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ABSTRACT

Due to growing societal concerns about indistinguishable deepfake images, face
forgery detection has received an increasing amount of interest in computer vi-
sion. Since the differences between actual and fake images are frequently small,
improving the discriminative ability of learned features is one of the primary prob-
lems in deepfake detection. In this paper, we propose a novel Concentric Ring
Loss (CRL) to encourage the model to learn intra-class compressed and inter-class
separated features. Specifically, we independently add margin penalties in angu-
lar and Euclidean space to force a more significant margin between real and fake
images, and hence encourage better discriminating performance. Compared to
softmax loss, CRL explicitly encourages intra-class compactness and inter-class
separability. Extensive experiments demonstrate the superiority of our methods
over multiple datasets. We show that CRL consistently outperforms the state-of-
the-art by a large margin.

1 INTRODUCTION

With remarkable progress made in face manipulation techniques Pumarola et al. (2018); Deepfakes
(2020); Kowalski (2020), we are able to synthesize realistic deepfake images that reach an impres-
sive quality level and are difficult to distinguish by a human. As the quality of forgery images reaches
a higher level, the difference between real and fake images becomes more subtle. These forged im-
ages may be maliciously abused, leading to serious security and ethical issues. Therefore, it is of
great significance to develop efficient and effective methods for automatic face forgery detection.

Many approaches have been proposed to tackle this issue. Using hand-crafted features or modifying
the structure of existing networks were popular solutions in earlier studies Rahmouni et al. (2017);
Afchar et al. (2018); Li & Lyu (2018). Later, more works attempted and succeeded in introducing
other types of information (i.e., frequency information Frank et al. (2020); Zhang et al. (2019);
Durall et al. (2020); Dong et al. (2022), 3d geometry, and phase spectrum of frequency) and prior
knowledge into the backbone network to boost performance Masi et al. (2020); Liu et al. (2021); Zhu
et al. (2021). However, since the differences between real and fake images are usually too subtle to
be identified, one of the urgent problems in deep forgery detection is to enhance the discriminative
power of the learned features.

Most of the recent works on face forgery detection Qian et al. (2020); Li et al. (2020a); Liu et al.
(2021); Zhao et al. (2021) use the traditional loss function (i.e., softmax loss) adopted from classifi-
cation. We argue that features learned by softmax loss are not discriminative enough to distinguish
such subtle differences, which is also mentioned in Li et al. (2021). Some researchers Masi et al.
(2020); Li et al. (2021) are aware of the problem and made efforts toward discriminative representa-
tion learning. They tried to combine softmax loss with pair-based loss function (e.g., center loss or
triplet loss) to increase intra-class compactness and inter-class separability. However, most current
methods lack transferability and perform poorly on unseen manipulation methods.

To solve the problem, in this paper, we proposed a novel Concentric Ring Loss (CRL) to further
improve the discriminative power and generalization ability of the forgery detection model. In order
to maximize class separability of real and fake images, we fully explore the feature information in
the angular and Euclidean space. To this end, we decouple the magnitude and direction information
of embedding vectors, and independently add margin penalties in angular and Euclidean space to
force a larger margin between real and fake images. As shown in Figure 1, the proposed CRL
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Figure 1: The feature distribution of samples in the embedding space. Features learned by soft-
max loss are separable but not discriminative enough. Angular margin loss maximizes the decision
margin in the angular space. Euclidean margin loss reduces the distance between natural face em-
beddings and the center point while simultaneously pushing manipulated face embeddings away
from the center point. The proposed CRL loss integrates both angular and Euclidean margin loss
to further increase the discriminative power of the model. Note that our CRL only encourages the
intra-class compactness of natural faces in order to enhance the model’s generalization ability.

consists of an angular margin loss and a Euclidean margin loss. Both losses encourage the inter-
class separability and intra-class compactness of the learned features. Joint supervision of angular
and Euclidean margin loss further boosts the discriminative power and generalization ability of the
model and stabilized the training process. With the supervision of CRL, the network learns an
embedding space where natural faces are clustered around one side of the concentric ring space with
a smaller radius, while manipulated ones are clustered around the other side of the concentric ring
space with a larger radius (Figure 1). Furthermore, a frequency-aware feature learning framework
is proposed to exploit high-frequency features and further improve the generalization ability of the
model. We extract features from both RGB and frequency domains using a two-branch framework.
Then these features are further fused to provide richer forgery clues for classification.

In summary, we make the following contributions:

1. A novel CRL is proposed to further improve the discriminative power and generalization
ability of the forgery detection model. Margin penalties in angular and Euclidean space are
applied independently to force a more significant margin between real and fake images.

2. We propose a two-branch framework to exploit both low- and high-frequency features and
fused them to provide richer forgery clues for classification.

3. We claim state-of-the-art and provide extensive analysis to study individual contributions of
angular and Euclidean margin loss, as well as the contributions of high-frequency features.

2 RELATED WORK

Face forgery detection. Most existing methods treat face forgery detection as a universal binary
classification problem. Some previous works introduce different types of information (i.e., fre-
quency information, 3d geometry, and phase spectrum of frequency) and prior knowledge into the
network to boost classification performance Masi et al. (2020); Liu et al. (2021); Zhu et al. (2021).
In particular, frequency information was found to be useful for identifying subtle forgery clues. F3-
Net Qian et al. (2020) integrate frequency statistics to the model using Discrete Cosine Transform.
To increase transferability, SPSL Liu et al. (2021) combines spatial image and phase spectrum to
capture the up-sampling artifacts in the manipulated faces. FDFL Li et al. (2021) transforms images
into YCbCr color space and applies then 2D DCT transformation. Other works focus on modify-
ing the network structure. Zhao et al. (2021) proposed a multi-attention framework to capture local
discriminative features. Multi-task learning is also adopted for better generalization ability. Face
X-ray Li et al. (2021) simultaneously predicts face forgery and localizes blending boundaries.
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Figure 2: The framework of the proposed method. Features are extracted from both RGB and fre-
quency domains using a two-branch framework. Then these features are further fused to provide
richer forgery clues for classification. To further increase the inter-class separability and intra-class
compactness of the learned features, a novel Concentric Ring Loss (CRL) consisting of Euclidean
and Angular margin losses is proposed. With the supervision of CRL, the model learns an embed-
ding space where natural faces are clustered around one side of the concentric ring space with a
smaller radius, while manipulated ones are clustered around the other side of the concentric ring
space with a larger radius.

Metric learning. Similar to face recognition or person re-identification, face forgery detection
can largely benefit from more discriminative features. However, learning discriminative features via
metric learning is highly overlooked in face forgery detection. Recently, some researchers are aware
of the problem and made efforts to explore discriminative features via metric learning. FDFL Li
et al. (2021) proposed a single-center loss to reduce the distance between natural face representa-
tions and the center point while increasing the distance between modified faces and the center point
by at least a margin. Two-branch Masi et al. (2020) presents a new loss that compresses natural
faces variability while pushing manipulated faces away. Different from existing work, we incorpo-
rate angular-based losses (i.e., SphereFace Liu et al. (2017), CosFace Wang et al. (2018), and Ar-
cFace Deng et al. (2019)) with Euclidean distance-based losses (i.e., Center loss Wen et al. (2016)
and triplet loss Schroff et al. (2015)) to further encourage intra-class compactness and inter-class
discrepancy of the learned feature.

3 METHODOLOGY

3.1 OVERVIEW

Since the differences between real and fake images are usually too subtle to be identified, one of the
main challenges in deepfake detection is to enhance the discriminative power of learned features. In
this paper, we proposed a novel Concentric Ring Loss (CRL) to further increase the inter-class sep-
arability and intra-class compactness of the features learned from different categories. Specifically,
we independently add margin penalties in angular and Euclidean space to force a larger margin be-
tween real and fake images, and hence encourage better discriminating performance. Furthermore, a
frequency-aware feature learning module is proposed to exploit high-frequency features and further
improve the generalization ability of the model. As shown in Figure 2, the proposed method extracts
features from both RGB and frequency domains using a two-branch framework. Then these features
are further fused to provide richer forgery clues for classification. Finally, with the supervision of
CRL, the network learns an embedding space where natural faces are clustered around one side of
the concentric ring space with a smaller radius, while manipulated ones are clustered around the
other side of the concentric ring space with a larger radius (Figure 1).
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3.2 CONCENTRIC RING LOSS

Most existing works on face forgery detection rely on the traditional softmax loss to classify real
and fake images. However, feature embeddings learned by the traditional softmax loss are neither
discriminative nor compact enough to divide various classes. Since the differences between real
and fake images are often too subtle to be identified, it is necessary to enhance the discriminative
power of the face forgery detection model. Recently, different metric learning methods have been
proposed to encourage inter-class separability and intra-class compactness from either angular or
euclidean distance perspective. Angular-based methods, such as SphereFace Liu et al. (2017), Cos-
Face Wang et al. (2018), ArcFace Deng et al. (2019), achieve promising results by introducing the
angular margin penalty to maximize the decision margin in the angular space. To achieve intra-
class compactness and inter-class discrepancy, Euclidean distance-based approaches, such as Center
loss Wen et al. (2016) and triplet loss Schroff et al. (2015), try to penalize the distance between
the learned representations and their corresponding class centers while maximizing the distance be-
tween different class centers in the Euclidean space. However, most of these approaches suffer from
poor generalization ability. Since the feature distribution of synthetic faces varies depending on
the manipulation method, the learned features supervised by these approaches are separable for the
known manipulation methods but not sufficient to distinguish fake images generated by unseen ma-
nipulation methods. To further improve the discriminative power of the trained model, we proposed
a new loss function called CRL, which incorporates angular margins in the Softmax loss functions
to maximize inter-class separability and penalize Euclidean distance between the deep features and
their corresponding class centers to minimize intra-class compactness.

Definition. The proposed CRL consists of an angular margin penalty and Euclidean margin
penalty to simultaneously enforce additional inter-class disparity and intra-class compactness.
Let {Ii, yi}Ni=1 be N training samples, where Ii is the i-th image, belonging to the yi-th class
(yi ∈ {0, 1}). We first embed the input image Ii into a d-dimensional vector xi ∈ Rd using the
proposed frequency-aware feature leaning network. Then our concentric ring loss is applied to en-
courage larger angular margin and Euclidean margin between real and fake images. Formally, we
define the CRL as:

Lcr = Lang + λLeuc,
where Lang and Leuc represent angular margin loss and Euclidean margin loss, respectively. And λ
(λ = 1) is the trade-off weight between Lang and Leuc.
We start by revisiting the softmax loss, which is the most commonly used loss function for face
forgery detection.

Lsoftmax = − 1

N

N∑
i=1

log(
eW

T
yi
xi+byi∑C

j=1 e
WT

j xi+bj
),

where C is the number of classes (i.e., C = 2), Wj ∈ Rd and bj ∈ Rd is the weight and bias
of the activation function in the softmax loss. However, traditional softmax loss does not explicitly
optimize feature embedding to ensure the compactness of intra-class samples and the variety of inter-
class samples, resulting in a performance gap for deepfake detection when intra-class variations are
considerable (e.g. manipulated face images generated by various synthesis methods).

We then introduce the angular margin loss Lang to improve the generalization ability and discrim-
inative power of the model. For simplicity, the bias is first set to 0 as in Wang et al. (2018); Deng
et al. (2019). Then the logit WT

j xi + bj can be simplified and written as ||Wj || · ||xi|| cos θ, where
θ is the angle between the weight Wj and the feature xi. Following ArcFace Deng et al. (2019), we
normalize Wj and xi using l2 norm, then add an angular margin penalty β between Wyi and xi to
improve the discriminative power of learned features. Different from ArcFace, we do not re-scale
the normalized features to a fixed scale and project all features to a hypersphere with a fixed radius.
Instead, we re-scale the feature xi to its original magnitude before normalization. By doing so, we
are able to leverage the information in Euclidean space and further boost the intra-class compact-
ness with the joint supervision of Euclidean margin loss. The proposed angular margin loss can be
expressed as:

Lang = − 1

N

N∑
i=1

log
e||xi|| cos(θyi+β)

e||xi|| cos(θyi+β) +
∑
j 6=yi e

||xi|| cos(θj)
.
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The angular margin loss encourages better discriminating and compacting performance than softmax
loss. However, it constrains the intra-class compactness for both natural and manipulated faces,
which reduces the model’s generalization ability and leads to overfitting to some extent. To this
end, we integrate Euclidean margin loss in our CRL to boost the model’s discriminative power and
generalization ability.

The purpose of Euclidean margin loss is to reduce the distance between natural face embeddings and
the center point while simultaneously pushing manipulated face embeddings away from the center
point. Natural faces will be constrained in the hypersphere with a radius of r1, while manipulated
faces are kept outside the hypersphere with a radius of r2 = r1 +M . r1 is the target norm value for
real face embeddings and is learned during training. M is a hyperparameter and denotes the margin
between r1 and r2. The proposed Euclidean margin loss can be expressed as:

Leuc = Dreal +Dfake,

where Dreal and Dfake denote the difference between the feature norm and target norm value for
real and fake face embeddings, respectively. They can be computed as:

Dreal =
1

|Ωreal|
∑

i∈Ωreal

(‖xi‖2 − r1)2,

Dfake =
1

|Ωfake|
∑

i∈Ωfake

(‖xi‖2 − r1 +M)2.

3.3 FREQUENCY-AWARE FEATURE LEANING
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Figure 3: Inconsistency in the frequency domain can
be considered a useful forgery indicator. We show
the information of four frequency domains (i.e., ,
LL, LH, HL, and HH) decomposed from a fake
and a real image by implementing the Haar wavelet
transformation. LL mainly consists of information
in the low-frequency domain, depicting the overall
appearance of an image, while LH, HL and HH con-
tain information representing rich details.

By introducing important forgery clues,
wavelet transformation has achieved remark-
able success in face forgery detection. Fol-
lowing this idea, a frequency-aware feature
learning framework is proposed to utilize
high-frequency features to further improve
generalization and discriminative power of
the model. As shown in Figure 2, a two-
branch framework is used to extract features
from both RGB and frequency domains. We
adopt Xception-Net Chollet (2017) as the
backbone for both branches. Given an input
image Ii, the features (i.e., xrgb and xfreq)
generated by the RGB branch g(·) and the
frequency branch g(·) can be expressed as:

xrgb = g(Ii),

xfreq = h(wavelet(Ii).
(1)

We adopt a classic wavelet transformation
method (i.e., the Haar wavelet) to provide new clues in the frequency domain. The Haar wavelet
contains four kernels (i.e., LL, LH , HL, HH), where L and H are the low- and high- pass filters.
They can be expressed as:

L =
1√
2

[
1
1

]
, H =

1√
2

[
−1
1

]
.

As shown in Figure 3, the low-pass filter (i.e., LL) focuses on smooth surfaces associated with low-
frequency signals. In contrast, the high-pass filters (i.e., LH,HL,HH) mainly capture the high-
frequency details, such as vertical (i.e., LH), horizontal (i.e., HL), and diagonal (i.e., HH) edges.
We find that inconsistency in the frequency domain can be considered a useful forgery indicator.
High-level features of the two modalities (i.e., RGB and frequency signals) are then fused to provide
richer forgery clues for classification. We simply concatenate RGB features xrgb and frequency
features xfreq and then adopt a point-wise convolution block Chollet (2017) to fuse them and make
the prediction.
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Table 1: Comparison on the FF++ dataset with different compression settings. Light compression
videos are denoted as HQ (c23), and heavy compression videos are denoted as LQ (c40). Xception †
is our baseline. All methods in the table are image/frame-based detection methods. However, some
of them only report video-level results instead of frame-level results. To conduct a more compre-
hensive comparison, we show both frame- and video-level results. Following previous methods, we
compute video-level scores by averaging the frame score in each video.

HQ (c23) LQ (c40)
Frame-level Video-level Frame-level Video-level

Methods ACC AUC ACC AUC ACC AUC ACC AUC

Bayar and Stamm (Bayar & Stamm, 2016) 82.97 – – – 66.84 – – –
MesoNet (Afchar et al., 2018) 83.10 – – – 70.47 – – –
Xception (Rossler et al., 2019) 92.39 94.86 95.73 96.30 80.32 81.76 86.86 89.30
Face X-ray (Li et al., 2020a) – 87.35 – – – 61.60 – –
F3-Net (Qian et al., 2020) – – 97.52 98.10 – – 90.43 93.30
SPSL (Liu et al., 2021) 91.50 95.32 – – 81.57 82.82 – –
Multi-attention (Zhao et al., 2021) – – 96.37 98.97 – – 86.95 87.26
FDFL (Li et al., 2021) – – 96.69 99.30 – – 89.00 92.40

Xception † 90.45 95.01 94.76 96.04 73.11 81.09 80.95 88.49
Ours 94.04 98.23 97.57 99.53 82.31 84.10 90.55 94.36

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. We conduct our experiments on two large-scale benchmark deepfake datasets: Face-
Forensics++ (FF++) (Rossler et al., 2019) and Celeb-DF (Li et al., 2020b). FF++ consists of 1,000
original video sequences and 4,000 manipulated videos generated by four types of common face
manipulation methods. Following (Luo et al., 2021; Zhu et al., 2021), we split the dataset into 720,
140, and 140 videos for training, validation, and testing, respectively. Celeb-DF (Li et al., 2020b) is
one of the most challenging datasets for deepfake detection methods. It includes 408 real and 795
fake videos. For model generalization assessment, we mainly evaluate on the Celeb-DF dataset.

Evaluation metrics. Following previous work (Li et al., 2021; Liu et al., 2021; Zhao et al., 2021;
Masi et al., 2020), we mainly report results on accuracy rate (ACC) and the area under the receiver
operating characteristic curve (AUC). Note that we report both frame-level and video-level results.
Following (Masi et al., 2020; Li et al., 2021), the ACC and AUC score at the video level are computed
by averaging the ACC and AUC scores of each frame in a video, respectively.

Implementation details. To prepare the training and testing data, we first cropped facial images
about the head region, which were then resized to 299×299. In the training process, we augment the
original frames 4 times for real/fake label balance. We adopt Xception (Chollet, 2017) as the back-
bone network for both RGB and frequency branches. We initialize model parameters by Xception,
which is pre-trained on ImageNet. We set hyper-parameters angular margin β = 0.5 and Euclidean
margin M = 10. Optimization was done with SGD with a learning rate of 1.0× 10−2 that dropped
0.5 at 40, 000th iterations. The model was trained with a batch size of 32 and for a total epoch of
60, 000 iterations. Implementation was done using PyTorch.1

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

In this section, we compare the detection results of CRL with state-of-the-art methods on
FF++ (Rossler et al., 2019). Moreover, we compare with face forgery detection methods that lever-
age metric learning-based strategies to show the superiority of the proposed method. Then, we also
perform a cross-dataset evaluation on Celeb-DF (Li et al., 2020b) to demonstrate the generalizability
and transferability of the proposed method.

1Source code and trained models available (removed for review).

6



Under review as a conference paper at ICLR 2023

Table 2: Cross-dataset evaluation on Celeb-DF dataset. The model is trained on FF++ and tested on
Celeb-DF. We report AUC(%) scores on both datasets. Numbers are cited from [Zhao et al., 2021].
It can be seen that our method achieves the best result on Celeb-DF and comparable results on FF++,
which validates the discriminative power and generalization ability of the proposed method.

Method FF++ Celeb-DF

Two-stream (Zhou et al., 2017) 70.10 53.80
Meso (Afchar et al., 2018) 84.70 54.80
DSP-FWA (Li & Lyu, 2018) 93.00 64.60
Multi-task (Nguyen et al., 2019a) 76.30 54.30
Xception (Rossler et al., 2019) 99.70 65.30
Capsule (Nguyen et al., 2019b) 96.60 57.50
Two Branch (Masi et al., 2020) 93.18 73.41
Face X-ray (Li et al., 2020a) 98.52 74.76
F3-Net (Qian et al., 2020) 98.10 65.17
SRM-CBAM (Luo et al., 2021) – 79.40
SPSL (Liu et al., 2021) 96.91 76.88
SLADD (Chen et al., 2022) 98.40 79.70
Ours 99.53 83.57

Table 3: Comparison with methods leveraging various metric learning-based strategies. The FF++
(LQ (c40)) dataset is used for training and testing.

Model Loss function AUC

Xception (Rossler et al., 2019) softmax loss 86.00
Xception (Rossler et al., 2019) softmax + triplet loss 86.30
Xception (Rossler et al., 2019) softmax + center loss 86.80
Xception (Rossler et al., 2019) softmax + SCL 91.60
FDFL (Li et al., 2021) softmax + SCL 92.40
Ours CRL 94.36

Evaluation on FF++. We report the performance of our method on different video compression
settings (i.e., high-quality compression (HQ (c23)) and low-quality compression (LQ (c40))) of
FF++ (Rossler et al., 2019). The comparison results are listed in Table 1. Since some methods only
report frame-level or video-level results, we show both results for a more comprehensive compari-
son. Following (Qian et al., 2020; Zhao et al., 2021; Li et al., 2021), we compute the video-level
scores by averaging the frame scores in a video.

On both HQ and LQ settings, the results in Table 1 show that our method delivers the state-of-the-art
(SOTA) performance. Compared to SOTA works on the HQ setting, we achieve 1.79% and 3.05%
improvements on ACC and AUC, respectively. Compared on the LQ setting, we also achieve a
large improvement (i.e., 0.91% on ACC and 1.55% on AUC). We also notice that methods utilizing
high-frequency features, such as F3-Net (Qian et al., 2020), SPSL (Liu et al., 2021), and FDFL (Li
et al., 2021), have relatively better performance than methods that only use RGB images, especially
on low-quality videos. One possible reason is that low-quality videos are highly compressed and the
information in the RGB channels is attenuated due to the large amount of noise introduced in the
compression process. In this case, frequency information can provide additional forgery clues and
thus greatly benefit forgery detection models.

Comparison with methods adopting metric learning. We next compare the proposed method
with many methods that leverage metric learning-based strategies to improve intra-class compact-
ness and inter-class separability, such as softmax loss, triplet loss (Schroff et al., 2015), center
loss (Wen et al., 2016), and single-center loss (SCL) (Li et al., 2021). The comparison results
are listed in Table 3. Numbers in the table are cited from (Li et al., 2021). We train and test our
model on the challenging LQ setting of FF++. As shown in Table 3, we achieve significantly better
performance than Xception (Rossler et al., 2019) supervised by various metric learning. We also
show a comparison with FDFL (Li et al., 2021), which proposed a novel single-center loss for face
forgery detection. Still, the proposed method outperforms its competitors by a large margin.
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Figure 4: Feature visualization. Natural faces are denoted with orange dots and manipulated faces
are blue dots. We can see that softmax and Euclidean loss are not discriminative enough to dis-
tinguish subtle differences between classes (e.g., lots of orange and blue dots are mixed together).
Angular loss improves feature compactness and discriminative power. Still, mixed dots can be ob-
served in the central region. The proposed CRL loss achieves the best result by forcing natural
faces gathered compactly and separated from those of manipulated faces which are distributed less
compactly. Joint supervision of angular and Euclidean margin loss increases both the discriminative
power and generalization ability of the model.

Cross-dataset evaluation. We perform a cross-dataset evaluation on Celeb-DF (Li et al., 2020b)
to demonstrate the generalizability and transferability of the proposed method. The model is trained
on FF++ (HQ) and tested on Celeb-DF. Following (Zhao et al., 2021), we sample 30 frames from
each video and calculate AUC scores. As shown in Table 2, our method achieves the best result on
Celeb-DF, while getting slightly worse results than SOTA on FF++. Although two methods (i.e.,
Xception (Rossler et al., 2019) and Multi-attention (Zhao et al., 2021)) achieve higher in-dataset
AUC than our method, their generalization and transferability are far less than ours. More results on
generalizability comparisons are shown in the supplementary material.

4.3 ABLATION STUDY

Table 4: Effectiveness of CRL. We re-
port frame-level results on FF++ (HQ
(c23)) dataset. Compared to softmax
loss, both angular and Euclidean mar-
gin loss encourage better discriminating
and compacting performance. Still, the
proposed CRL achieves the best results.

Loss function ACC AUC

Softmax loss 90.45 95.01
Angular margin loss 92.32 97.85
Euclidean margin loss 91.06 95.63
CRL 94.04 98.23

Effectiveness of CRL. To demonstrate the effective-
ness of CRL, we conduct additional experiments on var-
ious losses, including traditional softmax loss, angular
margin loss, and Euclidean margin loss. We first pro-
vide the feature visualization (t-SNE) of different losses
in Figure 4. It shows that softmax and Euclidean loss are
insufficient for distinguishing subtle differences between
classes (e.g., lots of orange and blue dots are mixed to-
gether). Angular loss increases the compactness and dis-
criminative power of features. Even so, mixed dots can
be seen in the center region. The proposed CRL achieves
the best results by forcing natural faces to be gathered and
separated from manipulated faces, which are distributed
less compactly.

The angular margin loss encourages better discriminating
and compacting performance than softmax loss. How-
ever, it constrains the intra-class compactness for both natural and manipulated faces, which reduces
the model’s generalization ability and leads to overfitting to some extent. Compared to angular
margin loss, CRL uses joint supervision of angular and Euclidean loss to boost the model’s discrim-
inative power and generalization ability while also stabilizing the training process.

Since the Euclidean margin loss does not have a fully-connected layer to output final predictions,
the model jointly is supervised by softmax loss and Euclidean margin loss. We set angular margin
β = 0.5 and Euclidean margin M = 10 for all losses. As can be seen from Table 4, our CRL loss
significantly outperforms the other losses, with an ACC of 94.04 and an AUC of 98.23. Additionally,
we noticed that angular margin loss is more efficient than Euclidean margin loss. Compared to using
softmax loss only, the improvement of adding Euclidean margin loss is subtle.
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Table 5: Performance gain of each com-
ponent. Video-level results of FF++ (HQ
(c23)) dataset are reported. We use
Xception (Chollet, 2017) as the classi-
fication model for single branches (i.e.,
RGB branch and frequency branch). Com-
pared to baseline models without CRL,
both single-branch and two-branch models
(i.e., RGB, Freq., RGB + Freq.) can bene-
fit from the proposed CRL loss and achieve
better performance. Moreover, the results
of frequency branch (i.e., row 3 and 6) vali-
dates the efficacy of frequency information
in detecting manipulated faces.

RGB Freq. CRL ACC AUC

X 94.76 96.04
X 94.90 96.86

X X 95.84 97.51
X X 96.42 99.27

X X 96.90 99.01
X X X 97.57 99.53
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Figure 5: Ablation study for two hyper-parameters:
angular margin β and Euclidean margin M . We first
set M = 10, and show the detection performances of
various β (top). Then we fix β = 0.5, and show the
detection performances of various M (bottom).

Performance gain of framework components. We next measure the contribution of each com-
ponent in our framework. To this end, we quantitatively evaluate the proposed framework and its
variants: 1) RGB branch + softmax loss (baseline); 2) Frequency branch + softmax loss; 3) Both
branch + softmax loss; 4) RGB branch + CRL loss; 5) Frequency branch + CRL loss; 6) Both
branch + CRL loss. Table 5 lists the evaluation results (i.e., ACC and AUC scores) of six variants
used. As can be observed from the table, compared to the baseline model (i.e., RGB branch + soft-
max loss), both frequency branch and CRL loss can boost the performance of the model. The CRL
loss, in particular, contributes an improvement of 1.80% in ACC and 2.07% in AUC. This verifies
the discriminative ability of the CRL loss to supervise the network to learn intra-class compressed
and inter-class separated features. Moreover, we also validates the efficacy of frequency informa-
tion in detecting manipulated faces. As shown in Table 5, models with frequency branch perform
better than models without one by a large margin. More results using different frequency clues (e.g.,
Cosine or Fourier Transform) are shown in the supplementary material.

Parameter influence. As shown in the CRL loss function, there are two hyper-parameters (i.e.,
the angular margin β and the Euclidean margin M ) that may affect the effectiveness of the loss.
To investigate the influence of these two hyper-parameters, we conduct an empirical analysis on the
FF++ HQ (c23) dataset. Figure 5 shows video-level ACC and AUC results on various pairs of (β,
M ). It can be seen that the proposed approach may effectively enhance performance when β and M
varies within a broad range. The best results are obtained when beta is set to 0.5 and M is set to 10,
with an ACC of 0.976 and an AUC of 0.995.

5 CONCLUSION

Due to the growing social concerns over indistinguishable deepfake pictures, deepfake detection has
gotten a lot of attention in computer vision. Since the distinction between the natural and manip-
ulated image is often subtle, enhancing the discriminative power of learned features is one of the
primary issues in deepfake detection. In this paper, we propose a novel Concentric Ring Loss (CRL)
to explicitly encourage intra-class compactness and inter-class separability of learned features by
adding angular and Euclidean margin penalties. Moreover, a frequency-aware feature learning mod-
ule is proposed to exploit high-frequency features and further improve generalization ability of the
model. Extensive experiments demonstrate the superiority of our methods over different datasets.
We show that CRL consistently outperforms the state-of-the-art by a large margin.
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