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Abstract

Transformer-based models have recently become
wildly successful across a diverse set of domains.
At the same time, recent work has shown em-
pirically and theoretically that Transformers are
inherently limited. Specifically, they argue that as
model depth increases all features become more
and more similar. A natural question is: How can
Transformers achieve these successes given this
shortcoming? In this work we test these observa-
tions empirically and theoretically and uncover
a number of surprising findings. We find that
there are cases where feature similarity increases
but, contrary to prior results, this is not inevitable,
even for existing pre-trained models. Theoreti-
cally, we show that smoothing behavior depends
on the eigenspectrum of the value and projection
weights and potentially the sign of the layer nor-
malization weights. Our analysis reveals a simple
way to parameterize the weights of the Trans-
former update equations to influence smoothing
behavior. We hope that our findings give ML re-
searchers and practitioners additional insight into
how to develop future Transformer models.

1. Introduction

In recent years, Transformer models (Vaswani et al., 2017)
have achieved astounding success across vastly different
domains, however their performance can quickly saturate
as model depth increases (Kaplan et al., 2020; Wang et al.,
2022), as features are observed to become more and more
similar to one another (Tang et al., 2021; Zhou et al.,
2021a;b; Gong et al., 2021; Yan et al., 2022). Theoreti-
cally, these observations were characterized as (a) Input
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Convergence: Transformer features converge to the exact
same vector (Park & Kim, 2022; Wang et al., 2022; Bai
et al., 2022); (b) Angle Convergence: the angle between
Transformer features converges to 0 (Tang et al., 2021; Zhou
et al., 2021a; Gong et al., 2021; Yan et al., 2022; Shi et al.,
2022; Noci et al., 2022; Guo et al., 2023); or (c) Rank Col-
lapse: Transformer features collapse to a rank one matrix
(Dong et al., 2021; Shi et al., 2022; Noci et al., 2022; Guo
et al., 2023; Ali et al., 2023). We show even for a simplified
Tranformer setup that: (a) There are cases where all features
converge to the same vector, but this is not inevitable, con-
trary to prior results; (b) Angle convergence is also possible,
but not guaranteed; and (c) while rank collapse is likely, it
is also not required. Empirically, for existing pre-trained
models we find cases where (a) features do not converge to
the same vector, (c) feature angles do not converge to 0, and
(c) rank does not collapse.

2. Background & Related Work

2.1. The Transformer Update.

Transformers are a linear combination of a set of ‘heads’;
each includes a self-attention function X ∈ Rn×d, A :=

Softmax
(

1√
k
XWQW

⊤
KX⊤

)
, where the Softmax(·) func-

tion is applied to each row individually. Further,
WQ,WK ∈ Rd×k are learned query and key weight
matrices. This ‘attention map’ A then transforms the in-
put to produce the output of a single head AXWV Wproj,
where WV ,Wproj ∈ Rd×d are learned value and projec-
tion weights. A residual connection is added to produce the
output Xℓ of any layer ℓ:

Xℓ := Xℓ−1 +AℓXℓ−1WV,ℓWproj,ℓ, (1)

2.2. What Is Oversmoothing?

Input Convergence. One way to formalize oversmooth-
ing is through the lens of signal-processing (Wang et al.,
2022). : the smoothing of a function can be measured by
how much it suppresses higher frequencies in the signal,
removing smaller fluctuations to highlight the larger trend.
To measure the smoothing of the Transformer update in
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eq. (1) we can compute the ratio of high frequency signals
to low frequency signals preserved in Xℓ. If this goes to
0 as ℓ → ∞, all high frequency information is lost: the
signal is maximally smoothed. To estimate these signals
we can compute the Discrete Fourier Transform (DFT) F
of Xℓ, via F(Xℓ) := FXℓ, where F ∈ Cn×n is equal to
Fk,l := e2πi(k−1)(l−1) for all k, l ∈ {2, . . . , n} (where i :=√
−1), and is 1 otherwise (i.e., in the first row and column).

Define the Low Frequency Component (LFC) of Xℓ as
LFC[Xℓ] := F−1diag([1, 0, . . . , 0])FXℓ = (1/n)11⊤Xℓ.
Further, define the High Frequency Component (HFC) of
Xℓ as HFC[Xℓ] := F−1diag([0, 1, . . . , 1])FXℓ = (I −
(1/n)11⊤)Xℓ. We can now state the first definition of over-
smoothing:

Definition 1 (Input Convergence (Wang et al., 2022)). The
Transformer update in eq. (1) oversmooths if for all X ∈
Rn×d we have that limℓ→∞

∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
= 0.

This definition measures the extent to which inputs converge
to the same feature vector. To see this, notice that the term
in the numerator HFC[Xℓ] = (I − (1/n)11⊤)Xℓ goes to
0 iff Xℓ = 1x⊤ where x ∈ Rd is a vector where entry
xi is the mean of the ith column of X. This is because
(1/n)11⊤X = 1x⊤. Finally, the required condition Xℓ =
1x⊤ only holds when all input vectors are equal. In the
following we will refer to the ratio in the above definition
as HFC/LFC.

Angle Convergence. Another way to quantify over-
smoothing is via the cosine similarity between inputs:

Definition 2 (Angle Convergence). The Transformer update
in eq. (1) oversmooths if for all X ∈ Rn×d we have that

limℓ→∞ 2
n(n−1)

∑n
i=1

∑n
j=i+1

x⊤
i,ℓxj,ℓ

∥xi,ℓ∥2∥xj,ℓ∥2
= 1,

where xi,ℓ ∈ Rd is the ith row of Xℓ. This measures the
cosine of the angle θ between every pair of inputs xi,ℓ,xj,ℓ

and is 1 iff θ = 0.

Rank Collapse. Finally, we can also measure oversmooth-
ing via rank collapse in Xℓ. This is usually described as
limℓ→∞ rank(Xℓ) = 1. While rank can be computed via a
singular value decomposition (SVD), it is highly-sensitive
to the threshold deciding when a singular should be treated
as zero. Instead, Guo et al. (2023) use the ‘effective rank’,
first introduced by Roy & Vetterli (2007).

Definition 3 (Rank Collapse). Given Xℓ ∈ Rn×d, let
Xℓ = UℓΣℓVℓ be a singular value decomposition of
X with singular values diag(Σℓ) = [σ1,ℓ, . . . , σr,ℓ] for
r ≤ min{n, d} and σ1,ℓ ≥ · · · ≥ σr,ℓ ≥ 0. Define the
following discrete distribution according to the singular val-
ues as pi,ℓ = σi,ℓ/

∑r
j=1 σj,ℓ. The effective rank (Roy

& Vetterli, 2007) is the exponential of the entropy of this
distribution: exp(−∑r

i=1 −pi,ℓ log pi,ℓ). The Transformer
update in eq. (1) oversmooths if for all X ∈ Rn×d we have
that limℓ→∞ exp(−∑r

i=1 pi,ℓ log pi,ℓ) = 1.

Roy & Vetterli (2007) prove that 1 ≤
exp(−∑r

i=1 pi,ℓ log pi,ℓ) ≤ rank(Xℓ) ≤ r.

Notice that Definitions 1-3 are progressively relaxed, i.e.,
if an update satisfies an oversmoothing definition, it also
satisfies any later definitions.

3. Do Transformers Always Oversmooth?

3.1. Preliminaries

Our strategy will be to understand the eigenspectrum of the
Transformer update in the limit and to use this understanding
to derive what the features Xℓ converge to as ℓ → ∞. All
proofs will be left to the appendix. Define the vec(M)
operator as converting any matrix M to a vector m by
stacking its columns. We can rewrite eq. (1) vectorized as
follows

vec(Xℓ) = (I+W⊤
projW

⊤
V︸ ︷︷ ︸

:=H

⊗A)vec(Xℓ−1). (2)

Assumption 1 ((Ali et al., 2023; Wang et al., 2022)). The
attention matrix is positive, i.e., A > 0, and diagonalizable.

Proposition 1 ((Meyer & Stewart, 2023)). Given Assump-
tion 1, all eigenvalues of A lie within (−1, 1]. There is one
largest eigenvalue that is equal to 1, with corresponding
unique eigenvector 1.

All proofs are left to the Appendix.

3.2. The Eigenvalues

Lemma 1. Let λA
1 , . . . , λ

A
n be the eigenvalues of A and

let λH
1 , . . . , λH

r for r ≤ d be the eigenvalues of H. The
eigenvalues of (I+H⊗A)ℓ are equal to (1 + λH

j λA
i ) for

j ∈ {1, . . . , r} and i ∈ {1, . . . , n}.

Definition 4 (Dominating eigenvalue(s)). At least one of the
eigenvalues of (I+H⊗A) has a larger magnitude than all
others, i.e., there exists j∗, i∗ (which may be a set of indices
if there are ties) such that |1 + λH

j∗λ
A
i∗ | > |1 + λH

j′λ
A
i′ | for

all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗. These
eigenvalues are called dominating.

Theorem 1. Given the Transformer update in eq. (2), let
{λA

i }ni=1 and {λH
j }rj=1 for r ≤ d be the eigenvalues

of A and H. Let the eigenvalues be sorted as follows,
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Figure 1. Theory of Transformer Oversmoothing. A ✓ indicates prior work says that the corresponding Definition is always satisfied, an
✗ indicates it is not always satisfied. Note that if a work argues a Definition is satisfied, then all later Definitions, which are progressively
more relaxed, must also be satisfied.

λA
1 ≤ · · · ≤ λA

n and |1 + λH
1 | ≤ · · · ≤ |1 + λH

r |. As
the number of layers ℓ → ∞, there are two types of domi-
nating eigenvalues: (1) (1 + λH

j∗λ
A
n ). and (2) (1 + λH

j∗λ
A
1 )

3.3. The Features

Theorem 2. Given the Transformer update in eq. (2), if a
single eigenvalue dominates, as the number of total layers
ℓ → ∞, the feature representation Xℓ converges to one
of two representations: (1) If (1 + λH

j λA
n ) dominates then,

Xℓ → (1 + λH
j λA

n )
ℓsj,n1v

H
j

⊤
, (2) If (1 + λH

j λA
1 ) domi-

nates then, Xℓ → (1 + λH
j λA

1 )
ℓsj,1v

A
1 v

H
j

⊤ where vH ,vA

are eigenvalues of H,A and sj,i := ⟨vQ−1
j,i , vec(X)⟩ and

vQ−1
j,i is row ji in the matrix Q−1 (here Q is the matrix of

eigenvectors of (I+H⊗A)). (3) If multiple eigenvalues
have the same dominating magnitude, Xℓ converges to the
sum of the dominating terms.

Corollary 1. If the residual connection is removed in the
Transformer update, then the eigenvalues are of the form
(λH

j λA
i ). Further, (λH

j∗λ
A
n ) is always a dominating eigen-

value, and Xℓ → (λH
j∗λ

A
n )

ℓsj,n1v
H
j∗

⊤
as ℓ → ∞, where

vH
j∗ is the sum of all eigenvectors with eigenvalue equal to

the dominating eigenvalue λH
j∗ .

3.4. When Oversmoothing Happens

Theorem 3. Given the Transformer update eq. (2), as
the number of total layers ℓ → ∞, if (1) one eigenvalue
(1 + λH

j λA
n ) dominates, we have input convergence, an-

gle convergence, and rank collapse. If (2) one eigenvalue
(1+λH

j λA
1 ) dominates, we do not have input convergence or

angle convergence, but we do have rank collapse. If (3) mul-
tiple eigenvalues have the same dominating magnitude and:
(a) there is at least one dominating eigenvalue (1 + λH

j∗λ
A
i∗)

where λA
i∗ ̸= λA

n , then we do not have input convergence or
angle convergence, or (b) the geometric multiplicity of λA

1

and λH
j∗ are both greater than 1, then we also do not have

rank collapse.

Corollary 2. If the residual connection is removed in the
Transformer update, input convergence, angle convergence,
and rank collapse are guaranteed.

The above statements follow directly from Theorem 2 and
Corollary 1. They tell us that whenever a single eigenvalue
(1 + λH

j λA
n ) dominates, every input in Xℓ converges to

the same feature vector. This happens because vA
n = 1

and so xℓ,i ∼ vH
j , for all i as ℓ → ∞. But there is a

second case: whenever the single eigenvalue (1 + λH
j λA

1 )
dominates, each feature is not guaranteed to be identical.
However, Xℓ → (1 + λH

j λA
1 )

ℓsj,1v
A
1 v

H
j

⊤ is still a matrix
of rank one. If instead multiple eigenvalue dominate and
the geometric multiplicity of λA

1 and λH
j∗ are both greater

than 1 then Xℓ is a sum of at least 2 rank-1 matrices and so
we do not have rank collapse.

Theorem 3 largely contradicts prior theoretical results on
oversmoothing. We suspect a few reasons for this. First, if
multiple types of analyses are used within one paper, and
they give conflicting results, resolving this can be especially
challenging (Wang et al., 2022). Second, certain assump-
tions may not always hold in practice, e.g., Noci et al. (2022)
assume that A = 1

n11
⊤ at initialization.

4. A Reparameterization that Influences
Smoothing

Corollary 3. If the eigenvalues of H fall within [−1, 0),
then (1 + λH

j∗λ
A
1 ) dominates. If the eigenvalues of H fall

within (0,∞), then (1 + λH
j∗λ

A
n ) dominates.
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ViT-S (sharpening)
ViT-S (smoothing)

attention layers
fully-connected layers

layer normalization layers

Th
e 

Pi
le

CI
FA

R1
00

Im
ag

eN
et

ViT-Ti [Touvron et al., 2021]
ViT-Ti (sharpening)
ViT-Ti (smoothing)

attention layers
fully-connected layers

layer normalization layers

Crammed BERT [Geiping & Goldstein, 2023]

attention layers
fully-connected layers

layer normalization layers

Crammed BERT (sharpening)
Crammed BERT (smoothing)

Figure 2. Influencing smoothing. The smoothing metrics defined in Definitions 1-3 for different models and datasets when H is
reparameterized as H = VHΛHV−1

H . See text for details.

See the Appendix for a proof. To ensure that the eigen-
values of H fall in these ranges, we propose to directly
parameterize its eigendecomposition. Specifically, define
H as H = VHΛHV−1

H , where VH is a full-rank ma-
trix and ΛH is diagonal. We learn parameters VH by
taking gradients in the standard way (i.e., directly and
through the inversion). To learn the diagonal of ΛH ,
i.e., diag(ΛH), we parameterize the sharpening model as
diag(ΛH) := clip(ψ, [−1, 0]), where ψ are tunable param-
eters and clip(ψ, [l, u]) := min(max(ψ, l), u) forces all of
ψ to lie in [l, u]. Similarly we parameterize the smoothing
model as diag(ΛH) := clip(ψ, [0, 1]).1

Reparameterization results. Figure 2 show the effect of
reparameterizing H and restricting the range of eigenval-
ues to encourage sharpening and smoothing. For ImageNet
we see that only the effective rank is somewhat affected in
later layers. For CIFAR100 the sharpening parameteriza-
tion reduces smoothing in all metrics while the smoothing
parameterization further increases smoothing. For The Pile
the effect is once again limited.

Impact of layer normalization. The position and weights
of the layer normalization layer can impact the filtering
behavior of a layer. In Fig. 3 we parameterize two layers,
one smoothing and one sharpening and apply it to an input
image for 128 iterations in order to visualize its asymptotic
behavior. We repeat the process with the two most common

1While we could have allowed the smoothing model to use
the space of positive reals via diag(ΛH) := |ψ| , we found that
restricting the space of allowed eigenvalues stabilized training.

sm
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Figure 3. Impact of Layer Normalization. The average
HFC/LFC for the Transformer update with repeated layers eq. (2)
and different types of layer normalization (Post-LN (Vaswani et al.,
2017), Pre-LN (Baevski & Auli, 2018)) where the weights of the
layer normalization are fixed to be positive or negative.

layer normalization implementations: Pre-LN and Post-LN
(Xiong et al., 2020), each with a positive then negative
weight matrix sampled randomly. We do not use a bias
since our focus is showing the impact of the normalization
weight. When the weights are negative, Pre-LN reverses the
expected filtering behavior of the layer.

5. Limitations

One limitation of the current theoretical analysis is that the
results are asymptotic, applying in the limit as ℓ → ∞. We
would like to expand the theoretical analysis to account
for layer normalization and feed forward layers. Special
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conditions will likely need to be placed on H to enable this
analysis, such as symmetric A,H (Sander et al., 2022).
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CIFAR100 ImageNet The Pile

layer ViT-Ti ViT-Ti (sharpening) ViT-Ti (smoothing) ViT-S ViT-S (sharpening) ViT-S (smoothing) ViT-B DeiT-B ViT-L DeiT3-L Cram. Bert Cram. Bert (sharpening) Cram. Bert (smoothing)

LayerNorm -0.073 +0.011 -0.043 -0.126 +0.276 -0.244 +0.157 +0.338 -0.364 +0.811 -0.915 -0.086 -0.019
Attention -0.165 +0.418 -0.121 -0.123 -0.048 +0.043 -0.535 -0.961 +0.008 -1.012 +0.994 -0.042 -0.003

MLP +0.425 +0.418 +0.168 +0.175 -0.496 +0.270 +0.061 +0.258 +0.624 -0.604 +0.914 +0.316 +0.043

Table 1. Change in HFC/LFC for each layer type, across all models.

CIFAR100 ImageNet The Pile

Layer type ViT-Ti ViT-Ti (sharpening) ViT-Ti (smoothing) ViT-S ViT-S (sharpening) ViT-S (smoothing) ViT-B DeiT-B ViT-L DeiT3-L Cram. Bert Cram. Bert (sharpening) Cram. Bert (smoothing)

LayerNorm +0.573 +1.304 +0.684 +14.975 +9.447 +2.628 +10.436 +12.41 +17.746 +19.18 +6.088 +6.084 +5.027
Attention -0.171 +4.754 -2.870 -15.454 -5.185 +6.203 -10.247 -14.301 -18.671 -16.939 -5.927 -6.338 -5.002

MLP +5.171 -0.217 +3.118 -13.352 -17.056 -8.405 -10.298 -8.821 -17.308 -21.052 -6.541 -6.093 -5.481

Table 2. Change in effective rank for each layer type, across all models.

Appendix

A. Implementation Details

Crucially, even though our theoretical analysis applies for fixed attention A and weights H, we use existing model
architectures throughout, i.e., including different attention/weights each layer, multi-head attention, layer normalization
(arranged in the pre-LN format (Xiong et al., 2020)), and fully-connected layers.2

Initialization. We initialize H = VHΛHV−1
H to mimic the initializations used in the ViT-Ti and Bert baselines, which are

initialized using He initialization (He et al., 2015). Specifically, we first initialize VH using He initialization. To initialize
diag(ΛH) we sample from a normal distribution with mean 0, as randomly initialized matrices will typically have normally
distributed eigenvalues centered at 0. We noticed that if we set the standard deviation of this normal distribution to 1, the
sampled values of diag(ΛH) are often too large and lead to training instability. To stabilize training, we set the standard
deviation to 0.1. All other training and architecture details are in the Appendix.

Image Classification: Training & Architecture Details. We base our image classification experiments on the ViT model
(Dosovitskiy et al., 2020) and training recipe introduced in (Touvron et al., 2021). On CIFAR100 for 300 epochs using the
cross-entropy loss and the AdamW optimizer (Loshchilov & Hutter, 2019). Our setup is the one used in (Park & Kim, 2022)
which itself follows the DeiT training recipe (Touvron et al., 2021). We use a cosine annealing schedule with an initial
learning rate of 1.25× 10−4 and weight decay of 5× 10−2. We use a batch size of 96. We use data augmentation including
RandAugment (Cubuk et al., 2019), CutMix (Yun et al., 2019), Mixup (Zhang et al., 2018), and label smoothing (Touvron
et al., 2021). The models were trained on two Nvidia RTX 2080 Ti GPUs. On ImageNet, we use the original DeiT code and
training recipe described above. Changes from CIFAR100 are that we use a batch size of 512 and train on a single Nvidia
RTX 4090 GPU.

Text Generation: Training & Architecture Details. We base our NLP experiments on Geiping & Goldstein (2023),
using their code-base. Following this work we pre-train encoder-only ‘Crammed’ Bert models with a maximum budget of
24 hours. We use a masked language modeling objective and train on the Pile dataset (Gao et al., 2020). The batch size is
8192 and the sequence length is 128. We evaluate models on SuperGLUE (Wang et al., 2020) after fine-tuning for each task.
In order to ensure a fair comparison, all models are trained on a reference system with an RTX 4090 GPU. We use mixed
precision training with bfloat16 as we found it to be the most stable (Kaddour et al., 2023).

B. Do Transformers Oversmooth

Given the current theory on Transformer oversmoothing, how are Transformer models so successful for vision and NLP
applications (Kenton & Toutanova, 2019; Liu et al., 2019; Lan et al., 2019; Brown et al., 2020; Dosovitskiy et al., 2020;
Chowdhery et al., 2023)? To investigate this, we computed the above three metrics in Definitions 1-3 on a set of pre-trained

2If a model has multiple heads we will define WV = VH and Wproj = ΛHV⊤
H ).
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CIFAR100 ImageNet The Pile

Layer type ViT-Ti ViT-Ti (sharpening) ViT-Ti (smoothing) ViT-S ViT-S (sharpening) ViT-S (smoothing) ViT-B DeiT-B ViT-L DeiT3-L Cram. Bert Cram. Bert (sharpening) Cram. Bert (smoothing)

LayerNorm +0.006 -0.004 +0.001 -0.057 -0.013 -0.056 -0.061 -0.064 +0.002 -0.166 -0.274 -0.232 -0.025
Attention +0.04 -0.086 +0.052 +0.129 +0.054 -0.005 +0.163 +0.192 +0.072 +0.211 +0.263 +0.258 +0.035

MLP -0.078 +0.054 -0.038 +0.258 +0.021 +0.021 +0.005 -0.052 -0.058 +0.117 +0.111 +0.188 +0.016

Table 3. Change in cosine similarity for each layer type, across all models.
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ViT-Ti [Touvron et al., 2021]
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Crammed BERT [Geiping & Goldstein, 2023]

attention layers
fully-connected layers

layer normalization layers

ViT-L [Dosovitsky et al., 2021]
DeiT3-L [Touvron et al., 2022]
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Figure 4. Smoothing behavior. The smoothing metrics defined in Definitions 1-3 for different models and datasets in vision and NLP.
See text for details.

models for vision and NLP that have been used in prior work on oversmoothing (Wang et al., 2022; Choi et al., 2023) in
Figure 4. We notice that for all ImageNet models (ViT-B, ViT-L (Dosovitskiy et al., 2020), DeiT-B (Touvron et al., 2021),
DeiT3-L (Touvron et al., 2022)), as depth increases, we do see the metrics approaching their oversmoothing values as
described in Definitions 1-3. Rank (Definition 3) does not consistently decrease and stays relatively high for 12 layer models,
but continues to drop as depth is increased. However, we see something completely unexpected from the CIFAR model
(ViT-Ti (Touvron et al., 2021)). All of the metrics show reduction in smoothing behavior as depth increases. Similarly, for
The Pile model (Crammed BERT (Geiping & Goldstein, 2023)) we see behavior that appears to oscillate between more and
less smoothing. These behaviors motivate us to further investigate the Transformer update.

C. Proofs

Proposition 1 ((Meyer & Stewart, 2023)). Given Assumption 1, all eigenvalues of A lie within (−1, 1]. There is one largest
eigenvalue that is equal to 1, with corresponding unique eigenvector 1.

Proof. First, because A is positive, by the Perron-Frobenius Theorem (Meyer & Stewart, 2023) all eigenvalues of A are
in R (and so there exist associated eigenvectors that are also in R). Next, recall the definition of an eigenvalue λ and
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eigenvector v: Av = λv. Let us write the equation for any row i ∈ {1, . . . , n} explicitly:

ai1v1 + · · ·+ ainvn = λvi.

Further let,

vmax := max{|v1|, . . . , |vn|} (3)

Note that vmax > 0, otherwise it is not a valid eigenvector. Further let kmax be the index of v corresponding to vmax. Then
we have,

|λ|vmax = |akmax1v1 + · · ·+ akmaxnvn|
≤ akmax1|v1|+ · · ·+ akmaxn|vn|
≤ akmax1|vkmax |+ · · ·+ akmaxn|vkmax |
= (akmax1 + · · ·+ akmaxn)|vkmax | = |vmax|

The first inequality is given by the triangle inequality and because aij > 0. The second is given by the definition of vmax as
the maximal element in v. The final inequality is given by the definition of A in eq. (??) as right stochastic (i.e., all rows of
A sum to 1) and because |vkmax

| = |vmax|. Next, note that because vmax > 0, it must be that λ ≤ 1. Finally, to show that
the one largest eigenvalue is equal to 1, recall by the definition of A in eq. (??) that A1 = 1, where 1 is the vector of all
ones. So 1 is an eigenvector of A, with eigenvalue λ∗ = 1. Because aij > 0, and we showed above that all eigenvalues
must lie in in [−1, 1], by the Perron-Frobenius theorem (Meyer & Stewart, 2023) λ∗ = 1 is the Perron root. This means
that all other eigenvalues λi satisfy the following inequality |λi| < λ∗. Further 1 is the Perron eigenvector, and all other
eigenvectors have at least one negative component, making 1 unique. Finally, because A is diagonalizable it has n linearly
independent eigenvectors.

Lemma 1. Let λA
1 , . . . , λ

A
n be the eigenvalues of A and let λH

1 , . . . , λH
r for r ≤ d be the eigenvalues of H. The eigenvalues

of (I+H⊗A)ℓ are equal to (1 + λH
j λA

i ) for j ∈ {1, . . . , r} and i ∈ {1, . . . , n}.

The proof can be derived from Theorem 2.3 of (Schacke, 2004). We now prove a lemma that will allow us to prove
Theorem 1.

Lemma 2. Consider the Transformer update in eq. (2). Let {λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }rj=1 for r ≤ d be the eigenvalue

and eigenvectors of A and H. Let the eigenvalues (and associated eigenvectors) be sorted as follows, λA
1 ≤ · · · ≤ λA

n

and |1 + λH
1 | ≤ · · · ≤ |1 + λH

r |. Let φH
1 , . . . , φH

r be the phases of λH
1 , . . . , λH

r . As the number of layers L → ∞, one
eigenvalue dominates the rest (multiple dominate if there are ties):

(1 + λH
r λA

n ) if |1 + λH
r λA

n | ≥ 1

(1 + λH
minλ

A
1 ) if |1 + λH

r λA
n | < 1

}
if λA

1 > 0

(1 + λH
r λA

n ) if |1 + λH
r λA

n | > |1 + λH
k λA

1 |
(1 + λH

k λA
1 ) if |1 + λH

r λA
n | < |1 + λH

k λA
1 |

}
if λA

1 < 0, φH
r ∈ [−π

2 ,
π
2 ]

(1 + λH
r λA

n ) if |1 + λH
r λA

n | > |1 + λH
r λA

1 |
(1 + λH

r λA
1 ) if |1 + λH

r λA
n | < |1 + λH

r λA
1 |

}
if λA

1 < 0, φH
r ∈ (π2 , π] ∪ [−π,−π

2 )

where λH
min be the eigenvalue of H with smallest magnitude and λH

k is the eigenvalue with the largest index k such that
φH
k ∈ (π/2, π] ∪ [−π,−π/2).

Proof. Given Lemma 1, the eigenvalues and eigenvectors of (I+H⊗A) are equal to (1 + λH
j λA

i ) and vH
j ⊗ vA

i for all
j ∈ {1, ..., d} and i ∈ {1, . . . , n}. Recall that eigenvalues (and associated eigenvectors) are sorted in the following order
λA
1 ≤ · · · ≤ λA

n and |1 + λH
1 | ≤ · · · ≤ |1 + λH

d |. Our goal is to understand the identity of the dominating eigenvalue(s)
λH
j∗λ

A
i∗ for all possible values of λH , λA.

9



Setting the Record Straight on Transformer Oversmoothing

First recall that λA
i ∈ (−1, 1] and λA

n = 1. A useful way to view selecting λH
j λA

i to maximize |1+λH
j λA

i | is as maximizing
distance to −1. If (i), λA

1 > 0 then λA
i , for all i ∈ {1, . . . , n−1} always shrinks λH

j to the origin and λA
n leaves it unchanged.

Because of how the eigenvalues are ordered we must have that |1 + λH
r | = |1 + λH

j λA
n | ≤ |1 + λH

r λA
n | = |1 + λH

r |. If
|1 + λH

r λA
n | ≥ 1 then shrinking any λH

i to the origin will also move it closer to −1. However, if |1 + λH
r λA

n | < 1 then
shrinking to the origin can move λH

i farther from −1 than |1 + λH
r λA

n |. The eigenvalue of H that can be moved farthest is
the one with the smallest overall magnitude, defined as λH

min. The eigenvalue of A that can shrink it the most is λA
1 . This

completes the first two cases.

If instead (ii), λA
1 < 0 then it is possible to ‘flip’ λH

j across the origin, and so the maximizer depends on φH
r . If a)

φH
r ∈ [−π/2, π/2] then let λH

k be the eigenvalue with the largest index k such that φH
k ∈ (π/2, π] ∪ [−π,−π/2). It is

possible that ‘flipping’ this eigenvalue across the origin makes it farther away than λH
r , i.e., |1 + λH

k λA
1 | > |1 + λH

r λA
n |.

In this case (1 + λH
k λA

1 ) dominates, otherwise (1 + λH
r λA

n ) dominates. If they are equal then both dominate. If instead
b) φH

r ∈ (π/2, π] ∪ [−π,−π/2) then either |1 + λH
r λA

n | > |1 + λH
j′λ

A
i′ | for all j′ ̸= d and i′ ̸= n, and so (1 + λH

r λA
n )

dominates, or ‘flipping’ λH
r increases its distance from −1, and so |1+λH

r λA
1 | > |1+λH

j′λ
A
i′ | for all j′ ̸= d and i′ ̸= n, and

so (1 + λH
r λA

1 ) dominates. Because we cannot have that |1 + λH
r λA

n | = |1 + λH
r λA

1 | as λA
1 > −1 this covers all cases.

Now we can prove Theorem 1.

Theorem 1. Given the Transformer update in eq. (2), let {λA
i }ni=1 and {λH

j }rj=1 for r ≤ d be the eigenvalues of A and H.
Let the eigenvalues be sorted as follows, λA

1 ≤ · · · ≤ λA
n and |1 + λH

1 | ≤ · · · ≤ |1 + λH
r |. As the number of layers ℓ → ∞,

there are two types of dominating eigenvalues: (1) (1 + λH
j∗λ

A
n ). and (2) (1 + λH

j∗λ
A
1 )

The proof follows immediately from Lemma 2.

Theorem 2. Given the Transformer update in eq. (2), if a single eigenvalue dominates, as the number of total layers ℓ → ∞,
the feature representation Xℓ converges to one of two representations: (1) If (1 + λH

j λA
n ) dominates then,

Xℓ → (1 + λH
j λA

n )
ℓsj,n1v

H
j

⊤
, (4)

(2) If (1 + λH
j λA

1 ) dominates then,

Xℓ → (1 + λH
j λA

1 )
ℓsj,1v

A
1 v

H
j

⊤
(5)

where vH ,vA are eigenvalues of H,A and sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the matrix Q−1 (here Q is the
matrix of eigenvectors of (I+H⊗A)). (3) If multiple eigenvalues have the same dominating magnitude, Xℓ converges to
the sum of the dominating terms.

Proof. Recall that the eigenvalues and eigenvectors of (I + H ⊗ A) are equal to (1 + λH
j λA

i ) and vH
j ⊗ vA

i for all
j ∈ {1, ..., d} and i ∈ {1, . . . , n}. This means,

vec(Xℓ) =
∑
i,j

(1 + λH
j λA

i )
ℓ⟨vQ−1

j,i , vec(X)⟩(vH
j ⊗ vA

i ).

Recall that vQ−1
j,i is row ji in the matrix Q−1, where Q is the matrix of eigenvectors vH

j ⊗ vA
i . Further recall that vA

i = 1.
As described in Theorem 1, as ℓ → ∞ at least one of the eigenvalues pairs λH

j λA
i will dominate the expression (1+λH

j λA
i )

ℓ,
which causes vec(XL) to converge to the dominating term. Finally, we can rewrite, v1 ⊗ v2 as vec(v2v

⊤
1 ). Now all

non-scalar terms have vec(·) applied, so we can remove this function everywhere to give the matrix form given in eq. (4)
and eq. (5).

Corollary 1. If the residual connection is removed in the Transformer update, then the eigenvalues are of the form (λH
j λA

i ).

Further, (λH
j∗λ

A
n ) is always a dominating eigenvalue, and Xℓ → (λH

j∗λ
A
n )

ℓsj,n1v
H
j∗

⊤
as ℓ → ∞, where vH

j∗ is the sum of
all eigenvectors with eigenvalue equal to the dominating eigenvalue λH

j∗ .
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Proof. The eigendecomposition of the Transformer update without the residual connection is:

vec(Xℓ) =
∑
i,j

(λH
j λA

i )
ℓ⟨vQ−1

j,i , vec(X)⟩(vH
j ⊗ vA

i ).

In this case, (λH
j∗λ

A
n ) is always a dominating eigenvalue because |λA

n | > |λA
i | for any i ∈ {1, . . . , n − 1}. This and the

above eigendecomposition yields Xℓ → (λH
j∗λ

A
n )

ℓsj,n1v
H
j∗

⊤
as ℓ → ∞.

Theorem 3. Given the Transformer update eq. (2), as the number of total layers ℓ → ∞, if (1) one eigenvalue (1 + λH
j λA

n )

dominates, we have input convergence, angle convergence, and rank collapse. If (2) one eigenvalue (1 + λH
j λA

1 ) dominates,
we do not have input convergence or angle convergence, but we do have rank collapse. If (3) multiple eigenvalues have the
same dominating magnitude and: (a) there is at least one dominating eigenvalue (1 + λH

j∗λ
A
i∗) where λA

i∗ ̸= λA
n , then we do

not have input convergence or angle convergence, or (b) the geometric multiplicity of λA
1 and λH

j∗ are both greater than 1,
then we also do not have rank collapse.

Proof. If (1) one eigenvalue (1 + λH
j λA

n ) dominates then we have that Xℓ → (1 + λH
j λA

n )
ℓsj,n1v

H
j

⊤. Therefore, Xℓ has
all the same inputs which also implies angle convergence and rank collapse. If (2) one eigenvalue (1 + λH

j λA
1 ) dominates

then we have that Xℓ → (1 + λH
j λA

1 )
ℓsj,1v

A
1 v

H
j

⊤. Therefore, we do not have input convergence. Further as vA
1 can

contain both positive an negative components we do not have angle convergence. However, Xℓ is rank one so we do have
rank collapse. If (3) multiple eigenvalues have the same dominating magnitude and: (a) there is at least one dominating
eigenvalue (1 + λH

j∗λ
A
i∗) where λA

i∗ ̸= λA
n then we do not have input convergence or rank convergence, as shown for case

(2); if (b) the geometric multiplicity of λA
1 and λH

j∗ are both greater than 1, then Xℓ converges to the sum of at least 2 rank-1
matrices which are not themselves linear combinations of each other. Therefore, rank(Xℓ) ≥ 2.

Corollary 2. If the residual connection is removed in the Transformer update, input convergence, angle convergence, and
rank collapse are guaranteed.

Proof. Corollary 1 tells us that in this case Xℓ → (λH
j∗λ

A
n )

ℓsj,n1v
H
j∗

⊤
as ℓ → ∞, where vH

j∗ is the sum of all eigenvectors
with eigenvalue equal to the dominating eigenvalue λH

j∗ . This matrix has all the same features and so we have input
convergence, angle convergence, and rank collapse.

Corollary 3. If the eigenvalues of H fall within [−1, 0), then (1 + λH
j∗λ

A
1 ) dominates. If the eigenvalues of H fall within

(0,∞), then (1 + λH
j∗λ

A
n ) dominates.

Proof. Let λH
1 ≤ · · · ≤ λH

r . Again we can think of selecting λH
j λA

i that maximizes |1+λH
j λA

i | as maximizing the distance
of λH

j λA
i to −1. Consider the first case where λH

1 , · · · , λH
r ∈ [−1, 0), and so λH

1 is the closest eigenvalue to −1 and λH
r is

the farthest. If λA
1 > 0 then all λA can do is shrink λH to the origin, where λA

1 shrinks λH the most. The closest eigenvalue
to the origin is λH

r , and so (1 + λH
r λA

1 ) dominates. If instead λA
1 < 0, then we can ‘flip’ λH

j over the origin, making
it farther from −1 than all other λH

j′ . The eigenvalue that we can ‘flip’ the farthest from −1 is λH
1 , and so (1 + λH

1 λA
1 )

dominates. If all eigenvalues of H are equal, then both (1 + λH
r λA

1 ) and (1 + λH
1 λA

1 ) dominate. For the second case where
λH
1 , · · · , λH

r ∈ (0,∞), we have that |1 + λH
r λA

n | > |1 + λH
j′λ

A
i′ | for all j′ ∈ {1, . . . , d− 1} and i′ ∈ {1, . . . , n− 1}. This

is because, by definition λH
r λA

n > λH
j′λ

A
i′ . Further, 1 + λH

r λA
n ≥ |1 + λH

j′λ
A
i′ | as the largest |1 + λH

j′λ
A
i′ | can be is either (i)

|1− ϵλH
r | for 0 < ϵ < 1 or (ii) |1+λH

r−1λ
A
n | (i.e., in (i) λH

r is negated by λA
1 and in (ii) λH

r−1 is the next largest value of λH ).
For (i), it must be that 1 + λH

r λA
n ≥ |1− ϵλH

r | as λH
r > 0. For (ii) λH

r ≥ λH
r−1 > 0, and so |1 + λH

r λA
n | ≥ |1 + λH

r−1λ
A
n |.

Therefore λA
n dominates.

D. Distribution of the eigenvalues of H in trained models
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Figure 5. Distributions of eigenvalues of H (Top) Vision models have distributions skewing to the negatives; (Bottom) Language models
have symmetrically distributed eigenvalues.
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