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ABSTRACT

Estimating mutual correlations between random variables or data streams is cru-
cial for intelligent behavior and decision-making. As a fundamental quantity for
measuring statistical relationships, mutual information has been widely studied
and used for its generality and equitability. However, existing methods either
lack the efficiency required for real-time applications or the differentiability nec-
essary with end-to-end learning frameworks. In this paper, we present InfoNet,
a feed-forward neural estimator for mutual information that leverages the atten-
tion mechanism and the computational efficiency of deep learning infrastructures.
By training InfoNet to maximize a dual formulation of mutual information via a
feed-forward prediction, our approach circumvents the time-consuming test-time
optimization and comes with the capability to avoid local minima in gradient de-
scent. We evaluate the effectiveness of our proposed scheme on various families
of distributions and check its generalization to another important correlation met-
ric, i.e., the Hirschfeld-Gebelein-Rényi (HGR) Maximal Correlation. Our results
demonstrate a graceful efficiency-accuracy trade-off and order-preserving proper-
ties of InfoNet, providing a comprehensive toolbox for estimating both the Shan-
non Mutual Information and the HGR Correlation Coefficient. We will make the
code and trained models publicly available and hope it can facilitate studies in
different fields that require real-time mutual correlation estimation.

1 INTRODUCTION

Figure 1: The log-scale run time of
MINE (Belghazi et al., 2018) and the
proposed InfoNet. It shows that In-
foNet is constantly faster by magni-
tudes than MINE on sequences with
different lengths.

We live in a universe where different entities are intercon-
nected. For example, particles at the micro level can exhibit
entanglement, which is described by quantum mechanics,
and celestial bodies at the macro level are governed by grav-
ity, which is characterized by general relativity. The pres-
ence of interconnections guarantees that our observations
of the states of diverse entities around us are intricately cor-
related instead of independently distributed, which in turn
allows us to make reasoning and predictions.

Consequently, being able to efficiently estimate the correla-
tions between scene entities from sensory signals of the en-
vironment serves as a foundation for the emergence of intel-
ligent behavior. Especially, considering an embodied agent
that interacts with the scene and receives large volumes of
streaming data, e.g., video, audio, and touch, within sec-
onds. A quick estimation of correlations would help an
agent build informative representations of the surroundings
and determine what is important for its survival. Besides data from embodied agents dwelling in
the physical environment, each second, we generate gazillions of data across the internet, for exam-
ple, the price of the stocks, messages on social media, transactions on E-commerce websites, and
data from Internet-of-Things devices. Being able to perform an efficient estimation of the mutual
correlations between different type or parts of the data also inform various analysis that is critical
for decision-making. Thus, a general-purpose correlation measure between two random variables is
needed given the anisotropic information contained in the data and their complex dependence.
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In this paper, we study how to neuralize the computation of mutual information between two random
variables from sequences sampled from their empirical joint distribution. Specifically, we want to
explore whether the estimation of mutual information (MI) can be performed by a feed-forward
prediction of a neural network, i.e., taking a pair of sequences as input and speeding out the MI
estimate without re-training, which then guarantees efficiency and makes the estimation procedure
differentiable, enabling the integration into end-to-end training frameworks for other applications.

As a fundamental concept in information theory (Shannon, 1948), a huge amount of effort has been
devoted to the estimation of mutual information (Paninski, 2003; Kraskov et al., 2004), due to its
generality and equitability (Reshef et al., 2011; Kinney & Atwal, 2014). For example, many algo-
rithms have been proposed to improve the accuracy and efficiency of mutual information estimation,
which include non-parametric methods (Moon et al., 1995; Pál et al., 2010; Marx et al., 2021) and
parametric methods (Hulle, 2005; Sugiyama et al., 2012; Ince et al., 2017). However, most of them
do not utilize neural networks and can not benefit from advances in deep learning techniques. Re-
cently, MINE (Belghazi et al., 2018) employs a dual formulation of the Kullback–Leibler divergence
and estimates the mutual information of a pair of sequences by optimizing a neural network’s param-
eters against the dual objective. Even though the estimation can be performed via back-propagation,
the optimization process is still behind real-time (Fig. 1, where a pair of sequences is sampled from
a randomly generated mixture of Gaussian). Moreover, each time the joint distribution changes
(different sequences), a new optimization has to be performed (e.g., the network in MINE is only
optimized for a pair of sequences from a single distribution), thus not efficient.

To overcome these difficulties, yet still enjoy the efficiency of deep networks and their differentia-
bility, we propose a novel network architecture that leverages the attention mechanism (Vaswani
et al., 2017) and encodes the aforementioned optimization into the network parameters. Specifi-
cally, the proposed network takes as input a sequence of observations (pairs) and outputs a tensor,
which aims at maximizing the Donsker-Varadhan (Donsker & Varadhan, 1983) dual and can be con-
verted into the mutual information estimate by a quick summation over different entries. This way,
we transform the optimization-based estimation into a feed-forward prediction, thus bypassing the
time-consuming test-time gradient computation and avoiding sub-optimality via large-scale training
on a wide spectrum of distributions. Furthermore, we evaluate the effectiveness of the proposed
feed-forward scheme on the Hirschfeld-Gebelein-Rényi (HGR) Maximum Correlation Coefficient
(Gebelein, 1941), which satisfies the seven postulates of a dependence measure Rényi (1959) and is
well accepted as a correlation quantification in machine learning (Lopez-Paz et al., 2013).

In summary, we 1) propose a neural network and training method that can estimate the mutual
information between two random variables (sequences) in an efficient feed-forward pass; 2) perform
an extensive study of the effectiveness of the proposed scheme with different families of distribution
and verify its accuracy and order-preserving properties; 3) provide a comprehensive toolbox for
estimating both the Shannon Mutual Information and the HGR Maximal Correlation Coefficient
with up-to-scale guarantees; and 4) validate the generalization of the proposed InfoNets on real-
world distributions and show promising results in object discovery from videos.

2 METHOD

We aim to provide neural tools that can estimate complex nonlinear correlations between two ran-
dom variables (RVs) in real-time. Particularly, we are interested in two correlation measures: Shan-
non’s Mutual Information (MI) and the HGR Maximal Correlation Coefficient (MCC). Both are
capable of measuring complicated statistical dependencies. We denote them as Cinfo (MI) and Cmax

(MCC), respectively, and detail their neural computation framework in the following.

Problem Statement We consider the real-world scenarios where an agent keeps receiving sensory
inputs via multiple channels, e.g., the motion of landmarks on an object, the temperature of the air,
and the singing of a chorus. We consider these observations as random variables of any kind, and
treat their (synchronized) temporal sequences as if sampled from an empirical joint distribution.
More explicitly, we characterize observations {(xt, yt)}Tt=1 as samples from a joint distribution
p(x,y), e.g., by histogramming. Our goal is to compute the correlations mentioned above between
x and y, i.e., either Cinfo(x,y) or Cmax(x,y), in an efficient manner such that an agent can leverage
these correlations to learn useful representations of the scene, for example, a knob controls the status
of a bulb, so to make effective decisions. Specifically, we aim to train neural networks ϕ such that
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Figure 2: The proposed InfoNet architecture for the feed-forward prediction of mutual information,
which consists of learnable queries and attention blocks. It takes in a sequence of samples of two
random variables, and outputs a look-up table (top-right) representing a discretization of the optimal
scalar function defined on the joint domain in the Donsker-Varadhan representation (Donsker &
Varadhan, 1983). The mutual information between the two random variables (sequences) can then
be computed by summation according to Eq. 1.

C(x,y) = ϕ({(xt, yt)}) is a fast feed-forward prediction from the input sequences. In this work, we
focus on the efficient computation of low-dimensional random variables, e.g., 1D/2D, and leverage
the projection technique in Goldfeld & Greenewald (2021) for the extension to high-dimensional
without sacrificing the efficiency.

2.1 FEED-FORWARD NEURAL ESTIMATION OF MUTUAL INFORMATION

Mutual information captures how much is known about one random variable by observing the other.
It is usually written as the reduction of the Shannon Entropy: Cinfo(x,y) = H(x)−H(x|y) or in the
form of the Kullback–Leibler divergence (Kullback & Leibler, 1951): Cinfo(x,y) = DKL(px,y∥px ·
py). However, an exact computation is only tractable for discrete variables or a limited family of
distributions (Paninski, 2003). Recently, MINE (Belghazi et al., 2018) proposes estimating mutual
information by optimizing a neural network with gradient ascend according to a dual formula of the
KL-divergence (Donsker & Varadhan, 1983). It can deal with continuous random variables, but has
to train from scratch for different joint distributions p(x,y), and is hardly real-time.

Here, we improve the efficiency of the dual estimation of mutual information to enable learning from
a vast amount of correlations embedded in unlimited data streams. Our idea is to leverage the dual
formulation yet encode the optimization as a feed-forward neural network prediction. In this way, we
can speed up the estimation by magnitudes and enjoy the benefit of the differentiability of the neural
networks. Next, we detail the dual formulation we employ for MI estimation and elaborate on the
proposed methods for training the neural network ϕ for computing mutual information (correlation)
between two jointly sampled sequences.

Dual Estimation of Mutual Information According to the Donsker-Varadhan representation
(Donsker & Varadhan, 1983) (similar to the objective of contrastive learning Gutmann & Hyvärinen
(2010)), we can write the KL-divergence between two distributions as: DKL(p∥q) = supθ Ep[θ]−
log(Eq[exp(θ)]), where θ is a scalar function defined on the joint domain with finite expectations.
We employ this representation and write the dual estimation formula for MI as:

Cinfo(x,y) = sup
θ
J info(θ;x,y) = sup

θ
Epx,y [θ]− log(Epx·py [exp(θ)]), (1)

with θ : X × Y → R and X ,Y the domain of the random variables x,y. One can instantiate θ as a
neural network or a set of tunable parameters and optimize for the upper bound of the right-hand side
quantity in Eq. 1 via backpropagation (Belghazi et al., 2018). The optimal value can then serve as
the estimate of the mutual information between x and y. To avoid costly computation, we propose
to train a neural network ϕ that can perform the optimization in a feed-forward manner, which fully
utilizes the efficiency of parallel computing units and enables efficient prediction of the supremum.
In other words, we treat the scalar-valued function θ as the output of the neural network ϕ.
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Figure 3: The proposed InfoNet architecture for the feed-forward prediction of the HGR Maximal
Correlation Coefficient (MCC). The overall structure is similar to its counterpart for mutual infor-
mation estimation despite that the queries to generate the lookup tables for θx and θy are separated.
The MCC between the two random variables can then be computed by normalization (to satisfy the
MCC definition) and summation according to Eq. 3.

Feed-Forward MI Estimator To enable feed-forward prediction, we let θx,y = ϕ({(xt, yt)}) ∈
RL×L be a 2D tensor, where L represents the quantization levels of the range of the involved random
variables. Now, the value of θx,y(xt, yt) can be directly read out from the tensor as a look-up table
with correct indexing and appropriate interpolation.

To facilitate the computation, we design a neural network by adapting the attention mechanism
described in (Jaegle et al., 2021). We illustrate the proposed feed-forward structure ϕ in Fig. 2.
It takes in a pair of joint sampled sequences, e.g., {(xt, yt)}Tt=1, and outputs a tensor θx,y as a
discretization of the scalar function θ in Eq. 1. To account for the fact that the value of a random
variable could be arbitrary, we normalize the sequences (before giving them to the network) to be
within the range of [−1, 1], so the quantization granularity would be 2/L. Please note that if the
same scaling factor is applied to both random variables, the mutual information between them will
not change. This is because MI measures the amount of information one variable contains about the
other, which is invariant under bijection. More explicitly, the effect on the entropies caused by the
scaling factor is canceled out as mutual information is the difference between two entropies (one is
conditional). With the predicted (discretized) function θx,y, we can then compute an estimate of the
mutual information between x and y using the quantity J info(θ;x,y) in Eq. 1.

However, the prediction is only accurate when the lookup table θx,y maximizes the right-hand side
of Eq. 1. To ensure the estimation quality, we train the neural network ϕ using the following training
objective:

Linfo(ϕ,D) = 1

N

N∑
i=1

J info(θxi,yi ;xi,yi)

=
1

N

N∑
i=1

{
1

T

T∑
t=1

θxi,yi(xit, y
i
t)− log

(
1

T

T∑
t=1

exp(θxi,yi(xit, ỹ
i
t))

)}
. (2)

Here D is a dataset of N different distributions, i.e., D = {(xi,yi)}Ni=1 with each (xi,yi) =
{(xit, yit)}Tt=1 represents an empirical distribution p(xi,yi). And ỹi can be sampled from the
marginal distribution p(yi) by simply breaking the pairing. We detail the generation of the training
data in Sec. 3.1. Note that the training is performed with all possible (joint) empirical distributions
between x and y in contrast to a single one in Eq. 1, and θxi,yi is supposed to maximize the quan-
tity J info for every p(xi,yi). Thus, the network ϕ has to learn the optimization of J info via its
parameters. Please refer to Sec. 3 for more training details.
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2.2 FEED-FORWARD NEURAL ESTIMATION OF MAXIMAL CORRELATION COEFFICIENT

It is widely accepted that mutual information characterizes correlations without bias for different
dependency types (Kinney & Atwal, 2014). However, the HGR Maximal Correlation Coefficient
(MCC) (Gebelein, 1941) is shown to satisfy the seven postulates that a dependence measure should
have (Rényi, 1959; Bell, 1962). For example, one of the postulates is that the dependence measure
should be in the range of [0, 1]. This normalization characteristic is useful when comparing and
interpreting the dependencies between different pairs of random variables, and it is not possessed
by mutual information since its range varies with the entropy of the random variables. Moreover,
a zero maximal correlation coefficient serves as a necessary and sufficient condition for statistical
independence between two random variables.

To provide a comprehensive toolbox for efficient estimation of mutual correlation between data
streams, we also explore the possibility of neuralizing the computation of the MCC between two
random variables x,y. Given θx : X → R and θy : Y → R, The MCC is defined as:

Cmax(x,y) = sup
θx,θy

Jmax(θx, θy;x,y) = sup
θx,θy

Epx,y [θxθy],

s.t. Epx [θx] = Epy [θy] = 0 and Epx [θ
2
x] = Epy [θ

2
y] = 1. (3)

Similar to the Donsker-Varadhan representation of mutual information, MCC estimation is also car-
ried out as an optimization. However, MCC comes with the constraints that the mean and variance
of θ’s should be zero and unit, which guarantees the normalization postulate by Rényi (1959). To
leverage the feed-forward efficiency of neural networks, rather than solving an optimization when-
ever the RVs switch, we apply the same design principles in MI estimation for computing MCCs.
Again, we denote ϕ as the neural network that is trained to perform the optimization and output the
optimizers for Jmax conditioned on the input observations {(xit, yit)}.

Feed-Forward MCC Estimator Following the MI prediction scheme, we discretize the range
of the involved random variables into L levels. Correspondingly, [θx, θy] = ϕ({(xt, yt)}) are the
look-up tables with θx, θy ∈ RL. The network architecture of ϕ for MCC computation is shown in
Fig. 3. In contrast to its counterpart for mutual information estimation, the queries for generating the
lookup tables are computed with two separate branches consisting of attention blocks for efficiency.
Note that since the two lookup tables are defined on a single domain instead of the joint domain of
x and y, we can increase the quantization levels without incurring much computational overhead.
This characteristic of computing MCCs allows us to tune L in a much wider range for studying the
effect of the quantization.

To make sure that the feed-forward prediction outputs lookup tables that deliver an accurate estimate
of the MCC, we train the neural network ϕ using the following objective according to Eq 3:

Lmax(ϕ,D) = 1

N

N∑
i=1

Jmax(θxi , θyi ;xi,yi) =
1

N × T

N∑
i=1

T∑
t=1

M(θxi(xit))M(θyi(yit)), (4)

where M represents the normalization operator that ensures compatibility with the definition of
HGR Maximal Correlation Coefficient in Eq. 3. It is worth noting that the normalization should be
performed after the look-up operations instead of directly applied to the look-up tables themselves,
which helps enforce that the mean and variance of the sequences are put to zero and one since we
are dealing with empirical distributions.

3 TRAINING ALGORITHM

Next, we detail the generation of the training data and the implementation for reproducibility.

3.1 DATA GENERATION

To generate training data, we consider sampling the joint sequences D = {(xi,yi)}Ni=1 from the
Gaussian Mixture Models (GMMs). It is widely accepted that GMMs are a versatile and effective
tool for modeling real-world distributions due to their capability to handle complex and noisy data.
Specifically, GMMs represent a family of distributions as a weighted sum of Gaussian components
and are defined as: p(z) =

∑K
i=1 πiN (z|µi,Σi), where p(z) is the probability density function
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Algorithm 1 InfoNet Training

Require: A maximum number of Gaussian components; Step size η
1: Repeat:
2: Randomly select N two-dimensional Gaussian mixture distributions
3: Select T data points from each distribution as joint distribution
4: Shuffle joint samples to get marginal samples
5: Put joint samples into the model and get N two-dimension lookup tables
6: Apply lookup function to get the corresponding θxi,yi(xit, y

i
t) and for all data points in joint

samples and marginal samples

7: L ← 1

N

∑N
i=1

{
1

T

∑T
t=1 θxi,yi(xit, y

i
t)− log

(
1

T

∑T
t=1 exp(θxi,yi(xit, ỹ

i
t))

)}
.

8: Do gradient ascent for L
9: Until Convergence.

(PDF) of the GMM, K is the total number of components in the mixture, πi denotes the weight of
the i-th component satisfying

∑K
i=1 πi = 1, andN (z|µi,Σi) is the PDF of a Gaussian with mean µi

and covariance Σi. By fitting the parameters K, πi, µi, and Σi, a GMM can faithfully approximate
an arbitrary target distribution. We argue that sampling from GMMs is necessary due to two facts: 1)
we can not guarantee enough coverage of real-world distributions with a limited budget; 2) we can
synthesize arbitrarily complex distributions using GMMs so that the trained InfoNet can generalize
to real-world ones (in a similar spirit to Cranmer et al. (2020); Lavin et al. (2021)).

We set the maximum number of components to 20 to ensure enough diversity in the sampled GMMs.
Specifically, we first randomly choose a number K from {1, 2, ..., 20}, and then we perform another
sampling of the component weights {πi}Ki=1 such that their sum is one. For each GMM component,
we randomly sample its mean from the interval [−5, 5]. To generate the covariance matrix, we begin
by creating a matrix D where each element is sampled from the range [−3, 3]. Then, the covariance
matrix is derived by Σ = DDT + ϵI, where ϵ = 0.01 is utilized to enforce the matrix to be positive
definite. To this end, a random GMM distribution is instantiated, and we can sample from it to get
two sequences by partitioning z into two parts. The jointly sampled GMM sequences can be found
in Sec. A. Finally, in each training batch, we have 32 randomly generated GMM sequences, each
having a length equal to 2000. Please note that, for each batch, we sample a separate set of GMMs
to make sure the training data for InfoNet is diverse and the training can explore the whole space
of the GMM family. Trained with randomly sampled distributions, our model should be capable of
estimating mutual information for real-world distributions encountered during inference.

3.2 NETWORK TRAINING

The network architectures are illustrated in Fig. 2 (InfoNet-MI) and Fig. 3 (InfoNet-MCC). To train,
we normalize the sample values to [−1, 1]. This ensures that the MI or MCC between the random
variables is unchanged. Also, normalizing different sequences into the same range allows more
efficient training and gives an easy interface to real-world data, whose range can be arbitrary.
Additionally, we apply a bilinear interpolation to get the values of θx,y on non-grid points. Please
check Algorithm 1 for the detailed training procedure.

4 EXPERIMENTS

We focus on studying three different aspects related to the effectiveness of the training and the effi-
ciency of the estimation: 1) the evaluation criteria and collection of evaluation data for the proposed
InfoNets and baseline methods; 2) the comparison with other baseline methods in various settings
and validation of the effectiveness of the proposed feed-forward estimation of mutual correlations;
and 3) conducting experiments on real-world data to assess performance against other baseline meth-
ods in terms of efficiency and generalization.

4.1 EVALUATION DATA AND METRICS

Evaluation The evaluation sequences are generated in the same manner as the training ones. To
get the ground-truth mutual information for the evaluation sequences, we consider two situations. If
the sequences come from a single-component GMM, then we apply the analytical formula of MI for
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Gaussian. Otherwise, we apply the Monte-Carlo Integrate (MCI) method (Shapiro, 2003) to com-
pute the ground truth from the samples. The MCI method first estimates the GMM parameters from
the sequences and then leverages a numerical tool to compute the MI between the random variables
represented by the estimated GMM. Note that for HGR-MCC, we do not have an integration formula
as MI, so the ground truth is not explicitly defined, whose evaluation is detailed in the following.

Setup and Metrics We evaluate our method and others with the following setups.

• Sanity Check. We use the sequences sampled from single-component Gaussian distributions
to benchmark different methods, which is a common evaluation scenario adopted by most MI
estimation methods. The estimated MI values are directly compared to the GT computed using
the analytical formula.

• On GMMs with Multiple Components. To account for the noise in the estimated GT for GMMs
with multiple components, we study the mean and variance of the errors of the estimated MI.
Specifically, we divide the sampled evaluation sequences into several categories according to their
ground-truth MI values, e.g., sequences with ground-truth MI around 0.5. We report the mean and
variance of the errors for different methods.

• Mutual Correlation Order Accuracy. Beyond application domains where the exact MI value is
critical, most of the time, for decision-making, the more important is the order of mutual correla-
tions between different random variables. For this, we generate an evaluation dataset consisting of
triplets of random variables {(x,y,y′)}, whose ground truth order is determined by the computed
GT mutual information (i.e., I(x,y) > I(x,y′)). We apply different methods on the triplets to
test the correlation order accuracy averaged over all triplets.

• Generalization to High-Dimensional and Real-World Distributions. We verify the generaliza-
tion of the trained InfoNets on real-world data (e.g., Radford et al. (2021); Zheng et al. (2023)),
where the goal is to check whether the points coming from the same object in motion can be
grouped correctly by looking at the estimated mutual correlation, as well as how InfoNet works
with high-dimensional out-of-domain data leveraging Goldfeld & Greenewald (2021).

4.2 RESULTS AND COMPARISON

Figure 4: Comparison of MI estimates with
Gaussian (runtime included).

In this section, we report the experimental results
and comparisons between the proposed InfoNet for
feed-forward mutual correlation estimation and other
methods. We consider three major baselines: KSG
(Kraskov et al., 2004), which computes MI based
on entropy estimates by averaging k-nearest neighbor
distances of the data points; KDE (Silverman, 2018),
which estimates the joint and marginal probability
density with kernel functions and then computes the
MI by integration; and MINE (Belghazi et al., 2018),
which estimates the MI with the same dual formula-
tion as ours but resorts to optimizing a network for
different distributions in contrast to the feed-forward
prediction of InfoNet. All the evaluations are con-
ducted on an RTX 4090 GPU with an AMD Ryzen
Threadripper PRO 5975WX 32-Core CPU.

Sanity Check on Gaussian We perform a check on the Gaussian distributions. In this case, the
mutual information between random variables strongly depends on their Pearson correlation coeffi-
cient ρ. The evaluation with this setup is commonly reported in other studies, allowing us to verify
if the trained InfoNet is working properly.

For fair comparisons, we train the MINE model with a batch size equal to 500 and for a total of 500
steps with learning rate 0.001. For the KSG method, we choose a neighborhood size of k = 5 for
optimal performance. As depicted in Fig. 4, the trained InfoNet can predict the ground-truth mutual
information more faithfully than the other baselines. The mean error for each method can be found
in the legend inserted in the figure. We can see that InfoNet quantitatively achieves a similar error
with KSG but is thirty times faster. When compared to MINE, InfoNet runs 50 times faster, while
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Table 1: Error mean and variance of different MI estimators. Methods that do not rely on neural
networks are highlighted in Blue, and those leveraging neural networks are colored Green.

MI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M

ea
n

KSG 0.001 0.001 0.004 0.006 0.008 0.009 0.012 0.015 0.016 0.014
KDE 0.005 0.010 -0.003 -0.350 -0.071 -0.109 -0.155 -0.199 -0.239 -0.292

MINE-500 -0.003 -0.058 -0.116 -0.173 -0.228 -0.294 -0.344 -0.399 -0.431 -0.485
MINE-100 -0.008 -0.092 -0.173 -0.251 -0.336 -0.420 -0.504 -0.584 -0.658 -0.742

InfoNet 0.018 0.010 0.0001 -0.026 -0.056 -0.087 -0.125 -0.155 -0.193 -0.233

V
ar

ia
nc

e KSG 2e-4 3e-4 4e-4 5e-4 6e-4 8e-4 9e-4 9e-4 1e-3 1e-3
KDE 0.010 0.005 0.001 0.003 0.004 0.005 0.010 0.012 0.014 0.019

MINE-500 4e-5 0.001 0.004 0.008 0.013 0.018 0.027 0.039 0.052 0.060
MINE-100 4e-5 5e-4 0.002 0.005 0.009 0.012 0.017 0.025 0.033 0.040

InfoNet 4e-4 0.001 0.001 0.002 0.004 0.006 0.010 0.014 0.020 0.028

achieving a 30% percent improvement in accuracy. This sanity check verifies that the proposed
InfoNet has an optimal efficiency-accuracy tradeoff than others.

On GMMs with Multiple Components We perform evaluations on GMMs with multiple compo-
nents, which is a more challenging but practical task. We generate a test dataset using the following
methodology: Firstly, we establish 10 levels for mutual information, ranging from 0.0 to 0.9. Next,
we employ the approach mentioned in training data generation to create random GMM distributions.
Meanwhile, the mutual information between the two random variables is calculated using the MCI
method. If the computed mutual information falls within a narrow range of ±0.02 around any of
the 10 representative level values, we assign the corresponding GMM distribution to that level and
record the precise mutual information value at the same time. The process proceeds until each level
of mutual information is assigned 1000 distributions. Subsequently, we sample sequences of length
2000 for each recorded GMM distribution, with each containing values for both random variables.
We then estimate the MI of each sequence using different methods. The error mean and variance for
each method on different MI levels are summarized in Tab. 6.

Accordingly, we can make the following observations: 1) Even though traditional methods (blue)
can not utilize neural networks for computational efficiency, they perform relatively well in terms
of mean error and variance (KSG); 2) KDE also has small variances but has larger mean errors than
InfoNet. 3) Among the neural methods (InfoNet and variants of MINE), our model achieves much
smaller mean errors, and the prediction is more stable than MINE, which is tested with both 500
and 100 steps during the test-time training. The runtime for MINE-100 and MINE-500 are 0.17 and
0.991 seconds, respectively, while the runtime for InfoNet is 0.008 seconds.

Mutual Correlation Order Accuracy Now we report the performance of different methods mea-
sured by the correlation order accuracy. We consider the study under different numbers of GMM
components, i.e., K ranges from 1 to 10, so we can get an idea of how the accuracy varies as
the difficulty of estimating the mutual correlation increases. We collect 2000 triplets mentioned
above (Sec. 4.1) for each of the different categories. For each triplet, if the estimated order (either
I(x,y) > I(x,y′) or I(x,y) ≤ I(x,y′)) matches with the ground truth computed by the MCI
method, it is considered as accurately ordered. We report the results in Tab. 7. We can see that the
order accuracy of InfoNet is unanimously higher than the test-time optimization method (MINE)
even though both employ neural networks. Also, as the estimation difficulty increases, InfoNet
still outputs accurate estimates of the orders between different random variables measured by the
ground truth mutual information, justifying our model as a reliable correlation estimator for making
decisions based on the correlation order.

High-Dimensional and Real-World Data Due to limited space, please refer to Sec. A.3 for the
clustering results on motion data with the proposed correlation. For high-dimensional MI estimation
results, please refer to Sec. B.3.1 and Sec. B.3.2. Please also refer to Sec. B.3.3 for results on high-
dimensional and real-world data (images). Generalization on more distributions other than GMMs
is presented in Sec. B.2.

5 RELATED WORK

Mutual information estimation measures the statistical dependence between variables using various
nonparametric and parametric approaches. Nonparametric methods, such as K-Nearest Neighbors
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Table 2: Correlation order accuracy of different MI estimators. Methods that do not rely on neural
networks are highlighted in Blue, and those leveraging neural networks are colored Green.

NO. OF COMPS. 1 2 3 4 5 6 7 8 9 10

KSG 98.7 99.0 98.2 98.0 97.9 97.7 97.6 97.5 97.0 97.3
KDE 97.4 97.7 97.9 97.5 97.9 97.8 97.0 97.4 97.4 97.4

MINE-500 98.5 91.2 90.8 87.2 84.5 83.7 81.2 79.6 81.3 78.1
MINE-100 94.6 77.1 75.4 71.6 67.5 69.4 66.5 66.3 68.7 66.4
MINE-10 60.9 56.1 55.1 54.3 52.4 54.9 53.7 50.4 53.1 52.5
INFONET 97.3 96.2 97.0 97.5 97.1 97.6 97.2 97.2 97.8 97.4

(KNN) and Kernel Density Estimation (KDE), estimate mutual information without assuming spe-
cific probability distributions (Reshef et al., 2011; Kinney & Atwal, 2014; Khan et al., 2007; Kwak
& Choi, 2002; Kraskov et al., 2004; Pál et al., 2010; Gao et al., 2015b; 2017; Runge, 2018; Lord
et al., 2018; Moon et al., 1995; Steuer et al., 2002; Gretton et al., 2005; Kumar et al., 2021). How-
ever, these methods have limitations such as sensitivity to parameter choice, curse of dimensionality,
computational complexity, and assumptions about continuity (Suzuki et al., 2008; Walters-Williams
& Li, 2009; Gao et al., 2018; Mukherjee et al., 2020; Fukumizu et al., 2007; Estévez et al., 2009;
Bach, 2022). Binning methods and adaptive partitioning are nonparametric alternatives but suffer
from limitations in bin/partition selection and curse of dimensionality (Lugosi & Nobel, 1996; Dar-
bellay & Vajda, 1999; Cellucci et al., 2005; Fernando et al., 2009; Cakir et al., 2019; Marx et al.,
2021; Thévenaz & Unser, 2000; Paninski, 2003; Knops et al., 2006; Tsimpiris et al., 2012). Para-
metric methods assume specific distributions, e.g., Gaussian, but their accuracy relies on correct
assumptions and parameter estimation (Hulle, 2005; Gupta & Srivastava, 2010; Sugiyama et al.,
2012; Gao et al., 2015a; Ince et al., 2017; Suzuki et al., 2008; Walters-Williams & Li, 2009).

When dealing with limited sample size, measuring and optimizing mutual information can be chal-
lenging (Treves & Panzeri, 1995; Bach & Jordan, 2002; McAllester & Stratos, 2020). However,
alternative measurements within a Reproducing Kernel Hilbert Space (RKHS) have shown effec-
tiveness in detecting statistical dependence (Gretton et al., 2005). A kernel method using the HGR
maximal correlation coefficient to capture higher-order relationships is in (Bach & Jordan, 2002).
While traditional Pearson correlation focuses on linearity, HGR maximal correlation captures non-
linear dependencies. The Sigular Value Decomposition (SVD) (Anantharam et al., 2013; Makur
et al., 2015), Alternating Conditional Expectation (ACE) algorithm Breiman & Friedman (1985);
Buja (1990); Huang & Xu (2020); Almaraz-Damian et al. (2020), and rank correlation (Kendall,
1938; Klaassen & Wellner, 1997) are traditional methods that commonly used. Recently, neural net-
work methods are also proposed (Xu & Huang, 2020). Maximal correlation coefficient estimation
has limitations compared to mutual information. It is sensitive to linearity, limited to bivariate cases,
and computationally complex. Mutual information, on the other hand, measures overall dependence,
extends to multivariate settings, and is computationally efficient for discrete variables.

While there are many works on the scalable computation of MI and statistical dependences Lopez-
Paz et al. (2013); Mary et al. (2019); Goldfeld & Greenewald (2021); Chen et al. (2022), our InfoNet
provides an orthogonal alternative. Instead of pursuing a more accurate approximation of the highly
nonlinear MI or devising more advanced yet computationally friendly correlation metrics, InfoNet
focuses on MI/MCC estimation by encoding the optimization of their dual objectives into neural
networks through pertaining, which allows test-time feed-forward prediction and conceptually en-
ables more efficient and accurate solutions to these complex correlation measures. The proposed
is also related to simulation-based intelligence Cranmer et al. (2020); Ramon et al. (2021). Due to
limited space, please refer to Sec. B.4 for elaborations.

6 DISCUSSION

We propose a method that can efficiently estimate the mutual information between two random
variables by looking at their jointly sampled sequences. Our method is magnitude faster than the
neural counterparts that still solve an optimization during test-time. Our model is trained to estimate
the mutual correlations in a feed-forward manner and can be run in real time. We verified its effi-
ciency and effectiveness with a wide range of distribution families as well as its generalization on
real-world data. We expect the proposed method and trained models can facilitate applications that
require estimating a vast amount of correlation in a very low time budget.
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Ethics Statement: The data used in our experiments are either synthesized or from public bench-
marks, and all comply with the ethical regulations.

Reproducibility Statement: We have provided details on the network structure and the data gen-
eration procedures. We assure the readers that the training and evaluation are fully reproducible and
we promise to release the repository upon completion of the review process.
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A APPENDIX

A.1 RUNTIME COMPARISON ON GMM DATA

In this section, we conduct a comparison of the time complexity between our InfoNet model and
other baseline methods across different numbers of samples.

Table 3: Comparison on time complexity on Gaussian mixture distributions (Unit: seconds)

NO. OF DATA SAMPLES 200 500 1000 2000 5000 10000

KSG(K=1) 0.009 0.024 0.049 0.098 0.249 0.502
KSG(K=5) 0.010 0.025 0.049 0.102 0.253 0.513

KDE 0.004 0.021 0.083 0.32 1.801 6.72

MINE(2000 ITERS) 3.350 3.455 3.607 3.930 4.157 5.755
MINE(500 ITERS) 0.821 0.864 0.908 0.991 1.235 1.668
MINE(10 ITERS) 0.017 0.017 0.019 0.021 0.027 0.035

OURS(BATCHSIZE 1) 0.010 0.010 0.011 0.011 0.013 0.015
OURS(BATCHSIZE 16) 0.001 0.002 0.002 0.002 0.003 0.004

In Tab. 3, we present the results of the running time for different numbers of samples. The reported
values are averaged over 100 experimental trials. For the MINE method, we set the batch size as
100 and the learning rate as 0.001. In our InfoNet method, the batch size refers to the number
of distributions estimated simultaneously. The results indicate that our InfoNet model achieves
remarkably faster processing speed compared to other methods across all tested sample sizes. This
highlights the efficiency and effectiveness of our approach in handling various data sample scenarios.

A.2 SMOOTHING THE LOOKUP TABLE

We have tried two smoothing techniques to enhance the smoothness of the lookup table and at last,
choose method 1 in our final presented results.

Method 1: We apply a convolution layer with a non-learnable Gaussian kernel with size 15 and
sigma 3 on the lookup-table layer. Figure 5 shows the visualization results of adding the Gaussian
smooth kernel. The table is indeed much smoother than not smoothed.

Figure 5: Comparison between the un-smoothed lookup table and smoothed lookup table.

Method 2: We add a penalty term to punish the jumps in values between adjacent points us-
ing the Laplacian operator. We add Lsmooth = α |Laplacian(lookup-table)| after Eq. 2, where
Laplacian(lookup-table) can be obtained by applying a convolution layer on the lookup-table using
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Laplacian kernel:

Laplacian Kernel =

[
0 1 0
1 −4 1
0 1 0

]
(5)

A.3 VALIDATION ON OUT-OF-DOMAIN MOTION DATA

In the field of computer vision, mutual information has greatly influenced the formulation of video
object segmentation, making it an important area of study. In this section, we assess our model’s
performance in video segmentation tasks and present our results using Precision-Recall graphs.

Our objective is to partition the initial frame of a video into two distinct components: the foreground
and the background. To achieve this, we leverage the mutual information derived from the trajectory
of points within the video.

Precision-Recall graphs serve as valuable tools for evaluating the performance of segmentation mod-
els, providing key metrics for assessment. The essential definitions associated with Precision-Recall
graphs are as follows:

Precision =
True Positives

True Positives + False Positives
, Recall =

True Positives
True Positives + False Negatives

(6)

In the segmentation task, given a mask generated by our model and the corresponding ground truth,
True Positives (TP) are the number of points that exist in both the mask and the ground truth. The
denominator of Precision and Recall represents the total number of points in the mask and the ground
truth, respectively.

For our study, we utilize the Pointodyssey dataset (Zheng et al., 2023), which comprises a lengthy
sequence of synthetic videos. This dataset offers a substantial amount of trajectory information as
ground truth. However, it is worth noting that certain trajectories provided may contain unreasonable
values such as ”inf” or ”-50000”. To address this issue, we initially apply a filtering process to ensure
that only points appearing throughout the entire video are considered for analysis.

We begin by selecting a point in the first frame that possesses a trajectory. Using our pre-trained
MCC model, which is exclusively trained on Gaussian mixture distributions without any additional
training steps, we estimate the Maximal Correlation Coefficient (MCC) between the selected point
and all other points based on their trajectories. Let’s denote the chosen point as Pidx. By utilizing
the ground truth dataset, we can obtain the location of Pidx in all subsequent frames. Next, we
calculate the MCC between the x-position of Pidx and the x-position of each additional point. The
same process is repeated for the y-positions. We then compute the average of the two MCC values,
resulting in 1

2 (MCCx +MCCy), which serves as a measure for video segmentation. In Figure 6a
and Figure 6b, we present the visualization of our estimated MCC values in the first frame.

(a) Estimated MCC with point in object 1 (high-
lighted black).

(b) Estimated MCC with point in object 2 (high-
lighted black).

Figure 6: Visualization results using our MCC model.

Subsequently, we define a threshold parameter γ ranging from 0 to 1 with an interval of 0.01. Points
with estimated MCC values greater than the threshold are considered as foreground points, while
the remaining points are classified as background. By comparing this segmentation with the ground
truth mask, we can compute precision and recall metrics for 7 objects from four different videos.
Finally, we calculate the average precision and recall to present our overall results.
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Figure 7: Averaged PR graphs of our model and MINE.

Table 4: Comparison of error mean and variance for given MI value within the range of ±0.01

MI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n

KSG -3e-4 0.002 0.004 0.005 0.009 0.009 0.012 0.014 0.016 0.015
KDE 0.007 0.012 -0.0.004 -0.036 -0.070 -0.108 -0.157 -0.200 -0.242 -0.298

MINE/500 -0.002 -0.057 -0.116 -0.176 -0.228 -0.293 -0.341 -0.406 -0.439 -0.501
MINE/100 -0.004 -0.91 -0.171 -0.252 -0.336 -0.421 -0.502 -0.591 -0.663 -0.754

Ours 0.016 0.011 0.0003 -0.025 -0.055 -0.087 -0.125 -0.157 -0.198 -0.240

V
ar

ia
nc

e KSG 2e-4 3e-4 4e-4 5e-4 6e-4 8e-4 9e-4 9e-4 1e-3 1e-3
KDE 0.001 0.004 0.001 0.003 0.004 0.005 0.012 0.012 0.014 0.019

MINE/500 2e-5 0.001 0.004 0.008 0.013 0.018 0.028 0.042 0.052 0.057
MINE/100 1e-5 4e-4 0.002 0.005 0.009 0.012 0.018 0.024 0.030 0.037

Ours 3e-4 0.001 0.001 0.002 0.004 0.006 0.011 0.013 0.022 0.031

In Figure 7, we present a comparison between our model and MINE using different training itera-
tions (100, 500, 3000). The results demonstrate that our model maintains high segmentation quality
while significantly reducing the required time. On average, our model takes only 6 seconds to obtain
the segmentation of one video, whereas MINE requires approximately 1 minute.

A.4 ADDITIONAL STATISTICS OF THE RESULTS

In Table 4 and Table 5, we present additional results for the error test based on the given mutual
information values. However, there is a slight difference compared to the table provided in the
experiment section, since we choose distributions used for the mean calculation within different
intervals of MI, computed using Monte Carlo Integration, to test the conclusion under different
settings. The MI value interval is 0.01 and 0.005, respectively.

A.5 DATA DISTRIBUTIONS

In this part, we provide several plots to visualize the sequences sampled from randomly generated
Gaussian mixture distributions used for training.
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Figure 8: Visual comparison between our model and MINE on the video datasets. They are arranged
in the order of InfoNet (no test-time optimization, feed-forward prediction), MINE (iteration 10),
MINE (iteration 50), and MINE (iteration 3000) from left to right.

Table 5: Comparison of error mean and variance for given MI value within the range of ±0.005

MI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n

KSG 3e-4 0.002 0.003 0.006 0.009 0.007 0.011 0.014 0.015 0.017
KDE 0.008 0.010 -0.003 -0.038 -0.070 -0.114 -0.158 -0.197 -0.249 -0.295

MINE/500 -0.001 -0.058 -0.117 -0.175 -0.229 -0.292 -0.344 -0.398 -0.460 -0.490
MINE/100 -0.003 -0.091 -0.171 -0.250 -0.336 -0.420 -0.502 -0.589 -0.667 -0.75

Ours 0.015 0.011 1e-5 -0.026 -0.056 -0.093 -0.125 -0.154 -0.207 -0.229

V
ar

ia
nc

e KSG 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 9e-4 9e-4 1e-3 1e-3
KDE 0.008 0.005 0.004 0.003 0.006 0.009 0.011 0.015 0.017 0.019

MINE/500 4e-6 0.001 0.004 0.007 0.014 0.019 0.029 0.040 0.051 0.056
MINE/100 1e-5 4e-4 0.002 0.005 0.008 0.013 0.176 0.255 0.290 0.367

Ours 2e-4 0.001 0.001 0.002 0.005 0.007 0.010 0.014 0.020 0.025
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 9: Individual PR graph of our model and MINE. In the experiments conducted on video
datasets, InfoNet exhibited notably high stability compared to MINE.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 10: Comparison between PR graphs of our model and MINE. In the same video dataset,
InfoNet consistently exhibits superior performance compared to MINE.
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Figure 11: Data points sampled from one mog distribution with 3 components, MI between X and
Y is 0.316.

Figure 12: Data points sampled from one mog distribution with 7 components, MI between X and
Y is 0.510.

Figure 13: Data points sampled from one mog distribution with 10 components, MI between X and
Y is 0.071.
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B REVISION

B.1 COPULAS

To enhance the efficiency of mutual information estimation, we introduce the method called copula
during the data preprocessing stage. This approach is initiated based on a fundamental property of
mutual information: given that f, g : R→R are arbitrary strictly increasing functions, the following
equation holds true:

I (f(X), g(Y )) = I (X,Y ) . (7)
Specifically, drawing inspiration from the research presented in (Pál et al., 2010), we select the
mappings f = FX and g = FY , where FX and FY represent the cumulative distribution functions
(CDF) of random variables X and Y respectively. When FX and FY are continuous, the marginal
distribution becomes a uniform distribution over the interval [0, 1].

While the specific CDF of X and Y is not known in our situations, we employ the empirical CDF(
F̂X , F̂Y

)
as an alternative. Given a sequence X = (X1, X2, · · · , Xn) with length n, where each

sample Xi, i = 1, · · · , n, originates from an unknown distribution, the empirical CDF is defined as
follows:

F̂X(x) =
1

n
card ({i : 1 ≤ i ≤ n, x ≤ Xi}) , x ∈ R, (8)

where card(·) denotes the cardinality of the set. Note that while F̂X does not establish a bijection
between R and the interval [0, 1], it is quite straightforward to create a bijection through interpolation
while preserving the order of the sampling points. This ensures the invariance of mutual information,
as the property remains unaffected by the transformation.

Our approach involves using the empirical CDF of X and Y to map them to a uniform distribution
between [0, 1] prior to training and evaluation. In practice, this mapping process can be reduced to a
simple sorting step:

f(x) =
1

n
card ({i : 1 ≤ i ≤ n, x ≤ Xi}) , x = X1, X2, · · · , Xn, (9)

and
g(y) =

1

n
card ({i : 1 ≤ i ≤ n, y ≤ Yi}) , y = Y1, Y2, · · · , Yn, (10)

which are strictly increasing mappings that satisfies the requirement stated in equation 7.

This significantly reduces data complexity, leading to substantial improvements in our model’s per-
formance and a considerable increase in the speed of convergence. Since using the copula let the
data points fall more evenly in the lookup table. Specifically, the training latency reduction is up to
5 times compared to the previous scheme without incorporating copulas method. By introducing the
copula, our latest results are presented with a mark of “(new)”.

Figure 14 illustrates the performance of InfoNet on different number of gauss components, all the
results are gained by randomly generate 200 pairs of GMM distributions and sort them by the value
of real mutual information. We can see that our estimation is close to the ground truth.

B.2 PERFORMANCE ON OTHER DISTRIBUTIONS

Paper Czyż et al. (2023) provides a diverse family of distributions with known ground-truth mutual
information. We select three one-dimension distributions to test our InfoNet performance, note that
our model has been only trained on GMM distributions and without any additional training.

Half-Cube Map Applying the half-cube homeomorphism h(x) = |x|3/2 sign(x) to Gaussian vari-
ables X and Y , this could lengthen the tail. The transformation does not influence the ground truth
value of MI.

Asinh Mapping Applying inverse hyperbolic sine function asinhx = log
(
x+
√
1 + x2

)
to shorten

the tails, this transformation does not change the ground truth value of MI.

Additive Noise Let independent r.v. X ∼ Uniform(0, 1) and N ∼ Uniform(−ε, ε), where ε is the
noise level. For Y = X +N , we could derive I(X;Y ) analytically.
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Table 6: Error mean and variance of different MI estimators. Methods that do not rely on neural
networks are highlighted in Blue, and those leveraging neural networks are colored Green.

MI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M

ea
n

KSG 0.001 0.001 0.004 0.006 0.008 0.009 0.012 0.015 0.016 0.014
KDE 0.005 0.010 -0.003 -0.350 -0.071 -0.109 -0.155 -0.199 -0.239 -0.292

MINE-500 -0.003 -0.058 -0.116 -0.173 -0.228 -0.294 -0.344 -0.399 -0.431 -0.485
MINE-100 -0.008 -0.092 -0.173 -0.251 -0.336 -0.420 -0.504 -0.584 -0.658 -0.742

InfoNet 0.018 0.010 0.0001 -0.026 -0.056 -0.087 -0.125 -0.155 -0.193 -0.233
InfoNet(new) 0.010 0.004 0.008 -0.024 -0.040 -0.063 -0.082 -0.101 -0.124 -0.138

V
ar

ia
nc

e KSG 2e-4 3e-4 4e-4 5e-4 6e-4 8e-4 9e-4 9e-4 1e-3 1e-3
KDE 0.010 0.005 0.001 0.003 0.004 0.005 0.010 0.012 0.014 0.019

MINE-500 4e-5 0.001 0.004 0.008 0.013 0.018 0.027 0.039 0.052 0.060
MINE-100 4e-5 5e-4 0.002 0.005 0.009 0.012 0.017 0.025 0.033 0.040

InfoNet 4e-4 0.001 0.001 0.002 0.004 0.006 0.010 0.014 0.020 0.028
InfoNet(new) 1e-5 1e-4 3e-4 8e-4 0.001 0.002 0.004 0.005 0.007 0.009

Table 7: Correlation order accuracy of different MI estimators. Methods that do not rely on neural
networks are highlighted in Blue, and those leveraging neural networks are colored Green.

NO. OF COMPS. 1 2 3 4 5 6 7 8 9 10

KSG 98.7 99.0 98.2 98.0 97.9 97.7 97.6 97.5 97.0 97.3
KDE 97.4 97.7 97.9 97.5 97.9 97.8 97.0 97.4 97.4 97.4

MINE-500 98.5 91.2 90.8 87.2 84.5 83.7 81.2 79.6 81.3 78.1
MINE-100 94.6 77.1 75.4 71.6 67.5 69.4 66.5 66.3 68.7 66.4
MINE-10 60.9 56.1 55.1 54.3 52.4 54.9 53.7 50.4 53.1 52.5
INFONET 97.3 96.2 97.0 97.5 97.1 97.6 97.2 97.2 97.8 97.4

INFONET(NEW) 100 99.76 99.76 99.54 99.54 99.6 99.48 99.56 99.64 99.58

Figure 15 shows our result on other distributions inspite of Mixture of Gaussian distributions. Due
to the introduce of copula, our model can suit different monotonic transformation well and this is
the reason of good estimating of Half-Cube Map and Asinh Mapping. Also, our model performance
on Additive noise well, this illustrate our model have good generalization ability since we do not
train any uniform distributions and adding noise in the train process.

B.3 HIGH DIMENSION RESULTS

Our method indeed encounters specific challenges in high-dimensional settings, primarily due to
the inherent constraints associated with simulation-based learning. As the dimensionality of data
escalates, capturing a comprehensive array of distribution scenarios becomes increasingly complex.
Additionally, the exponential growth in the number of grids within the lookup table, as dimensions
rise, makes our proposed discrete representation method less feasible.

To address these issues, we introduce the concept of sliced mutual information (SMI) Goldfeld
& Greenewald (2021), defined as the average of mutual information (MI) terms between one-
dimensional random projections. SupposeX and Y are dx-dimensional and dy-dimensional random
variables. SMI can be expressed as the expected MI of one-dimensional random projections:

SMI(X;Y ) = Eϕ,ψ [I(ϕ(X);ψ(Y ))] =
1

Sdx−1Sdy−1

∮
Sdx−1

∮
Sdy−1

I
(
θ⊤X;ϕ⊤Y

)
dθdϕ (11)

Here, Sd−1 denotes the d-dimensional sphere (whose surface area is designated by Sd−1), ϕ and ψ
are vectors used for linear projection from high-dimensional space to one-dimensional space, and
Eϕ,ψ denotes the expectation over these projection functions.

While SMI typically yields lower values compared to MI, it retains many of the intrinsic properties
of MI and exhibits a certain degree of correlation with it. This inter-connectedness is crucial, as it
implies that while SMI offers a novel approach to handling high-dimensional data, it still adheres
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to the fundamental principles of MI, thereby ensuring consistency in its theoretical foundations and
practical applications.

In this section, we rigorously assess our InfoNet model’s efficacy in handling high-dimensional data.
This evaluation is carried out through experiments encompassing three distinct tasks: the correla-
tion order test using Multivariate Gaussian distributions, an independence test in high-dimensional
settings, and a correlation order test employing real-world data generated via the CLIP model.

B.3.1 MULTIVARIATE GAUSSIAN CORRELATION ORDER TEST

In this section we similarly compare the capability of InfoNet in classify the correct correlation order
on d-dimensional gauss distributions: (X,Y ) =

(
(X1, X2, · · ·Xd), (Y 1, Y 2, · · ·Y d)

)
∼ N (µ,Σ).

This result shows that our InfoNet model reaches high accuracy and still costs low time complexity.
Since our model allows parallel computing on multiple GPUs, it can compute massive scalable MI
of projected variables in one feed forward process.

Table 8: Correlation order accuracy of different MI estimators. Methods that do not rely on neural
networks are highlighted in Blue, and those leveraging neural networks are colored Green. MINE-
100 means training MINE method for 100 iterations, InfoNet-100 means we do 100 times random
projection to get an average.

DIMENSIONS 2 3 4 5 6 7 8 9 10

KSG 94.4 95.5 91.8 92 94.1 93.6 94.1 94.1 94.2
ENERGY DISTANCE 49.6 51.2 52.2 51.5 52.5 49.6 48.7 50.2 51.3

MINE-100 78.5 82.1 86.7 84.7 88.4 89.8 90.1 90.4 90
MINE-1000 93.6 93.9 94.4 94.3 91.6 91.7 89.5 91 90.3
MINE-5000 96.2 97 97 96.2 94.9 94.2 93.2 92.8 93

INFONET-100 93.7 94.6 94.4 95.7 93.3 95.8 95.8 95.4 93.8
INFONET-500 94.9 93.7 95.7 95.8 97.1 96.4 97.2 97.8 96.8

INFONET-1500 97.7 96.4 96.2 97.9 97.4 98.1 98.2 97.3 98.3

Table 8 shows that our method is good at classifying the correct order compares to MINE, KSG and
Energy Distance in Rizzo & Székely (2016).

B.3.2 INDEPENDENCE TESTING

In this part we check the performance of our model on high dimensional independence testing, due
to the fact that SMI(X,Y ) = 0, MI(X,Y ) = 0, ED(pX,Y (x, y), (pX(x), pY (y)) = 0 if and only if
X and Y is independent, where ED represents Energy Distance Rizzo & Székely (2016)

Figure 16 shows independence testing results for three relationships between X,Y pairs. The fig-
ure shows the area under the curve (AUC) of the receiver operating characteristic (ROC) for inde-
pendence testing via our methods (using sliced mutual information) and MINE along with Energy
Distance. the random projection steps for SMI uses 1000 random slices, and the ROC curves are
computed from 100 random trials . Figure uses sample size selected from each distribution n as
variable to show the AUC value under different sample sizes, and the dimension d we test is 16, 128.
The joint distribution of (X,Y ) in each case of is:

(a) One feature (linear): X,Z ∼ N (0, Id) i.i.d. and Y = 1√
2

(
1√
d

(
1⊤X

)
1+ Z

)
, where 1 :=

(1, . . . , 1)⊤ ∈ Rd.

(b) Two features: X,Z ∼ N (0, Id) i.i.d. and Yi = 1√
2

{
1
d

(
1⌊d/2⌋0 . . . 0

)⊤
X + Zi, i ≤ d

2
1
d

(
0 . . . 01⌈d/2⌉

)⊤
X + Zi, i > d

2 .

(c) Independent coordinates: X,Z ∼ N (0, Id) i.i.d. and Y = 1√
2
(X + Z).
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B.3.3 CORRELATION ORDER TEST USING DATA GENERATED BY CLIP

In this section we check the correlation order performance on high dimension data generated by
CLIP Radford et al. (2021).

The task is the correlation order prediction, which means, given three random variables, X,Y, and Z,
we would like to find which one of Y and Z is more correlated with X.

Specifically, we download the ImageNet2017(ILSVRC) dataset and CLIP pre-trained model. De-
note the image encoder of CLIP as a function fCLIP, which takes in an image and outputs a 512-
dimension vector representing the feature of the image. We begin with a randomly selected se-
quence of images from ILSVRC dataset. Then X is generated by X = fCLIP(image) to be a
sequence of 512-dimensional vectors. Then we add Gaussian noise to the original image to get
Y : Y = fCLIP(image + noise). Finally, we add color jitter to randomly change the image’s bright-
ness, contrast, saturation, and hue. We denote the transformation as gjitter. Then Z is generated
by Z = fCLIP(gjitter(image + noise)). In this case, we can tentatively ensure that the ground truth is
MI(X,Y ) > MI(X,Z) as the information contained in the image for getting Z is less than that
for getting Y with respect to the original image, according to the Data Processing Inequality.

Table 9: Accuracy Comparison

Method Ours MINE
accuracy 100 100

From table 9 we can see that MINE and our method reaches good consistency. In the experiment
we train MINE for 1000 iterations and InfoNet does 1000 random projections. The number of the
sequence of images is 5000.

B.4 DISCUSSION ON SIMULATION-BASED INTELLIGENCE

The connection between our work on InfoNet and the field of simulation-based intelligence lies
in the underlying principles of learning from data and adapting to complex environments. Both
approaches aim to improve decision-making and intelligent behavior by leveraging statistical rela-
tionships and learning mechanisms.

In the case of InfoNet, the focus is on efficiently estimating mutual information (or HGR maximal
correlations) between random variables or data streams, which is crucial for understanding and
capturing the dependencies in complex systems. By developing a feed-forward neural estimator
for mutual information, our work contributes to improving the efficiency and differentiability of
correlation estimation in various applications.

Simulation-based intelligence Ramon et al. (2021) Cranmer et al. (2020), on the other hand, involves
AI agents learning and adapting to complex environments through interactions within a simulated
setting. These agents often use reinforcement learning or other learning mechanisms to estimate
statistical relationships and correlations in order to make better decisions and improve their perfor-
mance.

Both fields share a common goal of enhancing intelligent behavior and decision-making by using
data-driven approaches. The efficient mutual information (or HGR maximal correlation) estima-
tion provided by InfoNet can potentially benefit simulation-based intelligence systems by allowing
them to better understand the relationships between variables in their environment. This improved
understanding can lead to more effective learning and adaptation, ultimately enhancing the overall
performance of AI agents in simulation-based intelligence applications.
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Figure 14: This figure shows our InfoNet performance on different number of gauss components,
all the results are gained by randomly generate 200 pairs of distributions and sort them by the value
of real mutual information. We can see that our work can reach good performance on scalable data.
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Figure 15: Evaluation of performance on distribution other than GMM, comparing with MINE with
500 training iterations and KSG with nearest neighbour number k = 1. From the figure we can see
that our InfoNet model only trained on GMM data suits other distributions well and the result is
close to the ground truth.

Figure 16: Independence testing over InfoNet, MINE, ED. Figure shows the area under the curve
(AUC) of the receiver operating characteristic (ROC) as a function of sample n.
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