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ABSTRACT

Recent works Shah et al. (2020); Chen et al. (2021) have demonstrated that neural
networks exhibit extreme simplicity bias (SB). That is, they learn only the sim-
plest features to solve a task at hand, even in the presence of other, more robust
but more complex features. Due to the lack of a general and rigorous definition
of features, these works showcase SB on semi-synthetic datasets such as Color-
MNIST, MNIST-CIFAR where defining features is relatively easier.
In this work, we rigorously define as well as thoroughly establish SB for one
hidden layer neural networks. More concretely, (i) we define SB as the network
essentially being a function of a low dimensional projection of the inputs (ii) the-
oretically, we show that when the data is linearly separable, the network primarily
depends on only the linearly separable (1-dimensional) subspace even in the pres-
ence of an arbitrarily large number of other, more complex features which could
have led to a significantly more robust classifier, (iii) empirically, we show that
models trained on real datasets such as Imagenette and Waterbirds-Landbirds in-
deed depend on a low dimensional projection of the inputs, thereby demonstrating
SB on these datasets, iv) finally, we present a natural ensemble approach that en-
courages diversity in models by training successive models on features not used
by earlier models, and demonstrate that it yields models that are significantly more
robust to Gaussian noise.

1 INTRODUCTION

Figure 1: Classification of swans vs bears. There
are several features such as background, color of
the animal, shape of the animal etc., each of which
is sufficient for classification but using all of them
will lead to a more robust model. 1

It is well known that neural networks (NNs)
are vulnerable to distribution shifts as well as
to adversarial examples (Szegedy et al., 2014;
Hendrycks et al., 2021). A recent line of
work (Geirhos et al., 2018; Shah et al., 2020;
Geirhos et al., 2020) proposes that Simplicity
Bias (SB) – aka shortcut learning – i.e., the ten-
dency of neural networks (NNs) to learn only
the simplest features over other useful but more
complex features, is a key reason behind this
non-robustness. The argument is roughly as
follows: for example, in the classification of
swans vs bears, as illustrated in Figure 1, there
are many features such as background, color of the animal, shape of the animal etc. that can be used
for classification. However using only one or few of them can lead to models that are not robust to
specific distribution shifts, while using all the features can lead to more robust models.

Several recent works have demonstrated SB on a variety of semi-real constructed datasets (Geirhos
et al., 2018; Shah et al., 2020; Chen et al., 2021), and have hypothesized SB to be the key reason for
NN’s brittleness to distribution shifts (Shah et al., 2020). However, such observations are still only
for specific semi-real datasets, and a general method that can identify SB on a given dataset and a
given model is still missing in literature. Such a method would be useful not only to estimate the
robustness of a model but could also help in designing more robust models.

1Image source: Wikipedia swa, bea.
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A key challenge in designing such a general method to identify (and potentially fix) SB is that the
notion of feature itself is vague and lacks a rigorous definition. Existing works like Geirhos et al.
(2018); Shah et al. (2020); Chen et al. (2021) avoid this challenge of vague feature definition by
using carefully designed datasets (e.g., concatenation of MNIST images and CIFAR images), where
certain high level features (e.g., MNIST features and CIFAR features, shape and texture features)
are already baked in the dataset definition, and arguing about their simplicity is intuitively easy.

Contributions: One of the main contributions of this work is to provide a precise definition of a
particular simplicity bias – LD-SB– of 1-hidden layer neural networks. In particular, we characterize
SB as low dimensional input dependence of the model. Concretely,
Definition 1.1 (LD-SB). A model f : Rd → Rc with inputs x ∈ Rd and outputs f(x) ∈ Rc (e.g.,
logits for c classes), trained on a distribution (x, y) ∼ D satisfies LD-SB if there exists a projection
matrix P ∈ Rd×d satisfying the following:

• rank (P ) = k ≪ d,

• f(Px1 + P⊥x2) ≈ f(x1) ∀(x1, y1), (x2, y2) ∼ D, and

• An independent model g trained on (P⊥x, y) where (x, y) ∼ D achieves high accuracy.

Here P⊥ is the projection matrix onto the subspace orthogonal to P .

In words, LD-SB says that there exists a small k-dimensional subspace (given by the projection
matrix P ) in the input space Rd, which is the only thing that the model f considers in labeling any
input point x. In particular, if we mix two data points x1 and x2 by using the projection of x1 onto
P and the projection of x2 onto the orthogonal subspace P⊥, the output of f on this mixed point
Px1 + P⊥x2 is the same as that on x1. This would have been fine if the subspace P⊥ does not
contain any feature useful for classification. However, the third bullet point says that P⊥ indeed
contains features that are useful for classification since an independent model g trained on (P⊥x, y)
achieves high accuracy.

Furthermore, theoretically, we demonstrate LD-SB of 1-hidden layer NNs for a fairly general class
of distributions called independent features model (IFM), where the features (i.e., coordinates) are
distributed independently conditioned on the label. IFM has a long history and is widely studied,
especially in the context of naive-Bayes classifiers Lewis (1998). For IFM, we show that as long as
there is even a single feature in which the data is linearly separable, NNs trained using SGD will
learn models that rely almost exclusively on this linearly separable feature, even when there are an
arbitrarily large number of features in which the data is separable but with a non-linear boundary.
Empirically, we demonstrate LD-SB on three real world datasets: binary and multiclass version of
Imagenette (FastAI, 2021) as well as waterbirds-landbirds (Sagawa et al., 2020a) dataset. Compared
to the results in Shah et al. (2020), our results (i) theoretically show LD-SB in a fairly general setting
and (ii) empirically show LD-SB on real datasets.

Finally, building upon these insights, we propose a simple ensemble method – OrthoP – that se-
quentially constructs NNs by projecting out principle input data directions that are used by previous
NNs. We demonstrate that this method can lead to significantly more robust ensembles for real-
world datasets in presence of simple distribution shifts like Gaussian noise.

Why only 1-hidden layer networks?: One might wonder why the results in this paper are restricted
to 1-hidden layer networks and why they are interesting. We present two reasons.

1. From a theoretical standpoint, prior works have thoroughly characterized the training dynamics
of infinite width 1-hidden layer networks under different initialization schemes (Chizat et al.,
2019) and have also identified the limit points of gradient descent for such networks (Chizat &
Bach, 2020). Our results crucially build upon these prior works. On the other hand, we do not
have such a clear understanding of the dynamics of deeper networks.

2. From a practical standpoint, the dominant paradigm in machine learning right now is to pretrain
large models on large amounts of data and then finetune on small target datasets. Given the large
and diverse pretraining data seen by these models, it has been observed that they do learn rich
features (Rosenfeld et al., 2022; Nasery et al., 2022). However, finetuning on target datasets
might not utilize all the features in the pretrained model. Consequently, approaches that can train
robust finetuning heads (such as a 1-hidden layer network on top) can be quite effective.
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Extending our results to deeper networks and to other architectures is an exciting direction of re-
search from both theoretical and practical points of view.

Paper organization: This paper is organized as follows. Section 2 presents related work. Section 3
presents preliminaries. Our main results on LD-SB are presented in Section 4. Section 5 presents
results on training diverse classifiers. We conclude in Section 6.

2 RELATED WORK

Simplicity Bias: Subsequent to Shah et al. (2020), there have been several papers investigating the
presence/absence of SB in various networks as well as reasons behind SB Scimeca et al. (2021). Of
these, Huh et al. (2021) and Galanti & Poggio (2022) are the most closely related works to ours.
Huh et al. (2021) empirically observe that on certain synthetic datasets, the embeddings of NNs both
at initialization as well as after training have a low rank structure. Galanti & Poggio (2022) provide
a theoretical intuition behind the relation between various hyperparameters (such as learning rate,
batch size etc.) and rank of learnt weight matrices, and demonstrate it empirically. In contrast, we
prove LD-SB theoretically on the IFM model as well as empirically validate this on real datasets.
Moreover, we also show how to use LD-SB to train a second diverse model and combine it to obtain
a robust ensemble. Pezeshki et al. (2021) proposes that gradient starvation at the beginning of
training is a potential reason for SB in the lazy/NTK regime but the conditions are hard to interpret.
In contrast, our results are shown for any dataset in the IFM model in the rich regime of training.
Finally Lyu et al. (2021) consider anti-symmetric datasets and show that single hidden layer input
homogeneous networks (i.e., without bias parameters) converge to linear classifiers. However, such
networks have strictly weaker expressive power compared to those with bias parameters.

Learning diverse classifiers: There have been several works that attempt to learn diverse classifiers.
Most works try to learn such models by ensuring that the input gradients of these models do not
align (Ross & Doshi-Velez, 2018; Teney et al., 2022). Xu et al. (2022) proposes a way to learn
diverse/orthogonal classifiers under the assumption that a complete classifier, that uses all features
is available, and demonstrates its utility for various downstream tasks such as style transfer. Lee
et al. (2022) learns diverse classifiers by enforcing diversity on unlabeled target data.

Spurious correlations: There has been a large body of work which identifies the reasons for spu-
rious correlations in NNs (Sagawa et al., 2020b) as well as proposing algorithmic fixes in different
settings (Liu et al., 2021; Chen et al., 2020).

Implicit bias of gradient descent: There is also a large body of work understanding the implicit bias
of gradient descent dynamics. Most of these works are for standard linear (Ji & Telgarsky, 2019) or
deep linear networks (Soudry et al., 2018; Gunasekar et al., 2018). For nonlinear neural networks,
one of the well-known results is for the case of 1-hidden layer neural networks with homogeneous
activation functions (Chizat & Bach, 2020), which we crucially use in our proofs.

3 PRELIMINARIES

In this section, we provide the notation and background on infinite width max-margin classifiers that
is required to interpret the results of this paper.

3.1 BASIC NOTIONS

1-hidden layer neural networks and loss function. Consider instances x ∈ Rd and labels y ∈
{±1} jointly distributed as D. A 1-hidden layer neural network model for predicting the label for a
given instance x, is defined by parameters (w̄ ∈ Rm×d, b̄ ∈ Rm, ā ∈ Rm). For a fixed activation
function ϕ, given input instance x, the model is given as f((w̄, b̄, ā), x) := ⟨ā, ϕ(w̄x + b̄)⟩, where
ϕ(·) is applied elementwise. The cross entropy loss L for a given model f , input x and label y is
given as L (f(x), y)

def
= log(1 + exp(−yf((w̄, b̄, ā), x))).

Margin. For data distribution D, the margin of a model f(x) is given as min(x,y)∼D yf(x).
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Notation. Here is some useful notation that we will use repeatedly. For a matrix A, A(i, .) denotes
the ith row of A. For any k ∈ N, Sk−1 denotes the surface of the unit norm Euclidean sphere in
dimension k.

3.2 INITIALIZATIONS

The gradient descent dynamics of the network depends strongly on the scale of initialization. In this
work, we primarily consider rich regime initialization.

Rich regime. In rich regime initialization, for any i ∈ [m], the parameters (w̄(i, .), b̄(i)) of the first
layer are sampled from a uniform distribution on Sd. Each ā(i) is sampled from Unif{−1, 1}, and
the output of the network is scaled down by 1

m (Chizat & Bach, 2020). This is roughly equivalent
to Xavier initialization Glorot & Bengio (2010), where the weight parameters in both the layers are
initialized approximately as N (0, 2

m ) when m ≫ d.

In addition, we also present some results for the lazy regime initialization described below.

Lazy regime. In the lazy regime, the weight parameters in the first layer are initialized with N (0, 1
d ),

those of second layer are initialized with N (0, 1
m ) and the biases are initialized to 0 (Bietti & Mairal,

2019; Lee et al., 2019). This is approximately equivalent to Kaiming initialization (He et al., 2015).

3.3 THE INFINITE WIDTH LIMIT

For 1-hidden layer neural networks with ReLU activation in the infinite width limit i.e., as m → ∞,
Jacot et al. (2018); Chizat et al. (2019); Chizat & Bach (2020) gave interesting characterizations of
the trained model. As mentioned above, the training process of these models falls into one of two
regimes depending on the scale of initialization (Chizat et al., 2019):

Rich regime. In the infinite width limit, the neural network parameters can be thought of as a distri-
bution ν over triples (w, b, a) ∈ Sd+1 where w ∈ Rd, b, a ∈ R. Under the rich regime initialization,
the function f computed by the model can be expressed as

f(ν, x) = E(w,b,a)∼ν [a(ϕ(⟨w, x⟩+ b)] . (1)

Chizat & Bach (2020) showed that the training process with rich initialization can be thought of
as gradient flow on the Wasserstein-2 space and gave the following characterization of the trained
model under the cross entropy loss E(x,y)∼D[L(ν, (x, y))].
Theorem 3.1. (Chizat & Bach, 2020) Under rich initialization in the infinite width limit with cross
entropy loss, if gradient flow on 1-hidden layer NN with ReLU activation converges, it converges to
a maximum margin classifier ν∗ given as

ν∗ = argmax
ν∈P(Sd+1)

min
(x,y)∼D

yf(ν, x) , (2)

where P(Sd+1) denotes the space of distributions over Sd+1.

This training regime is known as the ‘rich’ regime since it learns data dependent features ⟨w, ·⟩.
Lazy regime. Jacot et al. (2018) showed that in the infinite width limit, the neural network behaves
like a kernel machine. This kernel is popularly known as the Neural Tangent Kernel(NTK), and is
given by K(x, x′) =

〈
∂f(x)
∂W , ∂f(x′)

∂W

〉
, where W denotes the set of all trainable weight parameters.

This initialization regime is called ’lazy’ regime since the weights do not change much from ini-
tialization, and the NTK remains almost constant, i.e, the network does not learn data dependent
features. We will use the following characterization of the NTK for 1-hidden layer neural networks.
Theorem 3.2. Bietti & Mairal (2019) Under lazy regime initialization in the infinite width limit, the
NTK for 1-hidden layer neural networks with ReLU activation i.e., ϕ(u) = max(u, 0), is given as

K(x, x′) = ∥x∥∥x′∥κ
(

⟨x, x′⟩
∥x∥∥x′∥

)
,

where
κ(u) =

1

π
(2u(π − cos−1(u)) +

√
1− u2) .
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Figure 2: Illustration of an IFM dataset. Given a class ±1 represented by blue and red respectively,
each coordinate value is drawn independently from the corresponding distribution. Shown above
are the supports of distributions on three different coordinates for an illustrative IFM dataset, for
positive and negative labels.

Lazy regime for binary classification. Soudry et al. (2018) showed that for linearly separable
datasets, gradient descent for linear predictors on logistic loss converges to the max-margin sup-
port vector machine (SVM) classifier. This implies that, any sufficiently wide neural network, when
trained for a finite time in the lazy regime on a dataset that is separable by the finite-width induced
NTK, will tend towards the L2 max-margin-classifier given by

argmin
f∈H

∥f∥H s.t. yf(x) ≥ 1 ∀ (x, y) ∼ D , (3)

where H represents the Reproducing Kernel Hilbert Space (RKHS) associated with the finite width
kernel (Chizat, 2020). With increasing width, this kernel tends towards the infinite-width NTK
(which is universal (Ji et al., 2020)). Therefore, in lazy regime, we will focus on the L2 max-
margin-classifier induced by the infinite-width NTK.

4 CHARACTERIZATION OF SB IN 1-HIDDEN LAYER NEURAL NETWORKS

In this section, we first theoretically characterize the SB exhibited by gradient descent on linearly
separable datasets in the independent features model (IFM). The main result, stated in Theorem 4.1,
is that for binary classification of inputs in Rd, even if there is a single coordinate in which the data is
linearly separable, gradient descent dynamics will learn a model that relies solely on this coordinate,
even when there are an arbitrarily large number d− 1 of coordinates in which the data is separable,
but by a non-linear classifier. In other words, the simplicity bias of these networks is characterized
by low dimensional input dependence, which we denote by LD-SB. We then experimentally verify
that NNs trained on some real datasets do indeed satisfy LD-SB.

4.1 DATASET

We consider datasets in the independent features model (IFM), where the joint distribution over
(x, y) satisfies p(x, y) = r(y)

∏d
i=1 qi(xi|y), i.e, the features are distributed independently condi-

tioned on the label y. Here r(y) is a distribution over {−1,+1} and qi(xi|y) denotes the conditional
distribution of ith-coordinate xi given y. IFM is widely studied in literature, particularly in the con-
text of naive-Bayes classifiers Lewis (1998). We make the following assumptions which posit that
there are at least two features of differing complexity for classification: one with a linear boundary
and at least one other with a non-linear boundary. See Figure 2 for an illustrative example.

• One of the coordinates (say, the 1st coordinate WLOG) is separable by a linear decision boundary
with margin γ (see Figure 2), i.e, ∃γ > 0, such that γ ∈ Supp(q1(x1|y = +1)) ⊆ [γ,∞) and
−γ ∈ Supp(q1(x1|y = −1)) ⊆ (−∞,−γ], where Supp(·) denotes the support of a distribution.

• None of the other coordinates is linearly separable. More precisely, for all the other coordinates
i ∈ [d] \ {1}, 0 ∈ Supp(qi(xi|y = −1)) and {−1,+1} ⊆ Supp(qi(xi|y = +1)).

• The dataset can be perfectly classified even without using the linear coordinate. This means,
∃i ̸= 1, such that qi(xi|y) has disjoint support for y = +1 and y = −1.

Though we assume axis aligned features, our results also hold for any rotation of the dataset. While
our results hold in the general IFM setting, in comparison, current results for SB e.g., Shah et al.
(2020), are obtained for very specialized datasets within IFM, and do not apply to IFM in general.

5



Under review as a conference paper at ICLR 2023

4.2 MAIN RESULT

Our main result states that, for rich initialization (Section 3.2), NNs demonstrate LD-SB for any
IFM dataset satisfying the above conditions. Its proof appears in Appendix A.1.
Theorem 4.1. For any dataset in the IFM model satisfying the above conditions and γ ≥ 1,
if gradient flow for 1-hidden layer FCN under rich initialization in the infinite width limit
with cross entropy loss converges, it converges to ν∗ = 0.5δθ1 + 0.5δθ2 on Sd+1, where

θ1 = ( γ√
2(1+γ2)

e1,
1√

2(1+γ2)
, 1/

√
2), θ2 = (− γ√

2(1+γ2)
e1,

1√
2(1+γ2)

,−1/
√
2) and e1

def
=

[1, 0, · · · , 0] denotes first standard basis vector. This implies f(ν∗, Px1 + P⊥x2) = f(ν∗, x1)
∀ (x1, y1), (x2, y2) ∼ D, where P represents the (rank-1) projection matrix on first coordinate.

Moreover, since at least one of the coordinates {2, . . . , d} has disjoint support for qi(xi|y = +1)
and qi(xi|y = −1), P⊥(x) can still perfectly classify the given dataset, thereby implying LD-SB.

It is well known that the rich regime is more relevant for the practical performance of NNs since it
allows for feature learning, while lazy regime does not (Chizat et al., 2019). Nevertheless, in the next
section, we present theoretical evidence that LD-SB holds even in the lazy regime, by considering a
much more specialized dataset within IFM.

4.3 LAZY REGIME

In this regime, we will work with the following dataset within the IFM family:

For y ∈ {±1} we generate (x, y) ∈ D as

x1 = γy

∀i ∈ 2, .., d,xi =

{
±1 for y = 1
0 for y = −1

Although the dataset above is a point mass dataset, it still exhibits an important characteristic in
common with the rich regime dataset – only one of the coordinates is linearly separable while others
are not. For this dataset, we provide the characterization of max-margin NTK (as in Eqn. (3)):
Theorem 4.2. For sufficiently small ϵ > 0, there exists an absolute constant N such that for all
d > N and γ ∈ [7, ϵ

√
d), the L2 max-margin classifier for joint training of both the layers of

1-hidden layer FCN in the NTK regime on the dataset D, i.e., any f satisfying Eqn. (3) satisfies:

pred(f(Px1 + P⊥x2)) = pred(f(x1)) ∀ (x1, y1), (x2, y2) ∈ D

where P represents the projection matrix on the first coordinate and pred(f(x)) represents the
predicted label by the model f on x.

The above theorem shows that the prediction on a mixed example Px1 + P⊥x2 is the same as that
on x1, thus establishing LD-SB. The proof for this theorem is provided in Appendix A.2.

4.4 EMPIRICAL VERIFICATION

In this section, we will present empirical results demonstrating LD-SB on 3 real datasets: Imagenette
(FastAI, 2021), a binary version of Imagenette (b-Imagenette) and waterbirds-landbirds (Sagawa
et al., 2020a) as well as one designed dataset MNIST-CIFAR (Shah et al., 2020). More details about
the datasets can be found in Appendix B.1.

4.4.1 EXPERIMENTAL SETUP

We take Imagenet pretrained Resnet-50 models, with 2048 features, for feature extraction and train
a 1-hidden layer fully connected network, with ReLU nonlinearity, and 100 hidden units, for classi-
fication on each of these datasets. During the finetuning process, we freeze the backbone Resnet-50
model and train only the 1-hidden layer head (more details in Appendix B.1) .

Demonstrating LD-SB: Given a model f(·), we establish its low dimensional SB by identifying a
small dimensional subspace, identified by its projection matrix P , such that if we mix inputs x1 and
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Figure 3: Evolution of effective rank of first layer weight matrices in rich and lazy regimes.

Table 1: Demonstration of LD-SB in the rich regime: This table presents P⊥ and P randomized
accuracies (RA) as well as logit changes (LC) on the four datasets. These results confirm that
projection of input x onto the subspace spanned by P essentially determines the model’s prediction
on x. ↑ (resp. ↓) indicates that LD-SB implies a large (resp. small) value.

Dataset rank (P ) Acc(f ) P⊥-RA (↑) P -RA (↓) P⊥-LC (↓) P -LC (↑)
b-Imagenette 1 93.05±0.26 89.94±0.22 49.53±0.24 28.57±0.26 92.13± 0.24
Imagenette 10 79.52±0.13 75.89±0.25 9.33± 0.01 33.64±1.21 106.29±0.53
Waterbirds 3 91.88± 0.1 91.47±0.11 62.51±0.07 25.24±1.03 102.35±0.19

MNIST-CIFAR 1 99.69± 0.0 94.15±0.21 55.2± 0.13 38.97±0.76 101.98±0.31

x2 as Px1+P⊥x2, the model’s output on the mixed input x̃ def
= Px1+P⊥x2, f(x̃) is always close to

the model’s output on x1 i.e., f(x1). We measure closeness in four metrics: (1) P⊥-randomized ac-
curacy (P⊥-RA): accuracy on the dataset (Px1+P⊥x2, y1) where (x1, y1) and (x2, y2) are sampled
iid from the dataset, (2) P -randomized accuracy (P -RA): accuracy on the dataset (Px1+P⊥x2, y2),
(3) P⊥ logit change (P⊥-LC): relative change wrt logits of x1 i.e., ∥f(x̃)− f(x1)∥ / ∥f(x1)∥, and
(4)P logit change (P -LC): relative change wrt logits of x2 i.e., ∥f(x̃)− f(x2)∥ / ∥f(x2)∥.

As described in Sections 4.2 and 4.3, the training of 1-hidden layer neural networks might follow
different trajectories depending on the scale of initialization. So, the subspace projection matrix P
will be obtained in different ways for rich vs lazy regimes. For rich regime, we will empirically
show that the first layer weights have a low rank structure as per Theorem 4.1 while for lazy regime,
we will show that though first layer weights do not exhibit low rank structure, the model still has
low dimensional dependence on the input as per Theorem 4.2.

4.4.2 RICH REGIME

Theorem 4.1 suggests that asymptotically, the first layer weight matrix will be low rank. However,
since we train only for a finite amount of time, the weight matrix will only be approximately low
rank. To quantify this, we use the notion of effective rank Roy & Vetterli (2007) to measure the rank
of the first layer weight matrix.
Definition 4.3. Given a matrix M , its effective rank is defined as: Eff-rank(M) =

e−
∑

i σi(M)2 log σi(M)2 where σi(M) denotes the ith singular value of M and σi(M)2
def
= σi(M)2∑

i σi(M)2 .

One way to interpret the effective rank is that it is the exponential of von-Neumann entropy Petz
(2001) of the matrix MM⊤

Tr(MM⊤)
, where Tr (·) denotes the trace of a matrix. For illustration, the

effective rank of a projection matrix onto k dimensions equals k.

Figure 3a shows the evolution of the effective rank through training on the four datasets. We observe
that the effective rank of the weight matrix decreases drastically towards the end of training. To
confirm that this indeed leads to LD-SB, we set P to be the subspace spanned by the top singular

7



Under review as a conference paper at ICLR 2023

Table 2: Demonstration of LD-SB in the lazy regime: This table presents P⊥ and P randomized
accuracies as well as logit changes on the four datasets. These results confirm that the projection of
input x onto the subspace spanned by P essentially determines the model’s prediction on x.

Dataset rank (P ) Acc(f ) P⊥-RA (↑) P -RA (↓) P⊥-LC (↓) P -LC (↑)
b-Imagenette 1 92.75±0.06 90.07±0.34 52.09±1.34 36.94±1.01 138.41±1.62
Imagenette 15 79.97±0.44 68.25±1.18 11.92±0.82 55.99±3.86 133.86±5.42
Waterbirds 6 90.46±0.07 89.67±0.42 62.44±4.48 36.89±5.18 105.41±7.06

MNIST-CIFAR 2 99.74± 0.0 99.45±0.17 49.83±0.67 24.9± 0.61 141.12±1.86

Table 3: Mistake diversity and class conditioned logit correlation of models trained independently
(Mist-Div (f, find) and CC-LogitCorr (f, find) resp.) vs trained sequentially after projecting out im-
portant features of the first model (Mist-Div (f, fproj) and CC-LogitCorr (f, fproj) resp.). The results
demonstrate that f and fproj are more diverse compared to f and find.

Dataset Mist-Div
(f, find) (↑)

Mist-Div
(f, fproj) (↑)

CC-LogitCorr
(f, find) (↓)

CC-LogitCorr
(f, fproj) (↓)

B-Imagenette 3.87± 1.54 21.15± 1.57 99.88± 0.01 90.86± 1.08
Imagenette 6.6± 0.46 11.44± 0.65 99.31± 0.12 91± 0.59
Waterbirds 2.9± 0.52 14.53± 0.48 99.66± 0.04 93.81± 0.48

MNIST-CIFAR 0.0± 0.0 5.56± 7.89 99.76± 0.17 78.74± 2.28

directions of the first layer weight matrix and compute P and P⊥ randomized accuracies as well
as the relative logit change. The results, presented in Table 1 confirm LD-SB in the rich regime on
these datasets.

4.4.3 LAZY REGIME

For the lazy regime, it turns out that the rank of first layer weight matrix remains high throughout
training, as shown in Figure 3b. However, we are able to find a low dimensional projection matrix P
satisfying the conditions of LD-SB (as stated in Def 1.1) as the solution to an optimization problem.
More concretely, given a pretrained model f and a rank r, we obtain a projection matrix P solving:

min
P

1

n

n∑
i=1

(
L (f(Pxi), yi) + λL

(
f(P⊥xi),U [L]

))
where U [L] represents a uniform distribution over all the L labels, (x1, y1), · · · , (xn, yn) are training
examples and L (·, ·) is the cross entropy loss. We reiterate that the optimization is only over P ,
while the model parameters f are unchanged. In words, the above function ensures that the neural
network produces correct predictions along P and uninformative predictions along P⊥. Table 2
presents the results for P⊥ and P -RA as well as LC. As can be seen, even in this case, we are able
to find small rank projection matrices demonstrating LD-SB.

5 TRAINING DIVERSE CLASSIFIERS USING OrthoP

Motivated by our results on low dimensional SB, in this section, we present a natural way to train
diverse models, so that an ensemble of such models could mitigate SB. More concretely, given an
initial model f with a low dimensional projection P that captures its input dependence, we train
another model fproj by projecting the input through P⊥ i.e., instead of using dataset (xi, yi) for
training, we use (P⊥xi, yi) for training the second model (denoted by fproj). We refer to this training
procedure as OrthoP for orthogonal projection.

Given any two models f and f̃ , we evaluate their diversity using two metrics. The first is mistake
diversity: Mist-Div

(
f, f̃

)
def
= 1− |{i:f(xi) ̸=yi & f̃(xi )̸=yi}|

min(|{i:f(xi) ̸=yi}|,|{i:f̃(xi )̸=yi}|
, where we abuse notation by using

8
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Figure 4: Decision boundaries for f and fproj for B-Imagenette and Waterbirds datasets, visualized
in the top 2 singular directions of the first layer weight matrix. The decision boundary of fproj is
more non-linear compared to that of f .
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(c) Waterbirds-Landbirds

Figure 5: Variation of test accuracy vs standard deviation of Gaussian noise added to the pretrained
representations of the dataset. Model 1 (i.e., f ) is kept fixed, and values for both the ensembles are
averaged across 3 runs. Standard deviation is shown by the error bars.

f(xi) (resp. f̃(xi)) to denote the class predicted by f (resp f̃ ) on xi. Higher Mist-Div
(
f, f̃

)
means

that there is very little overlap in the mistakes of f and f̃ . The second is class conditioned logit cor-
relation i.e., correlation between outputs of f and f̃ , conditioned on the class. More concretely,

CC-LogitCorr
(
f, f̃

)
=

∑
y∈Y Corr([f(xi)],[f̃(xi)]:yi=y)

|Y| , where corr([f(xi)], [f̃(xi)] : yi = y) rep-

resents the empirical correlation between the logits of f and f̃ on the data points where the true
label is y. Table 3 compares the diversity of two independently trained models (f and find) with that
of two sequentially trained models (f and fproj) as above. The results demonstrate that f and fproj
are more diverse compared to f and find. Figure 4 shows the decision boundary of f and fproj on
2-dimensional subspace spanned by top two singular vectors of the weight matrix. We observe that
the decision boundary of the second model is more non-linear compared to that of the first model.

Finally, Figure 5 shows the variation of test accuracy with the strength of gaussian noise added to
the pretrained representations of the dataset. We can see that an ensemble of f and fproj is much
more robust as compared to an ensemble of f and find (where an ensemble is obtained by averaging
the logits of the two models).

6 DISCUSSION

In this work, we characterize the simplicity bias exhibited by one hidden layer neural networks in
terms of the low-dimensional input dependence of the model. We provide a theoretical proof for
linearly separable datasets, and validate it empirically on real datasets. Based on this characteriza-
tion, we also propose a simple way to train diverse models and show that it leads to models with
significantly better Gaussian noise robustness.

This work is an initial step towards rigorously defining simplicity bias or shortcut learning of neural
networks, which is one of the major challenges to their real-world deployment (Geirhos et al., 2020).
Providing a similar characterization for deeper nets and other architectures is an important research
direction, which, in our opinion, requires a better understanding of the training dynamics and limit
points of gradient descent on these networks.
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A PROOFS FOR RICH AND LAZY REGIME

A.1 RICH REGIME

We restate Theorem 4.1 below and prove it.
Theorem A.1. For any dataset in IFM model satisfying the conditions in Section 4.1, γ ≥ 1
and f(ν, x) as in Eqn. (1), the distribution ν∗ = 0.5δθ1 + 0.5δθ2 on Sd+1 is the unique
max-margin classifier satisfying Eqn. (2), where θ1 = ( γ√

2(1+γ2)
e1,

1√
2(1+γ2)

, 1/
√
2), θ2 =

(− γ√
2(1+γ2)

e1,
1√

2(1+γ2)
,−1/

√
2) and e1

def
= [1, 0, · · · , 0] denotes first standard basis vector.

In particular, this implies that if gradient flow for 1-hidden layer FCN under rich initializa-
tion in the infinite width limit with cross entropy loss converges, it converges to ν∗ satisfying
f(ν∗, Px1 + P⊥x2) = f(ν∗, x1)∀(x1, y1), (x2, y2) ∈ D, where P represents the (rank-1) pro-
jection matrix on the first coordinate.

Proof of Theorem A.1: (Chizat & Bach, 2020) showed the following primal-dual characterization of
maximum margin classifiers in eqn. (2):

Lemma A.2. (Chizat & Bach, 2020) ν∗ satisfies eqn. (2) if there exists a data distribution p∗ such
that the following two complementary slackness conditions hold:

Supp(ν∗) ⊆ argmax
(w,b,a)∈Sd+1

E(x,y)∼p∗y[a(ϕ(⟨w, x⟩+ b))] and (4)

Supp(p∗) ⊆ argmin
(x,y)∼D

yE(w,b,a)∼ν∗ [a(ϕ(⟨w, x⟩+ b))] . (5)

The plan is to construct a distribution p∗ that satisfies the conditions of the above Lemma.

Uniqueness. Note further that for a fixed p∗, E(x,y)∼p∗yf(ν, x) is an upper bound for the margin
min(x,y)∼D yf(ν, x) of any classifier ν. Hence, for uniqueness, it suffices to show that δθ1 , δθ2 are
the unique maximizers of the objective on the RHS of eqn. (4) and that the unique maximum margin
convex combination of δθ1 , δθ2 over D is ν∗.

We first describe the support D of p∗. For y ∈ {±1} we generate (x, y) ∈ D as

x1 = γy

∀i ∈ 2, .., d,xi =

{
±1 for y = 1
0 for y = −1

Now for (x, y) ∈ D, define

p∗(x, y) =

{
0.5 for y = 1
0.5d for y = −1

(6)

Note that p∗ is supported on 2d−1 positive instances and one negative instance. We begin by showing
eqn. (5).

Claim A.3. p∗ as in eqn. (6) satisfies eqn. (5). Further, the unique maximum margin convex combi-
nation of δθ1 , δθ2 is ν∗.

Proof. Let us find the minimizers (x, y) ∼ D of yf(ν, x) = yE(w,b,a)∼ν∗ [a(ϕ(⟨w, x⟩+ b))] for any
ν = λδθ1 + (1− λ)δθ2 , 0 ≤ λ ≤ 1.

yf(ν, x) for (x, y) with y = −1 (denoting x1 by −α1, where α1 ≥ γ) is

yf(ν, x) = −1
[
λ ∗ ϕ

(
γ√

2(1 + γ2)
e⊤1 (−α1e1) +

1√
2(1 + γ2)

)
∗ 1√

2

+ (1− λ) ∗ ϕ

(
− γ√

2(1 + γ2)
e⊤1 (−α1e1) +

1√
2(1 + γ2)

)
∗ −1√

2

]
,
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and for (x, y) with y = 1 (denoting x1 by α2, where α2 ≥ γ) is

yf(ν, x) = 1
[
λ ∗ ϕ

(
γ√

2(1 + γ2)
e⊤1 (α2e1) +

1√
2(1 + γ2)

)
∗ 1√

2

+ (1− λ) ∗ ϕ

(
− γ√

2(1 + γ2)
e⊤1 (α2e1) +

1√
2(1 + γ2)

)
∗ −1√

2

]
.

As γ ≥ 1, the expressions above equal λ
√
γα1+1
2 and (1 − λ)

√
γα2+1
2 respectively, and hence are

minimized at α1 = α2 = γ. Hence, the margin of ν is min(λ, 1 − λ)

√
1+γ2

2 which is uniquely
maximized at λ = 1/2. Further for λ = 1/2, all points in D have the same value of yf(ν, x).

In the rest of the proof we show eqn. (4), Let us denote by g(w, b, a) := E(x,y)∼p∗y[a(ϕ(⟨w, x⟩+b))].
We show that δθ1 , δθ2 are the only maximizers of g(w, b, a) over Sd+1.

We first find g(θ1), g(θ2).

g(θ1) = Pr(y = 1) · 1 · 1√
2
· ϕ

(
γ√

2(1 + γ2)
eT1 (γe1) +

1√
2(1 + γ2)

)

+ Pr(y = −1) · −1 · 1√
2
· ϕ

(
γ√

2(1 + γ2)
eT1 (−γe1) +

1√
2(1 + γ2)

)
=

√
γ2 + 1

4
,

where the first term is because w2, w3, . . . , wd are zero for θ1. Similarly, g(θ2) =
√

γ2+1

4 . We now

show that g(w, a, b) <
√

γ2+1

4 for (w, a, b) /∈ {θ1, θ2}.

We begin by showing the following simple but useful claim.

Claim A.4. All maximizers of g(w, b, a) over Sd+1 satisfy |a| = 1/
√
2.

Proof. The proof essentially follows from the 1−homogeneity of the ReLU function ϕ and sepa-
rability of g(w, b, a). Note that g(w, b, a) =

√
∥w∥2 + b2a · g(w′, b′, 1) where ∥w′∥2 + b2 = 1.

Maximizing g(w, b, a) is equivalent to maximizing g(w′, b′, 1) over Sd and a
√

∥w∥2 + b2 over Sd+1

respectively. The second of these has its unique maximum at |a| = 1/
√
2, completing the proof.

Now express g(w, b, a) as

g (w, b, a) = a
(
Pr(y = 1)E[ϕ(wTx+ b)|y = 1]− Pr(y = −1)E[ϕ(wTx+ b)|y = −1]

)
=

a

2

(
Eσ

[
ϕ(γw1 + b+

d∑
i=2

σiwi)
]
− ϕ(b− γw1)

)
, (7)

where σi are independent Rademacher random variables. We have two cases on a:

Case 1: a = 1/
√
2. By eqn. (7) we have

g(w, b, 1/
√
2) ≤ 1

2
√
2
Eσ

[
ϕ(γw1 + b+

d∑
i=2

σiwi)
]
.

To simplify the above, define the random variable X =
∑d

i=2 σiwi and denote γw1 + b by α. Note

that |α| = |γw1 + b| ≤
√

γ2+1
2 which follows from ∥w∥2 + b2 = 1/2. The expectation in the last

expression above becomes

E[ϕ(X + α)] = E[(X + α)1{X + α ≥ 0}] = E[X1{X ≥ −α}] + αPr(X ≥ −α)

= E[X1{X ≥ α}] + α(1− Pr(X ≥ α)) ≤ E[X1{X ≥ α}] + α ,

15



Under review as a conference paper at ICLR 2023

where the last equality follows from symmetry of X . Note that Var(X) =
∑d

i=2 w
2
i which is at most

1
2 − α2

1+γ2 (using γw1 + b = α and ∥w∥2 + b2 = 1/2). Using A.5 to upper bound E[X1{X ≥ α}]
we have

E[ϕ(X + α)] ≤ α+

√√√√1

2
min

(
1

2
,

1
2 − α2

1+γ2

2α2

)(
1

2
− α2

1 + γ2

)
.

We can check that the RHS of the above has its unique maximizer at α =
√

1+γ2

2 for |α| ≤
√

1+γ2

2 .

Hence g(w, b, a) ≤
√

1+γ2

4 in this case. We are now done since any (w1, b) satisfying γw1 + b =√
1+γ2

2 and w2
1 + b2 ≤ 1/2 has b = 1√

2(1+γ2)
.

Case 2: a = −1/
√
2. Using eqn. (7) we have g(w, b,−1/

√
2) ≤ ϕ(b − γw1)/2

√
2 which for

b2 + w2
1 ≤ 1/2 attains its unique maximum

√
γ2+1

4 at b = 1√
2(1+γ2)

.

Finally, note that the weights of the trained network (w, b, a) are sampled from ν∗. Hence, the final
claim in the theorem about f(ν∗, Px1+P⊥x2) follows since the distribution of w only has a support
on e1 and −e1.

A.1.1 AUXILIARY LEMMAS FOR RICH REGIME

Lemma A.5. For any symmetric discrete random variable X with bounded variance, for α > 0,

E[XI(X ≥ α)] ≤

√
1

2
min

(
1

2
,
V ar(X)

2α2

)
V ar(X) .

Proof.

E[XI(X ≥ α)] =
∑
x≥α

xp(x) =
∑
x≥α

√
p(x)

√
p(x)x ≤

√
p(X ≥ α)

∑
x≥α

x2p(x) , (8)

where the last inequality is by Cauchy-Schwartz. Also by Chebyshev’s inequality, p(|X| ≥ α) ≤
V ar(X)/2α2. Combining this with eqn. (8) and using symmetry of X and non-negativity of α gives
the required lemma.

A.2 LAZY REGIME

Theorem 4.2 is a corollary of the following more general theorem.

Theorem A.6. Consider a point x ∈ D. For sufficiently small ϵ > 0, there exist an absolute
constant N such that for all d > N, γ < ϵ

√
d and γ ≥ 7, for the joint training of both the layers of

1-hidden layer FCN in the NTK regime, the prediction of any point of the form (ζ, x2:d) satisfies the
following:

1. For ζ ≥ 0.73, the prediction is positive.

2. For ζ ≤ −0.95γ, the prediction is negative.

The above theorem establishes that perturbing x1 by O(γ) changes pred(f(x)) for x ∈ D (whereas
a classifier exists that achieves a margin of Ω(

√
d) on D, as D has margin 1 for coordinates

{2 · · · d}). As γ = o(d), this shows that the learned model is adversarially vulnerable.

Proof of Theorem A.6. The idea of the proof is to obtain an explicit expression for f(x) by applying
standard kernel max-margin SVM theory to the NTK kernel 3.2.
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We begin with some preliminaries. We will refer to the first coordinate of the instance as the ’linear’
coordinate, and to the rest as ’non-linear’ coordinates. Also, henceforth we append an extra coordi-
nate with value 1 to all our instances (corresponding to bias term) - as is standard for working with
unbiased SVM without loss of generality.

Explicit expression for f . Using representer theorem for max margin kernel SVM, we know that f
can be expressed as

f(x) =
∑

(x(t),y(t))∈D

λty
(t)K(x, x(t)) ,

for some λt ≥ 0 (that are known as Lagrange multipliers). Further by KKT conditions, a function
possessing such a representation (that correctly classifies D) has maximum margin if y(t)f(x(t)) =
1 whenever λt > 0 (training points t satisfying λt > 0 are called support vectors).

We begin with a useful claim.

Claim A.7. The max margin kernel SVM for D with the NTK kernel has all points in D as support
vectors.

Proof. By the above discussion, it suffices to show that the (unique) solution α ∈ R|D| to Kα =
y satisfies sign(αi) = y(i) for all i, where K is the |D| × |D| Gram matrix with (i, j)th entry
K(x(i), x(j)) and yi = y(i) (the Lagrange multipliers λi are then given by yiαi).

Structure of Gram matrix. Order D so that the positive instances appear first. Then the Gram

matrix K has a block structure of the form
(

B C
CT R

)
where B ∈ R2d−1×2d−1

and R ∈ R are the

Gram matrices for the positive and negative instances respectively, and C ∈ R2d−1×1 represents the
K(x(i), x(|D|)) values for i < |D|.

Recall that for the NTK kernel, K(x(i), x(j)) has the form ∥x(i)∥∥x(j)∥κ(⟨x(i), x(j)⟩). Note all the
positive instances have the same norm (denoted by ρ1 =

√
d+ γ2) and the inner product between

two positive instances depends only on the number i of non-matching non-linear coordinates (de-
noted by βi for 0 ≤ i ≤ d− 1). Hence, the rows of B are permutations of each other, with the entry
ρ21βi appearing

(
d−1
i

)
times. Similarly, the entries in C are all equal and are denoted by ρ1ρ2βd

where βd denotes κ(x(t), x|D|) for any t < |D| and ρ2 = ∥x|D|∥ =
√
1 + γ2. The only entry in R

is ρ22κ(1). In particular,

βi = κ

(
d− 2i+ γ2

d+ γ2

)
for i ∈ [|D| − 1], and βd = κ

(
1− γ2√

d+ γ2
√

1 + γ2

)
.

Now we are ready to solve Kα = y. By symmetry in the structure of K, α looks like [a, a, ......, b],
where the first |D| − 1 entries are the same.

Expanding Kα = y, we get two equations given by

aρ21

(
d−1∑
i=0

(
d− 1

i

)
βi

)
+ bρ1ρ2βd = 1 and 2d−1aρ1ρ2βd + ρ22κ(1)b = −1 .

Solving, we get

a =
ρ2κ(1) + ρ1βd

ρ21ρ2
∑d−1

i=0

((
d−1
i

)
[κ(1)βi − β2

d ]
) and b =

−1− 2d−1aρ1ρ2βd

ρ22κ(1)
.

We now show that a > 0 and b < 0. Note that for sufficiently large d, βd can be made arbitrarily
close to κ(0) = 1/π (since κ is smooth around 0). Hence, a > 0 implies b < 0. We in fact give the
following estimate for a:

a = 21−d · ρ2κ(1) + ρ1βd

ξρ21ρ2
where

2

π
− 1

π2
+O

(
1

d

)
≤ ξ ≤ 2 +O

(
1

d

)
. (9)
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For the lower bound on ξ, write

d−1∑
i=0

(
d− 1

i

)
[κ(1)βi − β2

d ] = κ(1)

⌊d/2⌋∑
i=0

(
d− 1

i

)
(βi + βd−1)− 2d−1β2

d

≥ κ(1)

⌊d/2⌋∑
i=0

(
d− 1

i

)
2βd/2 − 2d−1β2

d ≥ 2d−1

(
κ(1)κ(0)− κ2(0) +O

(
1

d

))
,

where for the first inequality we used convexity of κ and for the second inequality we used βd/2 =

κ(0) +O(1/d), βd = κ(0) +O(1/
√
d). For the upper bound on ξ, write

d−1∑
i=0

(
d− 1

i

)
[κ(1)βi − β2

d ] ≤ κ(1)

d−1∑
i=0

(
d− 1

i

)
κ

(
1− 2i

d+ γ2

)

≤ κ(1)

d−1∑
i=0

(
d− 1

i

)(
2− 2i

d+ γ2

)
= κ(1)2d − κ(1)(d− 1)2d−1

d+ γ2
,

where for the second inequality we used κ(u) ≤ 1 + u (which holds by convexity and κ(−1) =
0, κ(1) = 2).

Now we analyze predicted labels for points of the form (ζ, x2:d+1) where x ∈ D. We make two
cases depending on the label of x.

Predicted label for point (ζ, x(t)
2:d+1) where x(t) ∈ D has positive label

Our point (denoted by x) has the form (ζ, ζ1, ζ2, . . . , ζd, 1) where ζi ∈ ±1. The idea of the proof is
to write f explicitly as a function of ζ and work with its first order Taylor expansion around ζ = γ,
with some additional work to take care of non-smoothness of f .

Explicit form for f . Let τi
def
= ⟨x, x′⟩/(∥x∥∥x′∥) for a positive instance x′ ∈ D, where x and x′

have exactly i non-matching non-linear coordinates (for 0 ≤ i ≤ d− 1). Similarly denote by τd the
quantity ⟨x, x|D|⟩/(∥x∥∥x|D|∥). In particular,

τi =

(
d− 2i+ γζ

ρ1∥x∥

)
and τd =

(
1− γζ

ρ2∥x∥

)
.

By the above discussion, we have

f(x) = a

|D|−1∑
t=1

K(x, x(t))

+ bK(x, x|D|) = aρ1∥x∥

(
d−1∑
i=0

(
d− 1

i

)
κ(τi)

)
+ bρ2∥x∥κ(τd) .

Substituting b and denoting f(x)/∥x∥ by g(ζ) we get

g(ζ) = aρ1

[
d−1∑
i=0

(
d− 1

i

)
κ(τi(ζ))−

2d−1βd

κ(1)
κ(τd(ζ))

]
− κ(τd(ζ))

ρ2κ(1)
. (10)

Now try to expand g(ζ) using the Taylor series around ζ = γ (note that g(γ) = 1/ρ1). Note that
κ′ can however be unbounded around −1 and 1. To get around this, write g = h + q, where h has
bounded first and second derivative, and q has lower order than h for ζ of interest. In particular,

h(ζ) = aρ1

 3d/4∑
i=d/4

(
d− 1

i

)
κ(τi(ζ))−

2d−1βd

κ(1)
κ(τd(ζ))

− κ(τd(ζ))

ρ2κ(1)
and

q(ζ) = aρ1

 ∑
i:|d/2−i|>d/4

(
d− 1

i

)
κ(τi(ζ))

 .
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Observe that q(ζ) = o(cd) for c < 1 using the estimate eqn. (9) for a and concentration for sums of
independent Bernoullis. By Taylor’s theorem,

g(ζ) = h(γ) + h′(γ)(ζ − γ) +
h′′(θ)(ζ − γ)2

2
+ q(ζ) , (11)

for some θ ∈ [γ, ζ], where h(γ) ≈ 1/
√
d. It will turn out that |h′(γ)| = Θ(1/

√
d), |h′′(ζ)| =

o(1/
√
d). This will allow us to complete the proof using the linear approximation of g(ζ) by ne-

glecting the second order term and q(ζ). We now compute h′, h′′, treating ∥x∥ =
√
d+ ζ2 as a

constant for exposition (the proof works without this approximation or the reader may think of γ as
o(
√
d)). Using τ ′i(ζ) ≈

γ
ρ1∥x∥ , τ

′
d(ζ) ≈

−γ
ρ2∥x∥ ,

h′(ζ) ≈ aρ1

[
d−1∑
i=0

(
d− 1

i

)
κ′(τi(ζ))

γ

ρ1∥x∥
+

2d−1βd

κ(1)
κ′(τd(ζ))

γ

ρ2∥x∥

]
+

κ′(τd(ζ))

ρ2κ(1)

γ

ρ2∥x∥

h′′(ζ) ≈ aρ1

[
d−1∑
i=0

(
d− 1

i

)
κ′′(τi(ζ))

γ2

ρ21∥x∥2
− 2d−1βd

κ(1)
κ′′(τd(ζ))

γ2

ρ22∥x∥2

]
− κ′′(τd(ζ))

ρ2κ(1)

γ2

ρ22∥x∥2
.

Plugging ∥x∥ ≈ ρ1 ≈
√
d and substituting a from eqn. (9),

h′(ζ) =
(1 + β2

d/ξ)κ
′(τd(ζ))γ

ρ22κ(1)
√
d

+ o

(
1√
d

)
and h′′(ζ) = O

(
1

d

)
,

which substituted in eqn. (11) with τd(ζ) ≈ 0, βd ≈ κ(0), κ′(τd(ζ)) ≈ κ′(0) gives

g(ζ) =
1√
d

(
1 +

(1 + κ2(0)/ξ)κ′(0)γ

κ(1)ρ22
(ζ − γ)

)
+ o

(
1√
d

)
,

Hence, g(ζ) > 0 whenever the coefficient of 1/
√
d above is bounded above zero, and a similar

condition holds for g(ζ) < 0. Using the estimates of ξ from eqn. (9) and κ′(0) = 1, κ(0) =
1/π, κ(1) = 2, ρ22 = 1 + γ2 in the above gives that g(ζ) > 0 for ζ > −0.68γ − 1.68/γ and
g(ζ) < 0 for ζ < −0.905γ − 1.905/γ.

Predicted label for point (ζ, x(t)
2:d+1) where x(t) ∈ D has negative label

Following the same plan, write our point (denoted by x) as (ζ, 0, . . . , 0, 1).

Explicit form for f . Begin by finding

τi =

(
1 + γζ

ρ1∥x∥

)
and τd =

(
1− γζ

ρ2∥x∥

)
.

eqn. (10) now gives

g(ζ) = 2d−1aρ1

[
κ(τ0(ζ))−

βdκ(τd(ζ))

κ(1)

]
− κ(τd(ζ))

ρ2κ(1)
.

Expanding κ(τ0(ζ)) using Taylor series around ζ = −1/γ,

κ(τ0(ζ)) = κ(0) + κ′(τ0(θ))τ
′
0(θ)(ζ +

1

γ
) ,

for some θ ∈ [−1, 1]. For large d, τ0(θ) ≈ 0 and τ ′0(θ) = O(1/
√
d). Hence we have

g(ζ) =
ρ2κ(1) + ρ1βd

ξρ1ρ2

[
κ(0) +O

(
1√
d

)
− βdκ(τd(ζ))

κ(1)

]
− κ(τd(ζ))

ρ2κ(1)

=
1

ρ2

(
κ2(0)

ξ
−
(
κ2(0)

ξκ(1)
+

1

κ(1)

)
κ(τd(ζ))

)
+ o(1) .

As before g(ζ) > 0 whenever the coefficient of 1/ρ2 above is bounded above zero which happens
for ζ ≥ 0.73 (for γ ≥ 3). Similarly, g(ζ) < 0 for ζ ≤ 0.
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B EXPERIMENTS

In this section, we provide experimental details, including hyperparameter tuning setup and some
additional experiments.

B.1 DETAILS ON THE EXPERIMENTAL SETTING

We will first describe the four datasets that have been used in this work.

1. Imagenette (FastAI, 2021): This is a subset of 10 classes of Imagenet, that are compara-
tively easier to classify.

2. b-Imagenette: This is a binarized version of Imagenette, where only a subset of two classes
(tench and English springer) is used.

3. Waterbirds-Landbirds (Sagawa et al., 2020a): This is a majority-minority group dataset,
consisting of waterbirds on water and land background, as well as landbirds on land and
water background. This dataset serves as a baseline for checking the dependence of model
on the spurious background feature when predicting the bird class, as most of the training
examples have waterbirds on water and landbirds on land background.

4. MNIST-CIFAR (Shah et al., 2020): This is a collage dataset, created by concatenating
MNIST and CIFAR images along an axis. This is a synthetic dataset for evaluating the
simplicity bias of a trained model.

Setup Throughout the paper, we work with the pretrained representations of the above datasets,
obtained by using an Imagenet pretrained Resnet 50. We finetune a 1-hidden layer FCN (hidden
dimension - 100) on top of these representations (keeping the backbone fixed) using SGD with a
momentum of 0.9. Every model is trained for 20000 steps (large enough for convergence) with a
warmup and cosine decay learning rate scheduler. For each of the runs, we tune the batch size,
learning rate and weight decay using validation accuracy. Below are the hyperparameter tuning
details:

• Batch size ∈ {128, 256}
• Learning rate:

– Rich regime: ∈ {0.5, 1.0} (as learning rate in rich regime needs to scale up with the
hidden dimension)

– Lazy regime: ∈ {0.01, 0.05}
• Weight decay: ∈ {0, 1e−4}

The final numbers reported are averaged across 3 independent runs with the selected hyperparame-
ters.

Evaluation For Imagenette, b-Imagenette and MNIST-CIFAR, we report the standard test accu-
racy in all the experiments. For waterbirds, we report train-adjusted test accuracy, as reported in
Sagawa et al. (2020a). Precisely, accuracy for each group present in the test data is individually
calculated and then weighed by the proportion of the corresponding group in the train dataset.

B.2 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present a few additional experimental results.

Accuracy of fproj In Table 4, we show the test accuracy of fproj. As can be seen, even after
projecting out the principal components used by f , fproj attains significantly high accuracy. Note
that, in these experiments, model 1 was kept fixed and the accuracy of fproj is averaged across 3 runs.

Results on Imagenet We trained a 1-hidden layer FCN (with 2000 hidden neurons) on Imagenet
dataset, using rich regime initialization, with learning rate selected from the set - {5, 10} (as learning
rate in rich regime needs to scale up with hidden dimension). The evolution of effective rank of the
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Table 4: Trained accuracy of fproj in rich regime

Dataset Acc(f ) Acc(fproj)

b-Imagenette 93.35 91.35± 0.32
Imagenette 79.67 71.93± 0.12
Waterbirds 90.29 89.92± 0.08

MNIST-CIFAR 99.69 98.95± 0.02
Imagenet 72.02 69.63± 0.08
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Figure 6: Evolution of effective rank of first layer weight matrix (dimension - 2048 × 2000) for
Imagenet dataset in rich regime.

first layer weight matrix is shown in Figure 6. As can be seen, the weight matrix becomes sufficiently
low rank as the training progresses. Also, P and P⊥ randomized accuracy (RA) and Logit change
(LC) are shown in Table 5. As can be seen, the model’s prediction is almost determined by the
projection along the top 150 singular vectors of the weight matrix.

We also train a model2 on representations obtained by projecting out the top 150 singular vectors
of the weight matrix of model 1. In Table 6, we show the mistake diversity (Mist-Div) and class-
conditioned logit correlation (CC-LogitCorr) between model 1 and model 2. As can be seen, the
projected out model has higher diversity and lower correlation as compared to an independently
trained model. In Table 4, we also show that the second model achieves comparable accuracy to
model 1.

Singular value decay . In Figure 7, we provide the singular value decay of the weight matrix for
the first model trained in rich regime. As can be seen, the top few singular values capture most of
the Frobenius norm of the matrix.

MNIST-CIFAR In Figure 8, we show that an ensemble of f and fproj has better gaussian robust-
ness than an ensemble of f and find on MNIST-CIFAR dataset.

Quantitative measurement of non-linearity of decision boundary In this section, we report a
quantitative measure of non-linearity of the decision boundary along the top two singular vectors for
f and fproj. Basically, we fit a linear classifier to the decision boundary and report its accuracy. As
shown in Table 7, the test accuracy obtained by the linear classifier for fproj is less than f .

Variation of LD-SB with depth In Figure 9 and 10, we show the evolution of effective rank of
weight matrices for depth-2 and 3 ReLU networks. As can be seen, the rank still decreases with
training, however the effect is less pronounced for the initial layers. Note that the initialization used
in these runs was the feature learning initialization as proposed in Yang & Hu (2021).
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Table 5: Demonstration of LD-SB in the rich regime: This table presents P⊥ and P randomized
accuracies (RA) as well as logit changes (LC) on the Imagenet dataset. These results confirm that
projection of input x onto the subspace spanned by P essentially determines the model’s prediction
on x. ↑ (resp. ↓) indicates that LD-SB implies a large (resp. small) value.

Dataset rank (P ) Acc(f ) P⊥-RA (↑) P -RA (↓) P⊥-LC (↓) P -LC (↑)

Imagenet 150 72.15±0.09 68.35±0.04 0.25± 0.0
1901.27±

0.2
199958±
44.51

Table 6: Mistake diversity and class conditioned logit correlation of models trained independently
(Mist-Div (f, find) and CC-LogitCorr (f, find) resp.) vs trained sequentially after projecting out im-
portant features of the first model (Mist-Div (f, fproj) and CC-LogitCorr (f, fproj) resp.). The results
demonstrate that f and fproj are more diverse compared to f and find.

Dataset Mist-Div
(f, find) (↑)

Mist-Div
(f, fproj) (↑)

CC-LogitCorr
(f, find) (↓)

CC-LogitCorr
(f, fproj) (↓)

Imagenet 6.97± 0.06 12.31± 0.16 99.5± 0.0 92.52± 0.01
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Table 7: Quantitative measurement of non-linearity of decision boundary – accuracy of fitted linear
classifier to the decision boundary

Dataset Linear-Classifier-Acc(f ) Linear-Classifier-Acc(fproj)

b-Imagenette 96.12 95.28± 0.2
Waterbirds 97.28 93.24± 0.24
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(b) Layer 2

Figure 9: Evolution of effective rank of the weight matrices for a depth-2 ReLU network on Resnet-
50 pretrained representations of the dataset
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Figure 10: Evolution of effective rank of the weight matrices for a depth-3 ReLU network on Resnet-
50 pretrained representations of the dataset
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C EXTENDED RELATED WORKS

In this section, we provide an extensive literature survey of various topics that the paper is based on.

Low rank Simplicity Bias in Linear Networks Multiple works have established low rank sim-
plicity bias for gradient descent on linear networks, both for squared loss as well as cross-entropy
loss. For squared loss, Gunasekar et al. (2017) conjectured that the network is biased towards find-
ing minimum nuclear norm solutions for two-layer linear networks. Arora et al. (2019) refuted the
conjecture and instead argued that the network is biased towards finding low rank solutions. Razin &
Cohen (2020) provided empirical support to the low rank conjecture, by providing synthetic exam-
ples where the network drives nuclear norm to infinity, but minimizes the rank of the effective linear
mapping. Li et al. (2021) established that for small enough initialization, gradient flow on linear
networks follows greedy low-rank learning trajectory. For binary classification on linearly separable
data, Ji & Telgarsky (2019) showed that the weight matrices of a linear network eventually become
rank-1 as training progresses.

Low rank Simplicity Bias in Non-Linear Networks For non-linear networks, the work related
to low-rank simplicity bias is rather sparse. Two of the most notable works are Huh et al. (2021) and
Galanti & Poggio (2022). Huh et al. (2021) empirically established that the rank of the embeddings
learnt by a neural network with ReLU activations goes down as training progresses. Galanti &
Poggio (2022) provided an intuition behind the relation between the rank of the weight matrices
and various hyperparameter such as batch size, weight decay etc. In contrast to these works, for 1
layer nets, we theoretically and empirically establish that the network depends on an extremely low
dimensional projection of the input, and this bias can be utilized to develop a robust classifier.

Relation to OOD Many recent works in OOD detection (Cook et al., 2020; Zaeemzadeh et al.,
2021) explicitly create low-rank embeddings so that it is easier to discriminate them for an OOD
point. Other works also implicitly rely on the low-rank nature of the embeddings. Ndiour et al.
(2020) use PCA on the learnt features, and only model the likelihood along the small subspace
spanned by the top few directions. Wang et al. (2022) utilise the low rank nature of the embeddings
to estimate the perpendicular projection of a given data point to this low rank subspace and combine
it with logit information to detect OOD datapoints. While there have been works implicitly utilizing
the low rank property of embeddings, we note that our paper (i) demonstrates low rank property of
the weights, rather than that of embeddings, and (ii) shows that it is a consequence of SB.

Other Simplicity Bias There have been many works exploring the nature of simplicity bias in neu-
ral networks, both empirically and theoretically. Kalimeris et al. (2019) empirically demonstrated
that SGD on neural networks gradually learns functions of increasing complexity. Rahaman et al.
(2018) empirically demonstrated that neural networks tend to learn lower frequency functions first.
Ronen et al. (2019) theoretically established that in NTK regime, the convergence rate depends on
the eigenvalues of the kernel spectrum. Hacohen et al. (2020) showed that neural networks always
learn train and test examples almost in the same order, irrespective of the architecture. Pezeshki et al.
(2021) proposes that gradient starvation at the beginning of training is a potential reason for SB in
the lazy/NTK regime but the conditions are hard to interpret. In contrast, our results are shown
for any dataset in the IFM model in the rich regime of training. Lyu et al. (2021) consider anti-
symmetric datasets and show that single hidden layer input homogeneous networks (i.e., without
bias parameters) converge to linear classifiers. However, such networks have strictly weaker ex-
pressive power compared to those with bias parameters. Hacohen & Weinshall (2022) showed that
for deep linear networks, in NTK regime, they learn the higher principal components of the input
data first. Most of the previous works used simplicity bias as a reason behind better generalization
of neural nets. However, Shah et al. (2020) showed that extreme simplicity bias could also lead to
worse OOD performance.

Learning diverse classifiers: There have been several works that attempt to learn diverse classifiers.
Most works try to learn such models by ensuring that the input gradients of these models do not
align (Ross & Doshi-Velez, 2018; Teney et al., 2022). Xu et al. (2022) proposes a way to learn
diverse/orthogonal classifiers under the assumption that a complete classifier, that uses all features
is available, and demonstrates its utility for various downstream tasks such as style transfer. Lee
et al. (2022) learns diverse classifiers by enforcing diversity on unlabeled target data.
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Spurious correlations: There has been a large body of work which identifies the reasons for spu-
rious correlations in NNs (Sagawa et al., 2020b) as well as proposing algorithmic fixes in different
settings (Liu et al., 2021; Chen et al., 2020).

Implicit bias of gradient descent: There is also a large body of work understanding the implicit bias
of gradient descent dynamics. Most of these works are for standard linear (Ji & Telgarsky, 2019) or
deep linear networks (Soudry et al., 2018; Gunasekar et al., 2018). For nonlinear neural networks,
one of the well-known results is for the case of 1-hidden layer neural networks with homogeneous
activation functions (Chizat & Bach, 2020), which we crucially use in our proofs.
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