with Limited Data. Most related to our approach is a recent line of work on pruning with
limited data (Hubara et al., 2021; Frantar et al., 2022; Frantar & Alistarh, 2022; Kwon et al., 2022).
Such methods require no modification to the original training procedure and also no retraining of
the pruned networks on the full training dataset. The primary aim of these methods is to preserve
performance during the pruning procedure, assuming access to a limited and small amount of
data, also referred to as the calibration data. In order to mitigate the accuracy drop, a layer-wise
reconstruction problem (Hubara et al., 2021) is solved to minimize the change of output evaluated on
the calibration data. Existing solvers (Singh & Alistarh, 2020; Frantar et al., 2022) for the layer-wise
reconstruction problem rely on heavy computation of second-order Hessian inverses, which do not
scale to the large hidden state size of LLMs. SparseGPT (Frantar & Alistarh, 2023) develops an
efficient weight update procedure for LLMs via synchronized second-order Hessian updates.

Emergent Properties of LLMs. Our work is also related to recent studies on the existence of large
magnitude outlier features in large language models (Kovaleva et al., 2021; Bondarenko et al., 2021;
Timkey & Schijndel, 2021; Luo et al., 2021; Puccetti et al., 2022; Wei et al., 2022b). Dettmers et al.
(2022) demonstrate that when LLMs exceed a certain parameter scale (e.g., 6B), large magnitude
features start to emerge and strongly affect all layers, which can be seen as an emergent property of
LLMs (Dettmers et al., 2022; Wei et al., 2022a; Schaeffer et al., 2023). They also pinpoint these
emerging features as the reason why existing quantization methods fail. This observation has spurred
the development of various quantization schemes (Dettmers et al., 2022; Xiao et al., 2023; Lin et al.,
2023; Dettmers et al., 2023; Behdin et al., 2023) tailored specifically for LLMs to handle outlier
features. Our work extends this understanding, demonstrating that outlier features should also serve
as pivotal indicators of which weights to prune in LLMs.

7 CONCLUSION

In this work, we propose a simple and effective method for pruning Large Language Models (LLMs).
Inspired by the recent discovery of emergent large magnitude features in LLMs, our approach,
termed Wanda (Pruning by Weights and activations), removes weights with the smallest magnitudes
multiplied by the corresponding input activation norms, on a per-output basis. Without the need
for any retraining or weight update procedures, Wanda is able to identify effective sparse networks
within pretrained LLMs. We hope our work contributes to a better understanding of sparsity in LLMs.
Last, considering the fast speed of pruning with Wanda, it would be interesting to investigate whether
Wanda can be useful in the setting of sparse training (Evci et al., 2020; Peste et al., 2021; Kuznedelev
et al., 2023; Benbaki et al., 2023; Frantar et al., 2023b), where pruning has to be conducted repeatedly
and thus the pruning efficiency is critical.
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A IMAGE CLASSIFIERS

We study how Wanda would perform against magnitude pruning on tasks where the latter has
been widely used. We conduct a study on ImageNet-1K (Deng et al., 2009), a standard image
classification task where magnitude pruning has been extensively studied (Gale et al., 2019; Blalock
et al., 2020). We consider two modern vision architectures: ConvNeXt (Liu et al., 2022) and Vision
Transformer (ViT) (Dosovitskiy et al., 2021). We choose these two architectures mainly for two
reasons: first, as LLMs are based on Transformers, we would like to test if our observations on LLMs
still hold on Transformers for other tasks; second, as we are evaluating on image classification, we
are interested in examining how these pruning methods work on ConvNet models, with ConvNeXt
being a representative architecture.

We use two ImageNet-1K pretrained models: ConvNeXt-B and DeiT-B, with a top-1 accuracy
of 83.8% and 81.8% respectively. We prune the linear layers only (for ConvNeXt, this includes
equivalent 1×1 convolution layers). For calibration data, we sample 4096 images from ImageNet
training set. We observe that 4096 samples lead to a stable result for our pruning metric, beyond
which we notice only a marginal effect. We report the accuracy of one-shot pruned models without
any subsequent retraining.

We first study whether pruning per output is superior over pruning per layer for pruning image
classifiers. In Figure 3, we show comparison results for both the magnitude metric and the pruning
metric of Wanda. We can see that for both ConvNeXt-B and DeiT-B, layer-wise pruning is slightly
better than pruning per output. We then compare the pruning metric of Wanda and the magnitude
metric on layer-wise pruning. Results are shown in Figure 4. Our novel pruning metric leads to better
results than magnitude pruning, especially at high sparsities (e.g., 70% and 80%).
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Figure 3: Analysis of comparison groups on pruning image classifiers.
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Figure 4: Our pruning metric outperforms the magnitude metric on pruning image classifiers.
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B WANDA ON PREVIOUS LLMS

In addition to LLaMA and LLaMA-2, we experiment with three previous LLM model families:
namely OPT (Zhang et al., 2022), BLOOM (Scao et al., 2022) and Pythia (Biderman et al., 2023).

Comparison with Baselines. For OPT and Pythia, we experiment with varying sparsity levels (10%
to 50%). We conduct additional evaluation on OPT and BLOOM models with various sizes. Results
are shown in Table 9, Table 10 and Table 11 respectively. Our observations are as follows:

• Unlike LLaMA and LLaMA-2, the well-established magnitude pruning approach fails catastrop-
ically on OPT-13B and Pythia-12B, even for low sparsity levels (e.g., 20%). This result further
highlights the limitations of magnitude pruning for LLMs, as discussed in Section 3.

• Unlike magnitude pruning, Wanda successfully prunes these LLMs to much higher sparsities across
various LLM model families, without any weight update on the kept weights. This result shows
that LLMs have effective sub-networks that are exact. We hope this observation could contribute to
a better understanding of sparsity in LLMs.

• There are cases where Wanda slightly underperforms SparseGPT, especially for OPT models (see
Table 10), suggesting that for OPT, there may be a tradeoff between pruning speed and pruning
accuracy. However, the gap between SparseGPT and Wanda tends to get smaller as model sizes
increase. This can be seen in Table 10 and Table 11.

• At lower sparsities (e.g., 20%), Table 9 indicates that the computationally intensive weight update
process may be unnecessary, as Wanda yields comparable or slightly superior results.

Sparsity

Model Dense Pruning Method Weight Update 10% 20% 30% 40% 50%

OPT-13B 10.13
Magnitude ✗ 14.45 9e3 1e4 1e4 1e4
SparseGPT ✓ 10.11 10.10 10.12 10.35 11.19

Wanda ✗ 10.09 10.07 10.09 10.63 11.42

Pythia-12B 8.59
Magnitude ✗ 127.76 2e5 7e5 2e5 3e5
SparseGPT ✓ 8.59 8.65 8.86 9.39 11.02

Wanda ✗ 8.59 8.60 8.85 9.31 11.27

Table 9: Pruning Pythia-13B and OPT-13B with various sparsity levels.

OPT

Method Weight Update Sparsity 125m 350m 1.3B 2.7B 6.7B 13B
Dense - 50% 27.66 22.00 14.62 12.47 10.86 10.13
Magnitude ✗ 50% 7e3 6e3 1e4 9e3 9e4 2e4
SparseGPT ✓ 50% 37.07 34.76 17.44 13.48 11.57 11.19
Wanda ✗ 50% 38.96 35.92 19.12 14.28 11.94 11.42

Table 10: Pruning OPT family models with various sizes.

BLOOM

Method Weight Update Sparsity 560m 1.1B 1.7B 3B 7.1B
Dense - 50% 22.42 17.68 15.39 13.48 11.37
Magnitude ✗ 50% 2e10 1e6 2e5 8e6 2e6
SparseGPT ✓ 50% 28.92 21.35 18.88 16.76 13.96
Wanda ✗ 50% 30.74 22.72 19.79 16.45 13.55

Table 11: Pruning BLOOM family models with various sizes.
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Comparison Group We test if our observation regarding pruning per output holds true for other
LLM model families. We experiment on OPT (Zhang et al., 2022) and BLOOM (Scao et al., 2022).
In Table 12 and Table 13, we provide results comparing pruning per layer and pruning per output for
these two LLM model families. The pruning metric is fixed to be our proposed metric: |Wij | · ∥Xj∥.
We can see that our findings regarding the comparison group are not limited to LLaMA. For OPT and
BLOOM model families, pruning per output consistently outperforms pruning per layer.

OPT

Comparison Group Sparsity 125m 350m 1.3B 2.7B 6.7B 13B
per layer 50% 46.95 38.97 22.20 22.66 15.35 13.54
per output 50% 38.96 36.19 19.42 14.22 11.97 11.42

Table 12: Comparison of pruning per layer versus per output for OPT models.

BLOOM

Comparison Group Sparsity 560m 1.1B 1.7B 3B 7.1B
per layer 50% 34.57 26.26 22.55 18.22 15.31
per output 50% 30.74 22.72 19.79 16.45 13.55

Table 13: Comparison of pruning per layer versus per output for BLOOM models.

C ADDITIONAL BASELINES

We compare with several prior activation pruning methods. These approaches remove entire neurons in
the network based on certain statistics of the neuron output: mean and standard deviation (Molchanov
et al., 2017), correlation (Babaeizadeh et al., 2016) and mean squared norm (Dubey et al., 2018). We
show the results of pruning LLaMA-7B in Table 14. We compute these output statistics using the
calibration set and remove neurons with smaller values. We observe that these activation pruning
methods are unable to prune LLMs effectively.

We also compare with several prior methods on pruning BERT (Devlin et al., 2018). In Table 15, we
provide a summary of existing pruning methods, mostly for pruning BERT. A key distinction of these
methods and our work is that they interleave pruning heavily with the fine-tuning process. Another
difference is that BERT pruning methods focus on performance on a downstream task, rather than
preserving the general performance of pretrained language models.

We adopt these prior methods for pruning LLMs, where the goal is to preserve the language modeling
ability. Thus we use the pre-training auto-regressive loss to compute their pruning metrics. We
evaluate two settings: one-shot pruning and one-shot pruning followed by fine-tuning. For one-shot
pruning, we use the pruning metrics listed in Table 15 to prune LLMs. We fine-tune the pruned LLMs
within a limited computational budget, i.e., one day. Results are summarized in Table 16. We observe
that these pruning methods are not effective when adapted for pruning LLMs.

Sparsity

Model Dense Activation Statistics 10% 20% 30% 40% 50%

LLaMA-7B 5.68

Mean 1e5 2e5 3e5 3e5 3e5
Standard Deviation 161 649 7e3 1e5 2e5

Correlation 1e4 7e4 2e5 2e5 2e5
Mean Squared Norm 16.43 98.13 9e2 1e5 4e5

Table 14: Results for activation pruning methods.
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Pruning Method Pruning Type Pruning Metric Training Procedure
SNIP (Lee et al., 2018) Unstructured Loss Sensitivity Pruning at Initialization
BERT-LTH (Chen et al., 2020) Unstructured Magnitude Fine-tuning BERT
Movement (Sanh et al., 2020) Unstructured Loss Sensitivity Fine-tuning BERT
Platon (Zhang et al., 2021) Unstructured Loss Sensitivity Fine-tuning BERT
PINS (Ren & Zhu, 2023) Unstructured Loss Sensitivity Fine-tuning BERT

Table 15: Summary of prior pruning methods on BERT.

Pruning method

Model Dense Fine-tuning SNIP BERT-LTH Movement Platon PINS Wanda

LLaMA-7B 5.68
✗ 231.48 17.29 349.33 124.91 89.12 7.26
✓ 102.32 12.43 168.17 102.34 72.13 6.28

Table 16: Comparisons with prior pruning methods on BERT (unstructured 50% sparsity).

D COMPLEMENTARY EXPERIMENTAL RESULTS

In this section, we supplement the main paper with additional experimental results. This includes
analysis on the number of calibration samples (Appendix D.1), robustness analysis under random
seeds (Appendix D.2), evaluation at higher unstructured sparsity levels (Appendix D.3), few-shot
results (Appendix D.4) and a detailed performance breakdown for zero-shot tasks (Appendix D.5 and
Appendix D.6).

D.1 NUMBER OF CALIBRATION SAMPLES

In the main paper, the default number of calibration samples is 128. This choice is adopted from Fran-
tar & Alistarh (2023), which was selected on the OPT model family (Zhang et al., 2022). Here
we conduct a detailed analysis on the effect of the number of calibration samples for LLaMA and
LLaMA-2 model families. We show the results for pruning LLaMA-7B and LLaMA-2-7B with
unstructured 50% sparsity in Table 17. We find that there is a slight improvement in performance of
pruned LLMs when the size of calibration set goes beyond 128.

Model Method 1 16 32 64 128 256 512 1024 2048

LLaMA-7B
SparseGPT 10.22 7.61 7.36 7.29 7.26 7.20 7.19 7.23 7.20
Wanda 7.46 7.27 7.28 7.28 7.26 7.30 7.26 7.25 7.26

LLaMA-2-7B
SparseGPT 8.63 6.67 6.62 6.61 6.53 6.52 6.50 6.49 6.49
Wanda 6.53 6.45 6.46 6.45 6.45 6.45 6.45 6.45 6.45

Table 17: WikiText validation perplexity of pruned LLaMA and LLaMA-2 under various number of
calibration samples, with 50% sparsity.

D.2 ROBUSTNESS ANALYSIS

In this part, we perform a robustness analysis of our results in Section 4.2. The result in Table 3 is
evaluated under a fixed calibration set. Since both SparseGPT and Wanda require calibration data to
estimate input statistics, we sample different calibration sets under 5 random seeds and evaluate these
two pruning methods. In Table 18, we report the perplexity (mean and standard deviation) of pruned
LLaMA models under 5 random seeds. In many cases, the variance across random seeds is lower for
Wanda, suggesting that Wanda is more stable with variations in the calibration sets.
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LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 7B 13B

Dense - 0% 5.68 5.09 5.12 4.57
Magnitude ✗ 50% 17.29 20.21 14.89 6.37
SparseGPT ✓ 50% 7.25 (±0.03) 6.24 (±0.02) 6.52 (±0.02) 5.63 (±0.01)
Wanda ✗ 50% 7.25 (±0.01) 6.18 (±0.01) 6.44 (±0.01) 5.59 (±0.01)
Magnitude ✗ 4:8 16.84 13.84 16.48 6.76
SparseGPT ✓ 4:8 8.67 (±0.08) 7.43 (±0.03) 8.05 (±0.03) 6.59 (±0.04)
Wanda ✗ 4:8 8.65 (±0.01) 7.43 (±0.03) 7.98 (±0.01) 6.56 (±0.01)
Magnitude ✗ 2:4 42.13 18.37 54.59 8.33
SparseGPT ✓ 2:4 10.94 (±0.23) 9.08 (±0.04) 10.44 (±0.42) 8.28 (±0.05)
Wanda ✗ 2:4 11.48 (±0.05) 9.60 (±0.04) 11.10 (±0.09) 8.28 (±0.02)

Table 18: WikiText validation perplexity of pruned LLaMA and LLaMA-2 models. We report the
mean and standard deviation under 5 random seeds.

D.3 HIGHER SPARSITY

In Section 4, we have evaluated unstructured pruning with a sparsity level of 50%. This is to follow
the evaluation setup of Frantar & Alistarh (2023). In this part, we evaluate on higher sparsity levels,
i.e., 60% and 80%. Results for these two sparsity levels are shown Table 19 and Table 20 respectively.
At 60% sparsity, Wanda remains competitive with SparseGPT. At 80% sparsity, SparseGPT is able to
outperform Wanda, but the performance drop compared to the dense counterpart is significant. The
best 80% sparse model (25.86) underperforms the smallest dense LLaMA-7B model (5.68) by a large
gap. This suggests that at extreme sparsity levels, it may be better to use a small dense model trained
to convergence instead.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B
Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12
Magnitude ✗ 60% 6e2 2e2 27.67 9.34 4e3 11.23 8.21
SparseGPT ✓ 60% 10.51 8.56 6.66 5.82 9.58 7.80 4.98
Wanda ✗ 60% 10.66 8.56 6.49 5.83 9.71 7.75 4.98

Table 19: WikiText validation perplexity of pruned LLaMA and LLaMA-2 models with unstructured
60% sparsity.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B
Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12
Magnitude ✗ 80% 1e5 3e4 1e5 2e4 nan 5e4 3e4
SparseGPT ✓ 80% 2e2 1e2 54.98 32.80 1e2 1e2 25.86
Wanda ✗ 80% 5e3 4e3 2e3 2e3 5e3 2e3 1e2

Table 20: WikiText validation perplexity of pruned LLaMA and LLaMA-2 models with unstructured
80% sparsity.

D.4 FEW-SHOT RESULTS ON MMLU

Our experiments in Section 4.1 focus on zero-shot evaluation. However, LLMs are also known for their
ability to learn in context. In this part, we conduct additional evaluation on few-shot tasks. Specifically,
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we choose the Massive Multitask Language Understanding benchmark (MMLU) (Hendrycks et al.,
2021). In alignment with the evaluation methodology of Touvron et al. (2023a), we perform 5-shot
evaluation. In Table 21, we report the mean accuracies for both dense LLMs and sparse LLMs with
unstructured 50% sparsity. In the few-shot setting, Wanda performs competitively with SparseGPT.
Notably, large sparse LLMs surpass smaller dense counterparts, e.g., sparse LLaMA-13B/LLaMA-
2-13B versus dense LLaMA-7B/LLaMA-2-7B. This trend can not be observed from the standard
magnitude pruning approach.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 7B 13B
Dense - 0% 39.85 52.92 52.08 61.69
Magnitude ✗ 50% 30.69 30.69 32.14 48.76
SparseGPT ✓ 50% 34.43 45.08 38.68 54.83
Wanda ✗ 50% 33.49 46.04 39.27 55.01

Table 21: 5-shot results (mean accuracies %) on MMLU for unstructured 50% sparsity.

D.5 FINE-TUNING

In Table 6 of Section 5, we report the mean zero-shot accuracies after fine-tuning Wanda pruned
LLaMA-7B models. In this part, we report the task-wise performance of these fine-tuned models.
Results are summarized in Table 22. For per-task accuracies, most of the performance drop during
pruning can be recovered through fine-tuning. Note that here we are performing limited fine-tuning
with a computational budget (12 hours for LoRA fine-tuning and 3 days for full parameter fine-tuning).
It remains to be seen if the gap between sparse pruned LLMs and the dense counterparts can be fully
recovered given more computational budget.

Sparsity Fine-tuning BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

Dense - 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

50%
✗ 71.22 55.60 51.85 66.06 69.11 36.86 28.80 54.21

LoRA 72.90 60.79 55.36 67.48 71.42 37.97 29.80 56.53
Full 74.50 62.84 55.83 69.02 73.49 39.20 32.20 58.15

4:8
✗ 70.97 58.24 46.81 65.83 65.53 33.97 28.00 52.76

LoRA 71.24 60.04 54.47 66.14 67.68 35.32 29.20 54.87
Full 73.32 60.99 55.21 66.80 71.76 36.46 32.00 56.65

2:4
✗ 69.30 51.99 42.06 62.75 60.94 28.07 24.60 48.53

LoRA 70.32 64.98 52.53 65.04 67.00 33.53 27.80 54.46
Full 73.21 61.34 54.86 66.18 70.24 35.68 31.80 56.19

Table 22: The gap between pruned LLMs and dense LLMs can be largely mitigated via fine-tuning.

D.6 ZERO-SHOT TASKS

For zero-shot results in Section 4.1, the 7 evaluated zero-shot tasks are: BoolQ (Clark et al., 2019),
RTE (Wang et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019),
ARC Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). For
reproducibility, we used commit df3da98 on the main branch. All tasks were evaluated on task
version 0 except for BoolQ, where the evaluated version was 1. We show the task-wise performance
in Table 23,24,25,26,27 and 28.
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Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 54.59 54.51 45.49 59.19 58.84 33.53 22.40 46.94
SparseGPT 72.05 54.15 51.43 67.88 71.38 37.71 30.00 54.94

Wanda 71.22 55.60 51.85 66.06 69.11 36.86 28.80 54.21

13B

Dense 77.89 70.4 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 54.89 51.26 44.16 63.14 58.80 33.79 27.20 47.61
SparseGPT 76.97 61.01 54.95 71.67 72.47 41.98 31.20 58.61

Wanda 75.90 62.82 55.71 71.98 73.19 43.52 32.20 59.33

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 64.34 50.18 50.59 66.54 72.39 43.77 29.00 53.83
SparseGPT 82.32 62.45 59.15 75.22 78.96 48.56 35.00 63.09

Wanda 81.90 65.34 60.93 73.48 79.29 49.66 34.60 63.60

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 79.15 62.45 61.90 74.74 76.40 49.57 35.00 62.74
SparseGPT 84.60 70.76 63.90 77.43 79.35 50.85 37.20 66.30

Wanda 84.70 71.48 64.55 76.87 79.75 50.51 38.80 66.67

Table 23: Accuracies (%) of LLaMA for 7 zero-shot tasks with unstructured 50% sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 51.19 50.54 46.73 60.69 58.96 30.89 23.20 46.03
SparseGPT 73.06 58.12 47.88 65.98 66.75 32.42 25.40 52.80

Wanda 70.97 58.24 46.81 65.83 65.53 33.97 28.00 52.76

13B

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 61.07 51.26 48.91 65.11 63.26 35.67 28.40 50.53
SparseGPT 76.61 57.76 51.24 70.17 71.17 37.20 27.80 55.99

Wanda 74.89 57.89 51.26 70.56 70.29 37.97 29.80 56.09

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 63.55 50.18 49.45 65.75 73.36 42.83 29.60 53.53
SparseGPT 78.69 61.73 56.15 74.35 76.94 46.08 31.60 60.79

Wanda 77.38 58.80 58.79 74.28 77.34 46.46 34.00 61.00

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 74.95 68.23 60.85 74.27 76.45 47.61 32.80 62.17
SparseGPT 84.35 68.95 61.00 77.19 78.75 48.46 35.40 64.87

Wanda 84.29 70.92 59.54 76.64 79.00 48.83 35.60 64.97

Table 24: Accuracies (%) of LLaMA for 7 zero-shot tasks with 4:8 sparsity.
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Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 53.09 55.60 42.30 59.91 53.28 27.13 21.80 44.73
SparseGPT 70.46 60.65 42.99 64.88 61.49 30.12 23.60 50.60

Wanda 69.30 51.99 42.06 62.75 60.94 28.07 24.60 48.53

13B

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 60.95 49.10 45.81 62.75 58.75 31.06 27.60 48.00
SparseGPT 72.14 55.23 48.11 68.98 66.71 34.98 26.40 53.22

Wanda 70.21 53.43 46.74 68.82 65.82 33.87 27.20 52.30

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 65.11 52.35 51.72 66.22 70.88 38.23 27.60 53.16
SparseGPT 75.60 62.13 53.10 72.61 75.13 41.98 31.80 58.91

Wanda 74.68 63.80 54.41 72.93 74.41 42.06 32.20 59.21

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 77.9 64.98 58.65 72.85 75.15 45.05 34.40 61.28
SparseGPT 83.15 65.34 57.20 76.72 78.20 45.18 32.20 62.57

Wanda 83.58 66.79 56.36 75.82 78.23 45.56 33.60 62.84

Table 25: Accuracies (%) of LLaMA for 7 zero-shot tasks with 2:4 sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 63.00 57.04 49.13 63.30 64.10 34.64 26.80 51.14
SparseGPT 75.02 54.15 52.37 69.85 73.27 39.85 29.20 56.24

Wanda 75.99 53.43 52.49 68.19 72.77 39.59 31.20 56.24

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 57.61 55.96 54.40 65.27 70.54 38.40 27.80 52.85
SparseGPT 81.44 65.34 55.83 72.77 74.83 42.24 32.60 60.72

Wanda 81.84 64.02 56.90 71.35 76.18 43.52 32.00 60.83

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 70.55 60.65 61.50 73.48 75.70 49.23 35.40 60.93
SparseGPT 83.55 70.40 63.80 78.85 82.40 53.75 38.20 67.28

Wanda 82.50 73.65 64.10 78.14 80.80 52.65 37.40 67.03

Table 26: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with unstructured 50% sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 63.00 52.35 50.08 62.43 64.73 35.92 26.00 50.64
SparseGPT 72.69 55.23 48.20 68.11 69.15 35.84 27.40 53.80

Wanda 73.91 53.79 46.45 66.61 66.71 34.13 25.80 52.49

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 63.33 57.76 53.96 64.40 68.48 35.75 26.00 52.81
SparseGPT 79.97 66.79 52.01 70.64 73.61 41.04 30.00 59.15

Wanda 80.26 65.62 52.05 69.48 73.88 41.54 28.40 58.75

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 70.95 59.21 60.05 74.11 76.25 46.76 34.60 60.28
SparseGPT 82.20 72.20 61.45 77.82 80.85 51.19 35.20 65.84

Wanda 84.30 71.80 61.90 76.24 80.40 51.80 36.00 66.06

Table 27: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with 4:8 sparsity.
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Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 56.23 51.35 42.27 60.93 59.18 27.31 21.80 45.58
SparseGPT 70.52 58.84 43.26 66.69 64.10 29.97 23.20 50.94

Wanda 67.65 53.07 40.92 62.43 61.78 31.20 24.20 48.75

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 65.69 54.15 50.13 62.04 62.46 31.74 23.00 49.89
SparseGPT 76.79 59.38 46.58 68.67 70.62 36.60 25.40 54.86

Wanda 76.80 61.22 47.82 66.90 69.24 36.82 26.40 55.03

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 73.20 57.04 58.40 74.27 76.15 45.22 35.40 59.95
SparseGPT 79.50 70.76 59.00 76.64 78.95 48.55 33.80 63.89

Wanda 82.20 69.85 59.34 76.23 79.30 47.26 34.80 64.14

Table 28: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with 2:4 sparsity.
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