
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RESL: ENHANCING DEEP CLUSTERING THROUGH
RESET-BASED SELF-LABELING

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of clustering is to group similar data points together. Deep clustering
enhances this process by using neural networks for inferring better data representa-
tions through a three-stage approach: pre-training for initial feature learning, deep
clustering to structure the latent space, and self-labeling to iteratively refine both
representations and cluster assignments. Ever since its inception, self-labeling has
been a crucial element for reaching state-of-the-art performance in deep cluster-
ing. The samples for the self-labeling phase are obtained by setting a confidence
threshold for the network’s predictions and only using samples that exceed this
threshold for further training. This often improves clustering performance but
relies on training with noisy, self-constructed labels (pseudo-labels). As the model
iteratively retrains on its own pseudo-labels, the certainty of its predictions tends
to rise, increasing its confidence over time. The increasing confidence leads to a
growing number of training samples also including more and more samples as-
signed to the wrong cluster, which can limit performance. Particularly, the model’s
initially learned biases are amplified by relying on easily learned but ultimately
misleading patterns in pseudo-labels, hampering generalization.
In this paper, we propose ReSL, a framework that unites Resets with Self-Labeling.
We demonstrate that employing weight-reset techniques during self-labeling in-
creases clustering performance and improves generalization. Our findings address
limitations of self-labeling and provide a foundation for future research in develop-
ing more robust approaches.

1 INTRODUCTION

Decades of research have been dedicated to the challenging task of clustering — partitioning data
points into groups based on their similarity without utilizing any ground-truth annotations. Traditional
clustering methods include k-means (MacQueen et al., 1967), Gaussian mixture models (Bishop &
Nasrabadi, 2006), and spectral clustering (Von Luxburg, 2007). Despite their effectiveness, these
methods face challenges when applied to high-dimensional data, due to the curse of dimensionality.
In contrast, deep neural networks can learn feature representations directly from high-dimensional
data by leveraging unsupervised representation learning techniques (Bengio et al., 2013; Abukmeil
et al., 2021). Just like the clustering itself, these neural network representations can be trained without
any annotations by solving so-called pretext tasks such as reconstruction or contrastive learning.
Many well-established deep clustering (DC) algorithms rely on such tasks during a pre-training
stage (Van Gansbeke et al., 2020; Zhong et al., 2021; Dang et al., 2021). In contrast, more modern
DC algorithms (Qian et al., 2022; Qian, 2023) combine the representation-learning objective and
clustering objective into a single end-to-end framework.

Whether a DC algorithm employs a multi-stage or end-to-end architecture, self-labeling has emerged
as an indispensable tool to reach state-of-the-art performance in deep clustering (Van Gansbeke et al.,
2020; Zhong et al., 2021; Qian, 2023; Miklautz et al., 2024). It fine-tunes the pre-trained deep cluster-
ing network by optimizing the cross-entropy loss on a subset of pseudo-labels generated by the model
itself. This subset is defined by a confidence threshold, representing the minimum confidence the
network must have in its assignment for a sample to be included in the training set. As training in the
self-labeling phase progresses, the network becomes increasingly confident in its assignments, leading
to the inclusion of more samples in each subsequent training iteration. This dynamic expansion of the
training set, while beneficial in leveraging more data, introduces a critical challenge: non-stationarity.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

20

30

40

50

60

70

80

Fr
ac

tio
n 

(%
)

CIFAR-10 CIFAR-100 STL-10 CIFAR-20

Figure 1: Self-labeling with SCAN gradually in-
creases its probability estimates, leading to the
inclusion of a growing proportion of samples to
the confident training set in subsequent training
rounds across different datasets. This expansion
exacerbates non-stationarity and increases the risk
of incorporating noisy pseudo-labels.

The sequential arrival of new confident sam-
ples introduces non-stationarity in the input,
while the subsequent optimization introduces
non-stationarity in the targets. Inevitably, the
training set will include samples assigned to
the wrong cluster, leading to training on noisy
targets. The inherent non-stationarity of self-
labeling, coupled with the inherent risk of incor-
porating incorrect pseudo-labels, can negatively
impact the training process. Figure 1 illustrates
how the training set size grows over time due
to this increasing confidence. Moreover, self-
labeling fine-tunes the pre-trained network on a
different objective, effectively warm-starting
the network from the DC stage rather than initial-
izing from scratch. The aforementioned warm-
starting, noisy targets, and non-stationarity in-
duce optimization issues in deep learning, which
have been studied under the umbrella term “plas-
ticity loss”, referring to a loss of the network’s
ability to fit new targets (Klein et al., 2024; Ash
& Adams, 2020; Lee et al., 2024).

One effective way to reduce the negative impact of plasticity loss is by resetting the network’s weights.
This approach underlies several promising methods from the plasticity literature (Ash & Adams, 2020;
Lee et al., 2024; Zaidi et al., 2023). Expanding on this concept, we propose a novel method, ReSL,
that combines Resets with Self-Labeling. We conduct experiments using the DC method SCAN
(Van Gansbeke et al., 2020), as it was the first to introduce self-labeling. Our quantitative experiments
demonstrate improved clustering performance on STL-10 (Coates et al., 2011) and CIFAR-10/20/100
(Krizhevsky et al., 2009) datasets. To better understand the underlying mechanisms driving these
improvements, we employ plasticity injection (Nikishin et al., 2024). Plasticity injection allows
us to rule out trainability issues (recognized as one of the factors behind plasticity loss (Lee et al.,
2024)), by introducing an output-invariant re-initialization scheme. Our investigation shows that
ReSL stabilizes cluster label reassignments during training, leading to higher-quality pseudo-labels
that generalize better to the clustering task. To summarize our contributions:

• We propose ReSL, an algorithm for self-labeling, and demonstrate that it consistently
improves the clustering performance of the SCAN algorithm across multiple datasets.

• We propose a novel reset strategy that performs stronger resets at the beginning of training,
where the effects of warm-starting are most pronounced.

• We investigate possible mechanisms behind performance improvements and demonstrate
that less intense changes of pseudo-labels help decrease the compounding effect of noisy
pseudo-labels.

2 PROBLEM SETUP

We are given an unlabeled dataset D = {x1, . . . ,xn}, where xi ∈ RD. Our goal is to partition
D into C clusters without using any ground-truth labels. We assume access to a pretrained neural
network gϕ : RD → Rd that provides a latent representation zi = gϕ(xi) for each xi. A clustering
head hθ : Rd → ∆C−1 maps latent vectors zi to probability distributions qi = hθ(zi), where ∆C−1

denotes the (C−1)-simplex. The composite function fη = hθ ◦gϕ assigns a probability distribution
qi over C clusters to each input xi.

Self-labeling. We iteratively refine the cluster assignments by creating pseudo-labels from the
model’s own predictions. Let τ ∈ [0, 1] be a confidence threshold. Define the set of confident samples
as Sτ = {i | maxc(qi)c ≥ τ}. For each i ∈ Sτ , assign the pseudo-label ỹi = argmaxc(qi)c. and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

update the clustering function fη by minimizing the cross-entropy loss on these pseudo-labels:

LSL = − 1

|Sτ |
∑
i∈Sτ

C∑
c=1

ỹi(c) log
[(
fη(x̂i)

)
c

]
,

where ỹi is the one-hot encoding of ỹi. Here, x̂i denotes an augmentation of the original input xi

(obtained through techniques such as cropping, rotation, or color jittering), which is employed to
prevent overfitting. Our aim is to learn an accurate partition of D into C clusters, despite the risk of
reinforcing initially biased pseudo-labels through this iterative self-labeling procedure.

3 BACKGROUND AND RELATED WORK

3.1 DEEP CLUSTERING

Recent advancements in DC have bridged the gap between feature learning and clustering. The
feature learning component can be realized with various architectures such as convolutional neural
networks (CNNs), autoencoders (AEs), and contrastive learning frameworks such as SimCLR (Chen
et al., 2020a) or MoCo (Chen et al., 2020b). Jointly optimizing representation learning and clustering
objectives has enabled DC methods. Recent DC methods (Van Gansbeke et al., 2020; Qian, 2023;
Zhong et al., 2021) have shown results close to supervised methods on widely used image benchmarks.
These studies share a practice of fine-tuning clustering networks through self-labeling to enhance the
quality of cluster assignments. Van Gansbeke et al. (2020) introduced the self-labeling procedure
within their DC method, SCAN (Semantic Clustering by Adopting Nearest Neighbors). Further
details on SCAN are provided in Appendix A.1.

3.2 NETWORK PLASTICITY

To enable efficient learning, deep neural networks must possess plasticity — that is, the capacity to
adapt and modify their weights during training. This concept is akin to neuroplasticity, which enables
learning in the human brain. The term plasticity has gained broader attention in the fields of deep
reinforcement learning (RL) (Klein et al., 2024) and continual learning (Elsayed & Mahmood, 2024).
Once plasticity is lost, the ability to learn diminishes (Lyle et al., 2023). Weight-reset techniques have
emerged as an effective strategy for mitigating the loss of plasticity (Lyle et al., 2023; Klein et al.,
2024). Zaidi et al. (2023) show that when training on noisy labels, resetting results in a substantially
improved generalization. To address suboptimal performance resulting from warm-starting and
subsequent plasticity loss, Ash & Adams (2020) propose partial weight resets. Lee et al. (2024)
then decomposed plasticity loss into trainability and generalizability. To minimize knowledge loss
during resets, they developed a reset strategy with distillation, enabling rapid adaptation and gradual
generalization. For a comprehensive overview of plasticity loss and mitigation strategies, we refer the
reader to Klein et al. (2024).

4 METHODOLOGY

We propose ReSL, an algorithm for the self-labeling stage of deep clustering algorithms. ReSL
is designed to mitigate the detrimental effects of non-stationarity and warm-starting discussed in
Section 1 by incorporating a periodic weight-reset mechanism into the training pipeline. Algorithm 1
provides a generic implementation.

Algorithm 1 PyTorch-style pseudo-code of ReSL

# model: neural net
# reset_freq: interval for weight resets
# reset_strategy: a strategy for retrieving and resetting weights
# confidence_threshold: minimum confidence for including a sample in training
for epoch in range(max_epochs):

pseudo_labels = obtain_pseudo_labels(model, dataloader, confidence_threshold)
update_model(model, dataloader, pseudo_labels, optimizer, criterion)
reset_strategy.update(model, epoch)
if epoch % reset_freq == 0:

reset_strategy.reset(model)
cluster_assignments = model(dataset)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

At a high level, ReSL alternates between two key steps during training. In the first step, the network
updates its parameters using pseudo-labels obtained from its current clustering assignments. A
confidence threshold ensures that only samples with sufficiently reliable predictions are included in
the training set. In the second step, after a fixed number of training epochs, the algorithm performs a
weight reset. The specific mechanism for resetting the model’s weights is abstracted into the reset
strategy module, which permits various reset types. Depending on the chosen strategy, the reset may
be implemented as a soft reset — resetting only a subset of the parameters — or as a hard reset,
wherein all weights are changed. We further discuss two established reset strategies and propose a
novel approach that gradually softens resets — addressing objective change from the DC stage to
self-labeling by applying stronger resets early in training.

ReSL with Soft Resets (ReSLSP) The first reset strategy within our ReSL framework leverages
soft resets by applying the Shrink and Perturb method (Ash & Adams, 2020) to the clustering head
hθ every R epoch. Specifically, we sample fresh parameters θ′ from the original initializer (He et al.,
2016) and perform a soft weight reset using a convex combination of the network’s current weights
and the freshly sampled weights θ ← α θ + (1 − α) θ′, where α ∈ (0, 1) is a retention parameter
that controls how much of the current state is preserved relative to the new initialization.

ReSL with Soft Resets (ReSLSP∗) As part of ReSL, we propose a novel variant that “softens” the
reset strength over time. Specifically, the retention parameter α starts at a lower value, enabling larger
resets initially, and is then linearly increased to 1.0 by the final epoch using a softening factor epoch

E ,
meaning no resets at the end of training. At each reset interval R, these updated values are applied,
ensuring that weight resets are stronger at the beginning of training, where warm-start initialization
takes place.

ReSL with Hare & Tortoise Networks (ReSLHT) Inspired by the “hare and tortoise” approach
of Lee et al. (2024), we maintain two networks with parameters ηHare and ηTortoise, the “hare” and
the “tortoise” respectively. Both networks are initialized with the pretrained model resulting from
the initial clustering stage. The hare rapidly adapts via SGD, whereas the tortoise’s parameters
are updated via distillation using an exponential moving average (EMA) of the hare’s parameters:
ηTortoise ← µηTortoise + (1 − µ)ηHare, where µ ∈ (0, 1) is a momentum parameter. At each reset
interval R, the hare network’s parameters are reset to the current state of the tortoise network:
ηHare ← ηTortoise. The tortoise network is used for subsequent data clustering.

5 EXPERIMENTS

This section outlines our experimental methodology, beginning with a description of the datasets
and setups employed in Section 5.1. We then present the results of ReSL applied with established
weight-reset techniques in Section 5.2. Finally, we investigate the implications of our results in
Section 5.3.

5.1 EXPERIMENT SETUP

We evaluate clustering performance on CIFAR-10/20/100 (Krizhevsky et al., 2009) and STL-10
(Coates et al., 2011), following established benchmarks (Qian, 2023; Van Gansbeke et al., 2020;
Zhong et al., 2021). Performance is measured using clustering accuracy (ACC) (Yang et al., 2010),
Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), and Normalized Mutual Information (NMI)
(Kvalseth, 1987), averaged over five random seeds reported on the validation set, consistent with
recent DC methods and surveys (Van Gansbeke et al., 2020; Zhong et al., 2021; Qian, 2023; Zhou
et al., 2024; Lu et al., 2024; Huang et al., 2024). We use the original SCAN setup for our experiments.
Self-labeling training starts with pretrained models trained using the SCAN codebase1, with SCAN’s
hyperparameters (Appendix C) applied consistently throughout the training. For each dataset, we
report the results corresponding to the configuration that achieved the best average accuracy over
the five random seeds. The hyperparameter sensitivity of the ReSL’s underlying reset strategies is
analyzed in Appendix G.

1SCAN codebase https://github.com/wvangansbeke/Unsupervised-Classification.

4

https://github.com/wvangansbeke/Unsupervised-Classification


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5.2 RESULTS

We summarize the clustering performance of our proposed ReSL variants against SCAN with standard
self-labeling (SCAN+SL) across four benchmark datasets in Table 1.

Table 1: Clustering accuracy of ReSL variants against the standard self-labeling procedure. The best
result in each column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 76.75 77.12 88.16 90.79 48.60 49.24 31.56 32.19
ReSLSP∗ 76.91 77.21 87.87 88.16 48.64 49.47 31.35 33.02
ReSLHT 77.80 78.11 88.21 88.85 49.13 50.68 34.89 35.6

SCAN+SL 75.78 76.85 87.57 87.92 48.02 48.83 31.68 32.51

Both variants, ReSLSP and ReSLSP∗, show varying performance across datasets, with the best
improvement observed on STL-10 and a marginal decrease in accuracy on CIFAR-100. While the
shrink and perturb method risks losing valuable information through aggressive resets, the hare and
tortoise approach preserves stability with an exponential moving average of network parameters,
leading to its consistently superior performance. ReSLHT outperforms SCAN+SL across all datasets,
with improvements of up to 3.21% for CIFAR-100. On CIFAR-10, it leads to an improvement of
0.64%, while on CIFAR-20 and STL-10, it yields an additional 1.11% and 2.02% improvement,
respectively. Additionally, ReSLHT consistently achieves the highest scores in terms of ARI and
NMI across all datasets (see Appendix E).

Table 2: ReSLHT reduces noisy labels in the set of confident samples Sτ . We evaluate the quality of
Sτ by calculating the NMI between the confident pseudo-labels and the true classes (NMI Match). A
higher NMI Match indicates less label noise within Sτ . Results are reported at epochs 100 and 200
of self-labeling (denoted as e=100 and e=200 in the table). The best result in each column is in bold.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

e=100 e=200 e=100 e=200 e=100 e=200 e=100 e=200

ReSLHT 85.91 83.53 89.80 88.84 66.05 62.95 79.27 77.88
SCAN+SL 80.34 76.71 89.69 88.49 64.99 62.14 72.18 68.28

ReSLHT further surpasses SCAN+SL in terms of the quality of pseudo-labels, as summarized in
Table 2, where we report results at epochs 100 and 200 of self-labeling.

5.3 DETECTING SELF-LABELING PITFALLS

100 200 300 400 500
Epoch

87

88

Ac
cu

ra
cy

 (%
) PI @ 100 PI @ 200 PI @ 250 No PI

Figure 2: A comparison of CIFAR-10 average ac-
curacy for SCAN+SL models trained with and
without plasticity injection. Plasticity injection
(PI) was applied at epochs 100, 200, and 250 to
analyze its effect at various training stages.

Recent work by Lee et al. (2024) decou-
ples plasticity loss into two distinct com-
ponents: trainability — the network’s abil-
ity to update its parameters — and gener-
alizability — its capacity to perform well
on unseen data. To diagnose whether the
clustering head hθ suffers from a loss of
trainability, we use plasticity injection (Nik-
ishin et al., 2024). Originally developed
in deep RL community, plasticity injection
evaluates the network’s ability to update (i.e.
trainability) without altering the total number of trainable parameters or the immediate
predictions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

75

76

77

78

Ac
cu

ra
cy

75

80

85

90

95

NM
I M

at
ch

0 50 100 150 200
Epoch

0

5

10

15

CL
 C

ha
ng

e

ReSLHT SCAN+SL

Figure 3: We measure the noise present in the
confident set using NMI between pseudo-labels
and true classes (NMI Match; see Appendix D).
ReSLHT significantly slows the reinforcement of
incorrect pseudo-labels during self-labeling on
STL-10. Similar patterns are observed on the
other datasets (Appendix 4).

To restore the plasticity of the clustering head hθ

at a designated training step T , we construct three
copies of: the base head hθ (with the parameters
learned up to step T ), a freshly initialized adap-
tive head hθ′

1
(a random reinitialization), and a

frozen static copy of the adaptive head hθ′
2

(identi-
cal to hθ′

1
at creation). After injection, we freeze

the base head hθ, allow the adaptive head hθ′
1

to
continue training, and keep the static copy h′

θ2
unchanged. The combined output is computed
as: qi = hθ(zi) + hθ′

1
(zi) − hθ′

2
(zi), thereby

preserving the original predictions at the moment
of injection. If injection improves the perfor-
mance, this suggests that the clustering head had
indeed experienced trainability difficulties. Oth-
erwise, other factors might be limiting further
performance gains.

Results on CIFAR-10 (Figure 2) and other
datasets (Appendix H) show that all models, in-
cluding the baseline without injection, achieved
comparable accuracy, despite minor fluctuations
immediately after the injection. Our results imply
that while plasticity injection enhances trainabil-
ity, it does little to counteract the decline in gener-
alizability during self-labeling. This deterioration
in generalizability is evident in Figure 3, where
the decreasing NMI between confident pseudo-
labels and the true classes (NMI Match; see Ap-
pendix D) reflects a degradation in pseudo-label
quality, which in turn amplifies the initial biases,
even as overall accuracy improves. We attribute
the decreasing quality of confident pseudo-labels
to the higher values of cluster-label reassignment
frequencies (CL Change; see Appendix D). SCAN+SL undergoes frequent cluster-label reassign-
ments (CL Change) while continuously adapting to an expanding set of noisy pseudo-labels, leading
to overfitting on the pseudo-labeling task and ultimately harming its generalizability. In contrast,
ReSLHT remains more committed to the clustering assignments (low CL Change) by periodically
resetting to a slow-moving EMA, thereby limiting the compounding effect of noisy pseudo-labels.

6 CONCLUSION AND FUTURE WORK

In this work, we investigate the self-labeling stage of deep clustering. We show that increasing
number of pseudo-labels introduces non-stationarity and amplifies initial biases, ultimately limiting
the model’s ability to generalize. To address these issues, we introduce ReSL. Our experiments
demonstrate that ReSL, particularly the hare and tortoise variant, outperforms the standard self-
labeling procedure across multiple datasets. ReSL achieves this by stabilizing cluster cluster label
reassignments, slowing pseudo-label quality degradation. Future work will extend our analysis to
other deep clustering methods and reset strategies, and explore alternative reset schedules.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

The complete codebase, including configuration files for reproducing all experiments reported in this
work, is available at this link.

ETHICS STATEMENT

This work contributes foundational research to deep clustering, potentially advancing diverse scientific
domains. While the released code could be misused, we believe its potential to facilitate research
outweighs this possibility. In medical contexts, our could improve patient categorization for targeted
treatments. However, its inherent limitations require careful implementation and human oversight to
minimize potential errors and public concern. Similar caution is warranted in sensitive applications
like finance.

7

https://anonymous.4open.science/r/resl_anonymized-552B/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

REFERENCES

Mohanad Abukmeil, Stefano Ferrari, Angelo Genovese, Vincenzo Piuri, and Fabio Scotti. A survey
of unsupervised generative models for exploratory data analysis and representation learning. ACM
Comput. Surv., 54(5), July 2021. ISSN 0360-0300. doi:10.1145/3450963.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013. doi:10.1109/TPAMI.2013.50.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. Nearest neighbor matching for
deep clustering. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13693–13702, 2021.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. Advances in neural information
processing systems, 27, 2014.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forgetting
in continual learning. arXiv preprint arXiv:2404.00781, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huajuan Huang, Chen Wang, Xiuxi Wei, and Yongquan Zhou. Deep image clustering: A survey.
Neurocomputing, 599:128101, 2024.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2:193–218,
1985. doi:10.1007/BF01908075.

Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised
image classification and segmentation. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 9865–9874, 2019.

Timo Klein, Lukas Miklautz, Kevin Sidak, Claudia Plant, and Sebastian Tschiatschek. Plasticity loss
in deep reinforcement learning: A survey. arXiv preprint arXiv:2411.04832, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
URL https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.
pdf.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Tarald O Kvalseth. Entropy and correlation: Some comments. IEEE Transactions on Systems, Man,
and Cybernetics, 17(3):517–519, 1987. doi:10.1109/TSMC.1987.4309069.

8

https://doi.org/10.1145/3450963
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/BF01908075
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/TSMC.1987.4309069


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
Lyle. Slow and steady wins the race: Maintaining plasticity with hare and tortoise networks. arXiv
preprint arXiv:2406.02596, 2024.

Yiding Lu, Haobin Li, Yunfan Li, Yijie Lin, and Xi Peng. A survey on deep clustering: from the prior
perspective. Vicinagearth, 1(1):4, 2024.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281–297. Oakland, CA, USA, 1967.

Lukas Miklautz, Timo Klein, Kevin Sidak, Collin Leiber, Thomas Lang, Andrii Shkabrii, Sebastian
Tschiatschek, and Claudia Plant. Breaking the reclustering barrier in centroid-based deep clustering.
arXiv preprint arXiv:2411.02275, 2024.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and André
Barreto. Deep reinforcement learning with plasticity injection. Advances in Neural Information
Processing Systems, 36, 2024.

Qi Qian. Stable cluster discrimination for deep clustering. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 16645–16654, 2023.

Qi Qian, Yuanhong Xu, Juhua Hu, Hao Li, and Rong Jin. Unsupervised visual representation learning
by online constrained k-means. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16640–16649, 2022.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. doi:10.48550/arXiv.1807.03748.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Scan: Learning to classify images without labels. In European conference on computer
vision, pp. 268–285. Springer, 2020.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan, and Yueting Zhuang. Image clustering using local
discriminant models and global integration. IEEE Transactions on Image Processing, 19(10):
2761–2773, 2010. doi:10.1109/TIP.2010.2049235.

Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jorg Bornschein, Claudia Clopath, Yee Whye Teh, and
Razvan Pascanu. When does re-initialization work? In Proceedings on, pp. 12–26. PMLR, 2023.

Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen
Lin, and Xian-Sheng Hua. Graph contrastive clustering. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 9224–9233, 2021.

Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Zhao Li, Jiajun Bu, Jia Wu, Xin Wang,
Wenwu Zhu, and Martin Ester. A comprehensive survey on deep clustering: Taxonomy, challenges,
and future directions. ACM Computing Surveys, 57(3):1–38, 2024.

9

https://doi.org/10.48550/arXiv.1807.03748
https://doi.org/10.1109/TIP.2010.2049235


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Appendix
A BACKGROUND

A.1 SCAN

Semantic clustering by adopting nearest neighbors (SCAN) (Van Gansbeke et al., 2020) is a deep
clustering framework. It comprises three stages: representation learning, clustering, and self-labeling,
the latter being a novel contribution to the deep clustering field.

In the first stage, a feature extractor function gϕ is trained on the dataset D using a self-supervised
pretext task (e.g. SimCLR (Chen et al., 2020a)). The resulting feature embeddings are then used to
identify K nearest neighbors for each sample xi ∈ D, forming a set Nxi

that is assumed to contain
samples belonging to the same semantic cluster. The obtained semantically meaningful features are
further used as a prior for clustering the images.

To encourage consistent clustering across neighbors, SCAN introduces a clustering function fη which
performs a soft assignment of samples to clusters C = {1, . . . , C}. The probability of assigning a
sample xi to cluster c is denoted as f c

η(xi) ∈ [0, 1]. SCAN learns a clustering function by minimizing
a proposed semantic clustering loss:

LSCAN = − 1

|D|
∑
xi∈D

∑
k∈Nxi

log⟨fη(xi), fη(k)⟩+ λ
∑
c∈C

f c′

η log f c′

η ,

where the term f c′

η represents the average cluster assignment across the dataset:

f c′

η =
1

|D|
∑
xi∈D

f c
η(xi).

The first term ensures consistent clustering for a sample and its neighbors by maximizing their
similarity, while the second term spreads the predictions uniformly across the clusters C. This
prevents the model from collapsing into trivial solutions where all samples are assigned to a single
cluster.

The final stage of the SCAN algorithm refines the clustering assignments via self-labeling by using
the assignments from the previous iteration as pseudo-labels.

A.2 SIMCLR

Similar to previous contrastive learning algorithms (Dosovitskiy et al., 2014; Wu et al., 2018; Ji
et al., 2019), SimCLR (Chen et al., 2020a) learns representations by maximizing agreement between
differently augmented views of the same data sample via a contrastive loss. During SimCLR
pretraining, from each sample in a batch of N samples, we derive two augmented versions of this
sample, resulting in a batch size of 2N . Given a positive pair, SimCLR treats the other 2(N − 1)
samples as negative samples. SimCLR utilizes the InfoNCE (van den Oord et al., 2018) loss by
applying it in the latent space. For a given positive pair of samples (i, j), the contrastive loss with
temperature parameter τ is defined as follows:

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 ⊮[k ̸=i] exp(sim(zi, zk)/τ)

where ⊮[k ̸=i] is 1 if k ̸= i, and sim(zi, zj) denotes the cosine similarity between two embedded
samples.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

B DATASETS

CIFAR-10/20/100 (Krizhevsky et al., 2009): CIFAR datasets include three variants: CIFAR-10,
CIFAR-20, and CIFAR-100. CIFAR-10 consists of images with dimensions of 32×32×3 channels,
categorized into 10 classes. CIFAR-100 expands this structure to 100 classes, grouped into 20
super-classes, forming the basis of CIFAR-20. In total, CIFAR dataset contains 50,000 training
images and 10,000 validation images.

STL-10 (Coates et al., 2011): STL-10 dataset contains 10 classes of images, each of size 96 x
96 x 3 channels. It provides 500 training images per class, 800 validation images per class, and
an additional 100,000 unlabeled samples for use during the training stage. Note that following the
original implementation of SCAN (Van Gansbeke et al., 2020), we do not utilize these unlabeled
samples.

C HYPERPARAMETERS

Table 3: SCAN’s hyperparameters for self-labeling

Parameter CIFAR10 CIFAR-20 / 100 STL10
GENERAL TRAINING

Confidence threshold 0.99 0.99 0.99
Criterion Confidence cross entropy Confidence cross entropy Confidence cross entropy
Apply class balancing True True True
Epochs 200 200 200
Batch size 1000 1000 1000

MODEL
Backbone resnet18 resnet18 resnet18
Number of heads 1 1 1

AUGMENTATIONS (TRAIN SET)
Augmentation strategy SCAN SCAN SCAN
Crop size 32 32 96
Normalize mean [0.4914, 0.4822, 0.4465] [0.5071, 0.4867, 0.4408] [0.485, 0.456, 0.406]
Normalize std [0.2023, 0.1994, 0.2010] [0.2675, 0.2565, 0.2761] [0.229, 0.224, 0.225]

CUTOUT
Num of holes 1 1 1
Length 16 16 32
Random True True True

TRANSFORMATIONS (VALIDATION SET)
Crop size 32 32 96
Normalize mean [0.4914, 0.4822, 0.4465] [0.5071, 0.4867, 0.4408] [0.485, 0.456, 0.406]
Normalize std [0.2023, 0.1994, 0.2010] [0.2675, 0.2565, 0.2761] [0.229, 0.224, 0.225]

OPTIMIZER
Type Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4
Weight decay 1e-4 1e-4 1e-4

We use the same experimental setup as SCAN for each dataset, except that we train STL-10 for 200
epochs instead of 100 to ensure consistency with the CIFAR datasets. Unless stated otherwise in the
corresponding experiment sections, the hyperparameters listed in Table 3 are consistently applied
across all our self-labeling experiments and match those from the original SCAN codebase.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

D METRICS

Clustering Accuracy (ACC) We measure the clustering accuracy by first allowing for an optimal
matching (permutation) between predicted cluster labels and ground-truth labels. Concretely, given
ground-truth labels {yi}ni=1 and predicted labels {ci}ni=1, we seek a one-to-one mapping g that
maximizes the overall agreement. The Hungarian algorithm Kuhn (1955) can be used to find this
mapping efficiently. Formally:

ACC
(
y, c

)
= max

g

1

n

n∑
i=1

I
{
yi = g

(
ci
)}

, (1)

where I{·} is the indicator function. The maximization is over all possible bijections g from the set
of predicted labels to the set of ground-truth labels.

Normalized Mutual Information (NMI) Normalized Mutual Information quantifies the similarity
between clustering results and true class labels, while correcting for differences in their entropies:

NMI
(
y, c

)
=

I
(
y; c

)
1
2

[
H
(
y
)
+H

(
c
)] , (2)

where H(·) denotes the entropy and I(·; ·) the mutual information. By normalizing with the average
entropy of the label vectors, NMI is constrained to lie in [0, 1].

Adjusted Rand Index (ARI) The Rand Index (RI) measures the fraction of correctly paired
samples among all possible pairs. Let TP and TN be the number of true-positive and true-negative
pairs, respectively, among the

(
n
2

)
possible sample pairs. Then the Rand Index is

RI =
TP + TN(

n
2

) . (3)

However, RI can be artificially inflated by chance alignments when the number of clusters is large.
The Adjusted Rand Index (ARI) corrects for this effect by normalizing against the expected value of
RI, yielding:

ARI
(
y, c

)
=

RI− E[RI]
max(RI)− E[RI]

, (4)

where ARI ranges in [−1, 1]. A value of 1 indicates perfect agreement, 0 agreement expected by
random chance, and −1 perfect disagreement.

Quality of Pseudo-Labels (NMI Match) Let Sτ = {i | maxc(qi)c ≥ τ} denote the indices
of confident samples from the unlabeled dataset D = {x1, . . . ,xn}, where each sample’s latent
representation is zi = gϕ(xi) and the clustering head produces probabilities qi = hθ(zi). The
pseudo-label for sample i is defined as

ỹi = argmax
c

(qi)c.

For evaluation (using ground-truth labels yi), the quality of the confident pseudo-labels is measured
by

NMI Match = NMI
(
{ỹi}i∈Sτ

, {yi}i∈Sτ

)
, (5)

where NMI(·, ·) denotes the normalized mutual information. A higher NMI Match indicates that
the pseudo-labels closely reflect the true classes, implying lower label noise.

Cluster Label Reassignment (CL Change) Let V be a fixed validation set. For each xi ∈ V ,
denote the network’s cluster assignment at epoch t by

ŷti = argmax
c

(
fη(xi)

)
c
,

where fη(xi) = hθ(gϕ(xi)). Define
Qt = {ŷti | xi ∈ V },

as the set of assignments at epoch t. The Cluster Label Reassignment metric is then defined as
CL Change = (1−NMI(Qt, Qt−1))× 100 (6)

This metric quantifies the percentage change in cluster assignments on the validation set between
consecutive epochs. Lower values indicate more stable clustering evolution over time.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

E RESL ALL METRICS

Table 4: Clustering accuracy of ReSL variants against the standard self-labeling procedure. The best
result in each column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 76.75 77.12 88.16 90.79 48.60 49.24 31.56 32.19
ReSLSP∗ 76.91 77.21 87.87 88.16 48.64 49.47 31.35 33.02
ReSLHT 77.80 78.11 88.21 88.85 49.13 50.68 34.89 35.6

SCAN+SL 75.78 76.85 87.57 87.92 48.02 48.83 31.68 32.51

Table 5: ARI of ReSL variants against the standard self-labeling procedure. The best result in each
column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 60.81 61.86 77.31 81.33 32.76 33.12 21.88 22.44
ReSLSP∗ 60.81 61.86 77.00 78.46 32.91 34.25 22.33 23.30
ReSLHT 62.23 62.47 76.82 77.33 33.72 35.29 24.17 24.59

SCAN+SL 59.90 61.40 75.75 76.20 32.83 33.82 22.35 23.11

Table 6: NMI of ReSL variants against the standard self-labeling procedure. The best result in each
column is in bold, and the second best is underlined.

Experiment
STL-10 CIFAR-10 CIFAR-20 CIFAR-100

Avg Max Avg Max Avg Max Avg Max

ReSLSP 67.01 67.83 79.28 81.76 48.03 48.42 53.72 54.06
ReSLSP∗ 67.01 67.83 79.39 80.34 48.22 49.04 53.63 54.26
ReSLHT 68.00 68.18 79.71 80.08 49.13 50.20 55.75 55.84

SCAN+SL 66.34 67.51 78.66 78.98 48.15 48.39 53.42 54.22

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

F RESL HT RESULTS

82

84

86

88

Ac
cu

ra
cy

88

90

92

94

NM
I M

at
ch

0 50 100 150 200
Epoch

2.5

5.0

7.5

10.0

CL
 C

ha
ng

e

ReSLHT SCAN+SL

(a) CIFAR10

46

48

50

Ac
cu

ra
cy

65

70

75

NM
I M

at
ch

0 50 100 150 200
Epoch

5

10

15

20

CL
 C

ha
ng

e

ReSLHT SCAN+SL

(b) CIFAR20

32

34

36

38

Ac
cu

ra
cy

70

80

90

NM
I M

at
ch

0 50 100 150 200
Epoch

0

10

20

CL
 C

ha
ng

e

ReSLHT SCAN+SL

(c) CIFAR100

75

76

77

78

Ac
cu

ra
cy

75

80

85

90

95

NM
I M

at
ch

0 50 100 150 200
Epoch

0

5

10

15

CL
 C

ha
ng

e

ReSLHT SCAN+SL

(d) STL10

Figure 4: Comparison of ReSLHT and SCAN+SL analyzing accuracy, pseudo-label quality, and
cluster label changes across multiple datasets.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

G HYPERPARAMETER SENSITIVITY

G.1 RESL WITH SOFT RESETS

0.7 0.75 0.8 0.85 0.9 0.95
Retention Parameter (Clustering Head)

5
10

20
Re

se
t F

re
qu

en
cy

67.91 85.96 88.47 87.75 87.52 87.43

84.34 87.68 87.70 88.02 87.62 87.82

87.75 87.80 87.83 87.55 87.66 87.67
70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Ac
cu

ra
cy

(a) CIFAR10

0.8 0.85 0.9 0.95
Retention Parameter (Clustering Head)

5
10

20
Re

se
t F

re
qu

en
cy

45.38 44.01 47.50 48.46

46.19 47.45 47.26 48.15

47.64 48.30 47.51 48.60
45

46

47

48

Ac
cu

ra
cy

(b) CIFAR20

0.8 0.85 0.9 0.95
Retention Parameter (Clustering Head)

5
10

20
Re

se
t F

re
qu

en
cy

21.23 23.71 27.86 31.11

27.66 29.32 30.84 31.56

29.96 29.84 30.77 30.48

22

24

26

28

30

Ac
cu

ra
cy

(c) CIFAR100

0.8 0.85 0.9 0.95
Retention Parameter (Clustering Head)

5
10

20
Re

se
t F

re
qu

en
cy

50.85 60.66 70.41 75.96

64.15 73.10 75.58 76.75

74.50 76.13 76.21 76.50 55

60

65

70

75

Ac
cu

ra
cy

(d) STL10

Figure 5: Heatmaps for ReSLSP showing accuracy variations with different reset frequencies and
retention parameters across multiple datasets.

The performance of the ReSLSP reset strategy depends on two key hyperparameters: the retention
parameter (α) and the reset frequency. The retention parameter controls the proportion of previous
weights retained during resets, while the reset frequency determines how often resets occur. Accuracy
generally improves as α increases, indicating that stronger retention mitigates the disruptive effects
of resets. However, the optimal α varies based on dataset. CIFAR-10 achieves peak accuracy at
α = 0.8, while CIFAR-20 and CIFAR-100 perform best at α = 0.95, emphasizing the importance of
preserving learned representations in more complex datasets. STL-10 exhibits a gradual improvement
with higher α, suggesting that excessive resets degrade feature stability.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

G.2 RESL WITH HARE & TORTOISE NETWORKS

0.9 0.95 0.99 0.995 0.999
Momentum Value

5
10

20
Re

se
t F

re
qu

en
cy

87.86 88.06 87.88 87.98 86.80

87.80 88.05 88.22 88.45 87.42

87.99 88.34 88.20 88.70 87.97
87.00

87.25

87.50

87.75

88.00

88.25

88.50

Ac
cu

ra
cy

(a) CIFAR10

0.9 0.95 0.99 0.995 0.999
Momentum Value

5
10

20
Re

se
t F

re
qu

en
cy

47.83 47.91 48.97 48.91 48.75

48.79 48.09 48.72 48.59 48.72

48.81 48.64 47.95 48.30 48.64 48.0

48.2

48.4

48.6

48.8

Ac
cu

ra
cy

(b) CIFAR20

0.9 0.95 0.99 0.995 0.999
Momentum Value

5
10

20
Re

se
t F

re
qu

en
cy

31.91 32.66 33.45 33.72 34.30

32.27 32.01 32.86 33.29 34.18

31.71 32.15 33.20 33.27 33.85
32.0

32.5

33.0

33.5

34.0
Ac

cu
ra

cy

(c) CIFAR100

0.9 0.95 0.99 0.995 0.999
Momentum Value

5
10

20
Re

se
t F

re
qu

en
cy

76.27 77.11 77.91 77.31 76.52

75.65 76.56 77.64 77.81 76.65

76.20 76.65 77.57 77.93 76.94 76.0

76.5

77.0

77.5

Ac
cu

ra
cy

(d) STL10

Figure 6: Heatmaps for ReSLHT analyzing the impact of momentum and reset frequency on accuracy
across multiple datasets.

Figure 6 illustrates the accuracy variations for different configurations of ReSLHT across multi-
ple datasets. A momentum value of 0.995 with a reset frequency of 20 consistently outperforms
SCAN+SL across all datasets, demonstrating the effectiveness of this configuration in stabilizing
updates and enhancing clustering performance. CIFAR-10, CIFAR-20, CIFAR-100, and STL-10 all
exhibit improved accuracy under this setting.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

H PLASTICITY INJECTION

100 200 300 400 500
Epoch

87

88

Ac
cu

ra
cy

 (%
) PI @ 100 PI @ 200 PI @ 250 No PI

(a) CIFAR10

100 200 300 400 500
Epoch

47
48
49
50

Ac
cu

ra
cy

 (%
) PI @ 100 PI @ 200 PI @ 250 No PI

(b) CIFAR20

100 200 300 400 500
Epoch

30
31
32

Ac
cu

ra
cy

 (%
) PI @ 100 PI @ 200 PI @ 250 No PI

(c) CIFAR100

100 200 300 400 500
Epoch

74
75
76
77
78

Ac
cu

ra
cy

 (%
) PI @ 100 PI @ 200 PI @ 250 No PI

(d) STL10

Figure 7: Plasticity injection experiment across multiple datasets.

All models, including the baseline without injection, demonstrated similar accuracy levels, with only
slight variations observed immediately after the injection, suggesting no loss of trainability.

17


	Introduction
	Problem Setup
	Background and Related Work
	Deep Clustering
	Network Plasticity

	Methodology
	Experiments
	Experiment Setup
	Results
	Detecting Self-Labeling Pitfalls

	Conclusion and Future Work
	 Appendix
	Background
	SCAN
	SimCLR

	Datasets
	Hyperparameters
	Metrics
	ReSL All Metrics
	ReSL HT Results
	Hyperparameter sensitivity
	ReSL with Soft Resets
	ReSL with Hare & Tortoise Networks

	Plasticity Injection


