
“Good Robot! Now Watch This!”:
Repurposing Reinforcement Learning for

Task-to-Task Transfer

Andrew Hundt1⇤ Aditya Murali1⇤ Priyanka Hubli1 Ran Liu1

Nakul Gopalan2 Matthew Gombolay2 Gregory D. Hager1
1Johns Hopkins University 2 Georgia Institute of Technology

* Equal contribution {ahundt,amurali6}@jhu.edu

Abstract: Modern Reinforcement Learning (RL) algorithms are not sample-
efficient to train on multi-step tasks in complex domains, impeding their wider
deployment in the real world. We address this problem by leveraging the insight
that RL models trained to complete one set of tasks can be re-purposed to complete
related tasks when given just a handful of demonstrations. Based upon this insight,
we propose See-SPOT-Run (SSR), a new computational approach to robot learn-
ing that enables a robot to complete a variety of real robot tasks in novel problem
domains without task-specific training. SSR uses pretrained RL models to cre-
ate vectors that represent model, task, and action relevance in demonstration and
test scenes. SSR then compares these vectors via our Cycle Consistency Distance
(CCD) metric to determine the next action to take. SSR completes 58% more task
steps and 20% more trials than a baseline few-shot learning method that requires
task-specific training. SSR also achieves a four order of magnitude improvement
in compute efficiency and a 20% to three order of magnitude improvement in sam-
ple efficiency compared to the baseline and to training RL models from scratch. To
our knowledge, we are the first to address multi-step tasks from demonstration on
a real robot without task-specific training, where both the visual input and action
space output are high dimensional. Code is available in the supplement.

1 Introduction

Cached Functions {E}II. Collect Demonstrations of Test Task

Demonstration
(States s, Actions a)

Action at

III. Test Time

Environment
Current State st See-SPOT-Run Policy �ssr

I. Before Demonstration
Remove

Last Layer
RL Training x M

Embedding
Function E x M

x MNx N

Trained Models �

Compute Embeddings
Hd = E(s)

Cached Functions {E}

Demos D: {D1...DN}

Cached Demo Embeddings {Hd}

Repeat until Task Success

III. Test — Real

II. Demo x2 — Sim
Stack Task

Row Task

Unstack Task

Vertical Square Task

Vertical Square Task
I. Train — Sim

Figure 1: Left: Reinforcement Learning Before Demonstration (RLBD) paradigm. Right: One of
four folds for leave-one-out cross-validation with sim to real transfer and a novel test task.

The ability to quickly adapt deep Reinforcement Learning (RL) models to new tasks with just a
handful of demonstrations would dramatically enhance their practicality and applicability. Repur-
posing previously-trained models for new tasks consumes several orders of magnitude fewer com-
putational resources than training from scratch. For our approach to repurposing RL models, we
draw inspiration from social imitation and learning in animals. Certain animals, dogs, for example,
have a strong capacity to imitate human performance of a novel task when trained with the “Do as I
Do” method [1, 2]. Imagine a dog named Spot that can be been trained with positive reinforcement

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://youtu.be/ISDjrTdRx2o
https://youtu.be/ISDjrTdRx2o

II + III. See-SPOT-RunI. RL Policies — SPOT-Q

Live Test
Scene

Ideal Demo
Action

DenseNet FCN
Embedding
Function E

Pixelwise
Embeddings

(ASEs)

Linear w

Pixelwise Q-Values

Execute grasp
action at selected

coordinate

Q-Value
Heatmap

After Successful
Grasp Action

xM

Select Action
based on Best
Policy-Demo

Pair

Real Robot
Live Test State

Pixelwise
Embeddings

(ASEs)

Simulated
Demo State

fcorr
Correspondence

Function

Embedding
Function E2

Embedding
Function E1

... Embedding
Function EM

...

...

...

...

...

Embedding
Function EM

Embedding
Function E2

Embedding
Function E1

Execute
Grasp Action at

Selected
Coordinate

ASE Match
Distance Heatmap

After Successful
Grasp Action

Figure 2: Left: An outline of our pretrained RL policies trained with SPOT-Q [4]. Each
RL policy contains an Embedding Function E that outputs pixel-wise (per action) embeddings
(16x224x224x64 or H⇥⇥X⇥Y ASEs). These embeddings are turned into Q-values (16x224x224x1)
by a linear layer. The action space A has the same dimension as the Q-values (16x224x224x1, or
⇥⇥X⇥Y) for each grasp and place action. Right: See-SPOT-Run (SSR) Framework architecture
executing a row task, the grasp action is selected from the vertical square policy. SSR successfully
executes novel tasks using a correspondence function fcorr (Eqs. 4-8) that matches the demonstrated
action to the live test scene using the embeddings (ASEs) derived from each pre-trained policy.

(“Good Spot!”) to imitate a new action shown to her, such as fetching a specific object from a con-
tainer, when prompted by a command (“Watch This!”). When Spot imitates, “it is the orientation
and the shape of the action [that is] attended to and reproduced” [2, 3]. Spot encodes what she sees in
an internal representation, which she may then map onto her trained skillset in order to successfully
imitate a new task.

We observe that some deep RL models, like Spot the dog, already encode meaningful represen-
tations of a scene that can be mapped to a skillset. We hypothesize that we can leverage these
encodings to solve new tasks from demonstration without task-specific learning, a concept we call
Reinforcement Learning Before Demonstration (RLBD, Fig. 1). To evaluate our hypothesis, we
propose the See-SPOT-Run Framework for RLBD.

See-SPOT-Run (SSR, Fig. 2) rapidly adapts an ensemble of existing RL policies to new tasks by
imitating demonstrations. Intuitively, existing fully-trained and validated RL models are already
invariant to certain changes in the scene within the tested circumstances. We pass a known state
and a novel state to a preexisting model to create and then compare latent vectors in a search for
embedded task-invariant knowledge to use in novel circumstances. When the known state is from
a novel task demonstration, and the novel state is from a live test scene, we can pinpoint latent
vectors that map to actions in the test environment that are likely to progress towards completing
the novel demonstrated task. Therefore, we apply See-SPOT-Run to imitate demonstrations of a
new multi-step task (“Watch This!”) by matching demonstrated actions to candidate actions in a test
environment. In doing so, we not only enable few-shot imitation of unseen tasks but also provide
the potential to vastly expand robotic skill sets at dramatically lower costs.

In our few-shot imitation experiments, we demonstrate See-SPOT-Run’s ability to complete a set
of multi-step tasks, including block stacking, row making, block unstacking, and building a vertical
square structure (see Fig. 1). These tasks are an order of magnitude more challenging than typical
reach or limited grasp and place tasks [4] (see Sec 3). To evaluate each task, we use RL policies
trained to complete different, and even conflicting (stacking vs unstacking) tasks, and provide two
expert demonstrations collected in simulation. In summary, our contributions are as follows:

1. Reinforcement Learning Before Demonstration (RLBD): We propose a concept to use pretrained
RL policies to accelerate robotic imitation learning. We show that these policies generate Action-
State Embeddings (ASEs) from robot state observations, and that these embeddings can be re-
purposed to execute unseen tasks.

2. See-SPOT-Run (SSR): Our RLBD implementation that accomplishes both few-shot imitation
and zero-shot sim-to-real domain transfer by matching successful demonstrated actions to the
test environment with a novel Cycle Consistency Distance (CCD) metric.

2

3. SSR achieves competitive task performance without the task-specific training required by prior
work, leading to a four order of magnitude improvement in compute efficiency and a 20% to
three order of magnitude improvement in sample efficiency for novel tasks when compared to the
baseline and to training RL models from scratch.

2 Related Work
Deep learning approaches have successfully completed a range of robotic tasks in visually-guided
manipulation [5, 6] and navigation with high sample complexity [7, 8, 9, 10, 11, 12, 13]. VPG [6]
achieved particularly efficient RL training for decluttering tasks. “Good Robot!” [4] improved on
VPG’s RL sample efficiency and showed zero-shot sim-to-real transfer for multi-step block tasks
with a risk of progress reversal [4], e.g. toppling a partially completed tower (see Sec. 3); however,
it requires from-scratch task-specific training.

Another approach to tackling deep RL’s high sample complexity is through multi-task and meta-
learning [14, 15, 16, 17, 18, 19, 20] of general purpose task representations or policies that allow
an agent to quickly adapt to novel tasks by fine-tuning previously learned policies. James et al. [16]
approach the few-shot learning problem by first meta-learning a task embedding network from a set
of training tasks, then computing a test task embedding from a few demonstrations; this task embed-
ding is provided as input to a control policy. Meanwhile, Finn et al. [14] perform one-shot imitation
on tasks seen during meta-training but evaluated on unseen objects. While these approaches achieve
good performance on one-step tasks, they do not consider multi-step tasks or progress reversal. Al-
ternately, few-shot inverse RL methods [21, 22, 23] aim to increase RL sample efficiency by learning
a reward function from one or a few demonstrations, then using this reward function to supervise RL
training. Yet, Liu et al. [21] and Singh et al. [22] do not address learning multi-step tasks, which can
require dense reward functions to learn effectively [4, 10]. Goo and Niekum [23], in turn, propose
an IRL approach for multi-step tasks that requires time and compute-intensive training. Zhu et al.
[24] reviews Transfer Learning, and our work can be framed as Representation Transfer.

Cycle Consistency is a mechanism for comparing representations across domains [25, 26, 27].
Zhang et al. [28] utilizes Cycle Consistency for cross domain dynamics in simulated locomotion
tasks and sim-to-real transfer of a basic robot reaching task, showing that Cycle Consistency can
mitigate domain shift for the same, single-step, task. Our See-SPOT-Run framework, by contrast,
completes both sim-to-real and known-to-novel task transfer with more complex multi-step tasks
via our own cycle consistency concept.

Behavior Cloning (BC), Imitation Learning (IL) [29, 30, 31, 32, 33, 34, 35], and IL from Observation
(ILO) [31], are approaches to mimic the behaviors of agents. Recent reviews cover IL [36, 37] and
ILO [38]. Jung and Kim [39] take a hybrid BC and IL approach to grasp and place one block on
another block. GAIL [40] learns to imitate with inspiration from generative adversarial networks.
Others pursue distribution matching approaches [33, 25, 30]. However, these BC, IL, and ILO papers
variously require training on novel tasks, are evaluated only on simulated tasks, or do not consider
multi-step tasks with a risk of progress reversal [4]. NTP [41] and NTG [42] learn task plans in a
blocks environment by imitating videos, but require a perception pipeline to act.

TransporterNets [29] models multi-step IL tasks characterized by progress reversal as a sequence
of displacements via behavior cloning, with impressive results that scale from 1-1k demonstrations
per task. However, TransporterNets makes no attempt at task-to-task transfer for different tasks.
Instead, it requires real-world, task-specific demonstrations and training for every unique task, so
their approach is simultaneously much easier to solve (direct task transfer) and much more difficult
to adapt to new scenarios (due to task-specific training). In comparison, SSR addresses the problem
of few-shot imitation with no task-specific training. Even with these limitations, TransporterNets is
the closest available method to SSR and consequently, we chose it as our baseline for comparison.

3 Preliminaries
As in “Good Robot!” [4] and VPG [6], we investigate multi-step tasks by framing our problem
as a Markov Decision Process (MDP) (S,A, P,R), with state space S; action space A; transition
probability function P : S⇥S⇥A ! R; and reward function R : S⇥A ! R. We make an MDP-
simplifying assumption where states equal observations, and that there is a discrete action space. At
time step t, the agent observes state st and chooses an action at according to its policy ⇡ : S ! A,
leading to a new state st+1 with probability P (st+1|st, at). Q-Learning is an RL method whose

3

purpose is to seek a Q function that maximizes R over time. Q-Learning policies ⇡ select an action
at at time t by first estimating the reward R with a function Q : S ⇥ A ! R, then selecting the
action that maximizes the expected reward: at = ⇡(st) = argmaxa2A Q(st, a).

Our See-SPOT-Run Framework experiments are pretrained with the Q-Learning-based SPOT-Q
framework introduced by “Good Robot!” [4]. SPOT-Q demonstrates the importance of prioritizing
progress reversal during RL training, and also effectively integrates ‘common-sense’ exploration
constraints into Q-learning. Our RL policies are pretrained with the same exploration constraints
and reward functions Rtrial, RP as the best performing models in [4]. In our development, we make
use of a task progress measure, P : S ! Z[0,pmax] as an integer indicating the number of successful
task steps; the task is complete when P(st) = pmax. Consequently, a progress reversal [4] occurs
when an action at at a timestep t undoes previous task progress i.e. there exists an i 2 [0, t] such
that P(st�i) > P(st+1). Next, we will introduce our proposed methods.

4 Methods
Stack of 2

Lone Block

Target Demo
Place Action

Demo State Live Test State
Stack of 2

Lone
Blocks

...

Cycle
Consistency
Distance

Test ASEsDemo ASEs

Test ASEsDemo ASEs

High Cycle Consistency Distance

High Cycle Consistency Distance

Cycle
Consistency
Distance

Cycle
Consistency
Distance

Test ASEsDemo ASEs

Low Cycle Consistency Distance

Embedding
Function E1

Embedding
Function E1

Embedding
Function E2

Embedding
Function E2

Embedding
Function EM

Embedding
Function EM

ASE Match
Distance Heatmap

After Successful
Place Action

Candidate Test Action

Stack
of 3

Execute Candidate
Test Action from

Best PDP — Lowest
Cycle Consistency
Distance to Target

Candidate Test Action

Candidate Test Action

Stacking Task
Place Action

Blue Block in Gripper

Best Policy-Demonstration Pair (PDP)

Figure 3: An illustration of cycle consistency
correspondence for 3 policy-demonstration pairs
(each row is a pair) as See-SPOT-Run (SSR, Fig.
2, Eq. 8) chooses to place a hidden blue block al-
ready in the gripper onto the blue block visible in
the test state image.

SSR has three phases: (1) Embed, (2) Corre-
spond, and (3) Act.
In phase (1) Embed, SSR takes a set of fully-
trained policies, such as Q-functions, and con-
verts them into embedding functions by extract-
ing the latent per-action feature vectors embed-
ded in the final network layer immediately be-
fore Q-values are created (Fig. 2). SSR runs
these embedding functions on every demonstra-
tion and test state to make a unique latent space
for each (policy, demonstration) pair.

Phase (2) Correspond has two steps: (2a)
Match and (2b) Verify. In (2a), SSR compares
the embedded demonstration state to the em-
bedded test state of each latent space, searching
for the test action that most closely matches the
successful demonstration action. It finds this
closest match by minimizing the euclidean dis-
tance between the demonstration action’s em-
bedding (feature vector) and each potential test
action’s embedding. Since matches are made
in the embedding space, the matched action
should mirror the qualities of the demonstrated
action for the new task, and need not bear any
resemblance to the action the original preexist-
ing policy would choose for its original task. Intuitively, the high dimensionality of latent vectors
ensures dissimilar actions do not collide, in a manner analogous to hash functions. For example,
we successfully choose reasonable action matches within policies and across states (Sec. 5), but
matches across policies were random and unsuccessful in small tests. Ultimately, this matching
process yields a set of candidate actions, one for each (policy, demonstration) pair.

In (2b) Verify, SSR reverses the process, starting with each test candidate action, retrieving its em-
bedding, and performing the match process in the demo scene to see how that action would perform
in the demo world. The physical cartesian distance between the known ideal demo action and our
new rematch demo action in the action space is our cycle consistency distance metric (Fig. 3); intu-
itively, actions that minimize this distance are more likely to accomplish the demonstrated behavior.

Finally, in phase (3) Act, SSR selects the candidate action that minimizes the cycle consistency
distance and acts. It repeats this entire process until task completion. SSR thus conducts a com-
prehensive search over all (policy, demonstration) pairs, jointly selecting the latent space and
demonstration that are most relevant to the novel task as well as the action that will most likely
advance task progress. In Section 4.1, we will describe how we construct the embedding func-
tions, then in Section 4.2, we will elaborate on how SSR uses these embedding functions to imitate
demonstrations, and provide additional intuition for our cycle consistency distance metric.

4

4.1 Generating Embedding Functions
We begin by pretraining task-specific SPOT-Q [4] policies ⇡m : m = 1...M on M known tasks:
Recall that Q functions are defined va = Q(s, a); we reframe this as V = Qm(s), where V contains
scores for every action a 2 A pertaining to task m. Thus, the Q-value of taking action a in state s

is Qm(s)[a]. Finally, from each Qm, we strip off the last linear layer wm, a linear projection (dense
layer) that maps a feature vector to a scalar Q-value, to obtain as many Embedding Functions1

Em:

⇡m(s) = argmax
a2A

Qm(s, a) = argmax
a2A

Qm(s)[a] = argmax
a2A

Em(s)[a]·wm (1)

Evaluating each Em on an arbitrary state yields a latent space array Hm, composed of one Action-
State Embedding (ASE) hm,a = Hm[a] for each action space coordinate a 2 A, as in Fig. 2.

4.2 Test-Time See-SPOT-Run Policy
In this section, we will define our test-time SSR policy, ⇡ssr

t , which observes the test state st and
selects an action at for the robot to execute, as it attempts to complete the demonstrated test task. It
solves the imitation problem: approximating an unknown optimal live test task action a

⇤
t that will

complete the next step of a novel, demonstrated task. SSR uses information from N demonstrations
D : {D1, ..., DN}. Each demo Dn : {(sdemo, ademo)1, ..., (sdemo, ademo)T } is a sequence of State-
Action pairs which maximize R at each task step t 2 T .

(1) Embed: We begin by observing the test state st and progress p = P(st) and we consider the
N state-action pairs (sdemo,n, ademo,n) with progress p from the N demonstrations2. We use these
to compute latent space representations of each demonstration state and the test state with each
embedding function Em, yielding M ⇥N demo latent space arrays Hm,n, and M test latent space
arrays3

Hm,t:
Hm,n = Em(sdemo,n) (2) Hm,t = Em(st) (3)

(2) Correspond: We find candidate test actions (2a), then verify these candidate actions with our
cycle consistency distance metric (2b). To find a candidate action, we match the demo action to the
test state by selecting the minimum euclidean distance between the demo action embedding (ASE)
and all ASE vectors in the test latent space. We repeat this comparison for each latent space, yielding
M ⇥ N total candidate actions Fm,n, one for each (policy, demonstration) pair. Candidate
actions are expressed as coordinates in the action space A, and can be used to index quantities such
as the latent spaces H , which have the same dimension as A, as detailed in the Fig. 2 caption.

Lm,n = min
a2A

kHm,t �Hm,n[ademo,n]k2 (4) Fm,n = argmin
a2A

kHm,t �Hm,n[ademo,n]k2 (5)

We then verify each matched candidate test action in the demo scene using our cycle consistency
distance metric. We verify, or match in reverse, the candidate action’s ASE Hm,t[Fm,n] to the
corresponding demonstration latent space Hm,n, minimizing euclidean distance in the latent space
as above. We expect the verification action arematch to be physically close to the original demonstrated
action ademo,n in the action space A. Therefore, we define the cycle consistency distance Cm,n as
the Cartesian distance between ademo,n and arematch.

arematch = argmin
a2A

kHm,t[Fm,n]�Hm,n[a]k2 (6)

Cm,n = kademo � arematchk2 (7)

The purpose of the cycle consistency distance Cm,n is to consider other ASE vectors in the latent
space Hm,n that might indicate that a candidate action Fm,n is not an authentic match. Alternatively,
the rematch step can be interpreted as an assessment of how relevant a given latent space is to the
test state and task at hand.

1In equations, parenthesis () are for function arguments and brackets [] index arrays or discrete coordinates.
2We note that, because each target demonstration action ademo is optimal, demos satisfy the property that

they have monotonically increasing progress. Our method is trivially extended to suboptimal demonstrations
by considering all state-action pairs with progress p.

3While Section 4.1 refers to latent spaces as Hm, we extend this notation here, using Hm,n to designate the
state from the n-th demonstration embedded with Em. Similarly, Hm,t is the test state embedded with Em.

5

(3) Act: We select and execute the candidate action with minimal Cycle Consistency Dis-
tance (Eq 8). We also evaluate a baseline SSR without cycle consistency by skipping
the rematch phase and directly minimizing the L2 Consistency Distance (Eq. 9) Lm,n.

m̂, n̂ = argmin
m,n

Cm,n

a
ssr
t = Fm̂,n̂ (8)

m̂, n̂ = argmin
m,n

Lm,n

a
ssr
t = Fm̂,n̂ (9)

This completes our definition of the SSR policy a
ssr
t = ⇡ssr(st). Every time an action a

ssr
t com-

pletes we collect a new observation st+1, running the SSR policy ⇡ssr repeatedly until task progress
P(sT) reaches its maximum, pmax, indicating that the task is complete. We evaluate See-SPOT-
Run with L2 consistency distance (SSR L2CD in Tables 1, 2, and 3) and cycle consistency dis-
tance (SSR CCD in Tables 1, 2, and 3), as well as prior work, with few-shot experiments in
Sec. 5. We will also discuss how our SSR Framework with CCD surpasses the other methods.

0.001%

0.01%

0.1%

1%

10%

0% 0.01% 1% 100%

“Good Robot!”
96%

TransporterNet
50%

SSR CCD
79%

SSR L2CD
67%

Bubbles Contain Average Progress %,
Higher is Better on All Metrics.

Efficiency Metric Performance

Data References Trial Success

SSR L2CD 13.0000% 13%

Sample Efficiency 1.1000%

Average Task Progress 67.0000%

SSR CCD 36.0000% 36%

Sample Efficiency 3.0000%

Average Task Progress 79.0000%

TransporterNet 0.0008% 30%

Sample Efficiency 2.5000%

Average Task Progress 50%

“Good Robot!” 0.0008% 91%

Sample Efficiency 0.0023%

Average Task Progress 96%

TransporterNet Fine-tuned 0.0410%

Sample Efficiency 3.4000%

Average Task Progress 57%

SSR CCD Finetuned 0.051%

Sample Efficiency 4.3000%

Average Task Progress 86%

More
 Efficie

nt Legend

Bubble width is Task
Progress, the average %
of task steps completed.
100% shown for scale.

Task
Progress

100%

Novel Task Efficiency and Novel Task Progress in Simulation

*

(Ours)
*

Sa
m

pl
e

Ef
fic

ie
nc

y
—

 L
og

 S
ca

le

Compute Efficiency — Log Scale

SSR CCD
Finetuned

(Ours)

“Good Robot!”
Finetuned

TransporterNet
Finetuned

* *

*86%

57%
80%

2

Figure 4: Higher is better on all metrics (Sec 5.1).
Log Scale. Larger bubbles are better. See Tab. 1.

5 Experiments
We outline our assessment metrics in Sec. 5.1,
provide simulation results in Sec. 5.2, then
cover our sim-to-real transfer results in
Sec. 5.3. We pretrain models with SPOT-Q [4]
(Sec. 3) with the workspace, commands and
action space defined in “Good Robot!” [4].
Implementation and Robot details are in Fig. 1
and Appendix C.1.

5.1 Evaluation Metrics
Our metrics quantify the broad improvements
in task performance and reductions in the re-
sources necessary to perform novel tasks. Most
important, we consider critical efficiency mea-
sures that have not previously been evaluated in
the baselines, to motivate the broad range of useful applications for both RBLD and SSR.

Test Metrics evaluate how effectively the robot completes the test tasks, and higher is better: (1)
Trial Success Rate (Trials) is the percentage of multi-step tasks completed 100% successfully, and
in many applications completing a task is a prerequisite to moving on to the next task. (2) Action
Efficiency (Eff.) is the ideal

actual number of actions per trial, and more efficient models will complete
tasks with fewer actions. [6] Our ideal is 6 actions for all tasks except for rows, which is 4 actions. [4]
(3) Progress (Prog.) is each trial’s maximum proportional within-task progress averaged over all
trials, e.g. a 3 of 4 block stack is 75%, to show capabilities that nearly complete trials. (4) Recoveries
(Recov.) is the percentage of trials in which there was a mistake such as a progress reversal that the
agent was able to complete with a trial success, i.e. trial successes containing progress reversal

trials containing progress reversal . Higher recovery
rates reflect better robustness to perturbations and uncommon situations.

Cost Metrics delineate resources spent, and lower is better: (5) Train Steps is the number of neural
network batch steps performed prior to executing on a novel test task. Each individual experiment
is run on one NVIDIA GeForce RTX 2080Ti GPU. (6) Annotated Actions (Ann. Actions) is the
number of robot actions at that have been annotated by either a human or scripted observer, which
are each fairly high cost activities in robot or human time [43, 44].

Efficiency Metrics evaluate trial success benefits with respect to the cost metrics, and higher is bet-
ter. (7) Compute Efficiency Trials

Train Steps+1 is the amortized percentage of trials that can be completed
for every training batch step when completing a novel task. We add one to the train steps denomi-
nator to prevent dividing by 0 with SSR. (8) Sample Efficiency Trials

Ann. Actions measures the increase in
trial success rate amortized over annotated actions on a test task.

5.2 Simulation Experiments

We pretrain RL policies on four tasks as in Fig. 1: stacking, row-making, unstacking, and 2x2
vertical square. At test time we perform four-fold cross-validation where the test task is given two

6

demonstrations but no pretrained model, then the remaining three models predict actions for the un-
trained test task. For the finetuned case, we pretrain each of the three models on two demonstrations
of the untrained test task for 333 steps each, for a total of 1k steps. We then apply SSR as described
in Sec. 4. We additionally investigate a “Good Robot” finetuning baseline where we use one of the
finetuned models directly as the test-time policy, without applying SSR.

To obtain our TransporterNet [29] baselines on their less challenging scenarios (Sec. 2), we col-
lect two demos of each test task in their ravens framework and train TransporterNet on these de-
mos for 40k iterations; meanwhile, for the pretrained case we fine-tune their vertical block triangle
model [29] on the novel task for 1k iterations (thus matching the overall training cost of our pre-
trained method). We will examine overall performance on the test metrics, task-specific test metrics
of particular interest, and then our efficiency metrics.

Simulation Task Average Test Metrics Costs Efficiency
Trials Action

Efficiency Prog. Recov. Train
Steps

Annotated
Actions Compute Sample

SSR CCD Eq. 8 (ours) 36% 41% 79±1% 19% 0 12 36% 3.0%
SSR L2CD Eq. 9 13% 30% 67±1% 5% 0 12 13% 1.1%
TransporterNet [29]* 30% 35% 50±3% 8% 40k 12 0.00075% 2.5%

SSR CCD Eq. 8 Finetuned (ours)* 51% 35% 86±1% 30% 1k 12 0.051% 4.3%
TransporterNet [29] Finetuned* 41% 36% 57±3% 12% 1k 12 0.041% 3.4%
“Good Robot” [4] Finetuned* 34% 43% 80±1% 16% 1k 12 0.034% 2.83%

“Good Robot!” [4] * 91%* 57%* 96±1%* 90%* 120k 40k 0.00076% 0.0023%

Table 1: Simulation task performance on the metrics detailed in Sec. 5.1, averaged over all four
folds of leave-one-model-out cross-validation. “Average Test Metrics” averages Table 2 values.
Bold indicates the best performing model. Higher is better for all metrics except costs. The progress
range, e.g. in 50±3%, the 3 is standard error. * Starred methods address the simpler problems de-
scribed in Sec. 2, so comparisons should carefully consider this context. TransporterNets [29] trains
on robot demos for each novel task with no task-to-task transfer. SPOT-Q [4], the SSR pretrain-
ing step, tests on the train task, provides a cost and efficiency baseline plus a test metrics ceiling;
finetuned SPOT-Q is 1k steps of tuning from a random task to the novel task on two demonstrations.
Simulation Task Stack Unstack Row Vertical Square

Trials Action
Eff. Prog. Recov. Trials Action

Eff. Prog. Recov. Trials Action
Eff. Prog. Recov. Trials Action

Eff. Prog. Recov.

SSR CCD Eq. 8 (ours) 24% 22% 75% 16% 66% 77% 82% – 30% 38% 81% 28% 24% 28% 79% 14%
SSR L2CD Eq. 9 0% – 51% 0% 38% 60% 76% – 6% 27% 73% 7% 8% 34% 67% 7%
TransporterNet [29]* 12% 27% 51% 12% 86% 63% 94% – 2% 25% 24% 2% 20% 29% 32% 9%

SSR CCD Eq. 8 Finetuned (ours)* 58% 29% 90% 42% 72% 64% 87% - 40% 19% 84% 24% 34% 28% 83% 26%
TransporterNet [29] Finetuned* 54% 34% 74% 12% 56% 34% 64% – 24% 26% 44% 16% 28% 28% 46% 8%
“Good Robot” [4] Finetuned* 64% 33% 80% 38% 59% 86% 82% - 20% 24% 90% 11% 0% 28% 68% 0%

Table 2: Leave-one-model-out cross-validation of our See-SPOT-Run (SSR) framework for 50 sim-
ulation trials. Bold indicates key best metrics (Sec. 5.1). Unstacking has no notion of recovery.

Our results on the overall Test Metrics in Table 1 show SSR with CCD achieving 36% trial com-
pletion, 79% average progress, 41% action efficiency, and 29% recovery rate; L2 Correspondence
L2CD gets 13%, 67%, 30%, and 5%, respectively, which demonstrates the benefit of evaluating
demo embeddings Hd with Cycle Consistency Correspondence CCD (Alg. 2); and TransporterNet
gets 30%, 50%, 35%, and 8%, respectively, which highlights our method’s overall improvement
over prior few-shot imitation work.

Our task-specific simulation results in Table 2 show SSR with CCD performs better than L2CD
in all cases, and better than TransporterNets in all cases except unstacking. The SSR worst case
trial success rate of 24% is 12x better than the TransporterNets worst case of 2%. SSR completes
66% of unstacking trials vs 86% for TransporterNets, and SSR completes 30% of rows vs 2% for
TransporterNets. This highlights a shortcoming of TransporterNets’ feature template displacement
matching approach which is not present in SSR. A more detailed per-task simulation breakdown is
in Appendix C.3.

Lastly, the finetuning experiments show that SSR with CCD is effective not only in a zero-training
setting, but also as an extension to few-shot model finetuning. Compared to the baseline finetuned
“Good Robot”, our SSR CCD Finetuned achieves 86% vs 80% average progress, 51% vs 35% trial
completion, 35% vs 43% action efficiency, and 30% vs 16% recoveries. This highlights the mipact
of the SSR Test Time policy (Sec. B.3), as SSR with Finetuning and “Good Robot” finetuning
use the same base models and finetuning method. Moreover, SSR with Finetuning also outperforms

7

TransporterNets with Pre-Training, achieving 86% vs 57% average progress, 51% vs 41% trial com-
pletion, 35% vs 36% action efficiency, and 30% vs 12% recoveries.

Efficiency Metrics: With CCD, SSR achieves 36% compute efficiency, which is roughly four
orders of magnitude better than TransporterNet and “Good Robot!”, which both have 8e-4% com-
pute efficiency. This is triple the 13% compute efficiency of L2CD, further underlining the effective-
ness of our CCD metric. SSR also achieves three orders of magnitude better sample efficiency
with CCD than ‘Good Robot!”, at 3% vs. 2e-3%, while maintaining a much smaller, but still signifi-
cant, lead over TransporterNet at 2.5% sample efficiency, and L2CD at 1.1% sample efficiency. The
smaller gap is because, as an imitation method, TransporterNets is able to replicate behaviors with
very just a few annotated actions. Even so, SSR maintains its lead over TransporterNets due to its
superior trial completion rate. Next we will examine our performance on the real robot experiments.

5.3 Real Robot Experiments Real Task Trials Action
Efficiency Prog. Recov.

Stack 30% 25% 80±5% 22%
Unstack 90% 86% 97±3% –
Row 30% 28% 77±7% 66%
Square 10% 27% 75±4% 10%

Average 40% 42% 82±3% 33%

Table 3: Real See-SPOT-Run framework with
Cycle Consistency, SSR CCD Eq. 8, performance
on Sim-To-Real transfer to novel tasks from sim-
ulated demos during leave-one-model-out cross-
validation. Bold entries are for ease of reading
and progress range (±) is standard error.

We transfer SSR to a real robot using our mod-
els pretrained in simulation from Section 5.2
with results in Tab. 3. All other aspects of the
method remain the same except task progress is
recorded by a different observer, since in simu-
lation we read internal simulator states. Trans-
porterNets is not designed for sim to real trans-
fer, and is thus not included here.

In real experiments SSR has an average of 40%
of trials complete, 42% action efficiency, 84%
progress, 35% rate of recoveries, 40% compute;
which is very similar to our results in simula-
tion at 36%, 41%, 79%, 29%, and 36% respectively. For reference, “Good Robot” completed 100%
of trials after 20k RL training actions and 60k training steps for both stacks and rows, resulting in
0.0008% compute and 0.003% sample efficiency; but it scored on the train task, and is neither de-
signed for nor capable of completing new test tasks on its own. We examine per-task real SSR test
metrics in Appendix C.4.

6 Conclusion

See-SPOT-Run’s three to four order of magnitude sample efficiency and compute efficiency im-
provements show it can immediately and effectively begin making progress on a novel task in a
novel domain with scarce demonstration examples. By contrast, RL models such as “Good Robot!”
typically start out with highly randomized exploration and no ability to complete a novel task, re-
quiring inefficient sampling and compute-intensive training to first match and then beat SSR on a
given task. Furthermore, although SSR performs 12x better than TransporterNets [29] in the worst
case sim trials, TransporterNets may scale better than SSR on some metrics as demonstrations are
added. Even so, it would ultimately be more efficient in the long run to develop methods where
demonstrations on one multi-step task also improve performance and efficiency on the next task.

We expect that our proposed methods will be generally applicable to enhancing other methods across
broad contexts such as Reinforcement Learning [4, 6], Behavior Cloning, Imitation Learning, and
Meta-Learning; as well as in specific contexts such as TransporterNets. Future work should investi-
gate such applications. Further improvements to our methods might include better correspondence
metrics, automatically assessing task progress, mitigating the need for a dense reward [23, 26], and
an extension to continuous domains.

In summary, we have introduced the concept of Reinforcement Learning Before Demonstration,
implemented via the See-SPOT-Run framework. Our framework achieves simultaneous few-shot
imitation and sim-to-real transfer for multi-step tasks, such as block stacking and row-making, that
are prone to progress reversal. See-SPOT-Run improves compute and sample efficiency by three to
four orders of magnitude vs. prior work by leveraging pretrained RL models to solve the imitation
problem on novel tasks.

8

References
[1] C. Fugazza and Ádám Miklósi. Should old dog trainers learn new tricks? the efficiency of the

do as i do method and shaping/clicker training method to train dogs. Applied Animal Behaviour
Science, 153:53–61, 2014. ISSN 0168-1591. doi:https://doi.org/10.1016/j.applanim.2014.01.
009. URL https://www.sciencedirect.com/science/article/pii/S0168159114000264.

[2] C. Fugazza, E. Petro, Ádám Miklósi, and Ákos Pogány. Social learning of goal-directed actions
in dogs (canis familiaris): Imitation or emulation? Journal of Comparative Psychology, 133
(2):244–251, 2019.

[3] V. Horner and A. Whiten. Causal knowledge and imitation/emulation switching in chim-
panzees (pan troglodytes) and children (homo sapiens). Animal Cognition, 8(3):164–181,
2005.

[4] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager. “Good
Robot!”: Efficient Reinforcement Learning for Multi-Step Visual Tasks with Sim to Real
Transfer. IEEE Robotics and Automation Letters (RA-L), 5(4):6724–6731, 2020. URL
https://arxiv.org/abs/1909.11730.

[5] O. Kroemer, S. Niekum, and G. D. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. Journal of Machine Learning Research, 22(30):
1–82, 2021.

[6] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning synergies
between pushing and grasping with self-supervised deep reinforcement learning. In IROS,
pages 4238–4245. IEEE, 2018.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[8] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Scalable deep reinforcement learning for
vision-based robotic manipulation. In Conference on Robot Learning, 2018.

[9] J. Mahler and K. Goldberg. Learning deep policies for robot bin picking by simulating robust
grasping sequences. Conference on Robot Learning, pages 515–524, 2017.

[10] J. F. Hernandez-Garcia and R. S. Sutton. Understanding multi-step deep reinforcement learn-
ing: A systematic study of the dqn target. arXiv preprint arXiv:1901.07510, 2019.

[11] M. Q. Mohammed, K. L. Chung, and C. S. Chyi. Review of deep reinforcement learning-
based object grasping: Techniques, open challenges, and recommendations. IEEE Access, 8:
178450–178481, 2020.

[12] C. R. Garrett, C. Paxton, T. Lozano-Perez, L. P. Kaelbling, and D. Fox. Online replanning in
belief space for partially observable task and motion problems. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 5678–5684, 2020.

[13] A. K. Tanwani. Domain invariant representation learning for sim-to-real transfer. In Confer-
ence on Robot Learning (CoRL), 2020.

[14] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. 2017.

[15] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML’17 Proceedings of the 34th International Conference on Machine Learning
- Volume 70, pages 1126–1135, 2017.

[16] S. James, M. Bloesch, and A. J. Davison. Task-embedded control networks for few-shot imi-
tation learning. Conference on Robot Learning, pages 783–795, 2018.

[17] R. Rahmatizadeh, P. Abolghasemi, L. Boloni, and S. Levine. Vision-based multi-task manip-
ulation for inexpensive robots using end-to-end learning from demonstration. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 3758–3765, 2018.

9

http://dx.doi.org/https://doi.org/10.1016/j.applanim.2014.01.009
http://dx.doi.org/https://doi.org/10.1016/j.applanim.2014.01.009
https://www.sciencedirect.com/science/article/pii/S0168159114000264
https://arxiv.org/abs/1909.11730

[18] A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart, Y. Bai, M. Kalakrishnan,
S. Levine, and C. Finn. Watch, try, learn: Meta-learning from demonstrations and rewards. In
ICLR 2020 : Eighth International Conference on Learning Representations, 2020.

[19] T. Z. Zhao, A. Nagabandi, K. Rakelly, C. Finn, and S. Levine. Meld: Meta-reinforcement
learning from images via latent state models. arXiv preprint arXiv:2010.13957, 2020.

[20] D. Kalashnkov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv,
2021.

[21] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125, 2018.

[22] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-end robotic reinforcement
learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

[23] W. Goo and S. Niekum. One-shot learning of multi-step tasks from observation via activity
localization in auxiliary video. In 2019 International Conference on Robotics and Automation
(ICRA), pages 7755–7761, 2019.

[24] Z. Zhu, K. Lin, and J. Zhou. Transfer learning in deep reinforcement learning: A survey. arXiv
preprint arXiv:2009.07888, 2020.

[25] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2242–2251, 2017.

[26] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas. Playing hard exploration
games by watching youtube. In Advances in NeurIPS, pages 2935–2945, 2018.

[27] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari. Rl-cyclegan: Reinforcement
learning aware simulation-to-real. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11157–11166, 2020.

[28] Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang. Learning cross-domain correspon-
dence for control with dynamics cycle-consistency. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=QIRlze3I6hX.

[29] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. Conference on Robot Learning (CoRL), 2020.

[30] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson. Discriminator-actor-
critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. In
International Conference on Learning Representations, 2018.

[31] Z. Zhu, K. Lin, B. Dai, and J. Zhou. Off-policy imitation learning from observations. In
Advances in Neural Information Processing Systems, volume 33, pages 12402–12413, 2020.

[32] S. Reddy, A. D. Dragan, and S. Levine. Sqil: Imitation learning via reinforcement learning
with sparse rewards. In ICLR 2020 : Eighth International Conference on Learning Represen-
tations, 2020.

[33] I. Kostrikov, O. Nachum, and J. Tompson. Imitation learning via off-policy distribution match-
ing. In ICLR 2020 : Eighth International Conference on Learning Representations, 2020.

[34] R. Jena, C. Liu, and K. Sycara. Augmenting gail with bc for sample efficient imitation learning.
In Conference on Robot Learning (CoRL), 2021.

[35] A. Z. Ren, S. Veer, and A. Majumdar. Generalization guarantees for imitation learning. Con-
ference on Robot Learning (CoRL), 2020.

10

https://openreview.net/forum?id=QIRlze3I6hX

[36] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun. Survey of imitation learning for robotic
manipulation. In International Journal of Intelligent Robotics and Applications, volume 3,
pages 362–369, 2019.

[37] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys, 50(2):21, 2017.

[38] F. Torabi, G. Warnell, and P. Stone. Recent advances in imitation learning from observation.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
pages 6325–6331, 2019.

[39] E. Jung and I. Kim. Hybrid imitation learning framework for robotic manipulation tasks.
Sensors, 21(10):3409, 2021.

[40] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Infor-
mation Processing Systems, volume 29, pages 4565–4573, 2016.

[41] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 3795–3802, 2018. doi:10.1109/ICRA.2018.8460689.

[42] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles.
Neural task graphs: Generalizing to unseen tasks from a single video demonstration. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8557–
8566, 2019. doi:10.1109/CVPR.2019.00876.

[43] M. L. Gray and S. Suri. Ghost Work: How to Stop Silicon Valley from Building a New Global
Underclass. 2019.

[44] K. Hara, A. Adams, K. Milland, S. Savage, C. Callison-Burch, and J. P. Bigham. A data-
driven analysis of workers’ earnings on amazon mechanical turk. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, page 449, 2018.

11

http://dx.doi.org/10.1109/ICRA.2018.8460689
http://dx.doi.org/10.1109/CVPR.2019.00876

