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ABSTRACT
Exploiting sparsity in deep neural networks (DNNs) has been a promising area for meeting the growing computa-
tion requirements. To minimize the overhead of sparse acceleration, hardware designers have proposed structured
sparsity support, but it provides limited flexibility and requires extra model fine-tuning. Moreover, any sparse
model fine-tuned for certain structured sparse HW cannot be accelerated by other structured hardware. To enable
acceleration using unstructured sparsity of DNNs on structured sparse hardware, we propose an approximation
method leveraging the distributive property in linear algebra to turn any sparse tensor into a series of structured
sparse tensors. We also develop a software framework, TASDER, to apply high-quality structured approximation
on weights and activations of DNNs. Our method accelerates dense and sparse DNNs without fine-tuning and
improves energy-delay-product (EDP) by up to 83% and 74%. It achieves up to 39% speed-up on a real system.

1 INTRODUCTION

DNNs have revolutionized various domains (Krizhevsky
et al., 2012; Liu et al., 2022a; Dosovitskiy et al., 2020; Nau-
mov et al., 2019; Radford et al., 2019; Devlin et al., 2019),
but DNN inference demands extreme compute power, mem-
ory footprints, and memory bandwidth as models scale to
billions and trillions of parameters (Shoeybi et al., 2019;
Fedus et al., 2021; Chowdhery et al., 2022). To mitigate
this growing demand, sparsity has emerged as a promising
opportunity. Model pruning (Han et al., 2015) is the most
popular method to remove a set of parameters in DNNs.
This optimization exploits a phenomenon that large models
are often overly parameterized and do not need all parame-
ters to maintain the target accuracy. Model pruning induces
unstructured sparsity on weights (i.e. there is no specific
pattern in the distribution of zeros) unless constraints are
enforced during the pruning. Also, many DNN models nat-
urally exhibit activation sparsity due to the rectified linear
unit (ReLU) that clips negative activation values to zeros
resulting in unstructured sparsity.

Unfortunately, unstructured sparsity in DNNs leads to irreg-
ular memory accesses and diverged control/execution pat-
terns, which are hostile to parallel architectures like GPUs,
tensor cores (NVIDIA, 2020b), and systolic arrays (Jouppi
et al., 2017). This has led to a plethora of academic re-
search on unstructured sparsity support in DNN accelera-
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tors (Parashar et al., 2017; Hegde et al., 2019; Qin et al.,
2020; Wang et al., 2021; Gondimalla et al., 2023). Nonethe-
less, the complexity in hardware required for unstructured
sparsity, such as indexing logic (Hegde et al., 2019) and
flexible distribution/reduction logic (Qin et al., 2020), has
been prohibitive in their commercial adoption.

Recent sparse DNN accelerators (Zhu et al., 2019; NVIDIA,
2020a; Liu et al., 2021; Jeong et al., 2023; AMD, 2023;
Xiao, 2023) have proposed structured sparsity support. The
most popular example is fine-grained N:M sparsity, which
constrains at most N non-zeros in each block composed of
M consecutive elements. A commercial example of this
is NVIDIA’s sparse tensor core (STC) with 2:4 structured
sparsity. Structured sparse hardware forces DNN model
developers to induce sparsity with certain constraints. Oth-
erwise, that hardware is unusable. For example, NVIDIA’s
fine-grained 2:4 structured sparsity support could provide
2× throughput by skipping ineffectual computations only
if the model is tuned with 2:4 structured sparsity. A model
that does not follow 2:4 structured sparsity would, in fact,
need to run on the dense tensor core, losing the benefits of
sparsification. On the flip side, a 2:4 structured sparse model
cannot be accelerated on different structured sparse hard-
ware, such as a sparse tensor core with 1:4 or 2:8 structured
sparsity support. Therefore, while the availability of struc-
tured sparse hardware is extremely promising, it remains
limiting for model developers as it requires tuning the model
to the specific sparsity support of the hardware, in addition
to navigating the already vast design space, including DNN
architectures and training recipes. This makes the broad
adoption of structured sparse hardware challenging.
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Figure 1. Different flows to exploit sparsity in DNNs.

In this paper, we ask and answer the following question
“Can we decouple the dependency between DNN models
and HW, so that a model with any sparsity pattern can
be accelerated on any structured sparse HW?” Our an-
swer is to introduce a new level of abstraction between DL
model developers and hardware designers. Specifically, we
introduce a method, structured sparse tensor decomposition,
to approximate any sparse tensor (such as pruned weights
or intrinsic sparse activations) with a series of structured
sparse tensors. Leveraging the distributed property of tensor
algebra, we further propose to dynamically “decode” an
unstructured sparse tensor algebra into a series of structured
sparse tensor algebra, which is efficient and compatible with
prior structured sparse hardware. We contrast our proposed
approach with current flows to exploit sparsity in Figure 1.

We make the following contributions:

• We propose Tensor Approximation via Structured De-
composition (TASD), which approximates any sparse
tensor with a series of structured sparse tensors. TASD
is the first work to demonstrate running unstructured
sparse DNNs on structured sparse HW.

• We propose a framework, TASDER, a bridge between
HW and SW to find the TASD series to accelerate
dense/sparse DNNs on structured sparse hardware.

• We propose a simple architectural extension and
dataflow on top of existing structured sparse accel-
erators (Jeong et al., 2023) to execute TASD series
efficiently.

• For various dense and sparse DNNs, we show that
TASD improves EDP by up to 83% and by 70% on
average. We also show that across a range of DNNs,
TASD can reduce the computation by 40%.

• We show the effectiveness of TASD on commercial
hardware (NVIDIA RTX 3080 GPU) with 2:4 sparse
tensor cores and achieve up to 39% performance gain.

2 BACKGROUND

2.1 Terminology

Sparsity is a characteristic of data that includes zeros. The
sparsity degree of a given tensor is measured as the fraction
of the number of zeros to the number of the total elements
in the tensor. If a tensor has 0% sparsity degree, we call
the tensor dense. Sparsity by itself is often used to indicate
sparsity degree. To describe the distribution of zeros, a
sparsity pattern can be given to the tensor. If there is no
defined sparsity pattern, we call it unstructured sparsity.
Various patterns can be classified as structured sparsity, such
as block sparse (Narang et al., 2017), butterfly sparse (Dao
et al., 2021), and mixed patterns (Zaheer et al., 2020).

One of the most popular patterns is N:M structured spar-
sity (Zhou et al., 2021), as it is supported in both commercial
products (NVIDIA, 2020a; AMD, 2023; Xiao, 2023) and
academic proposals (Liu et al., 2021; Jeong et al., 2023;
Bambhaniya et al., 2023) with active training recipe re-
search (Pool & Yu, 2021; Mishra et al., 2021; NVIDIA,
2021; Yazdanbakhsh et al., 2022; Lu et al., 2023; Fran-
tar & Alistarh, 2023; Bambhaniya et al., 2024). An N:M
structured sparse tensor means that there can be at most N
non-zeros in each M-element block in a certain rank of the
tensor as shown in Figure 2 (c).

We define a view of a tensor A for a sparsity pattern as a
tensor after potentially dropping some elements to meet the
rule of the sparsity pattern. For a matrix filled with non-
zeros randomly, it is possible that the matrix does not meet
the 2:4 sparsity pattern, i.e. there could be a block composed
of 4 consecutive elements with more than two non-zeros.
To generate a 2:4 view of the matrix, some non-zeros in the
matrix should be dropped (pruned in DNNs) to meet the
pattern. As this process could drop some original values,
it can be lossy. Figure 2 also shows various tensors under
different structured sparse views.

Prior work in DNN accelerators also proposed dense ac-
celerators, unstructured sparse accelerators, 2:4 structured
sparse accelerators, etc. To clarify the nomenclatures, in
this paper, if a sparsity pattern is used to describe a hard-
ware accelerator, that accelerator should provide lossless
and native support for any input tensor under such view.
For example, we call Google TPU a dense accelerator and
NVIDIA Sparse Tensor Core a 2:4 accelerator.

2.2 DNN SW: Inducing sparsity in DNNs

Weight Sparsity. Without a specific pattern in mind, com-
mon model pruning methods introduces unstructured spar-
sity in weights (Neuralmagic, 2023). Due to the irregular
accesses to handle non-zeros in unstructured sparse matri-
ces, unstructured sparsity is not adequate for accelerating
DNNs on the existing parallel hardware, such as GPUs.
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Figure 2. Different sparsity patterns and views.

To address the issue, structured pruning forces pre-defined
sparsity constraints in weights. For example, N:M struc-
tured sparsity (Zhou et al., 2021; Hubara et al., 2021; Sun
et al., 2021; Mishra et al., 2021; Fang et al., 2022; Zhang
et al., 2022; Yazdanbakhsh et al., 2022) ensures there are
at most N non-zeros in each block composed of M consec-
utive elements, so the required acceleration hardware can
be trivial by exploiting the regularity in sparsity patterns.
Thus, various accelerators, including recent sparse tensor
cores in NVIDIA Ampere GPUs (NVIDIA, 2020a), target
to exploit the fine-grained structured sparsity instead of un-
structured sparsity. Nonetheless, structured pruning suffers
from a higher loss of accuracy (Frantar & Alistarh, 2023)
than unstructured pruning since the extra pruning constraints
reduce the flexibility. This extra loss of accuracy often leads
to longer fine-tuning time (e.g., repeat the whole training
process again) than unstructured sparse method to recover
the loss in accuracy due to pruning (Mishra et al., 2021).

Activation Sparsity. Activation sparsity arises at runtime
due to the non-linear activation functions such as ReLU,
ReLU6 (Howard et al., 2017), and SquaredReLU (So et al.,
2021), which clips negative values to zero. Activation spar-
sity is prevalent in both conventional Convolutional Neural
Networks (CNNs) and recent Transformers (Li et al., 2023).
Since it is intrinsic in DNN models, no extra fine-tuning
or pruning steps is required to introduce activation sparsity.
Unlike weight sparsity, activation sparsity is dynamic as the
intermediate input activation values depend on the inputs
of the DNN model. Thus, the location of non-zeros and the
degree of sparsity are unpredictable, similar to unstructured
pruning making it hard for structured sparse hardware to
exploit input sparsity. Another challenge is that recently
proposed activation functions, such as GELU (Hendrycks &
Gimpel, 2016), and Swish (Ramachandran et al., 2017), do
not generate zero, which nullifies the benefits of exploiting
activation sparsity in prior work (Jang et al., 2021).

2.3 DNN HW: Exploiting sparsity in DNNs

Unstructured sparse accelerators, including SCNN (Parashar
et al., 2017), SIGMA (Qin et al., 2020), Samsung NPU (Jang
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Figure 3. TASD Interface.

et al., 2021), and dual-side sparse core (DSTC) (Wang
et al., 2021) target unstructured sparsity and skip redundant
computations aggressively, but they suffer from non-trivial
area/power costs due to the complex indexing and reduction
logic, often introducing workload imbalance problems (Liu
et al., 2022b) as well. For example, SIGMA (Qin et al.,
2020) introduces 38% area overhead compared to the dense
architecture due to its flexible and non-blocking distribu-
tion/reduction networks. SCNN (Parashar et al., 2017) and
Griffin (Shin et al., 2021) produce 34% and 32% area over-
head due to the support for the unstructured sparse dataflow.
Moreover, when the sparsity degree is low or zero, they
provide no improvement or even degrade performance/ef-
ficiency due to the overhead for supporting unstructured
sparsity (Wu et al., 2023). More recent structured sparse
tensor accelerator architectures, such as STA (Liu et al.,
2020), Sparse Tensor Core from NVIDIA GPUs (NV-STC)
(NVIDIA, 2020a), and VEGETA (Jeong et al., 2023), pro-
vide HW support for structured sparsity with minimal area
overhead. However, these designs accelerate only struc-
tured pruned models with the specific pattern and focus
on weight sparsity since exploiting unstructured activation
sparsity without much overhead is not trivial. S2TA (Liu
et al., 2022b) has tried to circumvent the challenge by forc-
ing structured sparse patterns dynamically, but it requires
modifying the models and even more fine-tuning steps. We
compare different DNN HWs in Table 1.

2.4 Tension between sparse DNN SW and HW

Figure 3 shows the state of sparse DNN software and hard-
ware. On the one hand, model developers have shown that
unstructured sparsity provides better model accuracy and
higher sparsity degree. On the other hand, hardware devel-
opers have shown that structured sparsity support is more
practical to include in GPUs and other DNN accelerators.
Such tension in the desired sparsity patterns hampers the
progress in bringing sparse DNN acceleration to practice.

The main drawback of the previous hardware-specific pat-
terns is that the pruning software and hardware support are
tightly coupled, such that the software generates a model
specifically pruned for the pattern supported by the hard-
ware. For example, a model pruned for the NV-STC can
only be accelerated by NV-STC, not by S2TA. To decouple
the tight relationship, we propose another layer of system
software between the model developers and DNN hardware
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Table 1. Comparison of DNN HWs. Unstr: Unstructured sparse. Str: Structured sparse. Wgt: Weights. Act: Activations.
HW Support Dense Unstr Str Dense Unstr Area

↓ Wgt Wgt Wgt Act Act Cost
Dense (Jouppi et al., 2017; NVIDIA, 2020b; Jeong et al., 2021) ✓ ✘ ✘ ✓ ✘ ✓✓
Unstr (Qin et al., 2020; Parashar et al., 2017; Wang et al., 2021) ✘* ✓ ✓ ✘* ✓ ✘

Str (Zhu et al., 2019; Liu et al., 2020; NVIDIA, 2020a; Jeong et al., 2023) ✓ ✘ ✓ ✓ ✘ ✓
TASD (This work) ✓ ✓ ✓ ✓✓** ✓ ✓

*With extra wiring/logic, unstructured sparse HW is inefficient if the tensor is dense.
**TASD enables further acceleration by approximating dense tensors with sparse tensors.
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Figure 4. TASD example using a 2×8 matrix A.

for sparsity. Our insight is to approximate a tensor by de-
composing it into a series of structured sparse tensors. We
leverage the distributive property in tensor algebra to exe-
cute the series of structured sparse GEMM. This mechanism
provides an unstructured sparse interface for developers but
only requires structured sparse support from hardware. As
shown in Table 1, by bridging DNN model and HW, this
work is able to accelerate all types of sparsity seamlessly
with a low area overhead.

3 TASD: TENSOR APPROXIMATION VIA
STRUCTURED DECOMPOSITION

In this section, we introduce a method to approximate un-
structured sparsity using a series of structured sparsity,
which we call TASD. In this paper, we use a set of N:M
structured sparsities for TASD to explain the method and
show how to use it practically, but the method is general and
not limited to only N:M structured sparsity.

3.1 Overview

We use an unstructured sparse matrix A to illustrate how
TASD works in Figure 4. The matrix A has 6 zero elements
out of 16 total elements with a 37.5% sparsity degree. Also,
note that the sum of all elements in A is 25.

Matrix A can be rewritten as a 2:4 structured sparse matrix
(a 2:4 view of A) plus a remaining matrix, A2:4

1 and R1,
where A2:4

1 is derived by extracting two largest elements out

of four elements in each row in A while R1 is the remaining
matrix (i.e. A − A2:4

1 ) after the extraction, as shown in
Equation 1.

A = A2:4
1 +R1 (1)

The extracted matrix, A2:4
1 covers 70% in terms of the num-

ber of non-zero values while covering 84% in terms of the
sum of the magnitudes. The percentage for the lost mag-
nitudes is smaller than the percentage of the lost non-zero
values because we extract two largest elements out of four
consecutive elements. If we discard the remaining matrix
R1, then the original matrix A can be approximated as A2:4

1 .
Thus, we call this approximation, structured decomposi-
tion. If we approximate A with a 3:4 pattern instead of the
2:4 pattern, we can derive matrix A3:4

1 with a structured de-
composition that drops only one non-zero element, covering
90% of the number non-zeros and 96% of the sum of total
magnitudes.

Instead of using a denser N:M, we can further decompose
R1 using another structured pattern, such as 2:8. A2 can
also be derived by extracting two largest elements out of
eight consecutive elements in R1, making A2 as a 2:8 struc-
tured sparse matrix. Similar to the previous decomposition,
we call the remaining matrix R2 as shown in Figure 4. All
elements of A are covered by A2:4

1 and A2:8
2 , so A is equal

to A2:4
1 +A2:8

2 , thus the approximation of A to A2:4
1 +A2:8

2

is lossless. Since the unstructured sparse matrix is approxi-
mated using a set of structured sparse matrices, we call this
method as Tensor Approximation via Structured Decompo-
sition (TASD).

Theoretically, structured decomposition can have infinite
terms. Below, we formalize the process more generally
using different structured sparse patterns denoted as si.

A ≃ As1
1 +As2

2 (2)
≃ As1

1 +As2
2 +As3

3 (3)
≃ As1

1 +As2
2 +As3

3 ...+Asn
n (4)

We call A as the original matrix and
∑

Asi
i as TASD se-

ries, to draw an analogy to the classic Taylor series1: Each

1Taylor series approximates any function with polynomials,
while TASD series approximates any tensor with structured sparse
tensors.
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successive term (residual structure sparse tensor) improves
the accuracy of the approximation. A TASD series config-
uration includes the number (“order”) of TASD terms (n)
and the structured sparsity pattern (si) for each TASD term.
Using TASD, one can generate a structured sparse view of a
given tensor, and the error between the view and the original
tensor would depend on the TASD series configuration.

3.2 Using TASD for matrix multiplication

TASD decomposes any tensor A into a series of structured
sparse tensors. Decomposed tensors can be used in any
tensor algebra, such as matrix multiplication (C = A×B),
which can be approximated as As1

1 ×B. If s1 is 2:4, and the
matrix multiplication is running on NVIDIA Sparse Tensor
Cores, potentially 50% of Multiply-and-Accumulate (MAC)
operations could be skipped.

With the distributive property of tensor algebra, matrix
A can be approximated using more TASD terms such as
(As1

1 +As2
2 )B = As1

1 B +As2
2 B. If s1 is 2:4 and s2 is 2:8,

about 25% of MAC operations could be skipped. Finding
the proper TASD series to minimize the error while maxi-
mizing compute reduction will determine the quality of the
approximation. We provide a detailed analysis of TASD
with synthetic data in Appendix A.

4 HW/SW CO-DESIGN WITH TASD
In section 3, we introduce our approximation method,
TASD, in general. In this section, we show how our method
can be used to accelerate DNN models with sparse weights
and inputs. Although TASD can also be used to accelerate
the DNN training, we focus on how to accelerate DNN infer-
ence in this work. There are two main insights that inspired
us to use TASD for DNN inference.

1) By its nature, DNN models are able to tolerate small
errors in their internal computations.

2) Although TASD is a lossy approximation method, care-
fully selected TASD terms can provide high-quality approx-
imations with a limited number of non-zeros being dropped.
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Figure 6. Sparsity degrees for each layer in 95% unstructured
sparse ResNet50 from SparseZoo.

4.1 System architecture overview

We introduce our optimizer system, TASDER, which takes a
DNN model, sample data, target HW information including
structured sparsity patterns, and hyperparameters as shown
in Figure 5. Internally, TASDER will search for the TASD
configuration for each layer of the given DNN model and
return the configurations. In the following subsections, we
introduce TASD-W and TASD-A, which are the methods
to exploit TASD on weights and activations, respectively.
We also explain how the TASD configuration per layer is
selected in our framework. In this work, we only consider
convolution (CONV) and fully-connected (FC) layers in
DNN models to apply TASD as they usually consume most
of the execution cycles, and they get converted to matrix
multiplication operations using algorithms such as im2col
for parallelization.

4.2 TASD-W: Applying TASD on weights

We expose an unstructured interface to ML model devel-
opers as the target of optimization so that they can focus
on the techniques to prune their models as much as possi-
ble without considering any specific HW-friendly sparsity
pattern. Therefore, the optimization problem for TASD-W
is that given the weights of DNN models as unstructured
sparse tensors, use the available structured sparse HW to
accelerate the model execution as much as possible.

We assume that the target hardware can accelerate the struc-
tured sparsity patterns, S1, ..., Sn. A TASD configuration
of the ith layer, Ci, is a sequence of S. For a given DNN
model M , a TASD transformation of the model, T , is de-
fined as applying a sequence of Ci where Ci is the TASD
configuration for each layer in the model. Then, the target is
to find a TASD transformation Topt for a given model where

Topt = argmin
T

(Latency(MT )) (5)

such that Accuracy(MT ) ≈ Accuracy(Moriginal) (6)

A simple way to use TASD-W is using the same TASD
configuration for all layers in the model, i.e. applying
network-wise TASD-W. As the number of supported struc-
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tured sparsity patterns, n, is not large enough, the Topt for
network-wise TASD-W could be found with the exhaustive
search.

A better method to use TASD-W is using different TASD
configurations for different layers, i.e. layer-wise TASD-
W. The set of TASD transformations that can be covered
by layer-wise TASD-W is a super-set of the TASD trans-
formations in network-wise TASD-W. Usually, a pruned
model with unstructured sparsity does not guarantee the
same sparsity across layers, i.e. even though the overall
sparsity is 95% for the model, different layers could have
different sparsity degrees as shown in Figure 6. Unlike
network-wise TASD-W where all the layers use the same
TASD configuration, it is not straightforward how to choose
a TASD configuration per layer as there could be numer-
ous options per layer. To minimize the accuracy drop, it
is crucial to reduce the number of dropped non-zeros after
applying TASD, which would prefer conservative TASD
configurations. On the other hand, to maximize the perfor-
mance gain, it would be better to apply aggressive TASD
configurations, which would be able to be translated into
higher sparsity and efficiency gain.

To address this, we design and implement a greedy-based
algorithm that optimizes across all layers. This greedy al-
gorithm first measures the percentage of dropped non-zero
elements of each TASD configuration for all layers and sorts
the configuration-layer pairs by their percentage of dropped
elements. Next, it greedily applies the TASD configuration
based on the sorted order until the model quality is <99% of
the original model (i.e., prioritize the option with the small-
est dropped non-zeros). Since it only takes a single pass to
all layers, the runtime overhead is trivial (a few seconds per
model), while the extra training needed for structured sparse
HW often takes hundreds of GPU hours (Sun et al., 2021).

We use TCONV/TFC to indicate a CONV/FC layer with
TASD as shown in Figure 7, and the TASD configurations
found above would be applied to the corresponding TCON-
V/TFC layers. In Figure 7 (a), we show how the conven-
tional CONV/FC layer works with unstructured sparse acti-
vations (usually from ReLU) with dense weights. In Figure 7
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former Blocks with FC and TASD/FC.

(b) shows how a TCONV/TFC layer works with unstruc-
tured sparse weight. TASDER would modify unstructured
sparse weights to structured sparse weights with TASD-W.

4.3 TASD-A: Applying TASD on activations

TASD can also be applied to activations to improve a DNN
execution as shown in Figure 7 (c). Unlike weights which
are static, TASD should be applied for dynamic decompo-
sition during the runtime as activations are dynamic. In
Figure 8 (a) and (b), we show a baseline ResBlock and a
ResBlock with TCONV and TASD layers, which decom-
pose activation tensors with given TASD configurations. We
add TASD layers after ReLU layers so that they can mini-
mize the number of dropped non-zeros after approximation.
The same can be applied to a Transformer Block, where
the FC layers in the multi-layer perception module can be
replaced with TFC by inserting a TASD layer before TFC
layers as shown in Figure 8 (c) and (d). Ideally, other FC
layers in a Transformer Block could also be replaced with
TASD and TFC layers, but empirically we found it hard to
maintain the model quality.

Similar to TASD-W, the simplest way to choose a TASD
configuration for each TASD layer is using network-wise
TASD where all TASD configurations are same across all
TASD layers. Assuming limited supported structured spar-
sity patterns from HW, only a handful number of options
need to be explored. However, similar to weights, this may
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Table 2. Supported sparse patterns with TTC-VEGETA.
Pattern TASD series Pattern TASD series

1:8 1:8 5:8 4:8 + 1:8
2:8 2:8 6:8 4:8 + 2:8
3:8 2:8 + 1:8 7:8 -
4:8 4:8 8:8 Dense

not be efficient as activations from different layers show sig-
nificantly different degrees of sparsity, as shown in Figure 6.

To address this issue, we again leverage layer-wise TASD
as it can tailor the TASD configuration to each layer. How-
ever, unlike the TASD-W, it is not feasible to test every
option for each layer to find out the best options as the target
tensors (activations) are dynamically generated. We find
that a small set of calibration dataset (e.g., 1000 images for
ImageNet (Deng et al., 2009)) can provide enough insights.
As shown in Figure 6, while different layers have different
sparsity degrees, for a particular layer, the activation sparsity
degree remains in a small range across different input im-
ages. Therefore, TASDER takes calibration data as an input,
so it can profile the given DNN model with the calibration
data and collect the statistics (e.g., average, 99th percentile)
about activation sparsity per layer.

To choose a TASD-A configuration for each layer, we use
a sparsity-based selection method, instead of the dropped-
non-zero-based method for TASD-W. We use a hyperparam-
eter, α, to tune the aggressiveness of the TASD approxima-
tion. For a given layer Li and the available configurations
in the target HW (e.g., H1, ...,H4), we choose Ci as Hj

where j is the largest integer where S(Li) + α > Hj . If
we use a larger α, we choose the TASD configuration more
aggressively (i.e. allowing more dropped non-zeros).

Beyond sparsity: Supporting non-ReLU-based DNNs.
For better accuracy, state-of-the-art DNNs have replaced
ReLU with other activation functions, such as GeLU
(Hendrycks & Gimpel, 2016) and Swish (Ramachandran
et al., 2017), which do not induce any sparsity in activations
making the activations dense. Thus, our sparsity-degree-
based TASD selection to choose TASD configuration for
TASD-A for each layer would not work for those DNNs.

To address this, we investigate the distribution of the
magnitude of all elements in the activation tensors from
GeLU/Swish-based DNN. We found that, while no element
in the tensor is exactly zero, a huge number of elements
have tiny magnitude, compared to the range of magnitude
for all elements. Therefore, we let TASD-A leverage this
skewed distribution and collect the magnitude statistics. We
introduce another heuristic, pseudo-density, which aims to
preserve a fixed percentage (e.g., 99%) of the sum of all ele-
ments in a tensor, to determine the best TASD configuration
for every layer. Using the pseudo-density for the non-ReLU-
based DNNs, we can use the same sparsity-degree-based
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method (i.e. by replacing sparsity to 1 - pseudo-density).
The approximating nature of TASD allows the system to
also accelerate non-ReLU-based DNNs, while prior work
that specifically targets activation sparsity cannot.

4.4 Structured sparse HW for TASD

TASD works best when there are at least a few supported
structured sparse patterns in the target sparse accelerator.
While the TASDER optimizer is HW-agnostic, we propose
to build on top of a recently proposed flexible structured
sparse tensor accelerator to maximize the benefit. Inspired
by previous structured sparse accelerators (NVIDIA, 2020a;
Liu et al., 2021; Jeong et al., 2023), we introduce TASD
Tensor Core (TTC). We adopt a design similar to VEG-
ETA (Jeong et al., 2023) engine composed of multiple pro-
cessing elements (PEs) while providing support for 1:8,
2:8, and 4:8 structured sparse patterns, and we call it TTC-
VEGETA. With TASD and a limit of up to 2 terms, a TTC-
VEGETA engine can support 7 out of all the N:8 patterns
as shown in Table 2 even though the original VEGETA sup-
ports only three sparse patterns. Note that TTC can adopt
other structured sparse designs, such as STC (Zhu et al.,
2019) with supports for 2:4 and dense, which we call TTC-
STC. This would limit the flexibility in approximation using
TASD compared to VEGETA-based TTC design, but TAS-
DER is still able to optimize some layers. We explore the
benefit of flexibility in section 5.

In Figure 9, we show the overall design of a TASD HW com-
posed of four TTCs similar to the one used in the previous
work (Wu et al., 2022b). The modification we add on top of
the N:M accelerator, such as STC or VEGETA, is the TASD
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unit (shown in the right part of Figure 9) that dynamically
extracts TASD terms from the activation tensor, similar to
the DAP unit in S2TA (Liu et al., 2022b). TASD-W can
be applied offline through pre-processing since weights do
not change during runtime, but TASD-A requires the TASD
unit as activations will be dynamically generated at runtime.

Given the computation latency on TTCs, the minimum num-
ber of TASD units per TTC to hide the latency of TASD
units depends on the mapping and TTC implementations.
For example, each TTC-VEGETA with M=8 generates 16
(number of PE columns in each TTC) output elements per
cycle (i.e. 2 blocks per cycle) as shown in Figure 10, which
will be fed to TASD units. For an M-element block, a TASD
unit sequentially extracts the largest values, so the decom-
position takes up to M cycles as the sum of Ns in a TASD
configuration cannot be larger than M.

The example in Figure 10 uses TASD configuration com-
posed of 4:8 and 1:8, so it takes 5 cycles per block. At
T1 (cycle 1), two blocks (Blk-1, Blk-2) will be produced
from the PE array, and Blk-1 and Blk-2 will be processed
by TASD Unit 1 and TASD Unit 2, respectively (each cycle,
two TASD units start execution). During T2-T5, Blk-1 and
Blk-2 will be used to extract Decomposed Blocks, DBlk-1
and DBlk-2 for 4:8 Tiles. Then, during T6, DBlk-1 and
DBlk-2 for 1:8 Tiles will be generated and stored. The de-
composed blocks will be used as the inputs of the next layer.
With 16 TASD units, a TTC-VEGETA can operate without
stalls on the PE array due to the decomposition as a TASD
unit is always guaranteed to be available after M cycles (i.e.
by Little’s law, 16 = 2× 8). We present the area overhead
for TASD units in section 5.

Decomposition-aware dataflow. In Figure 11, we show a
mapping of a matrix multiplication with an approximated
matrix A using a TASD configuration, 4:8 and 1:8 for the
TTC. We first show how we tile the matrices and how they
are mapped in the private register file and shared buffer of
each TTC. When matrix A is decomposed into two TASD
terms, A1, and A2, the original matrix multiplication can be
approximated as the sum of the two matrix multiplications
and accumulation (A1 ×B +A2 ×B). As the two matrix
operations share the same input B and partial sum C, we
keep B tiles in the L2 Scratchpad Memory (SMEM) and
C tiles stationary in the L1 SMEM of TTC while changing
decomposed A tiles to temporally reuse B and C tiles for
data reuse (between timestep 1 and 2, timestep 3 and 4
in Figure 11 (b)). For each accelerator tile, (i.e. for each
timestep), we keep each element of A tile stationary in the
register file of each PE for the temporal reuse, while the B
and C elements are mapped correspondingly. By increasing
the tile size for GEMM-N dimension, the reuse count for A
tile at PE level could increase, which is limited by the size
of the capacity of each SMEM. We swap C tiles at the very
end to minimize the number of write-back operations to
other levels. Although we maximize reuses for decomposed
tiles, there is still unavoidable overhead such as reading C
tiles again, but this is insignificant compared to the energy
saving by skipping ineffectual computations using TASD.
In subsection 5.4, we quantify the energy overhead.

5 EVALUATION

5.1 Methodology

TASD accelerates both sparse and dense DNNs without fine-
tuning, so we evaluate TASD-W on sparse DNNs from
SparseZoo (Neuralmagic, 2023) and TASD-A on dense
DNNs from TorchVision (PyTorch, 2023). We use a classic
convolutional network, ResNet50 (He et al., 2016), and a
transformer-based network, BERT (Devlin et al., 2019). For
the baseline HW, we compare against dense tensor core
(TC) (NVIDIA, 2020a) and dual-side sparse tensor core
(DSTC) (Wang et al., 2021) as representative dense and
unstructured sparse accelerators. We configure these base-
lines as in the Sparseloop Artifacts (Wu et al., 2022a). We
use 4 variants of TTC, based on STC and VEGETA with
N:4 and N:8 designs, to show the extra benefits of TASD
from the flexibility of the structured sparse hardware as
summarized in Table 3. All designs use the same memory
hierarchy and the same amount of PEs (MACs) to ensure
a fair comparison. We clarify that we do not exploit both
sparsities concurrently for skipping computations. We ei-
ther use TASD-W or TASD-A depending on the workloads
since supporting both sparsities requires non-trivial area/en-
ergy costs (Wu et al., 2021; 2023) and is not compatible to
approximate with TASD.
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Figure 12. Energy-delay-products for running dense and sparse ResNet50 and BERT. For TTC-STC and TTC-VEGETA, we use the
TASD transformations found from TASDER. M4/M8 represents design with N:4/N:8 supports.

Table 3. Summary of different HW designs. TASD 1T and 2T
indicates using TASD 1 term and 2 terms, respectively.

HW Design Sparsity Support from HW
TC None

DSTC Unstructured
TTC-STC-M4 2:4 (TASD 1T)
TTC-STC-M8 4:8 (TASD 1T)

TTC-VEGETA-M4 1:4, 2:4 (TASD 1T)
+ 3:4 (TASD 2T)

TTC-VEGETA-M8 1:8, 2:8, 4:8 (TASD 1T)
+ 3:8, 5:8, 6:8 (TASD 2T)

We develop TASDER as a framework to search for TASD
transformations and calculate the accuracy of the model with
each TASD transformation using PyTorch (Paszke et al.,
2019). Following the requirement in MLPerf (Reddi et al.,
2020) inference benchmark, we only consider a model as
valid with TASD if the model achieves an accuracy higher
than 99% of the accuracy of the original model. Next, we
run each DNN layer with the given TASD series configu-
ration using Sparseloop (Wu et al., 2022b), a sparse accel-
erator modeling framework to obtain per-layer results and
aggregate the results for the entire network, which is consis-
tent with prior accelerator simulation frameworks (Parashar
et al., 2019; Huang et al., 2021; Kwon et al., 2020; Mei
et al., 2021; Samajdar et al., 2020). Sparseloop estimates the
performance and energy consumption of the given HW by
analyzing data movements across different memory hierar-
chy levels and processing elements, and actual computation
based on the given dataflow. We simulate all layers in the
networks (marked as “Overall”), but to show per-layer
results additionally, we choose three representative layers
(from early, mid, late) as shown in Table 4.

We use energy-delay product (EDP), latency, and energy
for the metrics. We also provide additional experiment
results on the theoretical MACs reductions for other various
DNNs, comparison against structured sparse accelerators,
and TASD on a real system.

Table 4. Representative layers from the target workloads. L1, L2,
and L3 are representative layers. RN and Act. refer to ResNet and
Activation, respectively.

Model Weight Act. Layers Dimensions
Dense RN50

(ReLU-based) Dense Sparse L1: M784-N128-K1152
L2: M3136-N64-K576

Sparse RN50 Sparse Sparse L3: M196-K2304-N256
Dense BERT

(GeLU-based) Dense Dense L1: M768-N128-K768
L2: M3072-N128-K768

Sparse BERT Sparse Dense L3: M768-N128-K3072

5.2 DNN acceleration with TASD

Figure 12 shows the EDP for the 4 workloads on various
DNN accelerators, normalized to the dense TC. Even though
DSTC is able to exploit unstructured sparsity, the overhead
of unstructured sparse acceleration (such as accessing ac-
cumulation buffer frequently) offsets the benefit and even
outweighs the benefits when the workload has only one
sparse operand or there is no sparse operand, causing 12%
and 167% larger EDP for dense ResNet50 and dense BERT
while reducing EDP by 55% for sparse BERT. DSTC works
best for sparse ResNet50 and improves EDP by 87%, as
both weight and activation tensors are unstructured sparse
with a high sparsity degree (95% sparse weight). Overall,
it is able to reduce EDP by 35% across all workloads on
average.

Unlike DSTC, TASD-based TTC accelerators improve EDP
over the TC baseline for all workloads. With the flexibility
in sparsity patterns, TTC-VEGETA-M8 improves EDP for
all workloads, by 58%/61% for dense ResNet50/BERT and
83%/82% for sparse ResNet50/BERT. Even with a single
fixed pattern, TTC-STC-M4 improves by 4%/32% for dense
ResNet50/BERT and 49%/53% for sparse ResNet50/BERT.
This result shows that TASD can effectively leverage struc-
tured sparse hardware for off-the-shelf dense and sparse
DNNs with no fine-tuning, and the extra flexibility (increas-
ing M) in the baseline accelerator increases the benefit.
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Figure 13. Latency and energy for various designs.
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Figure 14. Network-wise and Layer-wise TASD on ResNet50.
Upper: TASD-W. Lower: TASD-A.

Figure 13 provides end-to-end latency and energy consump-
tion for various designs. TTC-VEGETA-M8 is the most
energy-efficient across all workloads and is slightly slower
than DSTC only for sparse ResNet50. This result shows
TASD provides a better overall tradeoff than unstructured
sparse accelerators, considering their high area overheads.

5.3 Analysis of TASD

Network-wise vs. layer-wise TASD. The upper plot of
Figure 14 shows the impact of network-wise TASD-W on
the top-1 accuracy of unstructured sparse ResNet50 (95%
sparsity). We applied network-wise TASD-W with N:4, N:8,
and N:16 structured sparsities. For example, the network-
wise TASD-W with 2:4 uses one TASD term with the 2:4
pattern to the weights of all convolution and fully-connected
layers in the sparse ResNet50. Since TASD is a lossy
method, aggressive TASD series approximation can result
in a notable accuracy drop. Among different N:4, N:8, N:16
options, we found that 3:4, 5:8, 10:16 is the most aggressive
approximation among the available options while meeting
the 99% accuracy requirement. Especially, using network-
wise TASD-W 5:8 (4:8 + 1:8 for TTC-VEGETA) and gating
the compute units for sparse activations, compared to the
dense baseline, we observe it achieves 24% and 53% reduc-
tion in cycle and energy respectively, thus reducing 75%
EDP for Sparse ResNet50.

Figure 15. Energy Breakdown: TTC vs. Dense TC.
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Figure 16. TASD-W on NVIDIA RTX3080 GPU with Sparse
ResNet34.

Using different TASD series configurations for different
layers is more effective as it can adjust the aggressiveness
for each layer. To choose a TASD configuration per layer,
we use the sparsity-based selection method that we intro-
duce in section 4. By changing the hyperparameter, alpha,
we are able to adjust the aggressiveness of our approxima-
tion method. As layer-wise TASD-W can be adaptive to
each layer, the overall approximation can be applied more
aggressively. As a result, compared to the dense baseline,
we observe 47% and 61% reduction in energy and cycle,
respectively, thus reducing 83% EDP for Sparse ResNet50
as shown in Figure 12.

In the lower plot of Figure 14, we show the top-1 accu-
racy when network-wise and layer-wise TASD-A is applied
with different TASD series. Similar to TASD-W, layer-
wise TASD-A is more effective than network-wise TASD-A.
However, the accuracy loss due to approximation shows
up with a much smaller approximated sparsity. As shown
earlier in Figure 6, the sparsity degree is larger in weights
compared to that in activations for sparse ResNet50. Thus,
the same TASD series drops a larger portion of non-zeros in
TASD-A than TASD-W, incurring a higher loss of accuracy.

5.4 Energy and area overhead due to TASD

Figure 15 shows the energy breakdown for a representa-
tive layer from sparse ResNet50 for dense TC and TTC-
VEGETA with a TASD configuration of 4:8+1:8. TTC-
VEGETA exploits sparsity and saves energy at all levels of
the architecture, which saves 55% energy over the dense
TC. Moreover, the decomposition-aware dataflow in sec-
tion 4 minimizes decomposition overheads by accessing the
RF (with C reuse) and SMEM (with B reuse) instead of
accessing DRAM.

We measured the area overhead to support TASD on top of
the existing structured sparse HW (the TASD units) through



Enabling Unstructured Sparse Acceleration on Structured Sparse Accelerators

RTL prototyping and synthesis with Nangate 15nm Tech-
nology Library. We observe up to 2% of the area for all PEs
as TASD units are composed of simple comparator trees.

5.5 Using TASD on a real system

To validate the effectiveness of TASD, we evaluate TASD
on a real system. First, we use our framework, TASDER, to
find the TASD-W configuration that meets the accuracy con-
straint with an unstructured sparse ResNet34 model from
SparseZoo (Neuralmagic, 2023). For the accuracy evalu-
ation, we use ImageNet as the dataset. Next, we export
the model using ONNX format. To properly measure the
inference latency of DNNs exported with ONNX format,
we use TensorRT, the state-of-the-art deep learning infer-
ence runtime maintained by NVIDIA. We build TensorRT
engines for both the baseline model and the model with
TASD-W exported in the previous step. Finally, we execute
the engine with (3, 224, 224) inputs, with a batch size of 32-
128, and measure the latency for each model. We achieved
28%/39% speed-up compared to the dense model execution
with 0.9%/1.5% accuracy drop as shown in Figure 16. We
also evaluated TASD-W with ResNet50, ResNet101, BERT,
and observed up to 25% speed-up.

6 RELATED WORK

6.1 SW techniques for structured sparse HW

Solutions with fine-tuning. DominoSearch (Sun et al.,
2021) proposed a method to find layer-wise N:M sparsity
during training. Optimal N:M (Chmiel et al., 2022) enforces
the structured pattern during training and applies the struc-
tured pattern to input activations. This line of work is orthog-
onal to our work as we focus on approximating unstructured
sparsity without fine-tuning. Fine-tuning will increase the
benefit of TASD, as more aggressive approximation can
now maintain the same model accuracy. Doping (Thakker
et al., 2021) uses an extremely sparse matrix in addition to
a compressed matrix derived from Kronecker products to
improve the quality of the model, but unlike TASD, it uses
the extra extremely sparse matrix to give additional freedom
during the training.

Solutions without fine-tuning. SparseTIR (Ye et al., 2023)
introduces composable formats and transformations for
sparse compilation of DL workloads. However, they have
not considered approximating sparse tensors and acceler-
ating DNNs using structured sparse hardware. Another
work (Pool & Yu, 2021) shows permuting channels in the
weight tensors can recover accuracy easily when training
N:M sparse networks. TASD is compatible with channel per-
mutation, and we believe combining these two orthogonal
techniques will further improve the accuracy of decomposed
models with approximation.

6.2 HW support for sparse DNNs

Sparsity support for DNN inference. Different archi-
tectures have been proposed to support for weight spar-
sity (Chen et al., 2019; NVIDIA, 2020a; Jeong et al., 2021;
Gondimalla et al., 2023), for activation sparsity (Jang et al.,
2021), and more recently, for both (Wang et al., 2021; Huang
et al., 2023; Wu et al., 2023). As mentioned earlier, unstruc-
tured sparse HW provides native support for any sparsity
pattern but is more costly to build; structured sparse HW
is efficient but requires model fine-tuning. TASD bridges
the gap by providing an unstructured sparse interface while
only requiring structured sparse HW.

Sparsity support for DNN training. Since weight tensors
are mostly dense during training, prior work has focused on
activation and gradient sparsity during DNN training. A sim-
pler support is to compress sparse activation and gradient,
such as CompressDMA (Rhu et al., 2018) and ZComp (Akin
et al., 2019). These techniques save data movements and
memory requirements, but not overall compute. The more
complex techniques target reducing computation during
training, such as TensorDash (Mahmoud et al., 2020) and
SAVE (Gong et al., 2020). However, they need to give up
data movement savings for better support for sparse ten-
sor transposition during training. TASD can potentially be
used to approximate sparse activations and gradients, but
we leave this to future work.

7 CONCLUSION

Sparse DNN model developers prefer to induce unstruc-
tured sparsity for expressibility, while sparse DNN hard-
ware designers prefer to support structured sparsity for HW
efficiency. This mismatch of the desired sparsity pattern
between different parties prevents sparse DNN accelera-
tion from being widely adopted in practice. To close the
gap, we introduce TASD, a method that approximates an
unstructured sparse tensor with a series of structured sparse
tensors. Next, we propose a framework, TASDER, which
finds TASD configuration for each DNN layer to accelerate
sparse and dense DNNs. To maximize the benefit of TASD,
we propose a simple architectural extension and dataflow on
top of structured sparse accelerators. TASD improves EDP
up to 83% and 74% on average, while maintaining 99% of
the model accuracy without any fine-tuning. We also show
it achieves up to 39% performance improvement on a real
system evaluation.
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F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pool, J. and Yu, C. Channel permutations for n:m sparsity.
In Advances in Neural Information Processing Systems,
volume 34, pp. 13316–13327. Curran Associates, Inc.,
2021.

PyTorch. Pytorch torchvision models, 2023. https://
pytorch.org/vision/stable/index.html.

Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S.,
Das, D., Kaul, B., and Krishna, T. Sigma: A sparse and
irregular gemm accelerator with flexible interconnects for
dnn training. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp.
58–70, 2020. doi: 10.1109/HPCA47549.2020.00015.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., Chukka, R., Coleman, C.,
Davis, S., Deng, P., Diamos, G., Duke, J., Fick, D., Gard-
ner, J. S., Hubara, I., Idgunji, S., Jablin, T. B., Jiao, J.,
John, T. S., Kanwar, P., Lee, D., Liao, J., Lokhmotov,
A., Massa, F., Meng, P., Micikevicius, P., Osborne, C.,
Pekhimenko, G., Rajan, A. T. R., Sequeira, D., Sirasao,
A., Sun, F., Tang, H., Thomson, M., Wei, F., Wu, E.,
Xu, L., Yamada, K., Yu, B., Yuan, G., Zhong, A., Zhang,
P., and Zhou, Y. Mlperf inference benchmark. In Pro-
ceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ISCA ’20, pp.
446–459. IEEE Press, 2020. ISBN 9781728146614. doi:
10.1109/ISCA45697.2020.00045.

https://sparsezoo.neuralmagic.com/
https://sparsezoo.neuralmagic.com/
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html


Enabling Unstructured Sparse Acceleration on Structured Sparse Accelerators

Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon, Y.,
and Keckler, S. W. Compressing dma engine: Leverag-
ing activation sparsity for training deep neural networks.
In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 78–91, 2018.

Samajdar, A., Joseph, J. M., Zhu, Y., Whatmough, P., Mat-
tina, M., and Krishna, T. A systematic methodology
for characterizing scalability of dnn accelerators using
scale-sim. In 2020 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pp.
58–68, 2020. doi: 10.1109/ISPASS48437.2020.00016.

Shin, J. H., Shafiee, A., Pedram, A., Abdel-Aziz, H., Li,
L., and Hassoun, J. Design space exploration of sparse
accelerators for deep neural networks. arXiv preprint
arXiv:2107.12922, 2021.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.
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Figure 17. Percentages of dropped non-zeros and the sum of
dropped non-zeros after applying different TASD series.

A ADDITIONAL DETAILS OF TASD
A.1 An analysis of TASD with synthetic data

The number of dropped non-zeros and the sum of the
dropped magnitudes are crucial as they correlate to the po-
tential loss of accuracy when applying TASD. Thus, we
first conduct preliminary experiments with synthetic data
using various TASD series and matrices to understand the
trade-offs.

We generate a synthetic matrix with dimensions of 128×128
and densities ranging from 0.1 to 0.75. We explore three
TASD series in this experiment; 1) using one term with 2:4,
2) using two terms with 2:4 and 2:8, and 3) using three terms
with 2:4, 2:8, and 2:16. To consider various distributions,
we tested two different distributions, a uniform random dis-
tribution between 0 and 1 and a normal distribution with a
mean of 0 and a standard deviation of 1

3 . Figure 17 shows
the results with matrices generated using the normal distri-
bution.

Takeaways: 1) If the matrix is very sparse, the percent-
age of dropped non-zero values becomes noticeably small,
less than 1%, even with just two TASD terms. 2) Since
we choose elements with a greedy approach (i.e., keep the
largest non-zero), the percentage of dropped total magnitude
is lower than the percentage of dropped non-zero values,
allowing better approximation even for higher densities.

In addition, we also find that across different distributions,
percentages of dropped non-zero values are similar since
they depend on the density of the original matrix, but per-
centages of the dropped total magnitude vary slightly. Inter-
estingly, we observed that Mean Square Errors (MSEs) vary
significantly depending on the distribution. This implies
that not the sparsity degree only, but the actual distribu-
tion is also critical for finding a high-quality TASD series
configuration.
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Figure 18. The error between the result from the original matrices
and the result with an approximated matrix using TASD assuming
different sparsity in the original matrix.

Using TASD for Matrix Multiplication: To understand
the impact of using TASD for matrix multiplication, we
run another experiment using matrices A and B with the
dimensions of 256×256. We set each element to have a
random value between 0 and 1. For matrix A, we generate
unstructured sparsity with two sparsity degrees 20% and
80%, and we keep B as dense. Then, we apply one-term
TASD on A with 0-4:4 and 0-8:8 TASD configurations. We
measure the error as the Frobenius norm of the result with
approximated operands divided by the original Frobenius
norm, ||(A−A∗)B||

||AB|| . We represent configurations with ap-
proximated sparsity, which means the sparsity degree of a
structured sparse pattern. For example, 1:4 pattern and 2:8
pattern both have an approximated sparsity of 75%. We plot
the errors with different TASD configurations and approxi-
mated sparsity degrees in Figure 18.

Error Behavior: The first trend we observe is that the error
gets smaller as the approximated sparsity gets lower since it
is likely to drop fewer non-zeros with a more conservative
approximation. Second, for the same approximated sparsity
and the block size (M), the error gets smaller as the matrix
A gets sparser. Given the same TASD configuration, the
sparser matrices would drop fewer non-zeros using the same
TASD configuration as shown in Figure 17, thus resulting
in a smaller error. Third, with the same sparsity of matrix A
and approximated sparsity, the N:4 configuration causes a
larger error than the N:8 configuration (such as 1:4 and 2:8),
since the expressiveness of the N:8 pattern is higher. Finally,
given any unstructured sparse tensor, we can limit the er-
ror of matrix multiplication by conservatively selecting the
TASD configuration, while maximizing the compute reduc-
tion. This optimization thus becomes the key to leveraging
TASD for accelerating sparse DNN models with structured
sparse hardware. In terms of the number of effectual compu-
tations, using a sparser TASD configuration is favorable to
approximate the matrix multiplication while it would cause
a higher error if not chosen cautiously.
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B ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to under-
stand the impact of TASD.

B.1 Comparison to structured sparse accelerators

To study how the proposed TTC-based accelerator compared
to prior structured sparsity accelerators, we conduct an ab-
lation study to show how different novelties in this work
contribute to the efficiency gain. Figure 19 shows the nor-
malized EDP improvement for four different system: DSTC,
VEGETA without TASDER, VEGETA with TASDER, TTC-
VEGETA with TASDER. Without TASDER and HW-aware
fine-tuning, VEGETA cannot exploit sparsity in off-the-
shelf DNNs and has no improvement at all. If the model is
structured pruned using HW-aware fine-tuning, VEGETA
can exploit sparsity achieving a comparable EDP to TTC-
VEGETA. With TASDER, VEGETA can exploit weight
sparsity in unstructured sparse ResNet50/BERT since TAS-
DER transforms unstructured sparse weights into structured
sparsity supported by VEGETA. Finally, with dynamic de-
composition support for activation sparsity, TTC-VEGETA
can also exploit activation sparsity, further improving EDP
for all DNNs.

B.2 TASD on more DNN models

To further investigate the impact of TASD-W on different
sparse DNNs, we applied layer-wise TASD-W on differ-
ent Sparse ResNet and VGG families with a requirement
to maintain 99% of the original accuracy. We use the pre-
trained unstructured sparse models from SparseZoo (Neu-
ralmagic, 2023). Across different sparse ResNet models
and VGG models, TASD-W reduced 49% MAC operations
while maintaining 99% accuracy, as shown in Figure 20.

On the other hand, to understand the potential impact of
TASD-A on other DNN models, we applied TASD-A on
various models including both convolution networks and a
transformer-based network, as shown in Figure 20. We use
the pre-trained dense models from TorchVision (PyTorch,
2023) and Huggingface for this evaluation and we use the
requirement to meet 99% of the original accuracy. We
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Figure 20. Layer-wise TASD on more DNN models.

observe that the layerwise TASD-A is effective for various
models and achieves 32% reduction in MACs for other
models on average.


