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Abstract

Recent studies reveal that deep representation learning models without proper regularization
can suffer from the dimensional collapse issue, i.e., representation vectors span over a lower
dimensional space. In the domain of graph deep representation learning, the phenomenon
that the node representations are indistinguishable and even shrink to a constant vector
is called oversmoothing. Based on the analysis of the rank of node representations, we
find that representation oversmoothing and dimensional collapse are highly related to each
other for deep graph neural networks (GNNs), and the oversmoothing problem can be
interpreted by the dimensional collapse of the representation matrix. Then, to address the
dimensional collapse and the triggered oversmoothing in deep graph neural networks, we first
find vanilla residual connections and contrastive learning producing sub-optimal outcomes
by ignoring the structural information of graph data. Motivated by this, we propose a
novel graph neural network named GearGNN to alleviate the oversmoothing issue from the
perspective of addressing dimensional collapse in two folds. Specifically, in GearGNN, we
design a topology-preserving residual connection for graph neural networks to force the
low-rank of hidden representations close to the full-rank input features. Also, we propose
the structure-guided contrastive loss to ensure only close neighbors who share similar local
connections can have similar representations. Empirical experiments on multiple real-world
datasets demonstrate that GearGNN outperforms state-of-the-art deep graph representation
baseline algorithms.

1 Introduction

Representation learning models have achieved outstanding performance for various application domains by
outputting informative hidden representations, such as computer vision and natural language processing.
Recent studies (Hua et al., 2021; Jing et al., 2022; Guo et al., 2023) show that the deep representation learning
models without proper regularization tend to produce representations that collapse along certain directions,
known as the dimensional collapse, which can be further interpreted by the visualization of the singularity
ranking of the matrices of representations (Hua et al., 2021). With the advent of big data, graph structures
recently received increasing research attention for their ability to encode complex interactions. Similarly, the
deep representation learning models on graphs are also found affected by representation issues, i.e., the node
representation vectors outputted by deeper graph neural networks are not discriminative from each other
and directly hurt the performance of node classification and link prediction tasks and their corresponding
applications. This phenomenon is called oversmoothing in the graph representation learning domain (Li et al.,
2018; Oono & Suzuki, 2020; Rusch et al., 2023).

In this paper, we first find that the oversmoothing in graph deep learning can be interpreted by dimensional
collapse from the low-rank of representation matrix, a detailed theoretical derivation can be found in
Appendix A. To empirically demonstrate the existence of dimensional collapse in the graph representation
learning domain, we conduct a toy experiment on the Cora (Lu & Getoor, 2003) benchmark dataset by
exploring the rank of the covariance matrix of the node representations. The analysis is visualized in Figure 1,
where the x-axis is the index of the sorted singular values of the covariance matrix of the representation
matrix, and the y-axis is the logarithm of the singular value. In Figure 1, we can see that the number of
non-zero singular values is much smaller than the number of dimensions for a GCN graph neural network (Kipf
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& Welling, 2017). This suggests that the representation matrix is low-rank, and the discrimination of node
representation vectors only relies on a few dimensions, which naturally increases the difficulty of effectively
discriminating node presentations and makes tasks like node classification and link prediction groundless.

(a) (b)

Figure 1: (a). A toy example on the Cora dataset to demonstrate the rank deficiency, where GCN is chosen
as the backbone, the number of layers is set to 64 and the dimension of representation is 100. (b). The
visualization about how vanilla residual connections of neural layers turn the low-rank representation Z into
a full-rank representation Z ′.

To address the dimensional collapse problem in deep neural networks, residual connections (He et al., 2016)
among neural layers can be an effective manner, i.e., it has been discovered that residual connections across
neural network layers force the low-rank of hidden representations close to the full-rank input features (Jing
et al., 2022), as shown in Figure 1 (b). The residual connections pave the way for eliminating the dimensional
collapse for deep neural networks and indicate the de-oversmoothing probability for deep graph neural
networks, but for non-IID graph data, we find the vanilla residual connections can produce sub-optimal
results for possible two reasons. First, the vanilla residual connections ignore the topological assumption of
graph data that closer neighbors are more important during the embedding process, simply adding residual
connection can induce “shading neighbors” effects, i.e., even residually connected, close neighbors becomes
less important during the neural representation process, as we discussed in Section 2.3. Second, targeting this
specific oversmoothing phenomenon in the graph representation learning domain, the direct observation is
that individual representations are indistinguishable. Hence, contrastive learning serves as a viable solution,
but the existing work (Guo et al., 2023) simply introduces vanilla contrastive loss as a regularization while
failing to consider the topological relationship of positive and negative pairs.

Facing the latent dimensional collapse problem (i.e., by computing the singular value of covariance matrix
of representations) and observable oversmoothing problem (i.e., by discriminating node embedding vectors)
in deep graph neural networks, we propose two effective directions, i.e., Weight-Decaying Graph Residual
Connection (WG-ResNet) and Structure-Guided Contrastive Loss (SCL). In brief, WG-ResNet adapts
weighted residual connections to preserve the input graph topology, and SCL weighs different positive and
negative pairs based on their topological relations. The effectiveness of SCL and WG-ResNet in addressing
dimensional collapse is also shown in Figure 1 (a). Moreover, it can be observed that SCL itself can alleviate
the dimensional collapse to some extent, i.e., alleviating oversmoothing by contrastive learning addresses the
dimensional collapse, which again proves the unity of dimensional collapse and oversmoothing as we discussed
above.

In the end, we propose an end-to-end graph neural network model GearGNN, which encloses SCL and
WG-ResNet in a GNN-agnostic manner to help arbitrary graph neural networks go deeper effectively
compared to state-of-the-art baselines, supported by theoretical and empirical analysis. Furthermore, we
designed extensive ablation studies to show that SCL and WG-ResNet both contribute to alleviating the
dimensional collapse of the deep graph neural networks for the de-oversmoothing, and their combination can
reach the optimal results.
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Figure 2: An arbitrary GNN with the proposed GearGNN.

2 Proposed Method

In this section, we begin with the overview of GearGNN and then provide the details of the Weight-decaying
Graph Residual Connection (WG-ResNet) and Structure-guided Contrastive Loss (SCL). We formalize the
problem of graph embedding within the context of an undirected graph G = (V, E, X), where V consists of n
nodes, E consists of m edges, X ∈ Rn×d denotes the feature matrix and d is the feature dimension. We let
A ∈ Rn×n denote the adjacency matrix and denote Ai ∈ Rn as the adjacency vector for node vi. Hi ∈ Rh is
the hidden representation vector of vi.

2.1 Overview of GearGNN

The overview of our proposed GearGNN is shown in Figure 2 and GearGNN consists of two parts, including
the graph architecture WG-ResNet and contrastive loss SCL. Specifically, the green dash line stands for
WG-ResNet, where H(l) at the l-th layer will be adjusted by its second last layer H(l−2) and the first layer
H(1) with proper weights. The red dash line in Figure 2 stands for SCL, where we first sample positive node
pairs and negative node pairs based on the input graph topology such that the hidden representations of
positive node pairs get closer and negative ones are pushed farther apart. The overall of GearGNN in terms
of loss functions and architectures is expressed as follows.

LGearGNN = LGNN + αLSCL (1)

where LGNN denotes the loss of the downstream task (e.g., node classification) using an arbitrary GNN model
(e.g., GCN (Kipf & Welling, 2017)) equipped with WD-ResNet, LSCL is the structure-guided contrastive loss,
and α is a constant hyperparameter. The details of WG-ResNet and SCL are introduced below.

2.2 Weight-Decaying Graph Residual Connection (WG-ResNet)

As shown in Figure 1 (b), the vanilla residual connections (e.g., ResNet (He et al., 2016)) have the potential
to alleviate the dimensional collapse of deep neural networks. But for deep graph neural networks, we
discover that simply adding residual connections leads to the sub-optimal solution. As ResNet stacks layers,
the importance of close neighbors’ features gradually decreases during the GNN information aggregation
process, and the faraway neighbor information becomes dominant. More concretely speaking, taking graph
convolutional neural network (Kipf & Welling, 2017) as an example, the graph residual connection is expressed
as follows.

H(l) = σ(ÂH(l−1)W (l−1)) + H(l−2) (2)
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where l(≥ 2) denotes the index of layers, H(l−1) and H(l−2) are the hidden representations at corresponding
layers, σ(·) is the activation function, W (l−1) is the learnable weight matrix, and Â is the re-normalized
self-looped adjacency matrix with Â = D̃− 1

2 ÃD̃− 1
2 and Ã = A + I, where D̃ is the degree matrix. In

ResNet, the residual connection connects the current layer and its second last layer. Without loss of generality,
we assume the last layer of GNNs is stacked by ResNet, i.e., l is divisible by 2. Then, by extending H(l−2)

iteratively (i.e., substituting it with its previous residual blocks), the above Eq. 2 could be rewritten as
follows.

H(l) = σ(ÂH(l−1)W (l−1)) + σ(ÂH(l−3)W (l−3)) + H(l−4)

= σ(ÂH(l−1)W (l−1)) + σ(ÂH(l−3)W (l−3)) + · · ·︸ ︷︷ ︸
Information aggregated from the faraway neighbors

+ σ(ÂH(i)W (i)) + · · · + σ(ÂH(1)W (1))︸ ︷︷ ︸
Information aggregated from the nearest neighbors

(3)

According to (Xu et al., 2019), stacking l layers in GNNs and obtaining H(l) can be interpreted as aggregating
information from l-hop neighbors for node hidden representations. As shown in Eq. 3, when we stack more
layers in GNNs, the information collected from faraway neighbors becomes dominant (as there are more
terms regarding the information from faraway neighbors), and dilutes the information collected from the
nearest neighbors (e.g., 1-hop or 2-hop neighbors). This phenomenon contradicts the general intuition that
the close neighbors of a node carry the most important information, and the importance degrades with
faraway neighbors. Formally, we describe this phenomenon as shading neighbors effect when stacking graph
neural layers, as the importance of the nearest neighbors is diminishing. We empirically demonstrate that
the shading neighbors effect degrades GNN performance in downstream tasks in Section 3.4. Specifically,
we show that (1) vanilla ResNet exhibits the shading neighbors effect in graph representation learning; (2)
jumping knowledge (Xu et al., 2018) can be a viable solution to mitigate the shading neighbors effect; (3) our
proposed WG-ResNet achieves the best effectiveness in addressing the shading neighbors effect.

To formally introduce our proposed generic graph architecture, i.e., Weight-Decaying Graph Residual
Connection (WG-ResNet). Here, we first introduce the formulation and then provide insights regarding why
it can address the problem. Specifically, WG-ResNet introduces the layer similarity and weight decaying
factor as follows.

H̃(l) = σ(ÂH(l−1)W (l−1))
H(l) = sim(H(1), H̃(l)) · e−l/λ · H̃(l) + H(l−2)

= ecos(H(1),H̃(l)) − l/λ · H̃(l) + H(l−2)

(4)

where cos(H(1), H̃(l)) = 1
n

∑
i

H
(1)
i

(H̃
(l)
i

)⊤

∥H
(1)
i

∥∥H̃
(l)
i

∥
measures the similarity between the l-th layer and the 1-st layer,

and we use the exponential function to map the cosine similarity ranging from [−1, 1] to [e−1, e1], to avoid
the negative similarity weights. The term e−l/λ is the decaying factor to further adjust the similarity weight
of H̃(l), where λ is a constant hyperparameter.

Different from the vanilla ResNet (He et al., 2016), we introduce a learnable similarity term sim(H(1), H̃(l))
to expand the hypothesis space of deeper GNNs. As we mentioned earlier, simply adding vanilla ResNet
on GNNs will cause the shading neighbors effect. The introduced decaying factor e−l/λ mitigates this effect
by introducing layer-wise dependency to stacking operations and preserving hierarchical information in the
graph as GNNs deepen. As λ remains constant, the value of e−l/λ is decreasing as l increases. Consequently,
the later stacked layers become less influential than the previously stacked ones due to the decaying weight,
effectively addressing the shading neighbors effect. In contrast, without the decaying factor, the layer-wise
weights remain independent, and the shading neighbors effect persists. Moreover, we visualize the layer-wise
weight distribution of different residual connection methods (including our WG-ResNet) and their effectiveness
in addressing the shading neighbors effect in Appendix B. From another perspective, the hyperparameter λ
of the decaying factor actually controls the number of effective neural layers in deeper GNNs. We find its
optimal value directly related to the diameter of the input graph, the detailed discussion can be found in
Section 3.6.
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2.3 Structure-Guided Contrastive Loss (SCL)

According to (Hua et al., 2021; Jing et al., 2022), contrastive representation learning methods show success in
preventing dimensional collapse for image recognition whereby representation vectors shrink along certain
directions. For graph structure representation learning, the contrastive methods are able to construct the
positive and negative sets, and minimizing the similarity of the negative pairs allows the node representations
to be uniformly distributed in the embedding space (Wang & Isola, 2020), and some nascent of contrastive
learning on graphs have obtained promising alleviation in alleviating the oversmoothing issue and the
corresponding oversmoothing (Zhao & Akoglu, 2020; Guo et al., 2023). However, simply adopting the idea of
contrastive regularization in deep graph neural networks could not fully alleviate the oversmoothing issue due
to ignoring the topological relation of non-IID graph data. Hence, mitigating oversmoothing issue in deep
graph neural networks remains a significant challenge. To address this issue with the geometry consideration,
we propose the Structure-guided Contrastive Loss (SCL) as follows. Intuitively, it says from an anchor node
say vi, its positive sample (i.e., connected node) should have close node representations, and its negative
sample (i.e., disconnected node) should have discriminative node representations. Also, sigma and γ measures
the importance of positive and negative samples based on the input topology.

LSCL = −Evi∈V [Evj∈Ni(σij log(f(zi, zj))) + Evk∈N̄i
(γik log(1 − f(zi, zk)))]

σij = n2

m
· 1 − dist(Ai, Aj)/n∑

vi′ ∈V,vj′ ∈Ni′ (1 − dist(Ai′ , Aj′)/n) , γik = n2

n2 − m
· 1 + dist(Ai, Ak)/n∑

vi′ ∈V,vk′ ∈N̄i′ (1 + dist(Ai′ , Ak′)/n)
(5)

where zi = g(H(l)
i ), g(·) is an encoder mapping H

(l)
i to another latent space, f(·) is a similarity function

(e.g., f(a, b) = exp( ab⊤

||a||||b|| )), dist(·) is a distance measurement function (e.g., hamming distance (Norouzi
et al., 2012)), Ni is the set containing one-hop neighbors of node vi, N̄i is the complement of the set Ni, m is
the number of edges and n is the number of vertices. In Eq. 5, the connected edge (vi, vj) forms the positive
pair, while disconnected edge (vi, vk) forms the negative pair. Moreover, (vi′ , vj′) iterates over all connected
edges in the input graph, and (vi′ , vk′) iterates over all disconnected edges in the input graph.

The intuition of Eq. 5 is to maximize the similarity of the representations of the positive pairs and to
minimize the similarity of the representations of the negative pairs, such that the node representations become
discriminative. In which process, some research works (Perozzi et al., 2014; Grover & Leskovec, 2016; Le,
2021) would first assume that the importance of each edge is identical. However, such an assumption does not
always get satisfied in many applications (Velickovic et al., 2017; Faisal et al., 2015). To address this issue, we
reweight the importance of edges by considering the graph topological structure via σ and γ. Therefore, for a
positive pair, if two nodes have similar topological structures, the weight (i.e., σ) of this node pair should be
large; for a negative pair, if two nodes have similar topological structures, the weight (i.e., γ) of this node
pair should be small.

Next, we show the importance of these topology-aware weights (i.e., σ and γ) in mitigating the oversmoothing
issue with the theoretical analysis. For delivering the following analysis clearly, we adopt node vi as the
anchor node for illustration, without loss of generality (Zhu et al., 2021) Mathematically, some works (Perozzi
et al., 2014; Grover & Leskovec, 2016; Le, 2021) assume the importance of each edge is identical, i.e., the
edge distribution P (e) is uniform. Consequently, our objective is to initially recalibrate the importance of
edges by incorporating the topological information of the graph. Subsequently, we aim to present the ensuing
topology-aware distribution. Note that, in the following derivation, the edge e we referred to consists of
existing edges and non-existing edges. To be specific, if node i and node k do not connect in the input graph,
then eik represents the non-existing edge between node i and node k, denoted as a negative edge.

To begin with, we denote the probability of sampling a connection eij and it is a positive connection as
P̃pos(eij) ∝ P (eij , y = 1), i.e., the sampled pair of two nodes vi and vj connect in the input graph. Then,
P̃pos(eij) can be further expressed as P̃pos(eij) = σijPpos(eij), where Ppos(eij) = m

n2 is the prior probability
that the sampling is positive, and σij is the conditional probability for the joint probability P̃pos(eij). Note
that a positive connection (e.g., eij) stands for two connected nodes vi and vj forming a positive pair.
Similarly, for disconnected two nodes vi and vk (i.e., the negative pair or negative connection eik), we denote
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P̃neg(eik) = γikPneg(eik), where Pneg(eik) = 1 − m
n2 is the prior probability of sampling a negative connection,

and we interpret γik as the conditional probability for the joint probability P̃neg(eik).

Finally, we denote θ to be the parameters of the multi-layer GNN model Gθ(·), i.e., Z = Gθ(A, X), such that
we can prove that SCL could alleviate the oversmoothing issue from the perspective of generative adversarial
network (GAN) (Goodfellow et al., 2014) as follows.
Proposition 2.1. LSCL, based on contrastive learning, can be interpreted as the objective function of a
generative adversarial network (GAN) (Goodfellow et al., 2014), which could be written as follows.

min
θ

LSCL = max
θ

∫
e

(P̃pos(e) log(D(e)) + P̃neg(e) log(1 − D(e)))de

where D(e) = f(zi, zj) is the discriminator of GAN with edge e = (vi, vj), node representations zi and zj.
Probabilities P̃pos(e) = σPpos(e) and P̃neg(e) = γPneg(e) are defined above. (Proof in Appendix C)

According to Proposition 2.1, the proposed LSCL can be interpreted as distinguishing the existence of a
certain edge based on the representation vectors of two nodes. Next, we then derive how this design helps, as
a regularizer, to alleviate the oversmoothing problem based on positive and negative samples.
Proposition 2.2. The regularization term LSCL can alleviate the oversmoothing problem (i.e., the node
hidden representation vectors are distinguishable), given the optimal discriminator in Proposition 2.1.

Proof. Based on Proposition 2.1 and following Theorem 1 in GAN (Goodfellow et al., 2014), the optimal
D∗(e) can be derived and denoted as D∗(e) = P̃pos(e)

P̃pos(e)+P̃neg(e) . Since P̃pos(eij) = σijPpos(eij) and P̃neg(eik) =
γikPneg(eik), we have

D∗(e) = σ ∗ Ppos(e)
σ ∗ Ppos(e) + γ ∗ Pneg(e)

= P (e|y = 1)P (y = 1)
P (e|y = 1)P (y = 1) + P (e|y = 0)P (y = 0)

= P (y = 1|e)

Therefore, D(e) can be interpreted as maximizing the conditional log-likelihood P (y = 1|e), where y = 1
indicates edge e is a positive (i.e., exiting) edge. Notice that the discriminator D(e) is defined as the similarity
measurement of a node pair in terms of their representation vectors, as stated in Proposition 2.1. In other
words, if D(e) is able to distinguish whether a node pair is a negative pair or not, the hidden representations
of these two nodes (negative pair) are then distinguishable. Thus, we can conclude that when LSCL achieves
the optimal solution, the model could successfully discriminate the difference of the hidden representation
vectors for the negative pairs, thus alleviating the oversmoothing issue. In practice, the optimum is usually
approximated by the model convergence.

3 Experiments
In this section, we comprehensively demonstrate the performance of our proposed GearGNN compared to
state-of-the-art deeper graph neural networks and self-ablations, trying to answer the following research
questions.

• RQ1: When do we need more layers of graph neural networks? (Answered in Section 3.2)

• RQ2: When it is necessary to be deep, can the proposed GearGNN alleviate dimensional collapse
and oversmoothing to outperform? (Answered in Section 3.3)

• RQ3: Is every component of GearGNN helpful and irreplaceable? (Answered in Section 3.4)

• RQ4: In practice, can GearGNN be agnostic to help various off-the-shelf graph neural network
architectures? (Answered in Section 3.5)
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3.1 Experiment Setup
Datasets. Cora (Lu & Getoor, 2003) dataset is a citation network consisting of 5,429 edges and 2,708
scientific publications from 7 classes. The edge in the graph represents the citation of one paper by another.
CiteSeer (Lu & Getoor, 2003) dataset consists of 3,327 scientific publications which could be categorized into
6 classes, and this citation network has 9,228 edges. PubMed (Namata et al., 2012) is a citation network
consisting of 88,651 edges and 19,717 scientific publications from 3 classes. Reddit (Hamilton et al., 2017b)
dataset is extracted from Reddit posts, which consists of 4,584 nodes and 19,460 edges. Notice that we
follow the splitting strategy used in (Zhao & Akoglu, 2020) by randomly sampling 3% of the nodes as the
training samples, 10% of the nodes as the validation samples, and the remaining 87% as the test samples.
OGB-arXiv (Wang et al., 2020) is a citation network, which consists of 1,166,243 edges and 169,343 nodes
from 40 classes.

Baselines. We compare the performance of our method with the following baselines including one vanilla
GNN model and four state-of-the-art deeper GNN models: (1) GCN (Kipf & Welling, 2017): the vanilla
graph convolutional network; (2) GCNII (Chen et al., 2020): an extension of GCN with skip connections and
additional identity matrices; (3) DGN (Zhou et al., 2020): the differentiable group normalization for GNNs
to normalize nodes within the same group and separate nodes among different groups; (4) PairNorm (Zhao
& Akoglu, 2020): a GNN normalization layer designed to prevent node representations from becoming too
similar; (5) DropEdge (Rong et al., 2020): a GNN-agnostic framework that randomly removes a certain
number of edges from the input graph; (6) RevGCN-Deep (Li et al., 2021): equilibrium model based deep
graph neural networks; (7) EGNN (Zhou et al., 2021): dirichlet energy constrained deep graph neural
networks; (8) ContraNrom (Guo et al., 2023): a contrastive learning-based layer normalization method.

Configurations. For a fair comparison, we set the dropout rate to 0.5, the weight decay rate to 0.0005, and
the total number of iterations to 1500 for all methods; if not specialized, GCN is chosen as the backbone, and
the dimension of each layer is set to 50 for all the graph neural network baseline methods. In Section 3.4, for
GearGNN and GearGNN-S, we sample 10 instances and 5 neighbors for each class from the training set,
dist(·) is the hamming distance, and f(·) is the cosine similarity measurement. The experiments are repeated
10 times if not otherwise specified. All of the real-world datasets are publicly available. The experiments are
performed on a Windows machine with a 16GB RTX 5000 GPU. Detailed reproducibility with released code
can be found in Appendix D.
3.2 When do we need more layers of graph neural networks?
Case 1: Missing Features. We first consider a scenario where some attribute values are missing in the input
graph. In such cases, shallow GNNs may not perform well because they cannot gather useful information
from neighbors due to the presence of numerous missing values. However, by increasing the number of layers,
GNNs can gather more information from k-hop neighbors and capture latent knowledge to compensate for
missing features. To verify this, we conducted the following experiment: we randomly masked p% of attributes
on the Cora and CiteSeer datasets (i.e., setting the masked attributes to 0), gradually increased the number
of layers, and recorded the accuracy for each setting following the approach in (Zhao & Akoglu, 2020). In
this case study, we selected the number of layers from the set {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60},
and the backbone model used was GCN. For a fair comparison, we added ResNet (He et al., 2016) if it could
enhance the baseline model’s performance. We repeated the experiments five times and recorded the mean
accuracy and standard deviation.

Table 1 shows the performance of GearGNN and various baselines with the optimal number of layers denoted
as #L, i.e., when the model achieves the best performance. By observation, we find that when the missing
rate is 25%, shallow GCN with ResNet has enough capacity to achieve the best performance on both CiteSeer
and Cora datasets. Compared to GCN, our proposed method further improves the performance by more
than 3.83% on the CiterSeer dataset and 4.08% on the Cora dataset by stacking more layers. However,
when we increase the missing rate to 50% and 75%, we observe that most methods tend to achieve the best
performance by stacking more layers. Specifically, PairNorm achieves the best performance at 10 layers when
25% features are missing, while it has the best performance at 40 layers when 75% features are missing. A
similar observation could also be found with GCNII on the Cora dataset, DropEdge on the CiteSeer dataset
as well as our proposed methods in both datasets. Overall, the experimental results verify that the more
features a dataset are missing, the more layers GNNs need to be stacked to achieve better performance. Our
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Table 1: Node Classification on Two Datasets by Masking p% of Input Node Attributes (L denotes the
number of layers where a model achieves the best performance).

Node Feature Missing Rate p = 25% p = 50% p = 75%
dataset Method Accuracy L Accuracy L Accuracy L

Cora

GCN + ResNet 0.7503 ± 0.0101 7 0.7435 ± 0.0048 10 0.7226 ± 0.0099 10
PairNorm + ResNet 0.7529 ± 0.0129 10 0.7482 ± 0.0172 20 0.7262 ± 0.0178 40
DropEdge + ResNet 0.7634 ± 0.0112 15 0.7611 ± 0.0102 20 0.7297 ± 0.0168 8

GCNII + ResNet 0.2667 ± 0.0063 25 0.3351 ± 0.0066 25 0.2914 ± 0.0106 40
DGN w/o ResNet 0.6850 ± 0.0184 30 0.6846 ± 0.0147 50 0.6717 ± 0.0156 25

ContraNorm + ResNet 0.7319 ± 0.0099 2 0.7189 ± 0.0091 3 0.6902 ± 0.0107 3
GearGNN 0.7915 ± 0.0060 10 0.7848 ± 0.0043 20 0.7598 ± 0.0081 60

CiteSeer

GCN + ResNet 0.6141 ± 0.0080 4 0.5811 ± 0.0093 10 0.5149 ± 0.0173 9
PairNorm + ResNet 0.6184 ± 0.0087 8 0.5947 ± 0.0083 20 0.5176 ± 0.0075 10
DropEdge + ResNet 0.6348 ± 0.0156 4 0.6083 ± 0.0128 6 0.5240 ± 0.0128 10

GCNII + ResNet 0.2453 ± 0.0045 40 0.2338 ± 0.0028 20 0.2403 ± 0.0046 25
DGN w/o ResNet 0.4560 ± 0.0162 20 0.4593 ± 0.0117 15 0.4498 ± 0.0292 15

ContraNorm + ResNet 0.5893 ± 0.0114 2 0.5621 ± 0.0111 3 0.4646 ± 0.0076 4
GearGNN 0.6524 ± 0.0087 20 0.6169 ± 0.0063 60 0.5576 ± 0.0070 50

explanation for this observation is that if the number of layers increases, more information will be collected
from the k-hop neighbors to recover the missing information of its 1-hop and 2-hop neighbors.

Case 2: Disalignment of topological and feature distribution. We then conducted another case
study using a toy example to demonstrate that nearby neighbors may not necessarily share similar contents
in terms of input features. Initially, we utilized an existing package (specifically, the draw circle function
in the Scikit-learn package) to generate a synthetic dataset with 1,000 data points and a noise level set to
0.01. Subsequently, we computed the Euclidean distance between each pair of data points. If the distance
between two data points was less than a predefined threshold, we connected them in a graph, resulting in
the derivation of the adjacency matrix with added self-loops. Following this, we randomly sampled 1% of
the data points as the training set, 9% as the validation set, and 90% as the test set. These data points
were visualized in Figure 3a, and the corresponding experimental results are presented in Figure 3b. In
Figure 3a, we observed that the query node (depicted as the blue diamond within the dashed circle) could
not rely solely on its closest labeled neighbor (the red star within the dashed circle) to predict its label
(red or blue) correctly. Only by exploring longer paths consisting of more similar neighbors were we able
to accurately predict its label as blue (as indicated by the blue star within the dashed circle). Figure 3b
compares the classification accuracy of shallow GNNs with that of deeper GNNs. Notably, deeper GNNs
exhibited a significant performance improvement of over 11% compared to shallow ones, contributing to their
capability of exploring longer paths within the graph.

3.3 Effectiveness Analysis of GearGNN
Here, we evaluate the effectiveness of the proposed method on benchmark datasets by comparing it with
state-of-the-art methods shown in Table 2. The backbone model for all methods we used in these experiments
is GCN (Kipf & Welling, 2017). For a fair comparison, we set the dimension of the hidden layer to 50 and vary
the number of hidden layers from 2 to 16, 32, and 64 for all methods on the small dataset. Additionally, we
examine the node classification performance of GearGNN on the large-scale dataset OGB-arXiv, as detailed
in Table 3. In OGB-arXiv, we fix the feature dimension of the hidden layer as 100, set the total iteration to
3000, and choose GCN as the backbone model. Due to memory limitations, we only record the performance
of all methods by setting the number of layers to 2, 10, and 20, respectively. The experiments are repeated 5
times, and we record the mean accuracy as well as the standard deviation.

Based on the observation in Table 2 and Table 3, we find that (1) many existing graph de-oversmoothing
methods (e.g., PairNorm, ContraNorm) achieve the best performance with the shallow layer (i.e., L = 2),
and their performance begin to decrease as the number of layers increases; (2) GearGNN outperforms all
baseline methods when stacking the layers of GNN (i.e., L = 16, L = 32 and L = 64); (3) when comparing
with a 64-layer GCN as the reference, DropEdge, DropEdge, and ContraNorm show worse performance than
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(a) (b)

Figure 3: A Toy Example to Demonstrate the Benefit of Deeper GNN Models. (a) Two groups of nodes
in the semi-supervised setting. Stars are labeled, dots are unlabeled, and the diamond is the query node.
Euclidean distance between two nodes indicates the edge connection. (b) Comparison of node classification
accuracy between shallow and deeper GNN models using data on the left. The deeper GNNs are realized by
GearGNN with corresponding backbones.

Table 2: Node Classification on Small Datasets with Varying Layers L (GCN as the Backbone).

Dataset Method L = 2 L = 16 L = 32 L = 64

Cora

GCN 0.7643 ± 0.0040 0.5262 ± 0.0732 0.3284 ± 0.0066 0.3274 ± 0.0189
PairNorm 0.7818 ± 0.0027 0.6080 ± 0.0310 0.5138 ± 0.0299 0.2932 ± 0.0120
DropEdge 0.7828 ± 0.0075 0.7557 ± 0.0072 0.7306 ± 0.0134 0.2685 ± 0.0647

GCNII 0.6778 ± 0.0065 0.7237 ± 0.0055 0.7142 ± 0.0015 0.7107 ± 0.0047
DGN 0.7545 ± 0.0003 0.6785 ± 0.0169 0.7067 ± 0.0190 0.7104 ± 0.0192

ContraNorm 0.7682 ± 0.0044 0.6590 ± 0.0291 0.5128 ± 0.0241 0.4328 ± 0.0320
GearGNN 0.7768 ± 0.0057 0.8002 ± 0.0058 0.7961 ± 0.0055 0.8022 ± 0.0061

CiteSeer

GCN 0.6452 ± 0.0072 0.4514 ± 0.0987 0.2689 ± 0.0099 0.2680 ± 0.0093
PairNorm 0.6030 ± 0.0153 0.2268 ± 0.0398 0.2096 ± 0.0029 0.2076 ± 0.0033
DropEdge 0.6532 ± 0.0068 0.6117 ± 0.0229 0.5101 ± 0.0430 0.2138 ± 0.0198

GCNII 0.5912 ± 0.0106 0.6180 ± 0.0031 0.6159 ± 0.0019 0.6101 ± 0.0017
DGN 0.4872 ± 0.0168 0.4753 ± 0.0591 0.4604 ± 0.0162 0.4417 ± 0.0219

ContraNorm 0.6263 ± 0.0061 0.4621 ± 0.0237 0.3965 ± 0.0196 0.2128 ± 0.0208
GearGNN 0.6577 ± 0.0065 0.6650 ± 0.0059 0.6655 ± 0.0031 0.6685 ± 0.0066

PubMed

GCN 0.7990 ± 0.0017 0.5383 ± 0.0200 0.5463 ± 0.0391 0.5566 ± 0.0086
PairNorm 0.8120 ± 0.0076 0.4408 ± 0.0683 0.3972 ± 0.0094 0.3960 ± 0.0097
DropEdge 0.8035 ± 0.0020 0.7893 ± 0.0042 0.7902 ± 0.0032 0.3951 ± 0.0108

GCNII 0.8070 ± 0.0009 0.8094 ± 0.0010 0.8089 ± 0.0007 0.8097 ± 0.0009
DGN 0.7947 ± 0.0358 0.7553 ± 0.0295 0.7733 ± 0.0143 0.7632 ± 0.0226

ContraNorm 0.8061 ± 0.0020 0.5672 ± 0.0684 0.4348 ± 0.0379 0.3971 ± 0.0057
GearGNN 0.8175 ± 0.0016 0.8097 ± 0.0038 0.8098 ± 0.0025 0.8109 ± 0.0033

Reddit

GCN 0.8757 ± 0.0054 0.8540 ± 0.0451 0.3655 ± 0.0251 0.3410 ± 0.0288
PairNorm 0.7704 ± 0.0052 0.8636 ± 0.0448 0.6468 ± 0.0429 0.1230 ± 0.0299
DropEdge 0.8564 ± 0.0059 0.8526 ± 0.0046 0.5384 ± 0.1049 0.1053 ± 0.0148

GCNII 0.6184 ± 0.0108 0.7157 ± 0.0016 0.6972 ± 0.0039 0.6963 ± 0.0059
DGN 0.7829 ± 0.0137 0.7397 ± 0.0371 0.6806 ± 0.0639 0.5058 ± 0.0754

ContraNorm 0.6576 ± 0.0094 0.2563 ± 0.0091 0.2547 ± 0.0170 0.2664 ± 0.0140
GearGNN 0.8762 ± 0.0060 0.9676 ± 0.0033 0.9693 ± 0.0023 0.9721 ± 0.0011

the vanilla GCN; (4) GCNII, DGN, and GearGNN exhibit an average performance boost of more than 150%
compared to GCN; (5) GCNII and GearGNN perform better with deep graph architecture (e.g., L = 32 or
L = 64); (6) the performance of GearGNN on OGB-arXiv dataset increases as we stack layers, which verifies
our hypothesis that increasing the number of layers indeed leads to better performance in large graphs due
to more information aggregated from neighbors; (7) setting the number of layers to 10 for the OGB-arXiv
dataset results in a drop in performance for most baseline methods, which deteriorates rapidly with further
layer stacking. Additional comparison with RevGCN-Deep and EGNN can be found in Appendix E.
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Table 3: Node Classification on Large Dataset with Varying Layers L (GCN as the Backbone).

Dataset Method L = 2 L = 10 L = 20

OGB-arXiv

GCN 0.7136 ± 0.0044 0.7021 ± 0.0018 0.5377 ± 0.0756
PairNorm 0.7186 ± 0.0008 0.7158 ± 0.0035 0.5796 ± 0.0090
DropEdge 0.7178 ± 0.0012 0.6531 ± 0.0056 0.2198 ± 0.0097

GCNII 0.5966 ± 0.0013 0.6340 ± 0.0017 0.6246 ± 0.0015
DGN 0.6039 ± 0.0037 0.5746 ± 0.0033 0.5027 ± 0.0056

ContraNorm 0.7294 ± 0.0025 0.6941 ± 0.0030 0.5821 ± 0.0324
GearGNN 0.7369 ± 0.0014 0.7386 ± 0.0006 0.7401 ± 0.0009

In addition to Table 2 and Table 3, we visualize the corresponding number of the nonzero singular values
on those datasets in Figure 4. In Figure 4, taking Cora and OGB-arXiv as examples, we observe that (1)
PairNorm and ContraNorm begin to suffer from the dimensional collapse issue on both datasets when the
number of layers is greater than 10; (2) Dropedge, DGN, and GCNII perform well on the small dataset but
fail to preserve the full-rank representation on the large dataset; (3) node representations by GearGNN are
full-rank on both datasets, indicating that GearGNN effectively alleviates the dimensional collapse.

(a) Cora Dataset (b) CiteSeer Dataset (c) PubMed Dataset

(d) Reddit Dataset (e) OGB-arXiv Dataset

Figure 4: The x-axis is the number of layers and the y-axis is the number of the non-zero singular values of
the covariance matrix of the node representations by different methods.

Combined with the observation in Figure 4, Table 2 and Table 3, most of the baseline methods suffer from
the dimensional collapse issue and not fully address the oversmoothing problem when we stack graph neural
network layers, while our proposed GearGNN could largely alleviate the dimensional collapse issue in terms
of both node classification performance and the singularity ranking.

3.4 Ablation Study of GearGNN

Here, we conduct the ablation study to show the effectiveness and irreplaceability of WG-ResNet and SCL in
terms of node classification in Table 4. In this experiment, we fix the total iteration set as 3000, and GCN is
chosen as the backbone model. For the Cora dataset, the feature dimension of the hidden layer is 50 and
the number of layers is 64; for the OGB-arXiv dataset the feature dimension of the hidden layer is 100 and
the number of layers is 20. In Table 4, GearGNN-T removes SCL, GearGNN-D removes the weight decaying
factor in WG-ResNet and GearGNN-JK replaces the WG-ResNet by Jumping Knowledge (Xu et al., 2018).
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Table 4: Ablation Study w.r.t. Node Classification Accuracy.

Method Cora (L = 64) CiteSeer (L = 64) PubMed (L = 64) Reddit (L = 64) OGB-arXiv (L = 20)
GCN+RseNet 0.7252 ± 0.0176 0.6213 ± 0.0056 0.7985 ± 0.0068 0.9432 ± 0.0037 0.7144 ± 0.0013
GearGNN-D 0.7498 ± 0.0139 0.6567 ± 0.0052 0.8050 ± 0.0031 0.9654 ± 0.0028 0.7363 ± 0.0011
GearGNN-T 0.7875 ± 0.0092 0.5750 ± 0.0244 0.8078 ± 0.0047 0.9397 ± 0.0042 0.7335 ± 0.0024

GearGNN-JK 0.7955 ± 0.0078 0.6600 ± 0.0085 0.8061 ± 0.0038 0.9659 ± 0.0046 0.7368 ± 0.0012
GearGNN 0.8022 ± 0.0061 0.6685 ± 0.0066 0.8109 ± 0.0033 0.9721 ± 0.0011 0.7401 ± 0.0009

In Table 4, we have the following observations (1) comparing GearGNN with GearGNN-T, we find that
GearGNN boosts the performance by 1.84% on the Cora dataset after adding SCL, which demonstrates the
effectiveness of SCL to alleviate the oversmoothing issue; (2) GearGNN outperforms GearGNN-D on Cora
dataset by 5.61%, which shows that GearGNN could alleviate the shading neighbors effect by adding the
weight decaying factor; (3) comparing GearGNN with GearGNN-JK, we verify that our proposed WG-ResNet
is more effective than GearGNN-JK. Besides, one drawback of jumping knowledge is its high memory required
as the number of layers increases, while our proposed WG-ResNet doesn’t; (4) GearGNN outperforms
GCN+ResNet by more than 7.7% on the Cora dataset and 2.6% on the OGB-arXiv dataset, which indicates
that WG-ResNet could alleviate the shading neighbors effect.

3.5 Different Backbones of GearGNN

Here, we show the performance of our proposed GearGNN cooperating with different backbone models (e.g.,
GAT (Velickovic et al., 2018) and GraphSage (Hamilton et al., 2017a)). In Figure 5, we set the numbers of
the hidden layers as 60 for all methods and the dimension of the hidden layer as 50. The total number of
training iterations is 1500.

Figure 5: Accuracy of Different Backbone Models with 64 Hidden Layers on Four Datasets.

By observation, we find that both GAT and GraphSage tend to have worse performance when the architecture
becomes deeper, and our proposed method GearGNN greatly boosts the performance by 40%-60% on average
over four datasets. Specifically, compared with the vanilla GraphSage, our GearGNN boosts its performance
by 43% on the CiteSeer dataset and more than 67% on the Reddit dataset.

3.6 Number of Effective Layers in Deep Graph Neural Networks

We conduct the hyperparameter analysis of GearGNN, regarding λ in the weight decaying function of Eq. 4.
For example, when λ = 10, the decaying factor for the 10-th layer is 0.3679 (i.e., e−1); but for the 30-th layer,
it is 0.0049 (i.e., e−3). This decay limits the effective information aggregation scope of deeper GNNs because
the later stacked layers will become significantly less important. Based on this controlling property of λ, a
natural follow-up question is whether its value depends on the property of input graphs.

Interestingly, through our experiments, we find that the optimal λ is very close to the diameter of input
graphs (if it is connected) or the largest component (if it does not have many separate components). This
observation verifies our conjecture regarding the property of λ (i.e., it controls the number of effective layers
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or the number of hops during the message passing aggregation schema of GNNs). Hence, the value of λ can
be searched around the diameter of the input graph.

(a) Cora (b) CiteSeer (c) PubMed (d) Reddit

Figure 6: Hyperparameter Analysis, i.e., λ vs Node Classification Accuracy on Four Datasets.

To analyze the hyperparameter λ, we fix the feature dimension of the hidden layer to be 50, the total iteration
is set to be 3000, the number of layers is set to be 60, the sampling batch size for GearGNN is 10, and GCN
is chosen as the backbone model. The experiment is repeated five times for each configuration. In each
sub-figure of Figure 6, the x-axis is the value of λ, and the y-axis is the accuracy of 60-layer GCN in the
above setting.

First, we can observe that it’s not true that GearGNN achieves the best performance with a larger λ.
Specifically, we find that the optimal λ = 20 on the Cora dataset, the optimal λ = 10 on the CiteSeer dataset,
the optimal λ = 18 on the PubMed dataset, and the optimal λ = 20 on the Reddit dataset. Then, natural
questions to ask are (1) what determines the optimal value of λ in different datasets? (2) can we gather some
heuristics to narrow down the hyperparameter search space to efficiently establish effective GNNs?

Thus, we provide our discovery. In Eq. 4, we have analyzed that the decaying factor λ controls the number of
effective layers in deeper GNNs by introducing the layer-wise dependency. It means that larger λ slows down
the weight decay and gives considerably large weights to more layers such that they can be effective, and
the information aggregation scope of GNN extends as more multi-hop neighbor features are collected and
aggregated. In graph theory, diameter represents the scope of the graph, which is the largest value of the
shortest path between any node pairs in the graph. Therefore, the optimal λ should be restricted by the
input graph, i.e., being close to the input graph diameter.

Table 5: Graph Statistics of Each Dataset.

Metric Cora Citeseer PubMed Reddit
Number of Nodes 2,708 3,327 19,717 4,854
Connected Graph No No Yes Yes
Number of Components 78 438 1 1
Diameter of the Graph (or the Largest Component) 19 28 18 17

Interestingly, our experiments reflect this observation. Combining the optimal λ in Figure 6 and the diameter
in Table 5, for connected graphs PubMed and Reddit, the optimal λ is very close to the graph diameter. This
also happens to Cora (even though Cora is not connected), because the number of components is not large.
As for CiteSeer, the optimal λ is less than the diameter of its largest component. A possible reason is that
CiteSeer has many (i.e., 438) small components, which shrinks the information propagation scope, such that
we do not need to stack many layers and we do not need to enlarge λ to the largest diameter (i.e., 28). In
general, based on the above analysis, we find the optimal value of λ can be searched around the diameter of
the input graph.

4 Conclusion

In this paper, we focus on building deeper graph neural networks to effectively model graph data and illustrate
the oversmoothing cause from the perspective of dimensional collapse. To this end, we first provide insights
regarding why ResNet is not best suited for many deeper graph neural network solutions, i.e., the shading
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neighbors effect. Then, we propose a new residual architecture, Weight-decaying Graph Residual Connection
(WG-ResNet), to alleviate this effect. In addition, we propose a Structure-guided Contrastive Loss (SCL)
to alleviate the problem from another viewpoint, where we utilize graph topological information, pull the
representations of connected node pairs closer, and push remote node pairs farther apart via contrastive
learning regularization. Combining WG-ResNet with SCL, an end-to-end model GearGNN is proposed for
deep graph neural networks. We provide the theoretical analysis of our proposed method and demonstrate
the effectiveness of GearGNN by extensive experiment comparing with state-of-the-art methods.
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A Similarity between Oversmoothing and Dimensional Collapse

In (Rusch et al., 2023), the authors describe oversmoothing as a phenomenon that the node representation
vectors are indistinguishable from each other and thus deteriorate the performance of downstream tasks.
Inspired by this, we could measure the magnitude of graph oversmoothing by the metric of covariance mean
as follows:

covariance(h) = 1
n

∑
i

(hi − h̄)(hi − h̄)

h̄ = 1
n

∑
i

hi

where hi is the node representation for node i and covariance(h) = 0 indicates that the learned representation
is indistinguishable and the deep model suffers from an oversmoothing issue. Notice that the dimensional
collapse is observed when the covariance matrix of the node representations is not full-rank (i.e., the number
of non-zero singular values is less than the dimension of the node representation in Figure 1). When
covariance(h) = 0, it also indicates that hi = hj = h̄ for all i and j, and the rank of the covariance matrix of
the node representation matrix is 0 (While a large value of covariance(h) does not mean that the performance
is ). In other words, the graph model suffers from complete collapse, where all node representations shrink to
a single point. Thus, we could see that the oversmoothing issue is highly related to dimensional collapse.

B Visualization of the Weight of Each Layer With Different Weighting Functions

Figure 7: Weight Visualization. The y-axis represents the weight of each layer, and the x-axis represents the
index of each layer, in deeper models.

Here, we visualize the weight of each layer with different weighting functions on the Cora dataset. In this
experiment, we fix the feature dimension of the hidden layer to be 50; the total iteration is set to be 3000; the
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number of layers is set to be 60; the sampling batch size for GearGNN is 10; GCN is chosen as the backbone
model; λ is set to be 20. In Figure 7, The x-axis is the index of each layer, and the y-axis is the weight
for each layer. GearGNN-S removes the similarity measurement ecos(H(1),H̃(l)) in Eq. 5 and GearGNN-D
removes the decaying weight factor and only keeps the exponential cosine similarity ecos(H(1),H̃(l)) to measure
the weight for each layer. GearGNN-S achieves the simplified WG-ResNet in GearGNN, which removes
the exponential cosine similarity ecos(H(1),H̃(l)) in GearGNN. By observation, we find that (1) ResNet sets
the weight of each layer to be 1, which easily leads to shading neighbors effect when stacking more layers,
because the faraway neighbor information becomes more dominant in the GCN information aggregation; (2)
without weight decaying factor, the weight for each layer in GearGNN-D fluctuates because they are randomly
independent. More specially, the weights for the last several layers (e.g., L=58 or L=60) are larger than the
weights for the first several layers, which contradicts the intuition that the first several layers should be more
important than the last several layers; (3) the weights for each layer in both GearGNN and GearGNN-S
reduce as the number of layers increase, which suggests that both of them could address the shading neighbors
effect to some extents; (4) combining the results from Table 4, GearGNN achieves better performance than
GearGNN-S, as it imposes larger weights to the first several layers, which verifies that the learnable similarity
sim(H(1), H̃(l)) achieves better performance with the enlarged hypothesis space for neural networks.

C Proof for Proposition 2.1

Proposition 2.1. LSCL, based on contrastive learning, can be interpreted as the objective function of a
generative adversarial network (GAN) (Goodfellow et al., 2014), which could be written as follows.

min
θ

LSCL = max
θ

∫
e

(P̃pos(e) log(D(e)) + P̃neg(e) log(1 − D(e)))de

where D(e) = f(zi, zj) is the discriminator of GAN with node representation zi and zj . Also, P̃pos(e) =
σPpos(e) and P̃neg(e) = γPneg(e).

Proof. Represent D(e) by f(zi, zj), then we have

min
θ

LSCL = −Evi∈V [Evj∈Ni
(σij log(f(zi, zj))) + Evk∈N̄i

(γik log(1 − f(zi, zk)))]

= − min
θ

∫
e

(Ppos(e)σ) log(D(e)) + (Pneg(e)γ) log(1 − D(e))de

= max
θ

∫
e

(P̃pos(e) log(D(e)) + P̃neg(e) log(1 − D(e)))de

D Reproducibility

All of the real-world datasets are publicly available. The experiments are performed on a Windows machine
with a 16GB RTX 5000 GPU. The code of our algorithm is in an anonymous link 1. We provide the detailed
experimental setting for each experiment shown in Table 6.

Table 6: Hyperparameters for GearGNN shown in Table 2.

Method GearGNN
Cora λ = 20, α = 0.03

CiteSeer λ = 10, α = 0.02
PubMed λ = 18, α = 0.1
Reddit λ = 20, α = 0.02

Moreover, we set the learning rate to be 0.001 and the optimizer is RMSProp, which is one variant of
ADAGRAD (Duchi et al., 2011).

1https://drive.google.com/file/d/1cbNI74lhTb3LsOKhgVHT1btNz20ZLb60/view?usp=sharing
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E Additional Effectiveness Analysis

We conduct the additional experiments by comparing our proposed method with RevGCN-Deep (Li et al.,
2021) and EGNN (Zhou et al., 2021). We set the number of layers for all baseline methods to 60 for Cora,
Citeseer, PubMed, and Reddit. For the OGB-arXiv dataset, we set the number of layers to 10 for all methods.

Table 7: Additional Node Classification Comparison.

Method Cora (L=60) CiteSeer (L=60) PubMed (L=60) Reddit (L=60) OGB-arXiv (L=10)
RevGCN-Deep 0.7458 ± 0.0084 0.5137 ± 0.0099 0.8139 ± 0.0015 0.8853 ± 0.0383 0.7354 ± 0.0009

EGNN 0.7961 ± 0.0036 0.6566 ± 0.0060 0.8138 ± 0.0026 0.8772 ± 0.0040 0.7247 ± 0.0015
GearGNN 0.8059 ± 0.0028 0.6655 ± 0.0117 0.8185 ± 0.0016 0.9721 ± 0.0011 0.7401 ± 0.0009

F Additional Ablation Study of GearGNN

In this section, we conduct an additional ablation study to evaluate the performance of each component (i.e.,
the cosine similarity function in Eq. 4 and SCL formulated in Eq. 5). In Table 8, GearGNN-S denotes the
variant of GearGNN after removing the cosine similarity function in Eq. 4 and SCL denotes the variant of
GearGNN by removing the WG-ResNet. We have the following observations: (1). GearGNN outperforms
GearGNN-S on most datasets except PubMed, which suggests that introducing the layer similarity (i.e., cosine
similarity between the first layer and the l-th layer) can increase the performance of GearGNN(̇2). Compared
to ContraNorm, our proposed structure-guided contrastive loss (SCL) can further boost the performance by
more than 29% on average, which demonstrates the effectiveness of SCL over ContraNorm.

Table 8: Additional Ablation Study w.r.t. Node Classification Accuracy.

Method Cora (L = 64) CiteSeer (L = 64) PubMed (L = 64) Reddit (L = 64) OGB-arXiv (L = 20)
GearGNN 0.8022 ± 0.0061 0.6685 ± 0.0066 0.8109 ± 0.0033 0.9721 ± 0.0011 0.7401 ± 0.0009

GearGNN-S 0.7931 ± 0.0153 0.6555 ± 0.0085 0.8173 ± 0.0030 0.9621 ± 0.0035 0.7335 ± 0.0024
ContraNorm 0.4328 ± 0.0320 0.2128 ± 0.0208 0.3971 ± 0.0057 0.2664 ± 0.0140 0.5821 ± 0.0324

SCL 0.5751 ± 0.0264 0.3933 ± 0.0076 0.7601 ± 0.0043 0.9305 ± 0.0266 0.6952 ± 0.0011

G Experiment on the Heterophily Graph

In this section, we evaluate the performance of GearGNN on a heterophily graph (i.e., arXiv-year) from the
benchmark data (Lim et al., 2021).

As shown in Table 9, our GearGNN achieves the second place performance in terms of node classification
accuracy, among other state-of-the-art graph neural network methods. Interestingly, we can also observe that
stacking more layers can increase the performance of GearGNN, because multi-hop neighbor information is
aggregated for the message passing in heterophily graphs.

The reason why GearGNN can not achieve the best is that, although stacking layers can aggregate infor-
mation from multi-hop neighbors, the loss SCL is still regulating that close neighbors should share similar
representations.

Note that our design of GearGNN is not solely for heterophily graphs but for how to stack layers wisely for
upgrading performance when the stacking operation is necessary and unavoidable. Hetrophily is not the only
reason for stacking graph neural layers; at least, the reasoning can also originate from missing features, as
shown in Section 3.2 and Table 1, where we need to stack more graph neural layers to mitigate the missing
features by incorporating more neighbors.
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Table 9: Node Classification on the arXiv-year dataset.

Method arXiv-year
GCN 0.4602 ± 0.0026
GAT 0.4605 ± 0.0051

GCNJK 0.4628 ± 0.0029
GATJK 0.4580 ± 0.0072
APPNP 0.3815 ± 0.0026
H2GCN 0.4909 ± 0.0010
MixHop 0.5181 ± 0.0017

GPR-GNN 0.4507 ± 0.0021
GCNII 0.4721 ± 0.0028

GearGNN (10 layers) 0.4816 ± 0.0008
GearGNN (20 layers) 0.4835 ± 0.0008
GearGNN (30 layers) 0.4871 ± 0.0007
GearGNN (50 layers) 0.4995 ± 0.0006

H Additional Hyperarameter Analysis

Here, we conduct additional hyperparameter analysis of GearGNN, i.e., α in the overall loss function of Eq 1.

Figure 8: Hyperparameter Analysis, i.e., α vs Node Classification Accuracy.

To analyze the hyperparameter α in GearGNN, we fix the feature dimension of the hidden layer to be 50, the
total iteration is set to be 3000, the number of layers is set to be 60, the sampling batch size for GearGNN
is 10, GCN is chosen as the backbone model, and the dataset is Cora. We gradually increase the value of
α and record the accuracy. The experiment is repeated five times in each setting. In Figure 8, the x-axis
is α and the y-axis is the accuracy score. By observation, when α = 1, the performance is worst and the
performance begins to increase by decreasing the value of α. It achieves the best accuracy when α = 0.03.
The performance starts to decrease again if we further decrease the value of α. We conjecture that when
α is large, it will dominate the overall objective function, thus jeopardizing the classification performance.
Besides, the performance also decreases if we set the value of α to be a small number (i.e., α = 0.001). In
addition, comparing with the performance without using SCL regularization (i.e., α = 0), our proposed
method with α = 0.03 can boost the performance by more than 1.8%, which demonstrates that our proposed
SCL alleviates the issue of oversmoothing to some extent.

I Efficiency Analysis

Here, we conduct an efficiency analysis regarding our proposed method in the Cora dataset. We fix the
feature dimension of the hidden layer to be 50, the total iteration is set to be 1500, the sampling batch size
for GearGNN and GearGNN-S is 10, and GCN is chosen as the backbone model. We gradually increase the
number of layers and record the running time.

18



Under review as submission to TMLR

Figure 9: The Number of Layers vs Running Time (in seconds) on Cora.

In Figure 9, the x-axis is the number of layers and the y-axis is the running time in seconds. We observe
that the running time of both GearGNN and GearGNN-S is linearly proportional to the number of layers.
Comparing the running time of GearGNN, the running time of GearGNN-S is further reduced after the
weighting function in GearGNN (e.g., sim(·)) is replaced by a constant.

J Sampling Method for SCL

To realize SCL expressed in Eq. 5, we need to get the positive nodes vj and negative nodes vk towards the
selected central node vi. To avoid iterating over all existing nodes or randomly sampling several nodes, we
propose to sample positive nodes vj and negative nodes vk from the star subgraph Si of the central node vi.
Moreover, to make the sampling scalable and to reduce the search space of negative nodes, we propose a
batch sampling method.

Figure 10: Batch Sampling. Each star node in the figure corresponds to node vi in Eq. 5.

As shown in Figure 10, the batch size is controlled by the number of central nodes (i.e., star nodes in the
figure). For each central node, the positive nodes are those 1-hop neighbors, and the negative nodes consist
of unreachable nodes. In our batch sampling, we strictly constrain that the positive nodes are only from
the 1-hop neighborhood for the following three reasons: (1) they are efficient to be accessed; (2) considering
all k-hop neighbors as positive will enlarge the scope of positive nodes and further decrease the intimacy
of the directly connected nodes; (3) 1-hop positive nodes in the star subgraph can preserve enough useful
information, compared to the positive nodes from the whole graph. For the third point, we prove it through
the graph influence loss (Huang & Zitnik, 2020) in Proposition J.1, and the formal definition of graph influence
loss is given in the following paragraph after Proposition J.1.
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Proposition J.1 (Bounded Graph Influence Loss for Sampling Positive Pairs Locally). Taking GCN as
an example of GNN, the graph influence loss R(vc) on node vc w.r.t positive nodes from the whole
graph against positive nodes from the 1-hop neighborhood star subgraph is bounded by R(vc) ≤
(n − dc) µ

(DP̄∗
GM

)|P̄∗|
, where n is the number of nodes, dc is the degree of node vc including the self-loop, µ is a

constant, P̄∗ is the path from center node vc to a 1-hop outside node vs which has the maximal node influence
Ivc,vs , and |P̄∗| denotes the number of nodes in path P̄∗.

Proof. According to the assumption of (Wang & Leskovec, 2020), σ(·) can be identity function and W (·)

can be identity matrix. Then, the hidden node representation (of node vc) in the last layer of GCN can be
written as follows.

h(∞)
c = 1

Dc,c

∑
vi∈Nc

Ac,ih
(∞)
i

Then, based on the above equation, we can iteratively replace h
(∞)
i with its neighbors until the representation

h
(∞)
s of node vs is included. The extension procedure is written as follows.

h(∞)
c = 1

Dc,c

∑
vi∈Nc

Ac,i
1

Di,i

∑
vj∈Ni

Ai,j . . .

1
Dk,k

∑
vs∈Nk

Ak,sh(∞)
s

The above equation suggests that the influence from the positive node vs to the center node vc is through the
path P = (vc, vi, vj , . . . , vk, vs).

Following the above path formation and assuming the edge weight A(i, j) as the positive constant, according
to (Huang & Zitnik, 2020), we can obtain the node influence Ivc,vs

of vs on vc as follows.

Ivc,vs = ∥∂h(∞)
c /∂h(∞)

s ∥ ≤ µ

(DP̄
GM )|P̄|

where µ is a constant, DP̄
GM is the geometric mean of the degree of nodes sitting in path P̄ , and P̄ is the path

from the positive node vs to the center node vc that could generate the maximal multiplication of normalized
edge weight, |P̄| denotes the number of nodes in path P̄.

The above analysis suggests that the node influence of positive long-distance nodes is decaying.

Hence, the graph influence loss about learning node vc from the whole graph positive nodes versus from
the 1-hop localized positive nodes can be expressed as follows.

IG(vc) − IL(vc) = Ivc,v1 + Ivc,v2 + . . . + Ivc,vn−dc

≤
n−dc∑
i=1

µi

(DP̄i

GM )|P̄i|

≤ (n − dc) µ∗

(DP̄∗
GM )|P̄∗|

where IG(vc) denotes global influence, IL(vc) is the influence for star subgraph, dc is the degree of node vc

(including self-loop), and µ∗

(DP̄∗
GM

)|P̄∗|
is the maximal among all µi

(D
P̄i
GM

)|P̄i|
.

Specifically, the graph influence loss (Huang & Zitnik, 2020) R(vc) can be expressed as R(vc) = IG(vc)−IL(vc),
which is determined by the global graph influence on vc (i.e., IG(vc)) and the star subgraph influence on vc

(i.e., IL(vc)). Then, to compute the graph influence IG(vc), we need to compute the node influence of each
node vj to node vc, where node vj is reachable from node vc. Based on the final output node representation
vectors, the node influence is expressed as Ivc,vj = ∥∂h

(∞)
c /∂h

(∞)
j ∥, and the norm can be any subordinate

norm (Wang & Leskovec, 2020). Then, IG(vc) is computed by the L1-norm of the following vector, i.e.,
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IG(vc) = ∥[Ivc,v1 , Ivc,v2 , . . . , Ivc,vn
]∥1. Similarly, we can compute the star subgraph influence IL(vc) on node

vc. The only difference is that we collect each reachable node vj in the star subgraph L (i.e., 1-hop neighbors
of vc). Overall, in Proposition J.1, we show why positive pairs can be locally sampled with the support from
graph influence loss of a node representation vector output by the GCN final layer.
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