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ABSTRACT

The goal of clustering is to group similar data points together. Deep clustering
enhances this process by using neural networks for inferring better data representa-
tions through a three-stage approach: pre-training for initial feature learning, deep
clustering to structure the latent space, and self-labeling to iteratively refine both
representations and cluster assignments. Ever since its inception, self-labeling has
been a crucial element for reaching state-of-the-art performance in deep cluster-
ing. The samples for the self-labeling phase are obtained by setting a confidence
threshold for the network’s predictions and only using samples that exceed this
threshold for further training. This often improves clustering performance but
relies on training with noisy, self-constructed labels (pseudo-labels). As the model
iteratively retrains on its own pseudo-labels, the certainty of its predictions tends
to rise, increasing its confidence over time. The increasing confidence leads to a
growing number of training samples also including more and more samples as-
signed to the wrong cluster, which can limit performance. Particularly, the model’s
initially learned biases are amplified by relying on easily learned but ultimately
misleading patterns in pseudo-labels, hampering generalization.
In this paper, we propose ReSL, a framework that unites Resets with Self-Labeling.
We demonstrate that employing weight-reset techniques during self-labeling in-
creases clustering performance and improves generalization. Our findings address
limitations of self-labeling and provide a foundation for future research in develop-
ing more robust approaches.

1 INTRODUCTION

Decades of research have been dedicated to the challenging task of clustering — partitioning data
points into groups based on their similarity without utilizing any ground-truth annotations. Traditional
clustering methods include k-means (MacQueen et al., 1967), Gaussian mixture models (Bishop &
Nasrabadi, 2006), and spectral clustering (Von Luxburg, 2007). Despite their effectiveness, these
methods face challenges when applied to high-dimensional data, due to the curse of dimensionality.
In contrast, deep neural networks can learn feature representations directly from high-dimensional
data by leveraging unsupervised representation learning techniques (Bengio et al., 2013; Abukmeil
et al., 2021). Just like the clustering itself, these neural network representations can be trained without
any annotations by solving so-called pretext tasks such as reconstruction or contrastive learning.
Many well-established deep clustering (DC) algorithms rely on such tasks during a pre-training
stage (Van Gansbeke et al., 2020; Zhong et al., 2021; Dang et al., 2021). In contrast, more modern
DC algorithms (Qian et al., 2022; Qian, 2023) combine the representation-learning objective and
clustering objective into a single end-to-end framework.

Whether a DC algorithm employs a multi-stage or end-to-end architecture, self-labeling has emerged
as an indispensable tool to reach state-of-the-art performance in deep clustering (Van Gansbeke et al.,
2020; Zhong et al., 2021; Qian, 2023; Miklautz et al., 2024). It fine-tunes the pre-trained deep cluster-
ing network by optimizing the cross-entropy loss on a subset of pseudo-labels generated by the model
itself. This subset is defined by a confidence threshold, representing the minimum confidence the
network must have in its assignment for a sample to be included in the training set. As training in the
self-labeling phase progresses, the network becomes increasingly confident in its assignments, leading
to the inclusion of more samples in each subsequent training iteration. This dynamic expansion of the
training set, while beneficial in leveraging more data, introduces a critical challenge: non-stationarity.
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Figure 1: Self-labeling with SCAN gradually in-
creases its probability estimates, leading to the
inclusion of a growing proportion of samples to
the confident training set in subsequent training
rounds across different datasets. This expansion
exacerbates non-stationarity and increases the risk
of incorporating noisy pseudo-labels.

The sequential arrival of new confident sam-
ples introduces non-stationarity in the input,
while the subsequent optimization introduces
non-stationarity in the targets. Inevitably, the
training set will include samples assigned to
the wrong cluster, leading to training on noisy
targets. The inherent non-stationarity of self-
labeling, coupled with the inherent risk of incor-
porating incorrect pseudo-labels, can negatively
impact the training process. Figure 1 illustrates
how the training set size grows over time due
to this increasing confidence. Moreover, self-
labeling fine-tunes the pre-trained network on a
different objective, effectively warm-starting
the network from the DC stage rather than initial-
izing from scratch. The aforementioned warm-
starting, noisy targets, and non-stationarity in-
duce optimization issues in deep learning, which
have been studied under the umbrella term “plas-
ticity loss”, referring to a loss of the network’s
ability to fit new targets (Klein et al., 2024; Ash
& Adams, 2020; Lee et al., 2024).

One effective way to reduce the negative impact of plasticity loss is by resetting the network’s weights.
This approach underlies several promising methods from the plasticity literature (Ash & Adams, 2020;
Lee et al., 2024; Zaidi et al., 2023). Expanding on this concept, we propose a novel method, ReSL,
that combines Resets with Self-Labeling. We conduct experiments using the DC method SCAN
(Van Gansbeke et al., 2020), as it was the first to introduce self-labeling. Our quantitative experiments
demonstrate improved clustering performance on STL-10 (Coates et al., 2011) and CIFAR-10/20/100
(Krizhevsky et al., 2009) datasets. To better understand the underlying mechanisms driving these
improvements, we employ plasticity injection (Nikishin et al., 2024). Plasticity injection allows
us to rule out trainability issues (recognized as one of the factors behind plasticity loss (Lee et al.,
2024)), by introducing an output-invariant re-initialization scheme. Our investigation shows that
ReSL stabilizes cluster label reassignments during training, leading to higher-quality pseudo-labels
that generalize better to the clustering task. To summarize our contributions:

• We propose ReSL, an algorithm for self-labeling, and demonstrate that it consistently
improves the clustering performance of the SCAN algorithm across multiple datasets.

• We propose a novel reset strategy that performs stronger resets at the beginning of training,
where the effects of warm-starting are most pronounced.

• We investigate possible mechanisms behind performance improvements and demonstrate
that less intense changes of pseudo-labels help decrease the compounding effect of noisy
pseudo-labels.

2 PROBLEM SETUP

We are given an unlabeled dataset D = {x1, . . . ,xn}, where xi ∈ RD. Our goal is to partition
D into C clusters without using any ground-truth labels. We assume access to a pretrained neural
network gϕ : RD → Rd that provides a latent representation zi = gϕ(xi) for each xi. A clustering
head hθ : Rd → ∆C−1 maps latent vectors zi to probability distributions qi = hθ(zi), where ∆C−1

denotes the (C−1)-simplex. The composite function fη = hθ ◦gϕ assigns a probability distribution
qi over C clusters to each input xi.

Self-labeling. We iteratively refine the cluster assignments by creating pseudo-labels from the
model’s own predictions. Let τ ∈ [0, 1] be a confidence threshold. Define the set of confident samples
as Sτ = {i | maxc(qi)c ≥ τ}. For each i ∈ Sτ , assign the pseudo-label ỹi = argmaxc(qi)c. and
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update the clustering function fη by minimizing the cross-entropy loss on these pseudo-labels:

LSL = − 1

|Sτ |
∑
i∈Sτ

C∑
c=1

ỹi(c) log
[(
fη(x̂i)

)
c

]
,

where ỹi is the one-hot encoding of ỹi. Here, x̂i denotes an augmentation of the original input xi

(obtained through techniques such as cropping, rotation, or color jittering), which is employed to
prevent overfitting. Our aim is to learn an accurate partition of D into C clusters, despite the risk of
reinforcing initially biased pseudo-labels through this iterative self-labeling procedure.

3 BACKGROUND AND RELATED WORK

3.1 DEEP CLUSTERING

Recent advancements in DC have bridged the gap between feature learning and clustering. The
feature learning component can be realized with various architectures such as convolutional neural
networks (CNNs), autoencoders (AEs), and contrastive learning frameworks such as SimCLR (Chen
et al., 2020a) or MoCo (Chen et al., 2020b). Jointly optimizing representation learning and clustering
objectives has enabled DC methods. Recent DC methods (Van Gansbeke et al., 2020; Qian, 2023;
Zhong et al., 2021) have shown results close to supervised methods on widely used image benchmarks.
These studies share a practice of fine-tuning clustering networks through self-labeling to enhance the
quality of cluster assignments. Van Gansbeke et al. (2020) introduced the self-labeling procedure
within their DC method, SCAN (Semantic Clustering by Adopting Nearest Neighbors). Further
details on SCAN are provided in Appendix A.1.

3.2 NETWORK PLASTICITY

To enable efficient learning, deep neural networks must possess plasticity — that is, the capacity to
adapt and modify their weights during training. This concept is akin to neuroplasticity, which enables
learning in the human brain. The term plasticity has gained broader attention in the fields of deep
reinforcement learning (RL) (Klein et al., 2024) and continual learning (Elsayed & Mahmood, 2024).
Once plasticity is lost, the ability to learn diminishes (Lyle et al., 2023). Weight-reset techniques have
emerged as an effective strategy for mitigating the loss of plasticity (Lyle et al., 2023; Klein et al.,
2024). Zaidi et al. (2023) show that when training on noisy labels, resetting results in a substantially
improved generalization. To address suboptimal performance resulting from warm-starting and
subsequent plasticity loss, Ash & Adams (2020) propose partial weight resets. Lee et al. (2024)
then decomposed plasticity loss into trainability and generalizability. To minimize knowledge loss
during resets, they developed a reset strategy with distillation, enabling rapid adaptation and gradual
generalization. For a comprehensive overview of plasticity loss and mitigation strategies, we refer the
reader to Klein et al. (2024).

4 METHODOLOGY

We propose ReSL, an algorithm for the self-labeling stage of deep clustering algorithms. ReSL
is designed to mitigate the detrimental effects of non-stationarity and warm-starting discussed in
Section 1 by incorporating a periodic weight-reset mechanism into the training pipeline. Algorithm 1
provides a generic implementation.

Algorithm 1 PyTorch-style pseudo-code of ReSL

# model: neural net
# reset_freq: interval for weight resets
# reset_strategy: a strategy for retrieving and resetting weights
# confidence_threshold: minimum confidence for including a sample in training
for epoch in range(max_epochs):

pseudo_labels = obtain_pseudo_labels(model, dataloader, confidence_threshold)
update_model(model, dataloader, pseudo_labels, optimizer, criterion)
reset_strategy.update(model, epoch)
if epoch % reset_freq == 0:

reset_strategy.reset(model)
cluster_assignments = model(dataset)
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At a high level, ReSL alternates between two key steps during training. In the first step, the network
updates its parameters using pseudo-labels obtained from its current clustering assignments. A
confidence threshold ensures that only samples with sufficiently reliable predictions are included in
the training set. In the second step, after a fixed number of training epochs, the algorithm performs a
weight reset. The specific mechanism for resetting the model’s weights is abstracted into the reset
strategy module, which permits various reset types. Depending on the chosen strategy, the reset may
be implemented as a soft reset — resetting only a subset of the parameters — or as a hard reset,
wherein all weights are changed. We further discuss two established reset strategies and propose a
novel approach that gradually softens resets — addressing objective change from the DC stage to
self-labeling by applying stronger resets early in training.

ReSL with Soft Resets (ReSLSP) The first reset strategy within our ReSL framework leverages
soft resets by applying the Shrink and Perturb method (Ash & Adams, 2020) to the clustering head
hθ every R epoch. Specifically, we sample fresh parameters θ′ from the original initializer (He et al.,
2016) and perform a soft weight reset using a convex combination of the network’s current weights
and the freshly sampled weights θ ← α θ + (1 − α) θ′, where α ∈ (0, 1) is a retention parameter
that controls how much of the current state is preserved relative to the new initialization.

ReSL with Soft Resets (ReSLSP∗) As part of ReSL, we propose a novel variant that “softens” the
reset strength over time. Specifically, the retention parameter α starts at a lower value, enabling larger
resets initially, and is then linearly increased to 1.0 by the final epoch using a softening factor epoch

E ,
meaning no resets at the end of training. At each reset interval R, these updated values are applied,
ensuring that weight resets are stronger at the beginning of training, where warm-start initialization
takes place.

ReSL with Hare & Tortoise Networks (ReSLHT) Inspired by the “hare and tortoise” approach
of Lee et al. (2024), we maintain two networks with parameters ηHare and ηTortoise, the “hare” and
the “tortoise” respectively. Both networks are initialized with the pretrained model resulting from
the initial clustering stage. The hare rapidly adapts via SGD, whereas the tortoise’s parameters
are updated via distillation using an exponential moving average (EMA) of the hare’s parameters:
ηTortoise ← µηTortoise + (1 − µ)ηHare, where µ ∈ (0, 1) is a momentum parameter. At each reset
interval R, the hare network’s parameters are reset to the current state of the tortoise network:
ηHare ← ηTortoise. The tortoise network is used for subsequent data clustering.

5 EXPERIMENTS

This section outlines our experimental methodology, beginning with a description of the datasets
and setups employed in Section 5.1. We then present the results of ReSL applied with established
weight-reset techniques in Section 5.2. Finally, we investigate the implications of our results in
Section 5.3.

5.1 EXPERIMENT SETUP

We evaluate clustering performance on CIFAR-10/20/100 (Krizhevsky et al., 2009) and STL-10
(Coates et al., 2011), following established benchmarks (Qian, 2023; Van Gansbeke et al., 2020;
Zhong et al., 2021). Performance is measured using clustering accuracy (ACC) (Yang et al., 2010),
Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), and Normalized Mutual Information (NMI)
(Kvalseth, 1987), averaged over five random seeds reported on the validation set, consistent with
recent DC methods and surveys (Van Gansbeke et al., 2020; Zhong et al., 2021; Qian, 2023; Zhou
et al., 2024; Lu et al., 2024; Huang et al., 2024). We use the original SCAN setup for our experiments.
Self-labeling training starts with pretrained models trained using the SCAN codebase1, with SCAN’s
hyperparameters (Appendix C) applied consistently throughout the training. For each dataset, we
report the results corresponding to the configuration that achieved the best average accuracy over
the five random seeds. The hyperparameter sensitivity of the ReSL’s underlying reset strategies is
analyzed in Appendix G.

1SCAN codebase https://github.com/wvangansbeke/Unsupervised-Classification.
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5.2 RESULTS

We summarize the clustering performance of our proposed ReSL variants against SCAN with standard
self-labeling (SCAN+SL) across four benchmark datasets in Table 1.

Table 1: Clustering accuracy of ReSL variants against the standard self-labeling procedure. The best
result in each column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 76.75 77.12 88.16 90.79 48.60 49.24 31.56 32.19
ReSLSP∗ 76.91 77.21 87.87 88.16 48.64 49.47 31.35 33.02
ReSLHT 77.80 78.11 88.21 88.85 49.13 50.68 34.89 35.6

SCAN+SL 75.78 76.85 87.57 87.92 48.02 48.83 31.68 32.51

Both variants, ReSLSP and ReSLSP∗, show varying performance across datasets, with the best
improvement observed on STL-10 and a marginal decrease in accuracy on CIFAR-100. While the
shrink and perturb method risks losing valuable information through aggressive resets, the hare and
tortoise approach preserves stability with an exponential moving average of network parameters,
leading to its consistently superior performance. ReSLHT outperforms SCAN+SL across all datasets,
with improvements of up to 3.21% for CIFAR-100. On CIFAR-10, it leads to an improvement of
0.64%, while on CIFAR-20 and STL-10, it yields an additional 1.11% and 2.02% improvement,
respectively. Additionally, ReSLHT consistently achieves the highest scores in terms of ARI and
NMI across all datasets (see Appendix E).

Table 2: ReSLHT reduces noisy labels in the set of confident samples Sτ . We evaluate the quality of
Sτ by calculating the NMI between the confident pseudo-labels and the true classes (NMI Match). A
higher NMI Match indicates less label noise within Sτ . Results are reported at epochs 100 and 200
of self-labeling (denoted as e=100 and e=200 in the table). The best result in each column is in bold.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

e=100 e=200 e=100 e=200 e=100 e=200 e=100 e=200

ReSLHT 85.91 83.53 89.80 88.84 66.05 62.95 79.27 77.88
SCAN+SL 80.34 76.71 89.69 88.49 64.99 62.14 72.18 68.28

ReSLHT further surpasses SCAN+SL in terms of the quality of pseudo-labels, as summarized in
Table 2, where we report results at epochs 100 and 200 of self-labeling.

5.3 DETECTING SELF-LABELING PITFALLS

100 200 300 400 500
Epoch

87

88
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cy
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) PI @ 100 PI @ 200 PI @ 250 No PI

Figure 2: A comparison of CIFAR-10 average ac-
curacy for SCAN+SL models trained with and
without plasticity injection. Plasticity injection
(PI) was applied at epochs 100, 200, and 250 to
analyze its effect at various training stages.

Recent work by Lee et al. (2024) decou-
ples plasticity loss into two distinct com-
ponents: trainability — the network’s abil-
ity to update its parameters — and gener-
alizability — its capacity to perform well
on unseen data. To diagnose whether the
clustering head hθ suffers from a loss of
trainability, we use plasticity injection (Nik-
ishin et al., 2024). Originally developed
in deep RL community, plasticity injection
evaluates the network’s ability to update (i.e.
trainability) without altering the total number of trainable parameters or the immediate
predictions.
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Figure 3: We measure the noise present in the
confident set using NMI between pseudo-labels
and true classes (NMI Match; see Appendix D).
ReSLHT significantly slows the reinforcement of
incorrect pseudo-labels during self-labeling on
STL-10. Similar patterns are observed on the
other datasets (Appendix 4).

To restore the plasticity of the clustering head hθ

at a designated training step T , we construct three
copies of: the base head hθ (with the parameters
learned up to step T ), a freshly initialized adap-
tive head hθ′

1
(a random reinitialization), and a

frozen static copy of the adaptive head hθ′
2

(identi-
cal to hθ′

1
at creation). After injection, we freeze

the base head hθ, allow the adaptive head hθ′
1

to
continue training, and keep the static copy h′

θ2
unchanged. The combined output is computed
as: qi = hθ(zi) + hθ′

1
(zi) − hθ′

2
(zi), thereby

preserving the original predictions at the moment
of injection. If injection improves the perfor-
mance, this suggests that the clustering head had
indeed experienced trainability difficulties. Oth-
erwise, other factors might be limiting further
performance gains.

Results on CIFAR-10 (Figure 2) and other
datasets (Appendix H) show that all models, in-
cluding the baseline without injection, achieved
comparable accuracy, despite minor fluctuations
immediately after the injection. Our results imply
that while plasticity injection enhances trainabil-
ity, it does little to counteract the decline in gener-
alizability during self-labeling. This deterioration
in generalizability is evident in Figure 3, where
the decreasing NMI between confident pseudo-
labels and the true classes (NMI Match; see Ap-
pendix D) reflects a degradation in pseudo-label
quality, which in turn amplifies the initial biases,
even as overall accuracy improves. We attribute
the decreasing quality of confident pseudo-labels
to the higher values of cluster-label reassignment
frequencies (CL Change; see Appendix D). SCAN+SL undergoes frequent cluster-label reassign-
ments (CL Change) while continuously adapting to an expanding set of noisy pseudo-labels, leading
to overfitting on the pseudo-labeling task and ultimately harming its generalizability. In contrast,
ReSLHT remains more committed to the clustering assignments (low CL Change) by periodically
resetting to a slow-moving EMA, thereby limiting the compounding effect of noisy pseudo-labels.

6 CONCLUSION AND FUTURE WORK

In this work, we investigate the self-labeling stage of deep clustering. We show that increasing
number of pseudo-labels introduces non-stationarity and amplifies initial biases, ultimately limiting
the model’s ability to generalize. To address these issues, we introduce ReSL. Our experiments
demonstrate that ReSL, particularly the hare and tortoise variant, outperforms the standard self-
labeling procedure across multiple datasets. ReSL achieves this by stabilizing cluster cluster label
reassignments, slowing pseudo-label quality degradation. Future work will extend our analysis to
other deep clustering methods and reset strategies, and explore alternative reset schedules.
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REPRODUCIBILITY

The complete codebase, including configuration files for reproducing all experiments reported in this
work, is available at this link.

ETHICS STATEMENT

This work contributes foundational research to deep clustering, potentially advancing diverse scientific
domains. While the released code could be misused, we believe its potential to facilitate research
outweighs this possibility. In medical contexts, our could improve patient categorization for targeted
treatments. However, its inherent limitations require careful implementation and human oversight to
minimize potential errors and public concern. Similar caution is warranted in sensitive applications
like finance.
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Appendix
A BACKGROUND

A.1 SCAN

Semantic clustering by adopting nearest neighbors (SCAN) (Van Gansbeke et al., 2020) is a deep
clustering framework. It comprises three stages: representation learning, clustering, and self-labeling,
the latter being a novel contribution to the deep clustering field.

In the first stage, a feature extractor function gϕ is trained on the dataset D using a self-supervised
pretext task (e.g. SimCLR (Chen et al., 2020a)). The resulting feature embeddings are then used to
identify K nearest neighbors for each sample xi ∈ D, forming a set Nxi

that is assumed to contain
samples belonging to the same semantic cluster. The obtained semantically meaningful features are
further used as a prior for clustering the images.

To encourage consistent clustering across neighbors, SCAN introduces a clustering function fη which
performs a soft assignment of samples to clusters C = {1, . . . , C}. The probability of assigning a
sample xi to cluster c is denoted as f c

η(xi) ∈ [0, 1]. SCAN learns a clustering function by minimizing
a proposed semantic clustering loss:

LSCAN = − 1

|D|
∑
xi∈D

∑
k∈Nxi

log⟨fη(xi), fη(k)⟩+ λ
∑
c∈C

f c′

η log f c′

η ,

where the term f c′

η represents the average cluster assignment across the dataset:

f c′

η =
1

|D|
∑
xi∈D

f c
η(xi).

The first term ensures consistent clustering for a sample and its neighbors by maximizing their
similarity, while the second term spreads the predictions uniformly across the clusters C. This
prevents the model from collapsing into trivial solutions where all samples are assigned to a single
cluster.

The final stage of the SCAN algorithm refines the clustering assignments via self-labeling by using
the assignments from the previous iteration as pseudo-labels.

A.2 SIMCLR

Similar to previous contrastive learning algorithms (Dosovitskiy et al., 2014; Wu et al., 2018; Ji
et al., 2019), SimCLR (Chen et al., 2020a) learns representations by maximizing agreement between
differently augmented views of the same data sample via a contrastive loss. During SimCLR
pretraining, from each sample in a batch of N samples, we derive two augmented versions of this
sample, resulting in a batch size of 2N . Given a positive pair, SimCLR treats the other 2(N − 1)
samples as negative samples. SimCLR utilizes the InfoNCE (van den Oord et al., 2018) loss by
applying it in the latent space. For a given positive pair of samples (i, j), the contrastive loss with
temperature parameter τ is defined as follows:

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 ⊮[k ̸=i] exp(sim(zi, zk)/τ)

where ⊮[k ̸=i] is 1 if k ̸= i, and sim(zi, zj) denotes the cosine similarity between two embedded
samples.
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B DATASETS

CIFAR-10/20/100 (Krizhevsky et al., 2009): CIFAR datasets include three variants: CIFAR-10,
CIFAR-20, and CIFAR-100. CIFAR-10 consists of images with dimensions of 32×32×3 channels,
categorized into 10 classes. CIFAR-100 expands this structure to 100 classes, grouped into 20
super-classes, forming the basis of CIFAR-20. In total, CIFAR dataset contains 50,000 training
images and 10,000 validation images.

STL-10 (Coates et al., 2011): STL-10 dataset contains 10 classes of images, each of size 96 x
96 x 3 channels. It provides 500 training images per class, 800 validation images per class, and
an additional 100,000 unlabeled samples for use during the training stage. Note that following the
original implementation of SCAN (Van Gansbeke et al., 2020), we do not utilize these unlabeled
samples.

C HYPERPARAMETERS

Table 3: SCAN’s hyperparameters for self-labeling

Parameter CIFAR10 CIFAR-20 / 100 STL10
GENERAL TRAINING

Confidence threshold 0.99 0.99 0.99
Criterion Confidence cross entropy Confidence cross entropy Confidence cross entropy
Apply class balancing True True True
Epochs 200 200 200
Batch size 1000 1000 1000

MODEL
Backbone resnet18 resnet18 resnet18
Number of heads 1 1 1

AUGMENTATIONS (TRAIN SET)
Augmentation strategy SCAN SCAN SCAN
Crop size 32 32 96
Normalize mean [0.4914, 0.4822, 0.4465] [0.5071, 0.4867, 0.4408] [0.485, 0.456, 0.406]
Normalize std [0.2023, 0.1994, 0.2010] [0.2675, 0.2565, 0.2761] [0.229, 0.224, 0.225]

CUTOUT
Num of holes 1 1 1
Length 16 16 32
Random True True True

TRANSFORMATIONS (VALIDATION SET)
Crop size 32 32 96
Normalize mean [0.4914, 0.4822, 0.4465] [0.5071, 0.4867, 0.4408] [0.485, 0.456, 0.406]
Normalize std [0.2023, 0.1994, 0.2010] [0.2675, 0.2565, 0.2761] [0.229, 0.224, 0.225]

OPTIMIZER
Type Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4
Weight decay 1e-4 1e-4 1e-4

We use the same experimental setup as SCAN for each dataset, except that we train STL-10 for 200
epochs instead of 100 to ensure consistency with the CIFAR datasets. Unless stated otherwise in the
corresponding experiment sections, the hyperparameters listed in Table 3 are consistently applied
across all our self-labeling experiments and match those from the original SCAN codebase.
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D METRICS

Clustering Accuracy (ACC) We measure the clustering accuracy by first allowing for an optimal
matching (permutation) between predicted cluster labels and ground-truth labels. Concretely, given
ground-truth labels {yi}ni=1 and predicted labels {ci}ni=1, we seek a one-to-one mapping g that
maximizes the overall agreement. The Hungarian algorithm Kuhn (1955) can be used to find this
mapping efficiently. Formally:

ACC
(
y, c

)
= max

g

1

n

n∑
i=1

I
{
yi = g

(
ci
)}

, (1)

where I{·} is the indicator function. The maximization is over all possible bijections g from the set
of predicted labels to the set of ground-truth labels.

Normalized Mutual Information (NMI) Normalized Mutual Information quantifies the similarity
between clustering results and true class labels, while correcting for differences in their entropies:

NMI
(
y, c

)
=

I
(
y; c

)
1
2

[
H
(
y
)
+H

(
c
)] , (2)

where H(·) denotes the entropy and I(·; ·) the mutual information. By normalizing with the average
entropy of the label vectors, NMI is constrained to lie in [0, 1].

Adjusted Rand Index (ARI) The Rand Index (RI) measures the fraction of correctly paired
samples among all possible pairs. Let TP and TN be the number of true-positive and true-negative
pairs, respectively, among the

(
n
2

)
possible sample pairs. Then the Rand Index is

RI =
TP + TN(

n
2

) . (3)

However, RI can be artificially inflated by chance alignments when the number of clusters is large.
The Adjusted Rand Index (ARI) corrects for this effect by normalizing against the expected value of
RI, yielding:

ARI
(
y, c

)
=

RI− E[RI]
max(RI)− E[RI]

, (4)

where ARI ranges in [−1, 1]. A value of 1 indicates perfect agreement, 0 agreement expected by
random chance, and −1 perfect disagreement.

Quality of Pseudo-Labels (NMI Match) Let Sτ = {i | maxc(qi)c ≥ τ} denote the indices
of confident samples from the unlabeled dataset D = {x1, . . . ,xn}, where each sample’s latent
representation is zi = gϕ(xi) and the clustering head produces probabilities qi = hθ(zi). The
pseudo-label for sample i is defined as

ỹi = argmax
c

(qi)c.

For evaluation (using ground-truth labels yi), the quality of the confident pseudo-labels is measured
by

NMI Match = NMI
(
{ỹi}i∈Sτ

, {yi}i∈Sτ

)
, (5)

where NMI(·, ·) denotes the normalized mutual information. A higher NMI Match indicates that
the pseudo-labels closely reflect the true classes, implying lower label noise.

Cluster Label Reassignment (CL Change) Let V be a fixed validation set. For each xi ∈ V ,
denote the network’s cluster assignment at epoch t by

ŷti = argmax
c

(
fη(xi)

)
c
,

where fη(xi) = hθ(gϕ(xi)). Define
Qt = {ŷti | xi ∈ V },

as the set of assignments at epoch t. The Cluster Label Reassignment metric is then defined as
CL Change = (1−NMI(Qt, Qt−1))× 100 (6)

This metric quantifies the percentage change in cluster assignments on the validation set between
consecutive epochs. Lower values indicate more stable clustering evolution over time.
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E RESL ALL METRICS

Table 4: Clustering accuracy of ReSL variants against the standard self-labeling procedure. The best
result in each column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 76.75 77.12 88.16 90.79 48.60 49.24 31.56 32.19
ReSLSP∗ 76.91 77.21 87.87 88.16 48.64 49.47 31.35 33.02
ReSLHT 77.80 78.11 88.21 88.85 49.13 50.68 34.89 35.6

SCAN+SL 75.78 76.85 87.57 87.92 48.02 48.83 31.68 32.51

Table 5: ARI of ReSL variants against the standard self-labeling procedure. The best result in each
column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 60.81 61.86 77.31 81.33 32.76 33.12 21.88 22.44
ReSLSP∗ 60.81 61.86 77.00 78.46 32.91 34.25 22.33 23.30
ReSLHT 62.23 62.47 76.82 77.33 33.72 35.29 24.17 24.59

SCAN+SL 59.90 61.40 75.75 76.20 32.83 33.82 22.35 23.11

Table 6: NMI of ReSL variants against the standard self-labeling procedure. The best result in each
column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 67.01 67.83 79.28 81.76 48.03 48.42 53.72 54.06
ReSLSP∗ 67.01 67.83 79.39 80.34 48.22 49.04 53.63 54.26
ReSLHT 68.00 68.18 79.71 80.08 49.13 50.20 55.75 55.84

SCAN+SL 66.34 67.51 78.66 78.98 48.15 48.39 53.42 54.22
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Figure 4: Comparison of ReSLHT and SCAN+SL analyzing accuracy, pseudo-label quality, and
cluster label changes across multiple datasets.
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G HYPERPARAMETER SENSITIVITY

G.1 RESL WITH SOFT RESETS
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Figure 5: Heatmaps for ReSLSP showing accuracy variations with different reset frequencies and
retention parameters across multiple datasets.

The performance of the ReSLSP reset strategy depends on two key hyperparameters: the retention
parameter (α) and the reset frequency. The retention parameter controls the proportion of previous
weights retained during resets, while the reset frequency determines how often resets occur. Accuracy
generally improves as α increases, indicating that stronger retention mitigates the disruptive effects
of resets. However, the optimal α varies based on dataset. CIFAR-10 achieves peak accuracy at
α = 0.8, while CIFAR-20 and CIFAR-100 perform best at α = 0.95, emphasizing the importance of
preserving learned representations in more complex datasets. STL-10 exhibits a gradual improvement
with higher α, suggesting that excessive resets degrade feature stability.
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G.2 RESL WITH HARE & TORTOISE NETWORKS
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Figure 6: Heatmaps for ReSLHT analyzing the impact of momentum and reset frequency on accuracy
across multiple datasets.

Figure 6 illustrates the accuracy variations for different configurations of ReSLHT across multi-
ple datasets. A momentum value of 0.995 with a reset frequency of 20 consistently outperforms
SCAN+SL across all datasets, demonstrating the effectiveness of this configuration in stabilizing
updates and enhancing clustering performance. CIFAR-10, CIFAR-20, CIFAR-100, and STL-10 all
exhibit improved accuracy under this setting.
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H PLASTICITY INJECTION
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Figure 7: Plasticity injection experiment across multiple datasets.

All models, including the baseline without injection, demonstrated similar accuracy levels, with only
slight variations observed immediately after the injection, suggesting no loss of trainability.
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