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Abstract

Extracting physical dynamical system parameters from
recorded observations is key in natural science. Current
methods for automatic parameter estimation from video train
supervised deep networks on large datasets. Such datasets
require labels, which are difficult to acquire. While some
unsupervised techniques–which depend on frame prediction–
exist, they suffer from long training times, initialization in-
stabilities, only consider motion-based dynamical systems,
and are evaluated mainly on synthetic data. In this work,
we propose an unsupervised method to estimate the physi-
cal parameters of known, continuous governing equations
from single videos suitable for different dynamical systems
beyond motion and robust to initialization. Moreover, we
remove the need for frame prediction by implementing a
KL-divergence-based loss function in the latent space, which
avoids convergence to trivial solutions and reduces model
size and compute. We first evaluate our model on synthetic
data, as commonly done. After which, we take the field
closer to reality by recording Delfys75: our own real-world
dataset of 75 videos for five different types of dynamical
systems to evaluate our method and others. Our method
compares favorably to others. Code and data are avail-
able online: https://github.com/Alejandro-
neuro/Learning_physics_from_video.

1. Introduction
Estimating dynamical parameters of physical and biological
systems from videos allows relating visual data to known
governing equations which can be used to make predictions,
improve mathematical models, understand diseases, and,
in general, advance our knowledge in science and technol-
ogy [7, 20, 37]. Use cases include trajectory prediction for
celestial objects [17], healthy and diseased tissue characteri-
zation [16], and physical model validation [7, 8].

Fitting governing equations is an inverse problem [2],
which often requires using additional sensors to directly
measure system states. Video-based measurements can elim-
inate the need for additional sensors, yet, require manually

Figure 1. We propose a novel unsupervised approach to physical
parameter estimation from videos. Black squares are video frames
with different states of a white pendulum. Starting from a frame
at time t (center) an encoder estimates the dynamical states zt.
A learnable physics block (Physics ODE) solves the dynamical
system equations to predict future states ẑt+1 in latent space (blue
lines). Previous state-of-the-art methods (left) then use decoders
and a reconstruction loss (L, purple left) to train the physics ODE
block. In contrast, our method (right) completely avoids the need
for a decoder by leveraging a loss function in the latent space (L,
blue right). Our loss function minimizes the distance between the
estimated states ẑt+1 and zt+1.

labelling pixels or video frames which is time-consuming
and expensive. Therefore, automated and unsupervised meth-
ods are key to extract dynamics from videos and accurately
estimate physical parameters [7, 17, 19, 20, 37].

Recent work addressed parameter estimation from video
by deep learning [7, 8, 43] or reinforcement learning [3].
Supervised methods rely on datasets with extensive and
high precision labels which are exceedingly difficult to ob-
tain [1, 4, 29, 31, 40]. To avoid labeling, current unsu-
pervised methods for estimating physical parameters build
on encoder-decoder network designs: reconstructing video
frames from low-dimensional representations. However,
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frame reconstruction is a mere by-product of the parame-
ter estimation and leads to hardwired architectures which
cannot be extended to different dynamics [17, 20]. Conse-
quently, current solutions [17, 20, 23, 44, 51] are constrained
to motion dynamics, excluding a wide variety of systems
with dynamics related to brightness, color, and deforma-
tions, among others [17, 20]. While such methods have been
shown to work well on synthetic data [17, 20, 49], they are
resource intensive, sensitive to initialization, and it is not
clear how well they will perform on realistic data.

Here, we propose an unsupervised method to solve the in-
verse problem using videos of dynamical systems governed
by known continuous equations. Unlike prior approaches,
our method is versatile across various systems beyond mo-
tion. We use a loss in latent space that eliminates the need
for a reconstruction decoder. This approach is faster, less
resource-intensive, and more robust to initial conditions than
existing methods. Additionally, to take a step towards real-
world applications, we collect the Delfys75 dataset: 75 real-
world videos across five dynamical systems, with ground-
truth parameters for motion, brightness, and scale dynamics.
We benchmark baselines and our model, where we compare
favorably. The proposed method is visualised in Figure 1.
Our main contributions are summarized as:

• Accurate dynamical state estimation from video with pre-
cise extrapolation at test time.

• A decoder-free model, capable of modeling dynamics
beyond motion, robust to changes in initial conditions.

• An unsupervised latent space loss which avoids model
collapse in unsupervised parameter estimation.

• Delfys75: a real-world dataset of 75 videos for 5 different
physical systems with annotated ground truth.

2. Related Work

Physics and deep learning. The relationship between
physics and deep learning is symbiotic: Physics inspired
segmentation [28] and generative models [38, 39] as well as
the design of new architectures [14]. Likewise, deep learning
is used to study, understand and create new physics from
data [7, 8, 19, 43]. Techniques like physics-informed neural
networks (PINN) [24, 35] or Lagrangian neural networks
(LLN) [9, 30] are designed to solve inverse problems. Yet,
PINNs are usually constrained to initial conditions, boundary
conditions, and time reference [13, 24, 32]. Moreover, these
methods are supervised and require labeled data. Because
obtaining labeled data in inverse problems is expensive or
even infeasible [1] we avoid the need for labels by proposing
an unsupervised method, following [1, 4, 29, 31, 40].

While some methods incorporate physics knowledge or
design inspiration, they focus on future predictions rather
than estimating physical parameters [5, 21, 34, 42]. Alterna-
tively, some approaches attempt to relearn or propose new

equations [8, 12, 27]. Our method differs by using known
governing equations to both predict on latent space and learn
physical parameters, which prevents direct comparisons with
these techniques. Moreover, some of these approaches not
suitable for video applications.

Learning physics from video. Research on learning
physics from videos often focuses on frame prediction [6, 11,
15, 26] and not on accurate parameter estimation. Existing
works on extracting physical information from videos [47]
consider physical parameters (e.g. the friction coefficient) or
the value of the dynamical state variable (e.g. the position
or velocity), but employ supervised methods which require
labelled datasets with access to the dynamical variables’ or
parameters’ ground truth [10, 30, 35, 43, 45, 47, 49, 50].
Moreover, these methods mainly address motion dynamics
and are based on systems similar to interaction networks [6,
41, 43]. Some methods [22, 44] aim to parameterize and
solve differential equations to simulate the deformations.
However, dynamical systems are not limited to motion, and
we propose a method that goes beyond motion, illustrated
with use-cases for intensity changes and scaling.

Unsupervised parameter estimation from video. Ex-
isting unsupervised work uses frame representations and
physics priors of known governing equations with unknown
parameters to estimate [17, 20, 23, 44, 51]. Some mod-
els [23, 51] use variational auto-encoders (VAE) [25] with
a physics engine between the encoder and the decoder to
estimate parameters; however, the reconstructions are poor,
constraining the model to simple motion problems. Ap-
proaches similar to ours [17, 20] estimate parameters from
a single video without annotations, and constitute our base-
lines. Empirically, our method compares favorably in terms
of robustness to initializations, analysis of latent space dy-
namics and extension to different systems.

Datasets. One dataset for unsupervised parameter estima-
tion from video is Physics101 [46], which includes record-
ings of physical experiments, but lacks parameter ground
truths and object masks required by some models [17]. Con-
sequently, Physics101 has not been used for unsupervised
parameter estimation, and existing models are primarily
tested on synthetic datasets, with minimal overlap across
studies [17, 20, 49]. In this paper, we introduce Delfys75:
a new dataset featuring real-world videos of diverse experi-
ments, estimated physical parameters, and object masks.

Baselines. As a strong unsupervised parameter estima-
tor, Jaques et al. [20] uses a traditional auto-encoder with a
physics engine in the latent space to reconstruct inputs and
generate future frame predictions. The model also incorpo-
rates a U-Net in the encoder to learn segmentation masks for
the object of interest in an unsupervised way; the capability
to learn this mask is linked to the spatial transformer used
in the decoder similar to [18]. During inference, the spatial
transformer is used to perform affine transformations on the
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Figure 2. Method overview. A video recording of an object with a
periodic brightness change (bottom) displays dynamics zreal with
sampling period δt. Each frame is mapped by the encoder Eθ to
the unsupervised latent representation zt. The physics block Pγ

generates a prediction of the future step ẑt+1, which we compare
to the encoded representation zt+1 of frame t+1. Top-right: Loss
function of our model; the first term ensures the prediction fits with
the encoding, while the second expression controls the variance of
z. This image summarizes our methodology and the relationship
between the different blocks.

mask to ‘move’ the object in future frame predictions. This
limits the application of [20] to motion dynamics.

On the other hand, Hofherr et al. [17] uses a differentiable
ODE solver to estimate the parameters. This model also uses
a spatial transformer, but at the pixel level: Object pixels are
displaced using predictions made by the ODE solver. The
model needs to be trained with the use of masks, to learn
which pixels are displaced in future frames.

Taken together, reconstructing frames using only low di-
mensional data (e.g. a set of positions and velocities) is
challenging and slows down training for parameter estima-
tion. Therefore, [17, 20, 44] had to limit their scope to using
a mask and a spatial transformer [18], excluding dynamical
systems with changes in intensity and colour, deformations
and non-uniform scaling among others which we explicitly
allow in our paper.

3. Model
Our model estimates the parameters of a known governing
equation from a video recording. Since it is unsupervised,
the training set consists of unannotated frames with a known
frame rate denoted as δt. We do not reconstruct frames and
thus have only a simple encoder and a physics block. In
Figure 2 we show our approach.

Scope. We study systems represented by autonomous
differential equations (Eq. 1), which depend only on the state

variable captured in video. Assuming no external forces,

z(n) + γnz
(n−1) + ...+ γ2z

(1) + γ1z+ γ0 = 0|z(k) = dkz

dtk
(1)

is an nth-order system, where z is the time-dependent state
variable or "dynamic variable", z(k) with k = 1, 2, . . . n is
the kth-derivative of z with respect to time t and γi with
i = 0, 1, . . . n − 1 are the parameters of the equation we
want to estimate.

While our approach can be extended to equations of ar-
bitrary order, in the following proof-of-concept, we first
consider a second-order differential equation since it is the
maximum order used in previous work:

z(2) + γ1z
(1) + γ0z = 0. (2)

Physics block. Our physics block numerically solves the
differential equation using a single step of Euler’s method:

z
(1)
t ≈ zt+1−zt

δt ≈ zt−zt−1

δt (3)

zt+1 = zt + δtz
(1)
t (4)

z
(1)
t+1 = z

(1)
t + δtz

(2)
t . (5)

Plugging in Eq. 2, we can rewrite the physics block as:

ẑt+1 = zt + δt
(
z
(1)
t − δt(γ1z

(1)
t + γ0zt)

)
. (6)

P : Rd → Rd,

ẑt+1 = Pγ(zt, ..zt−n; γ). (7)

where γi are learnable parameters and the predicted latent
space ẑ for time t+ 1 is a function Pγ(·) of the latent repre-
sentations of the n previous frames. We use the notation ẑ
for the latent space predicted using the function P , which is
different from z predicted by the encoder.
Encoder. The encoder is a network Eθ(x) that maps im-
ages x ∈ Rw×h×c to the state variable z ∈ Rd, where d is
the number of dynamic variables. We use an MLP, similar
to [20] suitable as localization networks, with three layers
and the ReLU activation function for the mapping

zt = Eθ(xt), where E : Rw×h×c → Rd. (8)

Predictions. The encoder maps images xt ∈ Rw×h×c

to the state variable zt ∈ Rd for all time steps t ∈ [0, T ]
leading to ẑ with dimensionality RT×d for all input frames.
In particular, we have the following two vectors:

z =


zn
...

zt+1

...
zT

 =


Eθ(xn)

...
Eθ(xt+1)

...
Eθ(zT )

 (9)
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ẑ =


ẑn
...

ẑt+1

...
ẑT

 =


Pγ(zn−1, . . . , z0; γ)

...
Pγ(zt, . . . , zt−n; γ)

...
Pγ(zT−1, . . . , zT−n; γ)

 (10)

Loss function. The first goal of the loss function is to
minimize the difference between the predictions z and ẑ over
a batch of size M , as L1 = 1

M

∑M
i=1(zi − ẑi)

2, i.e.,

1

M

M∑
i=1

[
Eθ(xi)− Pγ

(
Eθ(xi−1), . . . , Eθ(xi−n)

)]2
. (11)

One problem with this approach is the convergence to the
trivial solution such that Eθ(x) = 0 ∀x and Pγ(z) = 0 ∀z.
To avoid this problem, we induce variance in the en-
coder’s output. Inspired by the VAE [25] we encourage
zj ∈ N (µ, σ2). The values of µ and σ2 effectively define
the range of z by renormalization of the metric. As in the
VAE [25], we define the second part of the loss function us-
ing the Kullback-Leibler divergence (KL-divergence). Thus,
zj is a sample of the random variable Z ∼ N (µz, σ

2
z)

and we want it to follow a particular prior distribution
Q ∼ N (0, 1). Then KL-divergence is given by:

L2 = KL(Z||Q) = −1

d

d∑
j=1

(
1 + ln(σ2

z)− µ2
z − σ2

z

)
. (12)

Here, the KL-divergence is used differently than conven-
tional: VAEs [25] typically assume the encoder finds the
correct distribution, and use the sampling trick to obtain the
decoder input. In our proposal, we do not sample from the
latent distribution. Instead, we constrain the encoder to learn
the dynamical state variable. Thus, we calculate the mean
µz and variance σ2

z over the batch in the loss.
Finally, combining the two loss functions:

L = L1 + L2 =
1

M

M∑
i=1

(zi − ẑi)
2

− 1

d

d∑
j=1

(
1 + ln(σ2

z)− µ2
z − σ2

z

)
. (13)

Our loss function (Eq. 13) serves several purposes: First,
Eθ(·) maps images to random variables z in latent space,
and L2 encourages that z is normally distributed. Then,
the function Pγ(·) preserves the sense of order and relation
between latent spaces from different frames. Since we are
analyzing a single video, z contains information about the
temporal properties of the sequence of frames. Finally, L1

makes the model consistent since the physical predictions
made by the physics block Pγ(·) are generated by Eθ(·).

Training. For parameter estimation in the physics block
Pγ(·), we used a learning rate proportional to the initial
value γ0

i of the learnable parameter γi, where lr(γi) ∼
10[log10 |(γ0

i )|]. This approach provides sufficiently large step
sizes at the beginning of training to escape local minima.
More details about the optimizer and hardware are in the
supplementary material.

4. Delfys75: a new real-world dataset
Delfys75 contains five experiments: 3 with motion, one with
brightness and one with scale dynamics. Motion is overrepre-
sented to enable a deeper comparison with existing methods,
which cannot be evaluated on brightness or scale dynamics.
Each experiment is recorded in 3 different settings, with five
videos per setting, resulting in a dataset of 75 videos. The
resolution is 1920× 1080 at 60 frames per second. Sample
frames are visualized in Figure 3.

Figure 3. Delfys75 is the first, real-world physical parameter es-
timation dataset. Top to bottom: first (t0), second (t1), middle
(ti), and last frames (tn). Specified at the bottom are the estimated
parameters in each scenario. Note the complex shadows, shading,
and realistic lighting conditions, in a natural environment.

Object masks are binary segmentation masks of the ob-
ject undergoing the physical transformation. Masks can be
learned [20] or otherwise need to be provided [17] with the
training data. In our dataset, we provide object masks per
frame, annotated using SegmentAnything2 [36], since some
baseline methods require it [17]. Our method does not need
object masks.

Parameter ground truths and estimation errors, are ob-
tained via manual physical parameter estimation. See the
supplementary material for details.

4.1. Scenarios
The pendulum is a classical motion-based system [17, 20,
49] where the position of the pendulum is expressed by the
angle θ and the dynamics are given by:
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θ(2) + ζθ(1) +
g

L
sin(θ) = 0. (14)

with ζ being the damping factor, g the gravitational accelera-
tion and L the length of the pendulum. We vary the length
of the pendulum to generate the different settings.

The Torricelli motion describes the change in water
height over time in a container with an orifice through which
water is draining. In this setup, a floating ball at the surface
serves as an indicator of the water level. Our objective is to
determine the constant k, related to the water flow rate, from
the video as the water level decreases

h(1) = k
√
h. (15)

The sliding block involves the movement of an object
sliding down a ramp [17, 46], with dynamics given by:

x(2) = g(sin(α)− µ cos(α)). (16)

where x is the position with α the inclination angle of the
ramp, µ the friction coefficient and g is the gravity. Each of
our three settings employs a different inclination angle.

In the LED experiment, the brightness of an LED lamp is
varied. The intensity I(t) of the LED is adjusted following
I(t) = e−γt with a controllable decay γ. We disable camera
auto-focus, auto-brightness, and white balancing for this
experiment to ensure consistent brightness. γ is changed
between the three settings.

In the free fall scenario, a ball dropped from a height
h0 is filmed from above, causing the ball’s apparent radius
r(t) to decrease as it falls. Using similar triangles, r(t) is
described by:

r(t) =
r0f

h0 +
gt2

2

. (17)

with r0 the real-life radius of the ball and f the focal length
of the camera. We disable camera auto-focus to ensure
constant f . The radius r0 is modified between settings.

The videos contain hand interactions, which introduce
occlusions and variability. The pendulum includes border
occlusions and cast shadows. Torricelli has background
changes due to water flow, ball rotation, and deformation.
The free fall presents perspective distortions. In a a similar
way, LED suffers from reflections and non-uniform inten-
sity changes. These factors add complexity and affect the
performance of the model.

5. Experiments
5.1. Synthetic Video Datasets

We start in a fully-controlled setting with three synthetic
datasets involving motion, intensity, and scale, visualized in
Figure 5. We describe dataset details in the supplementary
material. State-of-the-art methods for physical parameter
estimation commonly use simulated datasets [10, 20, 41, 43,
49, 50], where objects appear in different colors on a black

background. The pendulum system is a typical case of study,
but for scale and intensity, there were no baselines available.

Motion. We used a pendulum model popular in litera-
ture [7, 17, 20]. In this dataset, the state variable is the angle
of the pendulum zreal = θ ∈ [−180.0◦, 180.0◦].

Intensity. We consider time-varying grayscale pixel in-
tensity of an irregular shape. We normalized the intensity
dynamics to be in the range zreal ∈ [0.2, 1.0].

Scale. We use a filled circle centered in the middle of
the image, where the radius is proportional to the dynamic
variable. However, the scaling transformation is not sym-
metric; while one half of the circle grows, the other half
becomes smaller and vice versa. We normalized the range
of the radius dynamics between zreal = r ∈ [−10, 10].

Figure 5. Example frames from the synthetic datasets. Each row
shows a different dataset, corresponding to a different continuous
dynamical system, and each column a different time sample.

Dynamics Representation in Latent Space First, we train
our model using the three synthetic datasets and evaluate the
dynamics z estimated by the encoder Eθ(·). We compare z
to its ground truth value zreal, which was used to generate
the data. Following Eq. 2, we consider second-order dynam-
ics for all datasets, where the evolution of the state variable
z follows a dampened oscillation.

Figure 4 shows our model is capable of estimating the
dynamics z for all three datasets. Although understanding os-
cillations in data can be challenging for neural networks [48],
our unsupervised loss fits the dynamical behaviour reason-
ably, with small deviations from the ground truth.

Importantly, our model has complete physical inter-
pretability since we use the differentiable, second-order ODE
(Eq. 2) in the physics block. Due to this physics prior, the
model is able to generalize at test time to previously unseen
time steps. The network’s extrapolation of z to unseen future
time steps is shown using dashed lines in Figure 4a.

We observe that the most accurate results are obtained
using the ‘Intensity’ dataset. We attribute this to discretiza-
tion error: 8-bit inputs of pixel intensity can assume 256
different values. In contrast, with motion and scale, the dy-
namics are discretized by the pixel locations. In particular,
for a (50× 50) frame size, the discretization of the dynamic
variable is increasingly more impactful as the oscillation
amplitude is decreased. This effect is seen clearly in the
latent space dynamics of the ‘Scale’ dataset in Figure 4a (red
line), which displays discrete jumps. The discretization error
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time(s)

−1.0

−0.5

0.0

0.5

1.0

z

TestTrain

Simulated Dynamics

Motion

Scale

Intensity

Simulated Dynamics

Motion

Scale

Intensity

(a)

Equation z(2) + γ1z
(1) + γ0z = 0

γ0 γ1

Motion 3.943± 0.008 0.144± 0.007
Intensity 3.887± 0.035 0.089± 0.010
Scale 4.055± 0.026 0.910± 0.012
GT 4.0016 0.08

(b)

Figure 4. (a) Latent space estimation of the dynamic variable z for the three synthetic datasets. The blue line shows the ‘ground truth’ value
zreal of the simulated dynamics. The model was trained with the dynamics of the continuous line while the dashed lines show the ground
truth (blue) and predictions (yellow, red, green) on the extrapolated test set. (b) Parameter estimation accuracy. Rows 1-3: mean ± standard
deviation of each learnable parameter in the physics block after training, bottom row: ground truth (GT). The values are obtained over 7
different runs with different initializations. We observe good agreement between the predicted and ground truth dynamics.

also disproportionally affects the parameter estimation in the
‘Scale’ dataset, specifically the prediction of the parameter
γ1, which is discussed in the next section.

Parameter Estimation Accuracy To evaluate our model’s
accuracy in estimating parameters γ, we consider second-
order equations defined in Eq. 2, where γ0 is the frequency
and γ1 is the damping factor of the oscillations. (See supple-
ment for details.)

Figure 4b shows the γ values learned by our model. We
find that the model can accurately estimate γ0 for all sys-
tems. Figure 4a serves as validation that the model indeed
fits the correct frequency. The varying accuracy for γ1 is
attributed to the discretization error discussed in Section 5.1,
as the accuracy decrease correlates well with the increased
discretization in the motion and scale datasets.

5.2. Robustness and Stability

While previous work can reliably generate frame reconstruc-
tions using physics blocks in latent space, they often lack an
analysis of the parameter estimation. Thus, it is not known if
the generated frames correctly use the latent space informa-
tion in an interpretable manner. In fact, it is known that the
baseline models are sensitive to initialization and may fail to
converge [17, 33]. In this section, we evaluate the robustness
of our model against changes in parameter initializations.

We initialize the learnable parameters γ in the interval
[−10.0, 10.0] over 7 runs. Ground truth values were γ0 = 4
and γ1 = 0.08. Figure 6 shows the convergence of the pa-
rameter estimation during training with different initializa-
tions. While the trajectories may initially diverge, the trained
model consistently converges to the ground truth values for
each dataset, independent of the initialization. The relatively
low standard deviations of the final γ estimates in Figure 4b

highlights the stability of our model.

Figure 6. Robustness of the parameter estimation against different
initializations. The rows indicate the different dynamical systems,
while the columns are the parameters to estimate. The vertical axis
corresponds to the parameter value, and the horizontal axis is the
epoch. Blue lines show the value of the estimated parameter γi
over training epochs. Since convergence was relatively fast, the
horizontal axis is on a logarithmic scale for visibility. The shading
highlights the variance of the trajectories before convergence.

5.3. Baseline Comparison on Synthetic Data

The baselines PAIG [20] and NIRPI [17] are not designed
to handle the intensity and scale settings of our synthetic
datasets. Therefore, for a fair comparison, we use the syn-
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PAIG
[20]

PAIG
w/o

U-Net

NIRPI
[17] Ours

Parameters 5.27M 4.78M 75.42K 4.19M

Time per
Epoch [s]

252.72 80.56 0.11 0.95

Decoder Yes Yes Yes No

Mask No Yes Yes Yes No

Table 1. Comparison of baseline models evaluated on the public
dataset from [20]. Our model only needs a mask if there are multi-
ple objects present in the video.

thetic dataset first proposed in [20] and reused in [17]. It
consists of two MNIST digits moving following the spring
equation parametrized by the spring constant k; the dataset
was created using k = 2. Details of the governing equation
and visualizations are given in the supplement. In this dataset
the dynamics is given by the (x, y) position of each digit,
therefore the dimensionality of the latent space is d = 4.

Table 1 presents a size comparison of the models along
with training time per epoch. PAIG [20] employs a U-Net
to learn the object masks and does not require them as input.
Other baselines, as well as our model for multiple objects,
need masked inputs and, therefore, do not employ a segmen-
tation block. We also consider PAIG [20] with masked input
and without the U-Net block in our comparisons.

We empirically demonstrate the models’ sensitivity to
initial conditions, we consider PAIG [20] as proposed by
the authors with the U-NET. We train each model twice
and initialize the estimated parameter k with values 1.0 and
10.0, respectively. The expected value is k = 2 [17, 20].
In Figure 7, we observe that different initializations fail to
converge to the correct value of k for the baselines, while
our model is consistent and converges to the desired value
accurately. This experiment demonstrates that our model
can also successfully tackle problems with multiple objects.

5.4. Real-world video experiments on Delfys75

We evaluate our model and the baselines on Delfys75 dataset
and dynamics described in Section 4. Our model was trained
without masks, while PAIG [20] needs to learn them, and
NIRPI [17] requires them as input. For both baselines, we
used the hyperparameters given in their respective papers.
We trained our model for 500 epochs to ensure parameters
converged for all experiments; the learning rate was chosen
as described in Section 3. Further training details and an
analysis of the latent space of our model are given in the
supplement. Our model uses a prior Q ∼ N (0, 1) for L2

(Eq. 12), except for the Torricelli experiment, where the
governing equation (Eq. 15) includes a square root that in-
troduces conflict if z < 0. To avoid this, we change the

101 102 103

epoch

−5

0

5

10

k

PAIG

NIRPI

Ours

init = 1.0

init = 10.0

Expected value

Figure 7. Robustness of the parameter estimation compared to base-
lines. For a fair comparison, we use the synthetic dataset created
originally by the authors of the baseline papers to evaluate their
models [20]. We plot the trajectories of the estimated parameter k
during training with different initializations for our model (green)
and for the two baseline models (red, blue). Dotted lines corre-
spond to an initial value of k = 10.0, and solid lines to k = 1.0.
Our model converges robustly to the ground truth value of k = 2.0.

expected prior to Q ∼ N (1, 0.2). As explained in Section 3,
this change leads to a different renormalization factor.

Each model was tested on five videos to compute the
mean and standard deviation for each setting. For the pendu-
lum and the LED, the parameter of each setting is estimated.
For the sliding block, multiple values of the parameters re-
sult in the same dynamics; hence only the total acceleration
a = g(sin(α) − µ cos(α)) is estimated. The gravitational
constant is also predicted in the dropped ball experiment.
Baselines are excluded from intensity and scale experiments
as they only support motion dynamics. Table 2 shows the
ground truth (GT) and the learned value of each parameter.

On all settings, our proposed model performs parameter
estimation relatively accurately compared to baselines. In
particular, we observe that PAIG [20] estimates parameters
only close to the initial value (1.0). We train all models
on a single video at a time on each setting. This leads to
a small training set compared to the 10,000 videos used
in [20], illustrating the data efficiency of our model com-
pared to PAIG [20]. On the other hand, parameter estimates
for NIRPI [17] converge to varying values, but are on average
lower accuracy than those fitted by the proposed model.

6. Discussion and Limitations
We present a novel model and dataset for unsupervised phys-
ical parameter estimation from video. While previous meth-
ods do not study phenomena other than motion, we go be-
yond motion and include a variety of dynamical systems.

The proposed model avoids frame prediction, which is
challenging, but useful for visualization. However, decoder-
based methods need to be designed for the particular dy-
namical system, as a transformation-agnostic decoder may
struggle with high-quality reconstruction. Without decoders,
our approach works across various dynamical systems.

In addition, we directly examine latent space predictions,
unlike prior models [17, 20, 23], which focus on frame re-
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Pendulum Torricelli Sliding block
L [m] k

[√
m

s2

]
a
[

m
s2

]
PAIG 1.01 ± 0.03 1.01 ± 0.04 1.01 ± 0.04 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.02 0.35 ± 0.03 0.38 ± 0.02 0.37 ± 0.04
NIRPI 0.77 ± 0.33 0.84 ± 0.53 0.63 ± 0.38 0.21 ± 0.03 0.14 ± 0.04 0.16 ± 0.01 −0.09 ± 0.88 −0.01 ± 0.5 −0.06 ± 0.01

Ours 0.51 ± 0.01 1.07 ± 0.2 1.30 ± 0.02 0.0094 ± 4e−4 0.0132 ± 5e−4 0.0167 ± 4e−4 1.29 ± 0.1 2.70 ± 0.09 3.44 ± 0.19
GT 0.45 0.90 1.50 0.0095 0.0128 0.0162 1.441 2.300 3.141

(a)

LED Free fall scale

γ a
[
m
s2

]
Small ball Medium ball Large ball

Ours 2.24± 0.36 0.97± 0.04 0.41± 0.04 15.0± 2.1 9.51± 1.27 10.22± 1.21
GT 2.3 0.92 0.46 9.8 9.8 9.8

(b)

Table 2. Parameter estimation accuracy on real-world videos. The table shows how closely each model estimates the ground truth (GT)
parameter values, with mean and standard deviation calculated over five videos per setup. On (a) we show the so-called motion problems
and compare against the baselines. On (b) since there are no baseline methods for non-motion scenarios, and thus, we could not evaluate
baselines for the LED and free-fall scale videos. Highlighted values indicate the estimates that are closest to the expected values.

construction and do not discuss the accuracy of predicted
dynamics. Since parameter estimation is the main goal, re-
construction is simply a tool to define the unsupervised loss,
and therefore, the latent space should be analysed closely.

Our model does not resolve the absolute scale of the
state variable, for example, that the pendulum goes from
[−180.0◦, 180.0◦]. Yet, thanks to the loss function, the
model solves its own metric, ensuring assumptions made
in Section 3. The choice of the prior target distribution
simply normalizes the dynamics and should not affect perfor-
mance, as seen in Section 5.4 with the Torricelli experiment.
Baselines implicitly or explicitly do this normalization using
the spatial transformer, forcing the prediction to be in the
pixel metric. In contrast, all our dynamics depend on the
prior distribution assumed by the KL-divergence.

Baseline methods are sensitive to γ initialization. Our
method may also converge to local minima with small learn-
ing rates and high initial parameters. Therefore, we enforce
variance in the learning rate depending on the initial values
of the parameters, which allow for wider search spaces.

Our model demonstrates good performance on real-world
videos, successfully handling challenges such as shadows
and perspective distortions, without the need for object
masks. Additionally, our approach outperforms baseline
models–which prioritize reconstruction tasks–on parameter
learning. Using a spatial transformer, baselines rely on the
positions and velocities predicted by the encoder, overlook-
ing minor variations introduced by the governing equation.

Our new real-world dataset is versatile: While baseline
models do not support non-motion dynamics and require
object masks, they could still be trained on the motion-based
subset of our proposed dataset with the accompanying masks.
Thus, we believe our dataset will be helpful for evaluating
future models on a common dataset, enabling more compre-
hensive comparisons in complex real-world settings.

Limitations. Our model is suited for continuous, au-
tonomous differential equations. However, some systems,
such as fluids, are described with more complex differential
equations. In addition, we need to guarantee that Eq. 7 is dif-
ferentiable. Taken together, our model needs to be extended
to tackle more complex use cases, including multiple objects
in a scene with independent dynamics.

Due to discretization, performance may vary with reso-
lution. For example, small changes of the dynamic variable
in the scale dataset were challenging to detect as the model
cannot achieve sub-pixel accuracy.

We avoid predicting object masks in videos. Real-
world experiments in Section 5.4 show that our model does
not need masks when trained with complex backgrounds,
whereas baseline methods still require them [17, 20]. How-
ever, when multiple objects interact, masks become neces-
sary, as demonstrated in experiment 5.3. While learning
masks is an effective solution [18, 20], it relies heavily on
the spatial transformer limited to roto-translation problems.

Nevertheless, limitations are mostly related to the early
stages of the problem, opening multiple opportunities for
future works; with our work, we provide a base which can
be extended to more complex problems in different scientific
domains and initiate data sharing to evaluate future models.
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