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ABSTRACT

Diffusion models have become the go-to method for large-scale generative models
in real-world applications. These applications often involve data distributions con-
fined within bounded domains, typically requiring ad-hoc thresholding techniques
for boundary enforcement. Reflected diffusion models (Lou & Ermon, 2023) aim to
enhance generalizability by generating the data distribution through a backward pro-
cess governed by reflected Brownian motion. However, reflected diffusion models
may not easily adapt to diverse domains without the derivation of proper diffeo-
morphic mappings and do not guarantee optimal transport properties. To overcome
these limitations, we introduce the Reflected Schrödinger Bridge algorithm—an
entropy-regularized optimal transport approach tailored for generating data within
diverse bounded domains. We derive elegant reflected forward-backward stochas-
tic differential equations with Neumann and Robin boundary conditions, extend
divergence-based likelihood training to bounded domains, and explore natural
connections to entropic optimal transport for the study of approximate linear con-
vergence—a valuable insight for practical training. Our algorithm yields robust
generative modeling in diverse domains, and its scalability is demonstrated in
real-world constrained generative modeling through standard image benchmarks.

1 INTRODUCTION

Iterative refinement is key to the unprecedented success of diffusion models. They exhibit statistical
efficiency (Koehler et al., 2023) and reduced dimensionality dependence (Vono et al., 2022), driving
innovation in image, audio, video, and molecule synthesis (Dhariwal & Nichol, 2022; Ho et al., 2022;
Hoogeboom et al., 2022; Bunne et al., 2023). However, diffusion models do not inherently guarantee
optimal transport properties (Lavenant & Santambrogio, 2022) and often result in slow inference (Ho
et al., 2020; Salimans & Ho, 2022; Lu et al., 2022). Furthermore, the consistent reliance on Gaussian
priors imposes limitations on the application potential and sacrifices the efficiency when the data
distribution significantly deviates from the Gaussian prior.

The predominant method for fast inference originates from the field of optimal transport (OT).
Notably, the (static) iterative proportional fitting (IPF) algorithm (Kullback, 1968; Ruschendorf, 1995)
addresses this challenge by employing alternating projections onto each marginal distribution. This
algorithm has showcased impressive performance in low-dimensional contexts (Chen & Georgiou,
2016; Pavon et al., 2021; Caluya & Halder, 2022). In contrast, the Schrödinger bridge (SB) problem
(Léonard, 2014) introduces a principled framework for the dynamic treatment of entropy-regularized
optimal transport (EOT) (Villani, 2003; Peyré & Cuturi, 2019). Recent advances (De Bortoli et al.,
2021; Chen et al., 2022b) have pushed the frontier of IPFs to (ultra-)high-dimensional generative
models using deep neural networks (DNNs) and have generated straighter trajectories; Additionally,
SBs based on Gaussian process (Vargas et al., 2021) demonstrates great promise in robustness and
scalability; Bridge matching methods (Shi et al., 2023; Peluchetti, 2023) also offers promising
alternatives for solving complex dynamic SB problems.

Real-world data, such as pixel values in images, often exhibits bounded support. To address this
challenge, a common practice involves the use of thresholding techniques (Ho et al., 2020) to guide
the sampling process towards the intended domain of simple structures. Lou & Ermon (2023)
introduced reflected diffusion models that employ reflected Brownian motion on constrained domains
such as hypercubes and simplex. However, constrained domains on general Euclidean space with
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optimal transport guarantee are still not well developed. Moreover, Lou & Ermon (2023) relies on a
uniform prior based on variance-exploding (VE) SDE to derive closed-form scores, and the popular
variance-preserving (VP) SDE is not fully exploited.

Figure 1: Constrained generative modeling via reflected forward-backward SDEs.

To bridge this gap, we propose the Reflected Schrödinger Bridge (SB) to model the transport
between any smooth distributions with bounded support. We derive novel reflected forward-backward
stochastic differential equations (reflected FB-SDEs) with Neumann and Robin boundary conditions
and extend the divergence-based likelihood training to ensure its confinement within any smooth
boundaries. We further establish connections between reflected FB-SDEs and EOT on bounded
domains, where the latter facilitates the theoretical understanding by analyzing the convergence of
the dual, potentials, and couplings on bounded domains. Notably, our analysis provides the first non-
geometric approach to study the uniform-in-time stability w.r.t. the marginals and is noteworthy in its
own right. We empirically validate our algorithm on 2D examples and standard image benchmarks,
showcasing its promising performance in generative modeling over constrained domains. The flexible
choices on the priors allow us to choose freely between VP-SDE and VE-SDE.

Regarding related works on constrained sampling and generation, we refer readers to Appendix A.

2 PRELIMINARIES

Diffusion models (Song et al., 2021b) have achieved tremendous progress in real-world applications,
such as image and text-to-image generation. However, real-world data (such as the bounded pixel
space in images) often comes with bounded support. As an illustration within the computer vision
field, practitioners often employ ad-hoc thresholding techniques to project the data to the desired
space, which inevitably affects the theoretical understanding and hinders future updates.

To generalize these techniques in a principled framework, Lou & Ermon (2023) utilized reflected
Brownian motion to train explicit score-matching loss in bounded domains. They first perturb the
data with a sequence of noise and then propose to generate the constrained data distribution through
the corresponding reflected backward process (Williams, 1987; Cattiaux, 1988).

dxt = f(xt, t)dt+ g(t)dwt + dLt, x0 ∼ pdata ⊂ Ω (1a)

dxt =
[
f(xt, t)− g(t)2∇ log pt (xt)

]
dt+ g(t)dwt + dLt, xT ∼ pprior ⊂ Ω (1b)

where Ω is the state space in Rd; f (xt, t) and g(t) are the vector field and the diffusion term,
respectively; wt is the Brownian motion; wt is another independent Brownian motion from time T
to 0; Lt and Lt are the local time to confine the particle within the domain and are defined in Eq.(18);
the marginal density at time t for the forward process (1a) is denoted by pt. ∇ log pt (·) is the score
function at time t, which is often approximated by a neural network model sθ(·, t). Given proper
score approximations, the data distribution pdata can be generated from the backward process (1b).

3 REFLECTED SCHRÖDINGER BRIDGE

Although reflected diffusion models have demonstrated empirical success in image applications on
hypercubes, extensions to general domains with optimal-transport guarantee remain limited (Lavenant
& Santambrogio, 2022). Notably, the forward process (1a) requires a long time T to approach the
prior distribution, which inevitably leads to a slow inference (De Bortoli et al., 2021). To solve that
problem, the dynamic SB problem on a bounded domain Ω proposes to solve

inf
P∈D(µ⋆,ν⋆)

KL(P∥Q), (2)
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where the coupling P belongs to the path space D(µ⋆, ν⋆) ⊂ C(Ω, [0, T ]) with marginal measures
µ⋆ at time t = 0 and ν⋆ at t = T ; Q is the prior path measure, such as the measure induced by the
path of the reflected Brownian motion or Ornstein-Uhlenbeck (OU) process. From the perspective of
stochastic control, the dynamical SBP aims to minimize the cost along the reflected process

inf
u∈U

E
{∫ T

0

1

2
∥u(xt, t)∥22dt

}
s.t. dxt = [f(xt, t) + g(t)u(xt, t)] dt+

√
2εg(t)dwt + n(xt)dLt, (3)

x0 ∼ µ⋆, xT ∼ ν⋆, xt ∈ Ω, for any t ∈ [0, T ]

where U is a set of control functions; ε is the entropic regularizer for EOT; n(x) is an inner unit normal
vector at x ∈ ∂Ω and 0 for x ∈ Ω; the expectation follows from the density ρ(x, t). Simulation
demos of the reflected SDEs are shown in Figure 2.

To derive the reflected FB-SDEs and training scheme, we first present standard assumptions on the
regularity properties (Øksendal, 2003), as well as the smoothness of measure (Chen et al., 2022a;b)
and boundary (Lamperski, 2021):
Assumption A1 (Regularity on drift and diffusion). The drift f and diffusion term g > 0 satisfy the
Lipschitz and linear growth condition.
Assumption A2 (Smooth boundary). The domain Ω is bounded and has a smooth boundary.

Extensions to general convex domains (with corners) are also studied in Lamperski (2021).
Assumption A3 (Smooth measure). The probability measures µ⋆ and ν⋆ are smooth in the sense
that the energy functions U⋆ = −∇ log dµ⋆

dx and V⋆ = −∇ log dν⋆
dx are differentiable.

3.1 REFLECTED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

Following the tradition in mechanics (Pavliotis, 2014), we rewrite the reflected SBP as follows

inf
u∈U

∫ T

0

∫
Ω

1

2
ρ∥u∥22dxdt

s.t.
∂ρ

∂t
+∇ · J|x∈Ω = 0,

〈
J,n

〉
|x∈∂Ω = 0, (4)

where J is the probability flux of continuity equation J ≡ ρ(f + gu)− εg2∇ρ (Pavliotis, 2014).

We next solve the objectives with a Lagrangian multiplier: ϕ(x, t). Applying the Stokes theorem
with details presented in appendix B.1, we have

L(ρ,u, ϕ) =
∫ T

0

∫
Ω

(
1

2
ρ∥u∥22 − ρ

∂ϕ

∂t
− ⟨∇ϕ,J⟩

)
dxdt︸ ︷︷ ︸

L(ρ,u,ϕ)

+

∫
Ω

ϕρ|Tt=0dx︸ ︷︷ ︸
constant term w.r.t. u

+

∫ T

0

∫
∂Ω

〈
J,n

〉
dσ(x)dt︸ ︷︷ ︸

:=0 by Eq.(4)

.

Minimizing L with respect to u, we can obtain u⋆ = g∇ϕ. Further applying the Cole-Hopf transform
−→
ψ (x, t) = exp

(ϕ(x,t)
2ε

)
and setting L(ρ,u⋆, ϕ) = 0, we derive the backward Kolmogorov equation

with Neumann boundary conditions{
∂
−→
ψ
∂t + εg2∆

−→
ψ + ⟨∇

−→
ψ ,f⟩ = 0 in Ω

⟨∇
−→
ψ ,n⟩ = 0 on ∂Ω.

Next we define←−φ = ρ⋆/
−→
ψ , where ρ⋆ is the optimal density of Eq.(3) given u⋆. We arrive at the

forward Kolmogorov equation with the Robin boundary condition{
∂t
←−φ +∇ ·

(←−φ f − εg2∇←−φ
)
= 0 in Ω

⟨←−φ f − εg2∇←−φ ,n⟩ = 0 on ∂Ω.

Despite the elegance, solving PDEs in high dimensions often poses significant challenges due to the
curse of dimensionality (Han et al., 2019). To overcome these challenges, we resort to presenting a
set of reflected FB-SDEs:
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Theorem 1. Consider a Schrödinger (PDE) system with Neumann and Robin boundary conditions{
∂
−→
ψ
∂t

+ ⟨∇
−→
ψ ,f⟩+ εg2∆

−→
ψ = 0

∂←−φ
∂t

+∇ · (←−φ f)− εg2∆←−φ = 0
s.t.

〈
∇−→ψ ,n

〉
|x∈∂Ω = 0,

〈
f←−φ − εg2∇←−φ ,n

〉
|x∈∂Ω = 0. (5)

Solving the PDE system gives rise to the reflected FB-SDEs with xt ∈ Ω

dxt =
[
f(xt, t) + 2εg(t)2∇ log

−→
ψ (xt, t)

]
dt+

√
2εg(t)dwt + n(x)dLt, x0 ∼ µ⋆, (6a)

dxt =
[
f(xt, t)− 2εg(t)2∇ log←−φ (xt, t)

]
dt+

√
2εg(t)dwt + n(x)dLt, xT ∼ ν⋆. (6b)

The connection to the probability flow ODE is also studied and presented in section B.2.

Figure 2: Reflected OU processes (reflected v.s. unconstrained), driven by the same Brownian
motion, excluding the reflections. All boundary curves have properly defined unit vectors.

3.2 LIKELIHOOD TRAINING

It is worth mentioning that the reflected FB-SDE (6) is not directly accessible due to the unknown
control variables (∇ log

−→
ψ ,∇ log←−φ ). To tackle this issue, a standard tool is the (nonlinear) Feynman-

Kac formula (Ma & Yong, 2007; Karatzas & Shreve, 1998), which leads to a stochastic representation.
Proposition 1 (Feynman-Kac representation). Assume assumptions A1-A2 hold. ←−φ satisfies a
PDE (5) and xt follows from a diffusion (6a). Define −→y t ≡ −→y (xt, t) = log

−→
ψ (xt, t) and←−y t ≡←−y (xt, t) = log←−φ (xt, t). Then←−y s admits a stochastic representation

←−y s = E
[
←−y T −

∫ T

s

(
1

2
∥←−z t∥22 +∇ ·

(←−g zt − f
)
+ ⟨←−z t,−→z t⟩

)
dt− d

←−
L t︸ ︷︷ ︸

ζ(xt,t)

∣∣∣∣xs = xs
]
,

on [0, T ]× Ω; −→z t ≡ −→z (xt, t) = g∇−→y t,←−z t ≡ ←−z (xt, t) = g∇←−y t, d
←−
L t =

1
g ⟨
←−z t,nt⟩dLt.

Sketch of proof The proof primarily relies on Theorem 3 from Chen et al. (2022b) and applies
(generalized) Itô’s lemma to←−y t using (5) and (6a). The difference is to incorporate the generalized
Itô’s lemma (Bubeck et al., 2018; Lamperski, 2021) to address the local time of xt at the boundary
∂Ω. Subsequently, our analysis establishes that←−y s −

∫ s
s1
ζ(xt, t), where s ∈ [s1, T ], is a martingale

within the domain Ω, which concludes our proposition.

A direct application of the proposition is to obtain the log-likelihood←−y 0 given data points x0. With
parametrized models (−→z θt ,

←−z ωt ) to approximate (−→z t,←−z t), we can optimize the backward score
function←−z ωt through the forward loss function L(x0;ω) in Algorithm 1. Regarding the forward-
score estimation, similar to Theorem 11 (Chen et al., 2022b), the symmetric property of the reflected
SB also enables to optimize −→z t via the backward loss function L(xT ; θ).
By the data processing inequality, our loss function provides a lower bound of the log-likelihood,
which resembles the evidence lower bound (ELBO) in variational inference (Song et al., 2021a). We
can expect a smaller variational gap given more accurate parametrized models.

When the domain is taken to be Ω = Rd, the aforementioned solvers become equivalent to the loss
function (18-19) presented in Chen et al. (2022b).

3.3 CONNECTIONS TO THE IPF ALGORITHM

Similar in spirit to Theorem 3 of Song et al. (2021a), Algorithm 1 results in an elegant half-bridge
solver (µ⋆ → ν⋆ v.s. µ⋆ ← ν⋆) to approximate the primal formulation (Nutz, 2022) of the dynamic
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Algorithm 1 One iteration of the backward-forward score function solver to optimize (−→z θt ,
←−z ωt )

with the reflection implemented in Algorithm 4. We cache the trajectories following De Bortoli et al.
(2021) to avoid expensive computational graphs. In practice, E[log←−y T ] and E[log−→y 0] are often
omitted to facilitate training (Chen et al., 2022b).

L(x0;ω) =�����E[log←−y T ]−
∫ T

0

Ext∼(6a)

[(
1

2
∥←−z ωt ∥22 + g∇ ·←−z ωt + ⟨−→z θt ,

←−z ωt ⟩
)
dt+ d

←−
L ω
t

∣∣∣∣x0 = x0
]

L(xT ; θ) =�����E[log−→y 0]−
∫ T

0

Ext∼(6b)

[(
1

2
∥−→z θt ∥22 + g∇ · −→z θt + ⟨

←−z ωt ,
−→z θt ⟩

)
dt+ d

−→
L θ
t

∣∣∣∣xT = xT
]
,

where d
←−
L ω
t = 1

g ⟨
←−z ωt ,nt⟩dLt and d

−→
L θ
t =

1
g ⟨
−→z θt ,nt⟩dLt. (6a) (respectively, (6b)) is approximated

via −→z θt (respectively,←−z ωt ).

Schrödinger bridge (2) (De Bortoli et al., 2021; Vargas et al., 2021):

Dynamic Primal IPF P2k = argmin
P∈D(·,ν⋆)

KL(P∥P2k−1), P2k+1 = argmin
P∈D(µ⋆,·)

KL(P∥P2k), (7)

which is also known as the dynamic IPF algorithm (also known as Sinkhorn algorithm) (Ruschendorf,
1995; De Bortoli et al., 2021). Consider the disintegration of the path measure P = π ⊗ Pµ⋆,ν⋆

P(·) =
∫∫

Ω2

Px0,xT (·)π(dx0,dxT ), (8)

where Px0,xT ∈ Pµ⋆,ν⋆ is a diffusion bridge from x0 = x0 to xT = xT , π ∈ Π(µ⋆, ν⋆) and the
product space Π(µ⋆, ν⋆) ⊂ Ω2 denotes the space of couplings with the first and second marginals
following from µ⋆ and ν⋆, respectively. Now project the path space D to the product space Π. We
have the static IPF algorithm in the primal formulation:

Static Primal IPF π2k = argmin
π∈Π(·,ν⋆)

KL(π∥π2k−1), π2k+1 = argmin
π∈Π(µ⋆,·)

KL(π∥π2k). (9)

4 CONVERGENCE ANALYSIS VIA ENTROPIC OPTIMAL TRANSPORT

The dynamic IPF algorithm offers an efficient training scheme to fit marginals in high-dimensional
problems. However, the understanding of the convergence remains unclear to the machine learning
community. To get around this issue, we leverage the progress from the static optimal transport on
bounded domains and costs (Carlier, 2022; Chen et al., 2016; Deligiannidis et al., 2021).

Our analysis is illustrated as follows: We first draw connections between dynamic and static (primal)
IPFs by projecting the path space D to the product space Π and then show the equivalence between
the dual and primal formulations. Next, we perturb the marginals (in terms of energy functions)
and show the approximate linear convergence of the dual, potential, and then static couplings. The
convergence of dynamic couplings can be expected given a reasonable estimate of diffusion bridge.

Dynamic Primal IPF (7)
Disintegration←−−−−−−→

Projection
Static Primal IPF (9)

Equivalence(C.5)←−−−−−−−−→
Lemma 1

Static Dual IPF (13)

4.1 EQUIVALENCE BETWEEN DYNAMIC SBP AND STATIC SBP

Assuming the solutions exist, the disintegration of measures implies that the equivalence of solutions
between the dynamic and static SBPs (Léonard, 2014):

Dynamic SBP P⋆ = argmin
P∈D(µ⋆,ν⋆)

KL(P∥Q)⇐⇒ π⋆ = argmin
π∈Π(µ⋆,ν⋆)

KL(π∥G), Static

where π (respectively, G) is the projection of the path measure P (respectively, Q) on the product
space at t = 0 and T ; dG ∝ e−cεd(µ⋆ ⊗ ν⋆); cε is a cost function. Both the dynamic and static SBP
formulations yield structure properties (see the Born’s formula in Léonard (2014)) and enables to
represent Schrödinger bridges P⋆ and π⋆ using Schrödinger potentials φ⋆ and ψ⋆:

Dynamic Struture dP⋆ = eφ⋆(x)+ψ⋆(y)dQ⇐⇒ dπ⋆(x,y) = eφ⋆(x)+ψ⋆(y)dG. Static (10)
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Moreover, the summation φ⋆ ⊕ ψ⋆ is unique such that (φ⋆ + a)⊕ (ψ⋆ − a) is also viable for any a.

This static structural representation establishes a connection between the static SBP and entropic
optimal transport (EOT) with a unit entropy regularizer (Chen et al., 2023), and the latter results in an
efficient scheme to compute the optimal coupling:

inf
π∈Π(µ⋆,ν⋆)

∫∫
Ω2

cε(x,y)π(dx,dy) + KL(π∥µ⋆ ⊗ ν⋆).

4.2 DUALITY FOR SCHRÖDINGER BRIDGES AND APPROXIMATIONS

The Schrödinger bridge is a constrained optimization problem and possesses a computation-friendly
dual formulation. Moreover, the duality gap is zero under probability measures (Léonard, 2001).
Lemma 1 (Duality (Nutz, 2022)). Given assumptions A1-A3, the dual via potentials (φ,ψ) follows

min
π∈Π(µ⋆,ν⋆)

KL(π|G) = max
φ,ψ

G(φ,ψ), G(φ,ψ) := µ⋆(φ) + ν⋆(ψ)−
∫∫

Ω2

eφ⊕ψdG + 1, (11)

where µ⋆(φ) =
∫
Ω
φdµ⋆, ν⋆(ψ) =

∫
Ω
ψdν⋆, φ ∈ L1(µ⋆), and ψ ∈ L1(ν⋆).

An effective solver is to maximize the dual G via φk+1 = argmaxφ∈L1(µ⋆)G(φ,ψk) and ψk+1 =

argmaxψ∈L1(ν⋆)G(φk+1, ψ) alternatingly. From a geometric perspective, alternating maximization
corresponds to alternating projections (detailed in Appendix C.4)

φk+1 = argmax
φ∈L1(µ⋆)

G(φ,ψk) =⇒ the first marginal of π(φk+1, ψk) is µ⋆, (12a)

ψk+1 = argmax
ψ∈L1(ν⋆)

G(φk+1, ψ) =⇒ the second marginal of π(φk+1, ψk+1) is ν⋆. (12b)

The marginal properties of the coupling implies the Schrödinger equation (Nutz & Wiesel, 2022)

φ⋆(x) = − log

∫
Ω

eψ⋆(y)−cε(x,y)ν⋆(dy), ψ⋆(y) = − log

∫
Ω

eφ⋆(x)−cε(x,y)µ⋆(dx).

Since the Schrödinger potential functions (ψ⋆, φ⋆) are not known a priori, the dual formulation of
the static IPF algorithm was proposed to solve the alternating projections as follows:

Static Dual IPF : ψk(y) = − log

∫
Ω

eφk(x)−cε(x,y)µ⋆(dx), φk+1(x) = − log

∫
Ω

eψk(y)−cε(x,y)ν⋆(dy).

(13)
The equivalence between the primal IPF and dual IPF is further illustrated in Appendix C.5.

However, given a limited computational budget, projecting to the ideal measure µ⋆ (or ν⋆) in Eq.(12)
at each iteration may not be practical. Instead, some close approximation µ⋆,k+1 (or ν⋆,k) is used at
iteration 2k + 1 (or 2k) via Gaussian processes (Vargas et al., 2021) or neural networks (De Bortoli
et al., 2021; Chen et al., 2022b). Therefore, one may resort to an approximate marginal that still
achieves reasonable accuracy:

µ2k+1 = µ⋆,k+1 ≈ µ⋆, ν2k = ν⋆,k ≈ ν⋆. (14)

We refer to the IPF algorithm with approximate marginals as approximate IPF (aIPF) and present
the static dual formulation of aIPF in Algorithm 2. The difference between IPF and aIPF

Figure 3: IPF v.s. aIPF. The approximate
(or exact) projections are highlighted
through the dotted (or solid) lines.

is detailed in Figure 3. The structure representation (10)
can be naturally extended based on approximate marginals
and is also studied by Deligiannidis et al. (2021)

dπ2k = eφk⊕ψk−cεd(µ⋆,k ⊗ ν⋆,k),
dπ2k−1 = eφk⊕ψk−1−cεd(µ⋆,k ⊗ ν⋆,k−1),

(15)

where πk is the approximate coupling at iteration k. By
the structural properties in Eq.(10), the representation also
applies to the dynamic settings, which involves the com-
putation of the static IPF, followed by its integration with
a diffusion bridge (Eckstein & Nutz, 2022).
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Algorithm 2 One iteration of aIPF (static). The static coupling πk can be recovered by the structural
representation in (15); the dynamic coupling Pk =

∫∫
Ω2 Px0,xT

k (·)πk(x0, xT ) can be solved by further
learning a diffusion bridge Px0,xT

k .

ψk(y) = − log

∫
Ω

eφk(x)−cε(x,y)µ⋆,k(dx), φk+1(x) = − log

∫
Ω

eψk(y)−cε(x,y)ν⋆,k(dy). (16)

4.3 CONVERGENCE OF COUPLINGS WITH BOUNDED DOMAIN

Despite the rich literature on the analysis of SBP within bounded domains (Chen et al., 2016), most
of them are not applicable to practical scenarios where exact marginals are not available. To fill this
gap, we extend the linear convergence analysis with perturbed marginals. The key to our proof is
the strong convexity of the dual (11). To quantify the convergence, similar to De Bortoli (2022), we
introduce an additional assumption to control the perturbation of the marginals in the sense that:

Assumption A4 (Marginal perturbation). Uk = ∇ log
dµ⋆,k

dx and Vk = ∇ log
dν⋆,k
dx are the approxi-

mate energy functions at the k-th iteration and are ϵ-close to energy functions U⋆ and V⋆∥∥Uk(x)− U⋆(x)∥∥2 ≤ ϵ(1 + ∥x∥2), ∥∥Vk(x)− V⋆(x)∥∥2 ≤ ϵ(1 + ∥x∥2), ∀x ∈ Ω.

Note that the Lipschitz cost function on Ω2 is also a standard assumption (Deligiannidis et al., 2021).
It is not required here by Assumption A1, which leads to a smooth transition kernel and cost function.

Recall the connections between dynamic primal IPF and static dual IPF, we know ϵ mainly depends
on the score-function (−→z θt ,

←−z ωt ) estimations (Song et al., 2021a) and numerical discretizations. More
concrete connections between them will be left as future work. In addition, the errors in the two
marginals don’t have to be the same, and we use a unified ϵ mainly for analytical convenience.

Moreover, we use the same domain Ω for both marginals to be consistent with our algorithm in
Section 3. The proof can be easily extended to different domains X and Y for µ⋆ and ν⋆.

Approximately linear convergence and proof sketches We first follow Carlier (2022); Nutz
(2022); Marino & Gerolin (2020) to build a centered aIPF algorithm in Algorithm 3 with scaled
potential functions φ̄k and ψ̄k such that µ⋆(φ̄k) = 0. Since the summations of the potentials φ⋆ and
ψ⋆ are unique by (10), the centering operation doesn’t change the dual objective but ensures that the
aIPF iterates are uniformly bounded in Lemma 4 with the help of the decomposition

∥φ̄⊕ ψ̄∥2L2(µ⋆⊗ν⋆) = ∥φ̄∥
2
L2(µ⋆)

+ ∥ψ̄∥2L2(ν⋆)
if µ⋆(φ̄) = 0.

How to ensure centering with perturbed marginals in Algorithm 3 is crucial and one major novelty in
our proof. We next exploit the strong convexity of the exponential function ex associated with the
concave dual. We obtain an auxiliary result regarding the convergence of the dual and the potentials.
Lemma 2 (Convergence of the Dual and Potentials). Let (φ̄k, ψ̄k)k≥0 be the iterates of a variant of
Algorithm 2. Given assumptions A1-A4 with small enough marginal perturbations ϵ, we have

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≲ (1− e−24∥cε∥∞)k + e24∥cε∥∞ϵ,

∥φ̄⋆ − φ̄k∥L2(µ⋆) + ∥ψ̄⋆ − ψ̄k∥L2(ν⋆) ≲ e3∥cε∥∞(1− e−24∥cε∥∞)k/2 + e15∥cε∥∞ϵ1/2.

Since the centering operation doesn’t change the structure property (10), we are able to analyze the
convergence of the static couplings. Motivated by Theorem 3 of Deligiannidis et al. (2021), we
exploit the structural property (10) to estimate the W1 distance based on its dual formulation.
Theorem 2 (Convergence of Static Couplings). Given assumptions A1-A4 with small marginal
perturbations ϵ, the iterates of the couplings (πk)k≥0 in Algorithm 2 satisfy the following result

W1(πk, π⋆) ≤ O(e9∥cε∥∞(1− e−24∥cε∥∞)k/2 + e21∥cε∥∞ϵ1/2).

Such a result provides the worst-case guarantee on the convergence of the static couplings πk. For
example, to obtain a ϵ⋆-W1 distance, we can run Ω(e24∥cε∥∞(∥cε∥∞ − log(ϵ⋆ ∧ 1))) iterations to
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achieve the goal. Recall that cε = c/ε (Chen et al., 2023), a large entropic-regularizer ε may be
needed in practice to yield reasonable performance, which also leads to specific tuning guidance on ε.

Our proof employs a non-geometric method to show the uniform in time stability, w.r.t. the marginals.
Unlike the elegant approach (Deligiannidis et al., 2021) based on the Hilbert-Birkhoff projective
metric (Chen et al., 2016), ours does not require advanced tools and may be more friendly to readers.

Recall the bridge representation in Eq.(8), we have W1(πk ⊗ Pµ⋆,ν⋆
k , π⋆ ⊗ Pµ⋆,ν⋆

⋆ ) ≤W1(πk, π⋆) +
W1(Pµ⋆,ν⋆

k ,Pµ⋆,ν⋆
⋆ ). Assume the same assumptions as in Theorem 2, we arrive at the final result:

Proposition 2 (Convergence of Dynamic Couplings). The iterates of the dynamic couplings (Pk)k≥0

in Algorithm 1 satisfy the following result

W1(Pk,P⋆) ≤ O(e9∥cε∥∞(1− e−24∥cε∥∞)k/2 + e21∥cε∥∞ϵ1/2) +W1(Pµ⋆,ν⋆
k ,Pµ⋆,ν⋆

⋆ ).

The result paves the way for understanding the general convergence of the dynamic IPF algorithm by
incorporating a proper approximation of the diffusion bridge (Heng et al., 2022).

5 EMPIRICAL SIMULATIONS

5.1 GENERATION OF 2D SYNTHETIC DATA

We first employ the reflected SB algorithm to generate three synthetic examples: checkerboard and
Gaussian mixtures from a Gaussian prior and spiral from a moon prior. The domains are defined to
be flower, octagon, and heart, where all boundary points are defined to have proper unit-vectors. We
follow Chen et al. (2022b) and adopt a U-net to model (−→z θt ,

←−z ωt ). We chose RVP-SDE as the base
simulator from time 0 to T = 1, where the dynamics are discretized into 100 steps.

Our generated examples are presented in Figure 1 and 4. We see that all the data are generated
smoothly from the prior and the forward and backward process matches with each other elegantly.
To the best of our knowledge, this is the first algorithm (with OT guarantees) that works on custom
domains. Other related work, such as Lou & Ermon (2023), mainly focuses on hypercubes in
computer vision. We also visualize the forward-backward policies←−z ωt and −→z θt in Figure 4. Our
observations reveal that the forward vector fields −→z θt demonstrate substantial nonlinearity when
compared to the linear forward policy in SGMs, and furthermore, the forward vector fields exhibit
pronounced dissimilarity when compared to the backward vector fields←−z ωt .

Figure 4: Demo of generative samples (top) and vector fields (bottom) based on Reflected SB.

5.2 GENERATION OF IMAGE DATA

We test our method on large-scale image datasets using CIFAR-10 and ImageNet 64×64. As the
RGB value is between [0, 1], we naturally select the domain as Ω = [0, 1]d, where d = 3× 32× 32

8
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for the CIFAR-10 task and d = 3× 64× 64 for the ImageNet task. It is known that the SB system
can be initialized with score-based generative models (Chen et al., 2022b) and the warm-up study for
reflected SB is presented in Appendix D.2. We choose RVE-SDE as the prior path measure. The prior
distribution of ν⋆ is the uniform distribution on Ω. The SDE is discretized into 1000 steps. In both
scenarios, images are generated unconditionally, and the quality of the samples is evaluated using
Frechet Inception Distance (FID) over 50,000 samples. The forward score function is modeled using
U-net structure; the backward score function uses NCSN++ (Song et al., 2021b) for the CIFAR-10
task and ADM (Dhariwal & Nichol, 2022) for the ImageNet task. Details of the experiments are
shown in Appendix D.

CIFAR-10 Constrained OT NLL FID

MCSN++ (Song et al., 2021b) No No 2.99 2.20

DDPM (Ho et al., 2020) No No 3.75 3.17

SB-FBSDE (Chen et al., 2022b) No Yes - 3.01

Reflected SGM (Lou & Ermon, 2023) Yes No 2.68 2.72

Ours Yes Yes 3.08 2.98

ImageNet 64×64

PGMGAN (Armandpour et al., 2021) No No – 21.73

GLIDE (Li et al., 2023) No No – 29.18

GRB (Park & Shin, 2022) No No – 26.57

Ours Yes Yes 3.20 23.95

Table 1: Evaluation of generative models on image data.

We have included baselines for both
constrained and unconstrained gener-
ative models and summarized the ex-
perimental results in Table 1. While
our model may not surpass the state-
of-the-art models, the minor improve-
ment over the unconstrained SB-
FBSDE (Chen et al., 2022b) under-
scores the effectiveness of the reflec-
tion operation. Moreover, the exper-
iments verify the scalability of the
reflected model and the training pro-
cess is consistent with the findings
in Lou & Ermon (2023), where the
reflection in cube domains is easy
to implement and the generation be-
comes more stable. Sample outputs
are showcased in Figure 5 (including MNIST), with additional figures available in Appendix D.
Notably, our generated samples exhibit diversity and are visually indistinguishable from real data.

Figure 5: Samples via reflected SB on MNIST (left), CIFAR10 (middle), and ImageNet 64 (right).

6 CONCLUSION

Reflected diffusion models, which are motivated by thresholding techniques, introduce explicit
score-matching loss through reflected Brownian motion. Traditionally, these models are applied
to hypercube-related domains and necessitate specific diffeomorphic mappings for extension to
other domains. To enhance generality with optimal transport guarantees, we introduce the Reflected
Schrödinger Bridge, which employs reflected forward-backward stochastic differential equations
with Neumann and Robin boundary conditions. We establish connections between dynamic and
static IPF algorithms in both primal and dual formulations. Additionally, we provide an approximate
linear convergence analysis of the dual, potential, and couplings to deepen our understanding of the
dynamic IPF algorithm. Empirically, our algorithm can be applied to any smooth domains using
RVE-SDE and RVP-SDE. We evaluate its performance on 2D synthetic examples and standard image
benchmarks, underscoring its competitiveness in constrained generative modeling.
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Christian Léonard. Minimization of Energy Functionals Applied to Some Inverse Problems. Applied
Mathematics and Optimization volume, 44:273–297, 2001.
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A RELATED WORKS

Constrained Sampling Bubeck et al. (2018) studied the convergence of Langevin Monte Carlo
within bounded domains. His work revealed a polynomial sample time for log-concave distributions,
which is later extended to non-convex settings by Lamperski (2021). Furthermore, the exploration
of constrained sampling in challenging scenarios with ill-conditioned and non-smooth distributions
was explored by Kook et al. (2022), who leveraged Hamiltonian Monte Carlo techniques. Other
constrained sampling works include proximal Langevin dynamics (Brosse et al., 2017) and mirrored
Langevin dynamics (Hsieh et al., 2018).

Constrained Generation De Bortoli et al. (2022); Huang et al. (2022) studied the extension of
diffusion models on Riemannian manifolds, and the convergence is further analyzed by De Bortoli
(2022). This groundwork subsequently motivated follow-up research, including implicit score-
matching loss via log-barrier methods and reflected Brownian motion (Fishman et al., 2023) and
Schrödinger bridge (Thornton et al., 2022) on the Riemannian manifold. Alternatively, drawing
inspiration from the popular thresholding technique in real-world diffusion applications, Lou & Ermon
(2023) proposed to train explicit score-matching loss based on reflected Brownian motion, which
demonstrated compelling empirical performance. Liu et al. (2023) employed Doob’s h-transform to
learn diffusion bridges on various constrained domains. The study of reflected Schrödinger bridge
was initiated by Caluya & Halder (2021) in the control community and has shown remarkable
performance in low-dimensional problems.

Notations Ω is the bounded domain of interest, ∂Ω denotes the boundary, and D is the radius of
a ball centered at the origin that covers Ω. ∇· and ∇ denote the divergence and gradient operator
(with respect to x). ε is the entropic regularizer; ϵ controls the perturbation of the marginals.
cε and c are cost functions in EOT, and cε = c/ε. ψ⋆ and φ⋆ are the Schrödinger potentials;
∇ log

−→
ψ (xt, t) and∇ log←−φ (xt, t) are the forward-backward score functions in reflected FB-SDE.

D(µ⋆, ν⋆) ⊂ C(Ω, [0, T ]) is the path space with marginals µ⋆ (data distribution) at time t = 0 and
ν⋆ (prior distribution) at t = T , Π(µ⋆, ν⋆) ⊂ Ω2 is the product space containing couplings with the
first marginal µ⋆ and second marginal ν⋆.

B REFLECTED FORWARD-BACKWARD SDE

B.1 FROM REFLECTED SCHRÖDINGER BRIDGE TO REFLECTED FB-SDE

We consider the stochastic control of the reflected SBP

inf
u∈U

E
{∫ T

0

1

2
∥u(x, t)∥22dt

}
s.t. dxt = [f(x, t) + g(t)u(x, t)] dt+

√
2εg(t)dwt + n(x)dLt (17)

x0 ∼ µ⋆, xT ∼ ν⋆, xt ∈ Ω,

where Ω is the state-space of x and u : Ω × [0, T ] → Rd is the control variable in the space of
U ; f : Ω × [0, T ] → Rd is the vector field; wt denotes the Brownian motion; The expectation is
evaluated w.r.t the PDF ρ(x, t) of (17); ε is the diffusion term and also the entropic regularizer; L
is the local time supported on {t ∈ [0, T ]|xt ∈ ∂Ω} and forces the particle to go back to Ω. More
precisely, L is a continuous non-decreasing process with L0 = 0 and it increases only when xt hits
the boundary ∂Ω, that is,

Lt =

∫ t

0

1{xs∈∂Ω}dLs. (18)

The existence and uniqueness of SDE (17) can be addressed through the so-called Skorokhod problem
(Skorokhod, 1961) which amounts to finding the decomposition for any given continuous path
wt ∈ C(Rd, [0, T ]), there exists a pair (yt,Lt) such that

wt = yt + Lt,
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where yt ∈ C(Ω, [0, T ]) and Lt satisfies (18) (Lions & Sznitman, 1984).

Rewrite reflected SBP into a variational form (Chen et al., 2021)

inf
u∈U,ρ

∫ T

0

∫
Ω

1

2
∥u(x, t)∥22ρ(x, t)dxdt (19)

s.t.
∂ρ

∂t
+∇ · J|x∈Ω = 0,

〈
J,n

〉
|x∈∂Ω = 0, (20)

where J is the probability flux of continuity equation (Pavliotis, 2014) given by

J ≡ ρ(f + gu)− εg2∇ρ. (21)

Explore the Lagrangian of (19) and incorporate a multiplier: ϕ(x, t) : Ω× [0, T ]→ R

L(ρ,u, ϕ) =
∫ T

0

∫
Ω

1

2
∥u∥22ρ+ ϕ

(
∂ρ

∂t
+∇ · J

)
dxdt (22)

=

∫ T

0

∫
Ω

(
1

2
ρ∥u∥22 − ρ

∂ϕ

∂t
− ⟨∇ϕ,J⟩

)
dxdt+

∫
Ω

ϕρ|Tt=0dx︸ ︷︷ ︸
constant term

+

∫ T

0

∫
∂Ω

〈
J,n

〉
dσ(x)dt︸ ︷︷ ︸

:=0 by Eq.(20)

,

where the second equation follows by Stokes’ theorem.

Plugging (21) into (22) and ignoring constant terms, we have

L(ρ,u, ϕ) =
∫ T

0

∫
Ω

(
1

2
ρ∥u∥22 − ρ

∂ϕ

∂t
−
〈
∇ϕ, ρ(f + gu)− εg2∇ρ

〉)
dxdt. (23)

The optimal control u⋆ follows by taking gradient with respect to u

u⋆(x, t) = g(t)∇ϕ(x, t). (24)

Plugging u⋆(x, t) into (23) and setting L(ρ,u⋆, ϕ) ≡ 0, we apply integration by parts and derive

0 = −
∫ T

0

∫
Ω

(
1

2
ρg2∥∇ϕ∥22 + ρ

∂ϕ

∂t
+ ρ

〈
∇ϕ,f

〉
− εg2

〈
∇ϕ,∇ρ

〉)
dxdt

= −
∫ T

0

∫
Ω

ρ

(
1

2
g2∥∇ϕ∥22 +

∂ϕ

∂t
+

〈
∇ϕ,f

〉
+ εg2∆ϕ

)
dxdt+

∫ T

0

∫
∂Ω

εg2ρ⟨∇ϕ,n⟩dσ(x)dt.

This yields the following constrained Hamilton–Jacobi–Bellman (HJB) PDE:{ ∂ϕ
∂t + εg2∆ϕ+ ⟨∇ϕ,f⟩ = − 1

2∥g(t)∇ϕ(x, t)∥
2
2 in Ω

⟨∇ϕ,n⟩ = 0 on ∂Ω.

Applying the Cole-Hopf transformation:

−→
ψ (x, t) = exp

(
ϕ(x, t)

2ε

)
, ϕ(x, t) = 2ε log

−→
ψ (x, t), (25)

then we see that
−→
ψ satisfies a backward Kolmogorov equation with Neumann boundary condition{

∂
−→
ψ
∂t + εg2∆

−→
ψ + ⟨∇

−→
ψ ,f⟩ = 0 in Ω

⟨∇
−→
ψ ,n⟩ = 0 on ∂Ω.

On the other hand, we set

←−φ (x, t) = ρ⋆(x, t)/
−→
ψ (x, t), (26)
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where ρ⋆(x, t) is the probability density of Eq.(19) given the optimal control variable u⋆. Then from
ρ⋆ =←−φ

−→
ψ , Eq.(20) can be further simplified to

0 = ∂tρ
⋆ +∇ ·

[
ρ⋆
(
f + gu⋆

)
− εg2∇ρ⋆

]
= ∂t(

←−φ
−→
ψ ) +∇ ·

[
←−φ
−→
ψ
(
f + g2∇ϕ

)
− εg2∇(←−φ

−→
ψ )

]
= (∂t

←−φ )
−→
ψ +←−φ (∂t

−→
ψ ) +∇ ·

[
←−φ
−→
ψ
(
f + 2εg2∇ log

−→
ψ
)]
− εg2∆(←−φ

−→
ψ )

= · · · =
−→
ψ

(
∂t
←−φ +∇ ·

(←−φ f − εg2∇←−φ
))
,

where we use the identify ∆(
−→
ψ←−φ ) = ←−φ∆

−→
ψ + ∆←−φ

−→
ψ + 2⟨∇

−→
ψ ,∇←−φ ⟩. Then we arrive at the

forward Kolmogorov equation with the Robin boundary condition{
∂t
←−φ +∇ ·

(←−φ f − εg2∇←−φ
)
= 0 in Ω

⟨←−φ f − εg2∇←−φ ,n⟩ = 0 on ∂Ω,

where the second boundary condition follows by invoking the Stokes’ theorem for the first equation.

Plugging Eq.(24) and Eq.(25) into Eq.(17), the backward PDE corresponds to the forward SDE

dxt =
[
f(xt, t) + 2εg(t)2∇ log

−→
ψ (xt, t)

]
dt+

√
2εg(t)dwt + n(x)dLt, x0 ∼ µ⋆.

Reversing the forward SDE (Williams, 1987; Cattiaux, 1988) with log
−→
ψ (·, t) + log←−φ (·, t) =

log ρ⋆(·, t) based on Eq.(26), we arrive at the backward SDE

dxt =
[
f(xt, t)− 2εg(t)2∇ log←−φ (xt, t)

]
dt+

√
2εg(t)dwt + n(x)dLt, xT ∼ ν⋆.

Our derivation is in a spirit similar to Caluya & Halder (2021). The difference is that the proof is
derived from the perspective of probability flux and enables us to derive the Neunman and Robin
boundaries more explicitly.

Remark 1. Regarding the scores ∇ log
−→
ψ and ∇ log←−φ at t = 0 and T , we follow the standard

truncation techniques (Ho et al., 2020; Fishman et al., 2023) and fix them to 0. We refer readers to
Appendix C of Song et al. (2021b) and Appendix B of Song et al. (2021a) for more discussions.

B.2 CONNECTIONS BETWEEN REFLECTED FB-SDES AND FLOW-BASED MODELS

Similar to Fishman et al. (2023); Lou & Ermon (2023), our flow representation in Eq.(20) together
with (26) naturally yields
Proposition 3 (Probability Flow ODE). Consider the reflected FB-SDEs (6) with Neumann and
Robin boundary conditions. The corresponding probability flow ODE is given by

dxt =
[
f(xt, t) + εg(t)2

(
∇ log

−→
ψ (xt, t)−∇ log←−φ (xt, t)

)]
dt.

The result is the same as in Chen et al. (2022b) and provides a stable alternative to compute the
log-likelihood of the data.

C CONVERGENCE OF DUAL, POTENTIALS, AND COUPLINGS

Next, we modify Algorithm 2 following the centering method developed in (Carlier, 2022).

The algorithm differs from Algorithm 2 in that an additional centering operation is included in the
updates of φ̄k+1 to ensure µ⋆(φ̄k+1) = 0. Notably, µ⋆ is required for the centering operation to
upper bound the divergence, although it is not directly accessible and no implementation is needed.
The main contribution of the centering operation is that the two coordinates (φ̄, ψ̄) become separable

∥φ̄⊕ ψ̄∥2L2(µ⋆⊗ν⋆) = ∥φ̄∥
2
L2(µ⋆)

+ ∥ψ̄∥2L2(ν⋆)
if µ⋆(φ̄) = 0. (29)
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Algorithm 3 Centered Sinkhorn. Set φ̄0 := 0. For k ≥ 0, the iterate follows

ψ̄k(y) := − log

∫
Ω

eφ̄k(x)−cε(x,y)µ⋆,k(dx) (27)

φ̄k+1(x) := − log

∫
Ω

eψ̄k(y)−cε(x,y)ν⋆,k(dy) + λk, where (28)

λk :=

∫
Ω

log

(∫
Ω

eψ̄k(y)−cε(x,y)ν⋆,k(dy)

)
µ⋆(dx).

The coordinate ascent is equivalent to the following updates

ψ̄k(y) = argmax
ψ̄∈L1(ν⋆)

G(φ̄k, ψ̄), φ̄k(y) = argmax
φ̄∈L1(µ⋆):µ⋆(φ̄)=0

G(φ̄, ψ̄k).

The relation between the Schrödinger potentials (φk, ψk) and centered Schrödinger potentials
(φ̄k, ψ̄k) is characterized as follows
Lemma 3. Denote by (φk, ψk) the Sinkhorn iterates in Algorithm 2. For all k ≥ 0, µ⋆(φk) =
−(λ0 + · · ·+ λk−1). Moreover, we have

φ̄k = φk − µ⋆(φk), ψ̄k = ψk + µ⋆(ψk).

In particular, φ̄k ⊕ ψ̄k = φk ⊕ ψk and G(φ̄k, ψ̄k) = G(φk, ψk).

Proof Applying the induction method completes the proof directly.

Recall how ψ̄k is defined through the Schrödinger equation

The second marginal of π2k(φ̄k, ψ̄k) = eφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) is ν⋆,k,

as in Eq.(14). However, dπ2k+1(φ̄k+1, ψ̄k) = eφ̄k+1⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) fails to yield the first
marginal µ⋆,k due to the centering constraint.

Next, we show the modified iterates are bounded by the cost function c.
Lemma 4. For every k ≥ 0, the potentials are bounded by

∥φ̄k∥∞ ≤ 2∥cε∥∞, ∥ψ̄k∥∞ ≤ 3∥cε∥∞.

Proof By Assumption A1, the transition kernel K(x,y) = e−cε(x,y) associated with xt =

f(xt, t)dt+
√
2εg(t)dwt+n(x)dLt is smooth in Ω, hence the cost function is Lipschitz continuous,

which implies the cost function is bounded (denoted by a constant cε).

Recall the definition of φ̄k+1 in Algorithm 3, we have ∀x1,x2 ∈ Ω,

φ̄k+1(x1)− φ̄k+1(x2)

= log

∫
Ω

eψ̄k(y)−cε(x2,y)ν⋆,k(dy)− log

∫
Ω

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

≤ log

[
esupy∈Ω |cε(x1,y)−cε(x2,y)|

∫
Ω

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

]
− log

∫
Ω

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

= sup
y∈Ω
|cε(x1,y)− cε(x2,y)| ≤ 2∥cε∥∞.

As µ⋆(φ̄k) = 0, we have supx φ̄k(x) ≥ 0 and infx φ̄k(x) ≤ 0, hence the above implies ∥φ̄k∥∞ ≤
2∥cε∥∞. The definition of ψ̄k in Eq.(27) yields ∥ψ̄k∥∞ ≤ ∥φ̄k∥∞ + ∥cε∥∞ ≤ 3∥cε∥∞.

The key to the proof is to adopt the strong convexity of the function ex for x ∈ [−α,∞) and some
constant α ∈ R,

eb − ea ≥ (b− a)ea + e−α

2
|b− a|2 for a, b ∈ [−α,∞). (30)

We also present two supporting lemmas in order to complete the proof
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Lemma 5. Given φ,φ′ ∈ L2(µ⋆) and ψ,ψ′ ∈ L2(ν⋆), and define

∂1G(φ,ψ)(x) = 1−
∫
Ω

eφ(x)+ψ(y)−cε(x,y)ν⋆(dy)

∂2G(φ,ψ)(y) = 1−
∫
Ω

eφ(x)+ψ(y)−cε(x,y)µ⋆(dx).

(31)

If both φ⊗ ψ − cε ≥ −α and φ′ ⊕ ψ′ − cε ≥ −α for some α ∈ R, we have

G(φ′, ψ′)−G(φ,ψ) ≥
∫
Ω

∂1G(φ
′, ψ′)(x)[φ′(x)− φ(x)]µ⋆(dx)

+

∫
Ω

∂2G(φ
′, ψ′)(y)[ψ′(y)− ψ(y)]ν⋆(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⋆⊗ν⋆).

Proof By Eq.(30), we have

G(φ′, ψ′)−G(φ,ψ)

= µ⋆(φ
′ − φ) + ν⋆(ψ

′ − ψ) +
∫∫

Ω2

(eφ⊕ψ−cε − eφ
′⊕ψ′−cε)d(µ⋆ ⊗ ν⋆)

≥ µ⋆(φ′ − φ) + ν⋆(ψ
′ − ψ) +

∫∫
Ω2

(φ⊕ ψ − φ′ ⊕ ψ′)eφ
′⊕ψ′−cεd(µ⋆ ⊗ ν⋆)

+
e−α

2

∫∫
Ω2

∥φ⊕ ψ − φ′ ⊕ ψ′∥22d(µ⋆ ⊗ ν⋆)

=

∫
Ω

∂1G(φ
′, ψ′)(x)[φ′(x)− φ(x)]µ⋆(dx) +

∫
Ω

∂2G(φ
′, ψ′)(y)[ψ′(y)− ψ(y)]ν⋆(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⋆⊗ν⋆).

Lemma 6. Given a small ϵ ≤ 1
(D+1)2 , we have

G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k) ≥
σ

2

(
∥φ̄k+1 − φ̄k∥2L2(µ⋆)

+ ∥ψ̄k+1 − ψ̄k∥2L2(ν⋆)

)
−O(ϵ),

where σ := e−6∥cε∥∞ ; the big-O notation mainly depends on volume of the domain Ω.

Proof We first decompose the LHS as follows

G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k) = G(φ̄k+1, ψ̄k+1)−G(φ̄k+1, ψ̄k)︸ ︷︷ ︸
I

+G(φ̄k+1, ψ̄k)−G(φ̄k, ψ̄k)︸ ︷︷ ︸
II

.

For the estimate of I, by Lemma 5 with σ = e−6∥cε∥∞ , we have

I ≥
∫
Ω

∂2G(φ̄k+1, ψ̄k+1)(y)[ψ̄k+1(y)− ψ̄k(y)]ν⋆(dy) +
σ

2
∥ψ̄k − ψ̄k+1∥L2(ν⋆).

For the integral above, by the definition of ∂2G in Eq.(31), we have

∂2G(φ̄k+1, ψ̄k+1)(y)ν⋆(dy)

= ν⋆(dy)−
∫
Ω

eφ̄k+1(x)+ψ̄k+1(y)−cε(x,y)µ⋆(dx)ν⋆(dy)

= ν⋆(dy)−
∫
Ω

π2k+2(dx, ·)
dµ⋆ ⊗ dν⋆

dµ⋆,k+1 ⊗ dν⋆,k+1
,

(32)

where the last equality follows by the LHS of Eq.(15), the last integral is with respect to x.
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Apply Lemma 7 with respect to dµ⋆

dµ⋆,k+1
(x)∫

Ω

π2k+2(dx, ·)
dµ⋆ ⊗ dν⋆

dµ⋆,k+1 ⊗ dν⋆,k+1
≤

∫
Ω

(
1 +O(ϵ)

)
π2k+2(dx, ·)

ν⋆(dy)

ν⋆,k+1(dy)

≤
(
1 +O(ϵ)

)
ν⋆,k+1(dy)

ν⋆(dy)

ν⋆,k+1(dy)

=
(
1 +O(ϵ)

)
ν⋆(dy),

(33)

where the second inequality is derived by the fact that the second marginal of π2k+2 is ν⋆,k+1 in
Eq.(14). Similarly, we can show

∫
Ω
π2k+2(dx, ·) dµ⋆⊗dν⋆

dµ⋆,k+1⊗dν⋆,k+1
≳ (1−O(ϵ))ν⋆(dy).

Combining Eq.(32) and (33), we have

|∂2G(φ̄k+1, ψ̄k+1)(y)ν⋆(dy)| ≲ ϵν⋆(dy). (34)

We now build the lower bound of the integral as follows∫
Ω

∂2G(φ̄k+1, ψ̄k+1)(y)[ψ̄k+1(y)− ψ̄k(y)]ν⋆(dy)

≳ −ϵ
∫
Ω

∣∣ψ̄k+1(y)− ψ̄k(y)
∣∣ν⋆(dy)

≳ −ϵ,

(35)

where the first inequality follows by Eq.(32) and the second inequality follows by the boundedness of
the potential function in Lemma 4. The above means that I ≥ σ

2 ∥ψ̄k − ψ̄k+1∥L2(µ⋆⊗ν⋆) −O(ϵ). For
the estimate of II, Lemma 5 yields

II ≥
∫
Ω

∂1G(φ̄k+1, ψ̄k)(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx) +
σ

2
∥φ̄k − φ̄k+1∥L2(µ⋆).

Recall the definition of φ̄k+1 in Eq.(28) states that
∫
Ω
eψ̄k(y)−cε(x,y)ν⋆,k(dy) = e−φ̄k+1(x)+λk .

Apply Lemma 7 with respect to dν⋆
dν⋆,k

(y)

∂1G(φ̄k+1, ψ̄k)(x) = 1− eφ̄k+1(x)

∫
Ω

eψ̄k(y)−cε(x,y)ν⋆,k(dy)
ν⋆(dy)

ν⋆,k(dy)

≥ 1− eφ̄k+1(x)

∫
Ω

(
1 +O(ϵ)

)
eψ̄k(y)−cε(x,y)ν⋆,k(dy)

≥ 1− (1 +O(ϵ))eλk −O(ϵ)

∫
Ω

∥y∥22eφ̄k+1(x)+ψ̄k(y)−cε(x,y)ν⋆,k(dy)︸ ︷︷ ︸
bounded and non-negative from Lemma 4

= 1− (1 +O(ϵ))eλk −O(ϵ)

∂1G(φ̄k+1, ψ̄k)(x) ≤ 1 + (1 +O(ϵ))eλk +O(ϵ),

which includes a deterministic scalar (independent of x) and a small perturbation (dependent of x
and ϵ). Denote R(x,y) = ∥y∥22eφ̄k+1(x)+ψ̄k(y)−cε(x,y), Combining the centering operation with
µ⋆(φ̄k+1) = µ⋆(φ̄k) = 0∫

Ω

∂1G(φ̄k+1, ψ̄k)(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)

= deterministic scalar ·
∫
Ω

[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)︸ ︷︷ ︸
:=0 by the centering operation

+ϵ

∫
Ω

R(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)︸ ︷︷ ︸
integrable by the boundedness ofR,φ̄k+1,ψk

= O(ϵ).

Combining the estimates of I and II completes the proof.
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C.1 CONVERGENCE OF DUAL AND POTENTIALS

Proof of Lemma 2

Part I: Convergence of the Dual

By Lemma 5 with α = 6∥c∥∞ and the decomposition in Eq.(29), we have

G(φ̄k, ψ̄k)−G(φ̄⋆, ψ̄⋆)

≥
∫
Ω

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

+

∫
Ω

∂2G(φ̄k, ψ̄k)(y)[ψ̄k(y)− ψ̄⋆(y)]ν⋆(dy)

+
σ

2

(
∥φ̄k − φ̄⋆∥2L2(µ⋆)

+ ∥ψ̄k − ψ̄⋆∥2L2(ν⋆)

)
≥

∫
Ω

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx) +
σ

2
∥φ̄k − φ̄⋆∥2L2(µ⋆)

−O(ϵ),

(36)

where σ := e−6∥cε∥∞ , and the last inequality follows by Eq.(34) and boundedness of ψ̄k and
ψ̄⋆ in Lemma 4. For the first integral,

∫
Ω
∂1G(φ̄k+1, ψ̄k)(x)[φ̄k(x) − φ̄⋆(x)]µ⋆(dx) = O(ϵ) be-

cause ∂1G(φ̄k+1, ψ̄k)(x) includes a deterministic scalar and a small perturbation with µ⋆(φ̄k(x) =
µ⋆(φ̄⋆(x)) = 0.

Hence∫
Ω

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

=

∫
Ω

[∂1G(φ̄k, ψ̄k)(x)− ∂1G(φ̄k+1, ψ̄k)(x)][φ̄k(x)− φ̄⋆(x)]µ⋆(dx) +O(ϵ)

≥ − 1

2σ
∥∂1G(φ̄k, ψ̄k)− ∂1G(φ̄k+1, ψ̄k)∥2L2(µ⋆)

− σ

2
∥φ̄k(x)− φ̄⋆(x)∥2L2(µ⋆)

+O(ϵ),

(37)

where the inequality follows from Hölder’s inequality and Young’s inequality.

Plugging Eq.(37) into Eq.(36), we have

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤
1

2σ
∥∂1G(φ̄k, ψ̄k)− ∂1G(φ̄k+1, ψ̄k)∥2L2(µ⋆)

+O(ϵ). (38)

Note that

|∂1G(φ̄k, ψ̄k)(x)− ∂1G(φ̄k+1, ψ̄k)(x)| ≤
∫
Ω

∣∣∣eφ̄k+1⊕ψ̄k−cε − eφ̄k⊕ψ̄k−cε
∣∣∣ ν⋆(dy)

≤ e6∥cε∥∞

∫
Ω

|φ̄k+1 ⊕ ψ̄k − φ̄k ⊕ ψ̄k|ν⋆(dy)

=
1

σ
|φ̄k+1(x)− φ̄k(x)|,

(39)

where the second inequality follows by Lemma 4 and the exponential function follows a Lipschitz
continuity such that: ea − eb ≤ eM |b− a| for a, b ≤M ; σ := e−6∥cε∥∞ .

First combining Eq.(38) and (39) and then including Lemma 6, we conclude that

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤
1

2σ3
∥φ̄k+1 − φ̄k∥2L2(µ⋆)

+O(ϵ)

≤ 1

σ4

(
G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k)

)
+
O(ϵ)

σ4
,

where the last inequality follows by σ ≤ 1. Further writing ∆k = G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k), we have

∆k ≤
1

σ4
(∆k −∆k+1) +

O(ϵ)

σ4
.
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In other words, we can derive the contraction property as follows

∆k+1 ≤ (1− σ4)∆k +O(ϵ) ≤ · · · ≤ (1− σ4)k+1∆0 +O(e24∥cε∥∞ϵ).

which hereby completes the claim of the theorem for any k ≥ 1.

Part II: Convergence of the Potentials

For the convergence of the potential function, in spirit to Lemma 6, we obtain

G⋆(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) := ∆k ≥
σ

2

(
∥φ̄⋆ − φ̄k∥2L2(µ⋆)

+ ∥ψ̄⋆ − ψ̄k∥2L2(ν⋆)

)
−O(ϵ).

We can upper bound the potential as follows

∥φ̄⋆ − φ̄k∥2L2(µ⋆)
+ ∥ψ̄⋆ − ψ̄k∥2L2(ν⋆)

≤ 2

σ
∆k +

O(ϵ)

σ
≤ 2

σ
(1− σ4)k∆0 +O(e30∥cε∥∞ϵ).

Further applying (|a|+ |b|)2 ≤ 2a2 + 2b2 and
√
c2 + d2 ≤ |c|+ |d|, we have

∥φ̄⋆ − φ̄k∥L2(µ⋆) + ∥ψ̄⋆ − ψ̄k∥L2(ν⋆) ≤
√

4

σ
(1− σ4)k+1∆0 +O(e15∥cε∥∞ϵ1/2)

≲ e3∥cε∥∞β
k
2
ε + e15∥cε∥∞ϵ1/2,

(40)

where βε = 1− σ4 = 1− e−24∥cε∥∞ .

C.2 CONVERGENCE OF THE STATIC COUPLINGS

Proof of Theorem 2

Recall from the bounded potential in Lemma 4, we have

eφ̄⋆⊕ψ̄⋆−cε − eφ̄k⊕ψ̄k−cε ≤ e6∥cε∥∞
(
|φ̄⋆ − φk|+ |ψ̄⋆ − ψ̄k|

)
. (41)

Following Theorem 3 of Deligiannidis et al. (2021), we define a class of 1-Lipschitz functions
Lip1 =

{
F
∣∣|F (x0,y0)− F (x1,y1)| ≤ ∥x1 − x0∥2 + ∥y1 − y0∥2

}
. Since the structural property

(10) allows to represent π⋆ using (φ⋆ + a)⊕ (ψ⋆ − a) for any a. For any F ∈ Lip1, we have∫∫
X×Y

Feφ̄⋆⊕ψ̄⋆−cεd(µ⋆ ⊗ ν⋆)−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k)

≤
∫∫

X×Y

Feφ̄⋆⊕ψ̄⋆−cεd(µ⋆ ⊗ ν⋆)−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆ ⊗ ν⋆)

+

∫∫
X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆ ⊗ ν⋆)−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k)

≤
∫∫

X×Y

F |eφ̄⋆⊕ψ̄⋆−cε − eφ̄k⊕ψ̄k−cε |︸ ︷︷ ︸
by Eq.(41)

d(µ⋆ ⊗ ν⋆)

+

∫∫
X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆ ⊗ |ν⋆ − ν⋆,k|+ |µ⋆ − µ⋆,k| ⊗ ν⋆,k)

≲ e9∥cε∥∞βk/2 + e21∥cε∥∞ϵ1/2,

where the last inequality is mainly derived from the first term in the second inequality by combining
(40) and (41); the second term in the second inequality can be upper bounded by Lemma 7.

Recall the definition of the duality of the 1-Wasserstein distance, we have

W1(πk, π⋆) = sup

{∫∫
X×Y

Feφ̄⋆⊕ψ̄⋆−cεd(µ⋆ ⊗ ν⋆)

−
∫∫

X×Y

Feφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) : F ∈ Lip1

}
≤ O(e9∥cε∥∞βk/2 + e21∥cε∥∞ϵ1/2).
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C.3 AUXILIARY RESULTS

Lemma 7. Given probability densities ρ(x) = e−U(x)/Z and ρ̃(x) = e−Ũ(x)/Z̃ defined on Ω, where
Ω is a bounded domain that contains Ω and Ω, Z and Z̃ are the normalizing constants. For small
enough ϵ ≲ 1

(D+1)2 , where D is the radius of a centered ball covering Ω, we have

1−O(ϵ) ≤ ρ(x)

ρ̃(x)
≤ 1 +O(ϵ), 1−O(ϵ) ≤ ρ̃(x)

ρ(x)
≤ 1 +O(ϵ). (42)

Proof

From the approximation assumption A4: ∥∇Ũ(x)−∇U(x)∥2 ≤ ϵ(1 + ∥x∥2).
Moreover, U satisfies the smoothness assumption A3. Note that for any x,y ∈ Ω

U(x)− U(y) =

∫ 1

0

d

dt
U(tx+ (1− t)y) =

∫ 1

0

⟨x− y,∇U(tx+ (1− t)y)⟩dt.

Moreover, there exist x0 such that U(x0) = Ũ(x0) since ρ and ρ̃ are probability densities. It follows

|Ũ(x)− U(x)| =
∣∣∣∣ ∫ 1

0

⟨x− x0,∇Ũ(ẋt)−∇U(ẋt)⟩dt
∣∣∣∣

≤
∫ 1

0

∥x− x0∥2 ·
∥∥∇Ũ(ẋt)−∇U(ẋt)

∥∥
2
dt

≤ ϵ(∥x∥2 + ∥x0∥2)(1 + ∥x∥2) ≲ ϵ(D + 1)2,

where ẋt = tx+ (1− t)x0 is a line from x0 to x.

For the normalizing constant, we have

|Z̃− Z| ≤
∫
Ω

e−U(x)
∣∣e−Ũ(x)+U(x) − 1

∣∣dx ≲ ϵ

∫
Ω

e−U(x)ϵ(D + 1)2dx,

where the last inequality follows by Eq.(C.3) and ea ≤ 1 + 2a for a ∈ [0, 1]. We deduce∣∣∣∣log ρ(x)ρ̃(x)

∣∣∣∣ =
∣∣∣∣∣Ũ(x)− U(x) + log

Z̃
Z

∣∣∣∣∣ ≤ O(ϵ).

Notably, the above lemma also implies that KL(ρ∥ρ̃) ≤ O(ϵ) and KL(ρ̃∥ρ) ≤ O(ϵ).

C.4 CONNECTIONS BETWEEN DUAL OPTIMIZATION AND PROJECTIONS

To see why (12b) holds. We first denote the second marginal of dπ(φk, ψk) := eφk⊕ψkdG
by ν′ and then proceed to show ν′ = ν⋆ (Nutz, 2022). Recall that G is concave and ψk =
argmaxψ∈L1(ν⋆)G(φk, ψ), it suffices to show that given fixed φk ∈ L1(µ⋆), ψk ∈ L1(ν⋆), a
constant η and bounded measurable function δψ : Rd → R, the maximality of G(φk, ψk) implies

0 =
d

dη

∣∣∣∣
η=0

G(φk, ψk + ηδψ) = ν⋆(δψ)−
∫∫

Ω2

δψe
φk⊕ψkdG = ν⋆(δψ)− ν′(δψ).

Hence ν′ = ν⋆. Similarly, we can show (12a).

C.5 CONNECTIONS BETWEEN STATIC PRIMAL IPF (9) AND STATIC DUAL IPF (13)

It suffices to show the equivalence between π2k = argminπ∈Π(·,ν⋆) KL(π∥π2k−1) and ψk(y) =

− log
∫
Ω
eφk(x)−cε(x,y)µ⋆(dx).

For any π2k ∈ Π(·, ν⋆), we invoke the disintegration of measures and obtain π2k = K? ⊗ ν⋆. In
addition, we have π2k−1 = K⊗ ν′. Now we can formulate

KL(π∥π2k−1) = KL(ν⋆∥ν′) + KL(K?∥K).
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The conditional probability of π2k−1 given y is a normalized probability such that
dπ2k−1

dµ⋆⊗ν⋆∫ dπ2k−1

dµ⋆⊗ν⋆ dµ⋆
=

dK

dµ⋆
(x,y) =

eφk⊕ψk−1−cε∫
eφk⊕ψk−1−cεdµ⋆

=
eφk−cε∫
eφk−cεdµ⋆

.

The minimizer is achieved by setting K? = K, namely π2k = K⊗ ν. It follows that

dπ2k
d(µ⋆ ⊗ ν⋆)

=
d(K⊗ ν⋆)
d(µ⋆ ⊗ ν⋆)

=
eφk−cε∫
eφk−cεdµ⋆

:= eφk⊕ψk−cε .

In other words, we have ψk(y) = − log
∫
Ω
eφk(x)−cε(x,y)µ⋆(dx), which verifies the connections.

D EXPERIMENTAL DETAILS

Reflection Implementations Lou & Ermon (2023) already gave a nice tutorial on the implementa-
tion of hypercube-related domains with image applications. For extensions to general domains, we
provide our solutions in Algorithm 4. The crucial component is a Domain Checker to verify if a point
is inside or outside of a domain, and it appears to be quite computationally expensive. To solve this
problem, we propose two solutions :

1) If there exists a computationally efficient conformal map that transforms a manifold into simple
shapes, such as a sphere or square, we can apply simple rules to conclude if a proposal is inside a
domain.

2) If the first solution is expensive, we can cache the domain through a fine-grid mesh {Xi,j,···}i,j,···.
Then, we approximate the condition via

min
i,j,···

Distance(x̃k−1, {Xi,j,···}i,j,···) ≤ threshold.

With the parallelism in Torch or JAX, the above calculation can be quite efficient. Nevertheless, a
finer grid leads to a higher accuracy but also induces more computations. We can also expect the
curse of dimensionality in ultra-high-dimensional problems and simpler domains are more preferred
in such cases. Moreover, if xk+1 /∈ Ω in extreme cases, one may consider ad-hoc rules with an
error that decreases as we anneal the learning rate. Other elegant solutions include slowing down the
process near the boundary or warping the geometry with a Riemannian metric (Fishman et al., 2023).

Algorithm 4 Practical Reflection Operator
Simulate a proposal x̃k+1 via an SDE given xk ∈ Ω.
if Domain Checker: x̃k+1 ∈ Ω then

Set xk+1 = x̃k+1

else
Search (binary) the boundary ẋk+1 ∈ ∂Ω, where ẋk+1 = ηxk + (1− η)x̃k+1 for η ∈ (0, 1).
Compute ν = x̃k+1 − ẋk+1 and the unit normal vector n associated with ẋk+1.
Set xk+1 = ẋk+1 + ν − 2⟨ν,n⟩n.

end if

D.1 DOMAINS OF 2D SYNTHETIC DATA

We consider input t ∈ [0, 1] and output (x, y) ∈ R2. The normal vector can be derived accordingly.

Flower (petals p = 5 and move out length m = 3)

r = sin(2πpt) +m, x = r cos(2πt), y = r sin(2πt).

Heart

x = 16 sin(2πt)3, y = 13 cos(2πt)− 5 cos(4πt)− 2 cos(6πt)− cos(8πt).

Octagon (c+ 1 edges (Xi, Yi)
c
i=0 with (Xc, Yc) = (X0, Y0))

r = ct− ⌊ct⌋; x = (1− r) ·X⌊ct⌋ + r ·X⌊ct⌋+1; y = (1− r) · Y⌊ct⌋ + r · Y⌊ct⌋+1.
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Table 2: Densities using (relected) Langevin diffusion with a practical running time and infinite time.

SDE Practical Time Infinite Time SDE Practical Time Infinite Time
VP Approx. Gaussian Gaussian RVP Approx. Truncated Gaussian Truncated Gaussian
VE Approx. Gaussian Uniform RVE Approx. Truncated Uniform Truncated Uniform

D.2 HOW TO INITIALIZE: WARM-UP STUDY

Consider a Langevin diffusion (LD) and a reflected Langevin (RLD) with score functions S1 and S2:

LD : dxt = S1(xt)dt+ dwt, xt ∈ Rd

RLD : dxt = S2(xt)dt+ dwt + n(x)dLt, xt ∈ Ω.

LD converges to µ1 ∝ eS1(x) and RLD converges to µ2 ∝ eS2(x)1x∈Ω (Bubeck et al., 2018;
Lamperski, 2021) as t→∞. In other words, inheriting the score function S1 from LD to RLD (by
setting S1 = S2) yields the desired invariant distribution µ11x∈Ω.

Denote by RVP (or RVE) the VP-SDE (or VE-SDE) in reflected SB. One can easily show in Table
2 that VP (or RVP) converges approximately to a (or truncated) Gaussian prior within a practical
training time, which implies an unconstrained VP-SDE diffusion model is a good warm-up candidate
for reflected SB. Empirically, we are able to verify this fact through 2D synthetic data.

However, this may not be the case for VE because it converges to a uniform measure in Rd but only
obtains an approximate Gaussian in a short time. By contrast, RVE converges to the invariant uniform
distribution much faster because it doesn’t need to fully explore Rd. This implies initializing the
score function from VE-based diffusion models for reflected SB may not be a good choice. Instead,
we use RVE-based diffusion models (Lou & Ermon, 2023) as the warm-up.

D.3 GENERATION OF IMAGE DATA

Datasets. Both CIFAR-10 and ImageNet 64×64 are obtained from public resources. All RGB values
are between [0, 1]. The domain is Ω = [0, 1]d, where d = 3 × 32 × 32 for the CIFAR-10 task,
d = 3× 64× 64 for the ImageNet task, d = 1× 32× 32 for the MNIST task.

SDE. We use reflected VESDE for the reference process due to its simplicity (Lou & Ermon, 2023),
and it helps with facilitating the warmup training. The SDE is discretized into 1000 steps. The
initial and the terminal scale of the diffusion are σmin = 0.01 and σmax = 5 respectively. The prior
reference is set as the uniform distribution on Ω.

Training. The alternate training Algorithm 1 can be accelerated with proper initialization, and the
pre-training of the backward score model is critical for successfully training the model. At the
warmup phase, the forward score is set as zero and only the backward score model is trained by
inheriting the setup in the reflected SGM (Lou & Ermon, 2023). The learning rate is 10−5. To
improve the training efficiency and stabilize the full path-based training target in Algorithm 1, We use
Exponential Moving Average (EMA) in the training with the decay rate of 0.99 (Hyvärinen, 2005;
Vahdat et al., 2021; Lou & Ermon, 2023).

Neural networks. As the high accuracy inference task relies more on the backward score model than
the forward score model, the backward process is equipped with more advanced and larger structure.
The backward score function uses NCSN++ (Song et al., 2021b) for the CIFAR-10 task and ADM
(Dhariwal & Nichol, 2022) for the ImageNet task. The NCSN++ network has 107M parameters. The
ADM network has 295M parameters. For MNIST, a smaller U-Net structure with 1.3M parameters
(2 attention heads per attention layer, 1 residual block per downsample, 32 base channels) is used for
both forward and backward processes. Many previous studies have verified the success of these neural
networks in the diffusion based generative tasks (Song et al., 2021b; Lou & Ermon, 2023; Chen et al.,
2022b). The forward score function is modeled using a simpler U-Net with 62M parameters.

Inference. In both CIFAR-10 and ImageNet 64×64 tasks, images are generated unconditionally, and
the quality of the samples is evaluated using Frechet Inception Distance (FID) over 50,000 samples
(Heusel et al., 2017; Song et al., 2021b). In MNIST, the the quality of the samples is evaluated using
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Negative Log-Likelihood (NLL). Predictor-Corrector using reflected Langevin dynamics is used to
further improve the result which does not require any change of the model structure (Song et al.,
2021b; Chen et al., 2022b; Lou & Ermon, 2023; Bubeck et al., 2018).

x′t = reflection
(

xt + σts(t, xt) +
√
2σtε

)
, ε ∼ N(0, I)

s(t, xt) =
1

g
[−→z θt (t, xt) +

←−z ωt (t, xt)], σt =
2r2SNRg

2∥ε∥2

∥s(t, xt)∥2

where −→z θt ,
←−z ωt are the backward and forward score functions as in Algorithm 1.

The likelihood of the diffusion model follows the probabilistic flow neural ODE (Song et al., 2021b;
Chen et al., 2022b; Lou & Ermon, 2023)

dxt =
[
f(xt, t)−

1

2
g(t)2s(t, xt)

]
dt := f̃(xt, t)dt

log p0(x0) = log pT (xT ) +
∫ T

0

∇ · f̃(xt, t)dt

Figure 6: Generated samples via reflected SB on MNIST.
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Figure 7: Generated samples via reflected SB on CIFAR-10.

26



Under review as a conference paper at ICLR 2024

Figure 8: Generated samples via reflected SB on ImageNet-64.

D.4 GENERATION IN THE SIMPLEX DOMAIN

Alongside the irregular domains illustrated in Figure 2 and the hypercube for image generation,
we implement the method on the high-dimensional projected simplex using a similar approach as
described in Lou & Ermon (2023). A d-projected simplex is defined as ∆̄d := {x ∈ Rd :

∑
i xi ≤

1,xi ≥ 0}.
The data is created by collecting the image classification scores of Inception v3 from the last softmax
layer with 1008 dimension. All the data fit into the projected simplex ∆̄1008. The Inception model
is loaded from a pretrained checkpoint*, and the classification task is performed on the 64 × 64
Imagenet validation dataset of 50,000 images. Similar to Lou & Ermon (2023), the diffusion path is
constrained within the projected simplex using the stick breaking method as follows:

[f(x)]i = xi

d∏
j=i+1

(1− xj)

*https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights
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The corresponding inverse mapping is,

[f−1(y)]i =
yi

1−
∑d
j=i+1 yj

In every diffusion step, we first use the reflection operator to limit the data within hypercube, then
apply the above stick breaking method to constrain the data within the projected simplex. The neural
network of the score function is composed of 6 dense layers with 512 latent nodes.

The results are shown in Figure 8. We compare the generated distribution of the most likely classes.
The category index is in the same order of the pre-trained model’s output. The last plot in Figure
8 compares the cumulative distribution of the ground truth and generated distribution, providing a
cleaner view of the comparison. The curve closely follows the diagonal in the CDF comparison,
signifying a strong alignment between the true data distribution and the distribution derived from the
generative model.

Figure 9: Data generation in simplex.

D.5 OPTIMAL TRANSPORT HELPS REDUCE NFES

To demonstrate the effectiveness of OT in reducing the number of function evaluations (NFEs), we
study generations based on different NFEs (10, 20, 80) and compare the reflected Schrödinger bridge
with reflected diffusion (implicit) (Fishman et al., 2023). We use the same setup (e.g. implicit training
loss with the same training budget) to be consistent except that reflected SB uses a well-optimized
forward network −→z θt to train the backward network←−z ωt while reflected diffusion can be viewed as
the first stage of SB training by fixing −→z θt ≡ 0.

We observe in Figure 10 that in the regime of NFE=20, both reflected diffusion (implicit) and reflected
SB demonstrate remarkably similar generation performance. Despite the inherent compromise in
sample quality with smaller NFEs, our investigation revealed that a well-optimized −→z θt significantly
contributes to training←−z ωt compared to the baseline with −→z θt ≡ 0, leading to an improved sample
quality even in cases where NFE is set to 10 and 12.

Figure 10: Reflected Schrödinger bridge v.s. reflected diffusion (implicit) based on different NFEs.
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