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ABSTRACT

This work presents a forward-only diffusion (FoD) approach for generative mod-
elling. In contrast to traditional diffusion models that rely on a coupled forward-
backward diffusion scheme, FoD directly learns data generation through a single
forward diffusion process, yielding a simple yet efficient generative framework.
The core of FoD is a state-dependent stochastic differential equation that involves a
mean-reverting term in both the drift and diffusion functions. This mean-reversion
property guarantees the convergence to clean data, naturally simulating a stochastic
interpolation between source and target distributions. More importantly, FoD is an-
alytically tractable and is trained using a simple stochastic flow matching objective,
enabling a few-step non-Markov chain sampling during inference. The proposed
FoD model—despite its simplicity—achieves state-of-the-art performance on vari-
ous image restoration tasks. Its general applicability on image-conditioned genera-
tion is also demonstrated via qualitative results on image-to-image translation.

1 INTRODUCTION

The diffusion model has become a central theme in generative modelling (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Karras et al., 2022). A crucial feature of the diffusion model is
the use of a forward process that gradually perturbs the data into noise, coupled with a backward
process that learns to transform noise back to data (Sohl-Dickstein et al., 2015; Ho et al., 2020).
Benefiting from this forward-backward framework, the diffusion models have achieved remarkable
performance in producing high-quality results across a wide range of applications, including image
synthesis (Dhariwal & Nichol, 2021; Saharia et al., 2022b; Rombach et al., 2022; Peebles & Xie,
2023; Podell et al., 2024), translation (Meng et al., 2022; Saharia et al., 2022a; Tumanyan et al., 2023;
Kawar et al., 2023; Brooks et al., 2023), and restoration (Saharia et al., 2022c; Kawar et al., 2022;
Luo et al., 2023a; Wang et al., 2024; Lin et al., 2024).

Despite this success, the reliance on the coupled forward-backward construction substantially in-
creases the algorithmic complexity at the same time as it leads to a challenging model training
problem. In addition, the necessity of corrupting data to noise in diffusion models further imposes an
undesirable constraint for image-conditioned generation (Kawar et al., 2022; Saharia et al., 2022a),
where ideally the generative process should start with image conditions that are structurally more
informative than noise (Luo et al., 2023a; Saharia et al., 2022c; Liu et al., 2023). This naturally leads
to a fundamental question:

“Could a simpler, single diffusion process suffice for effective generative modelling?”

This paper answers this question affirmatively by introducing a probabilistic forward-only diffu-
sion model (FoD). Our exploration starts from the mean-reverting stochastic differential equation
(SDE) (Gillespie, 1996; Luo et al., 2023a), where the data is stochastically driven toward a specified
state characterized by a fixed mean and variance. Notably, setting the mean to zero recovers the
standard forward diffusion process (Song et al., 2021). Inspired by this, we propose a new form of
the mean-reverting SDE, which adds mean-reversion to both the drift and diffusion functions as a
state-dependent diffusion process. Here, we highlight the mean-reversion diffusion function as it
guarantees the convergence to the noise-free mean state. By setting the mean to the target data, FoD
naturally simulates the data transition between source and target distributions, without requiring a
separate backward process.

We further demonstrate that the FoD process is analytically tractable and follows a multiplicative
stochastic structure. Moreover, we show that the model can be learned by approximating the vector
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field from each noisy state to the final clean data, a process we refer to as stochastic flow matching.
The result is a simple, yet effective training process. Based on the tractable solution and the flow
matching objective, FoD enables a few-step sampling strategy with both Markov and non-Markov
chains, enabling more efficient data generation without compromising sample quality.

In addition, as a closely related work of our method, it is worth noting that flow matching (Lipman
et al., 2022; Liu et al., 2022) can also eliminate the need for a separate data perturbation process
by modelling a continuous flow from source distribution to target distribution. However, the noise
injection, which has been shown crucial in generative models (Song & Ermon, 2019), is also
eliminated due to the modelling of ordinary differential equations (ODEs). As a result, its performance
drops significantly when handling image-conditioned generation tasks, such as image restoration (IR),
which aims to recover high-quality images from their degraded low-quality counterparts (Albergo
et al., 2023a; Martin et al., 2024; Ohayon et al., 2024). In contrast, FoD is a stochastic extension of
flow matching that avoids the issue mentioned above by simulating SDEs with a state-dependent
diffusion process, making it well-suited for image-conditioned generation.

Our experiments focus on image-conditioned generation, an active and fundamental direction of
generative modelling with a wide range of real-world applications, including image restoration and
image-to-image translation. Compared to existing diffusion and flow matching-based approaches, the
proposed FoD achieves strong empirical performance across diverse tasks and datasets. Moreover,
we provide a comprehensive analysis of efficient sampling using both Markov and non-Markov
chains, and illustrate how the noise is injected and subsequently removed during the forward diffusion
process, highlighting the importance of noise injection in image generation.

2 BACKGROUND

Given a source distribution pprior and an unknown target data distribution pdata, our goal is to build
a probability path {p(xt)}Tt=0 that transports between the source distribution p(x0) = pprior and the
target distribution p(xT ) = pdata. In this paper, the source can be either noise, for unconditional
generation, or images, for image-conditioned generation, e.g., image restoration.

2.1 DIFFUSION MODELS

Given a target data point xT ∼ pdata, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
define a Markov chain forward process to progressively perturb the data into noise (xT → x0) and
then learn its reverse process to reconstruct the data (x0 → xT ). This coupled forward-backward
process can be defined by stochastic differential equations (SDEs) (Song et al., 2021), given by:

dxt = f(xt, t) dt+ g(t) dwt︸ ︷︷ ︸
Forward process

and dxt =
[
f(xt, t)− g(t)2 ∇ log pt(xt)

]
dt+ g(t) dw̄t︸ ︷︷ ︸

Backward process

, (1)

where f(x, t) is the drift function and g(t) is the diffusion function. Furthermore, w and w̄ are
the standard Wiener process and its reverse process, respectively. We use pt(xt) to denote the
marginal probability density of xt. The term ∇ log pt(xt), called the score function, is the sought-
after objective in the backward (also called the reverse-time) SDE, which is often learned by a
time-dependent neural network (Song et al., 2021) via score-matching. The training objective can
also be converted to learn noise matching as in DDPMs (Ho et al., 2020). Moreover, the source
distribution in diffusion models is often a Gaussian with a predefined mean and variance. Diffusion
models typically require thousands of sampling steps to generate high-quality samples.

2.2 FLOW MATCHING GENERATIVE MODELS

Flow matching (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) is a simple
regression objective used for learning the velocity field v(xt, t) that transports a sample xt from the
source distribution to the target distribution along the probability path p(xt) (Lipman et al., 2024).
More specifically, flow matching models aim to learn the ordinary differential equation (ODE):
dxt = v(xt, t) dt, where x0 ∼ pprior and the drift v(xt, t) transports samples from x0 to x1 ∼ pdata.
Here, each latent variable xt in the ODE path is drawn by linearly interpolating source and target
data samples, i.e., xt = tx1 + (1− t)x0. Then the training can be performed by uniformly sampling
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1

𝑥! 𝑥"

Source TargetForward-only diffusion process

d𝑥! = 𝜃! 𝜇 − 𝑥! d𝑡 + 𝜎!(𝑥! − 𝜇)d𝑤! Figure 1: The proposed forward-only dif-
fusion (FoD) probabilistic model. FoD in-
troduces the mean reversion term (marked
in red color) into both the drift and dif-
fusion functions, enabling high-quality
data samples with a single diffusion pro-
cess. This method can be easily extended
from unconditional generation (top row)
to image-conditioned generation, such as
the image restoration in the second row.

data pairs and timesteps and optimizing a flow matching objective, as:

LFM(ϕ) = Ex0,x1,t∼U(0,1)

[
∥(x1 − x0)− vϕ(xt, t)∥2

]
, (2)

where vϕ(xt, t) is a neural network approximating the true velocity field. Flow matching models
eliminate the diffusion term from the generative process and thus lead to a simpler and more direct
learning procedure based on ODE paths. However, in this paper, we observe that applying it to
image-conditioned generation tasks, such as image restoration, leads to a significant performance
drop due to the lack of stochastic noise injection (see Section 4.1 for more details). Moreover, it is
worth noting that both diffusion models and flow matching models can be unified into the stochastic
interpolants (Albergo et al., 2023a) framework.

3 FORWARD-ONLY DIFFUSION PROBABILISTIC MODELS

The key value of the forward-only diffusion (FoD) model lies in defining an analytically solvable,
forward-only process that removes the need to approximate or learn a reverse SDE. This makes
the generative process conceptually simple and stable, and easier to extend to image-conditioned
generation, as illustrated in Figure 1.

3.1 PRELIMINARIES: MEAN-REVERTING SDE

Our exploration starts from a mean-reverting SDE (Gillespie, 1996; Luo et al., 2023a) where the data
is stochastically driven towards a state characterized by a specified mean µ and variance λ2:

dxt = θt (µ− xt) dt+ σt dwt, (3)

where {θt}Tt=0 and {σt}Tt=0 are positive mean-reversion and diffusion schedules, respectively. By
coupling the schedules as σ2

t / θt = 2λ2 for all t, we obtain the following solution (Luo et al., 2023a)

xt = µ+
(
x0 − µ

)
e−

∫ t
0
θz dz +

∫ t

0

σz e
−

∫ t
s
θs ds dwz. (4)

As t→ ∞, the SDE converges to a stationary state xT ∼ N (xt | µ, λ2). This property suggests con-
structing a process that transports samples from the source distribution pprior to the target distribution
pdata, by setting the mean µ to be a sample from pdata. However, as can be observed from Eq. (4),
the resulting sample xT is still noisy, with variance λ2, which works against our goal of generating
high-quality clean data samples. In the following sections, we address this problem by introducing
mean-reversion in both the drift and diffusion functions.

3.2 FORWARD-ONLY DIFFUSION PROCESS

We begin by designing an SDE with mean-reversion terms in both the drift and diffusion functions, as

dxt = θt (µ− xt) dt+ σt (xt − µ) dwt. (5)

This is a state-dependent linear SDE with multiplicative noise, where the diffusion volatility increases
in the beginning steps and then decreases to zero when xt converges to µ. We typically use xt − µ
in the diffusion function such that this SDE simulates a reverse Wiener process as in diffusion
models (Song et al., 2021). For image generation, the noise dwt is added independently at each pixel,
meaning that this SDE is applied for image transitions pixel-by-pixel, under the Itô interpretation.

We refer to this SDE as the forward-only diffusion (FoD) process, and present its solution as follows:

3
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Proposition 3.1. Given an initial state xs at time s < t, the unique solution to the SDE (5) is

xt =
(
xs − µ

)
e−

∫ t
s

(
θz+

1
2σ

2
z

)
dz+

∫ t
s
σzdwz + µ, (6)

where the stochastic integral is interpreted in the Itô sense and can be reparameterised as σ̄s:t ϵ,

where σ̄s:t =
√∫ t

s
σ2
z dz, and ϵ ∼ N (0, I) is a standard Gaussian noise.

The proof is provided in Appendix A.1. In addition, the solution in Eq. (6) shows that the stochastic
flow field µ−xt forms a Geometric Brownian motion (Ross, 2014) and yields the following corollary:
Corollary 3.2. Under the same assumptions as in Proposition 3.1, the stochastic flow field µ− xt
satisfies the multiplicative stochastic structure. More precisely, it is log-normally distributed by

log(µ− xt) ∼ N
(
log(µ− xs)−

∫ t

s

(
θz +

1

2
σ2
z

)
dz,

∫ t

s

σ2
z dz I

)
. (7)

This follows directly from Proposition 3.1, by rearranging µ− xt to the left of Eq. (6) and applying
the logarithm to both sides (see Appendix A.1). The subtractive form of the logarithm reflects that
the flow field decays multiplicatively from its initial value with a stochastic exponential scaling.

Notational Clarifications: Although the sign of µ− xt in general can be either positive or negative,
it remains consistent across all times t for a given sample; therefore, we choose to omit absolute
values inside the logarithmic terms in Eq. (7) for notational convenience. In addition, we further let
m̄s:t = −

∫ t

s
(θz +

1
2σ

2
z) dz and m̄t = m̄0:t in the rest of the paper to simplify the notation.

3.3 STOCHASTIC FLOW MATCHING

Let us now explain how we can learn this FoD process, i.e., transforming data from a known source
distribution pprior to an unknown target distribution pdata. Following DDPMs (Ho et al., 2020), we
define the FoD model as pϕ(x0:T ), a joint distribution with learnable transitions starting at x0, as

pϕ(x0:T ) = pprior(x0)

T−1∏
t=0

pϕ(xt+1 | xt), x0 ∼ pprior. (8)

We propose to set the transition kernel pϕ(xt+1|xt) to be in the same log-Gaussian form as Eq. (6).
The training can then be performed by minimizing the negative log-likelihood of pϕ(xT ), which is
equivalent to optimizing the following objective:

Ep

[ T−1∑
t=0

DKL(p(xt+1 | xt, xT ) ∥ pϕ(xt+1 | xt))
]
. (9)

The proof is provided in Appendix A.2. During training, we set xT equal to µ such that the SDE (5)
converges to data µ exactly. Then, the conditional distribution p(xt+1|xt, xT = µ) is tractable as
shown in Eq. (6). By letting the functions fµ(xt) = µ − xt and fϕ(xt, t) = µ̂ϕ − xt denote the
ground truth and the model prediction of the stochastic flow field, respectively, we transform the
distributions in Eq. (9) from SDE states to stochastic flow fields. Note that this transformation, i.e.,
from p(·|xt, µ) to p(·|fµ(xt)), holds because its Jacobian determinant equals one. Instead of Eq. (9),
we can therefore minimize the KL divergence between two stochastic flow distributions:

Ep

[ T−1∑
t=0

DKL(p(fµ(xt+1) | fµ(xt) ∥ p(fϕ(xt+1, t) | fϕ(xt, t))
]
. (10)

Combining this with Corollary 3.2, we obtain the final objective:

LSFM(ϕ) := Eµ∼pdata,xt∼p(xt|x0,µ)

[
∥ log(µ− xt)− log fϕ(xt, t)∥2

]
≈ Eµ∼pdata,xt∼p(xt|x0,µ)

[
∥(µ− xt)− fϕ(xt, t)∥2

]
,

(11)

where the approximation follows from a first-order Taylor expansion close to the optimum. Please
refer to Appendix A.3 for more details. This objective is referred to as stochastic flow matching and
it is entirely linear, which leads to a simple and numerically stable training process.
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Algorithm 1 FoD Training

Require: pprior, pdata, model fϕ
1: repeat
2: x0 ∼ pprior, µ ∼ pdata
3: ϵ ∼ N (0, I), t ∼ Uniform({1, . . . , T})
4: xt =

(
x0 − µ

)
em̄t+σt ϵ + µ

5: Take gradient descent step on
∇ϕ∥(µ− xt)− fϕ(xt, t)∥2

6: until converged

Algorithm 2 FoD Sampling

Require: pprior, time interval ∆t, model fϕ
1: x0 ∼ pprior
2: for t = 0, . . . , T − 1 do
3: ϵ ∼ N (0, I)

4: ∆x = θtfϕ(xt, t) ·∆t− σtfϕ(xt, t) ·
√
∆t ϵ

5: xt+1 = xt +∆x
6: end for
7: return xT

Algorithm 3 Markov Chain Sampling

Require: pprior, step size k, model fϕ
1: x0 ∼ pprior
2: for t = 0, k, 2k, . . . , T do
3: ϵ ∼ N (0, I)
4: µ̂ = xt + fϕ(xt, t)

5: xt+k =
(
xt − µ̂

)
em̄t:t+k + ϵ·σ̄t:t+k + µ̂

6: end for
7: return xT

Algorithm 4 Non-Markov Chain Sampling

Require: pprior, step size k, model fϕ
1: x0 ∼ pprior
2: for t = 0, k, 2k, . . . , T do
3: ϵ ∼ N (0, I)
4: µ̂ = xt + fϕ(xt, t)

5: xt+k =
(
x0 − µ̂

)
em̄t+k+ϵ·σ̄t+k + µ̂

6: end for
7: return xT

The standard training and sampling (via the Euler–Maruyama method) procedures are provided in
Algorithm 1 and Algorithm 2, respectively. In addition, the target data estimate µ̂ is given by

µ̂ = xt + fϕ(xt, t), (12)

which can be applied to the forward transition (6) for fast data sampling.

Fast Sampling with Markov and non-Markov Chains While the generation can be performed
by iteratively solving the SDE (5) with numerical schemes such as the Euler–Maruyama method,
it often requires hundreds of sampling steps. Fortunately, the tractable solution of FoD naturally
enables fast sampling during inference, by choosing times discretely with a larger step size k, as
t = [0, k, 2k, 3k, . . . , T ], where T is the total number of timesteps. Since our prediction at each step
is the sought-after target data µ̂, the next state xt+k can be sampled following Eq. (6) with either
Markov or non-Markov chains. This is done by setting the transition to xt → xt+k or x0 → xt+k, as
illustrated in Algorithm 3 and Algorithm 4, respectively. A further discussion is provided in Section 5.

3.4 CONNECTION TO PRIOR WORK

In this section, we establish the theoretical connections between FoD and two closely related prior
works: stochastic interpolants (SI) (Albergo et al., 2023a) and flow matching (FM) (Lipman et al.,
2022). SI provides a unified stochastic framework to bridge two arbitrary distributions, while FM
formulates a deterministic transport map between two distributions via an ODE.

Stochastic Interpolants Let us recall the solution in Eq. (6) of the FoD process. By setting the
initial state to x0 and rearranging the equation, we obtain a stochastic process in the interpolant form:

xt = I(t, x0, µ) = x0 αt + µ (1− αt), αt = e−
∫ t
0

(
θz+

1
2σ

2
z

)
dz+

∫ t
0
σzdwz . (13)

Here, I(t, x0, µ) satisfies the boundary conditions of a stochastic interpolant, with randomness
introduced via dw. FoD can thus be viewed as a powerful instantiation of SI, distinguished by two
key properties: multiplicative log-normal interpolation and a state-dependent stochastic path from x0
to µ. This formulation allows noise to be gradually added and subsequently removed within a single
forward process. This perspective helps unify FoD with a broader class of generative frameworks.

Flow Matching We consider a deterministic version of the FoD process in Eq. (5), i.e., omitting
the diffusion term or setting σt = 0 for all times. This gives a mean-reverting ODE that bridges two
distributions without noise injection, as dxt = θt (µ−xt) dtwith solution xt =

(
xs−µ

)
e−

∫ t
s
θz dz+

5
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Table 1: Quantitative comparison of our method with other diffusion and flow matching approaches
on four different image restoration datasets, evaluated using both distortion and perceptual metrics.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
U-Net baseline 29.12 0.882 0.153 57.55
IR-SDE 31.65 0.904 0.047 18.64
GOUB 31.96 0.903 0.046 18.14
ReFlow 28.36 0.871 0.152 64.81
PMRF 29.01 0.857 0.173 69.25
FoD (Ours) 32.56 0.925 0.038 14.10

(a) Deraining results on the Rain100H dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
U-Net baseline 20.51 0.808 0.162 75.84
IR-SDE 20.45 0.787 0.129 47.28
GOUB 19.29 0.775 0.148 50.44
ReFlow 19.62 0.767 0.221 91.93
PMRF 19.32 0.753 0.189 81.59
FoD (Ours) 21.61 0.819 0.105 41.31
(b) Low-light enhancement on the LOL dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
U-Net baseline 22.88 0.906 0.065 15.65
IR-SDE 25.25 0.906 0.060 8.33
GOUB 25.31 0.908 0.048 8.21
ReFlow 20.84 0.864 0.081 23.53
PMRF 22.45 0.868 0.092 24.09
FoD (Ours) 26.57 0.932 0.033 8.14
(c) Dehazing results on the RESIDE-6k dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
U-Net baseline 27.97 0.889 0.097 58.78
IR-SDE 29.83 0.904 0.045 26.30
GOUB 29.81 0.916 0.039 23.39
ReFlow 29.84 0.912 0.065 38.65
PMRF 30.45 0.901 0.082 55.40
FoD (Ours) 30.28 0.923 0.029 16.12
(d) Inpainting results on the CelebA-HQ dataset.

µ. Setting s to 0 and rewriting this solution yields an interpolation between x0 and µ:

xt = x0 αt + µ (1− αt), αt = e−
∫ t
0
θz dz, (14)

which forms a similar transportation path as in flow matching but with a special velocity field given
by θt (µ− xt). We can then learn the drift, resulting in a conditional flow matching objective:

LCFM := Eµ,xt

[
∥(µ− xt)− fϕ(xt, t)∥2

]
= Eµ,xt

[
∥αt(µ− x0)− fϕ(xt, t)∥2

]
, (15)

which is a deterministic form of the stochastic flow matching in Eq. (11). In practice, we can learn the
target displacement µ− x0 directly and define the α schedule to be linear, i.e., decreasing from 1 to
0, in which case this mean-reverting ODE becomes flow matching with a straight-line path (Lipman
et al., 2022; Liu et al., 2022) exactly. In other words, our primary FoD model can also be regarded as
a stochastic extension of flow matching models.

4 EXPERIMENTS

Our experiments mainly focus on image restoration (IR), a fundamental problem in computer vision
which aims to accurately recover high-quality images from their degraded low-quality counterparts.
The general applicability of our FoD model on image-conditioned generation is further demonstrated
via qualitative results on diverse image-to-image translation tasks1.

Implementation and Setup We use a U-Net (Ronneberger et al., 2015) architecture similar to
DDPM (Ho et al., 2020) for flow prediction in all tasks. Attention layers are removed for efficient
training and testing, similar to IR-SDE (Luo et al., 2023a;b). We choose the commonly used cosine
and linear schedules (Nichol & Dhariwal, 2021) for θt and σt, respectively, and normalize σ2

t to sum
to 1 to ensure numerical stability under multiplicative noise perturbation. The number of sampling
steps is fixed to 100 for all tasks. We use the AdamW (Loshchilov & Hutter, 2017) optimizer with
parameters β1 = 0.9 and β2 = 0.99. The training requires 500 000 iterations with a learning rate of
10−4. All our models are trained on an A100 GPU with 40 GB of memory for about 1.5 days.

The Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and Fréchet Inception
Distance (FID) (Heusel et al., 2017) are reported to evaluate the perceptual fidelity and overall visual
quality. Additionally, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) are also included to evaluate pixel-level and structural similarity.

1We provide more training details, datasets, and unconditional generation results in the Appendix.
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LQ GT IR-SDE ReFlow FoD w/o noisePMRF FoD (Ours)

Figure 2: Comparison of FoD with other approaches on four IR tasks. Here, we add one column for
the results of ‘FoD w/o noise’ to illustrate the importance of noise injection in image restoration.

4.1 IMAGE RESTORATION

We evaluate our method on four IR tasks: 1) image deraining on the Rain100H dataset (Yang et al.,
2017), 2) dehazing on the RESIDE-6k dataset (Qin et al., 2020), 3) low-light enhancement on
LOL (Wei et al., 2018), and 4) face inpainting on CelebA-HQ (Karras et al., 2017).

In our experiments, we select IR-SDE (Luo et al., 2023a) as the main comparison method to evaluate
the performance gap between forward-backward and forward-only schemes for diffusion-based
restoration. We also compare with a diffusion bridge model GOUB (Yue et al., 2024) and other
flow-based approaches, including Rectified flow (Liu et al., 2022; Liu, 2022) and posterior-mean
rectified flow (PMRF) (Ohayon et al., 2024), that learn ODEs and also allow the model to generate
images with a single forward process. In addition, a U-Net model, using the same architecture as our
FoD, is trained with the ℓ1 loss as a CNN baseline on all tasks for reference.

The quantitative comparisons on four IR tasks are reported in Table 1. The proposed FoD achieves
the best results across all datasets in comparison to other diffusion-based and flow-based approaches.
Compared to the U-Net baseline, IR-SDE and GOUB successfully improve the results on perceptual
metrics (LPIPS and FID) across all tasks, proving the effectiveness of the forward-backward based
diffusion IR schemes. We observe that flow-based approaches, such as ReFlow and PMRF, perform
inferiorly on all distortion and perceptual metrics. While PMRF improves the PSNR results for flow
matching-based IR, the performance gain potentially comes from the two-stage training strategy and
the small noise injection in the initial state of rectified flow.

We also provide visual comparisons in Figure 2, showing that our FoD produces the most realistic
and high-fidelity results. In particular, while all deterministic approaches without noise injection
(ReFlow, PMRF and ‘FoD w/o noise’) tend to generate overly smooth outputs (see e.g. the left eye
area in the face inpainting case), the proposed FoD model consistently produces sharper and more
detailed images. Further discussion on the role of noise injection is provided in Section 5.

4.2 IMAGE-TO-IMAGE TRANSLATION

We also perform qualitative experiments on diverse image-to-image translation tasks, to further
demonstrate the general applicability of the proposed FoD method in image-conditioned generation.
These tasks include edges to handbags and shoes (Isola et al., 2017), facades to labels (Tyleček &
Šára, 2013), aerial photos to maps (Isola et al., 2017), and night to day (Laffont et al., 2014). We
adopt the same implementation as in the image restoration setting, except that all images are resized
to 64× 64 resolution. Qualitative results across these different tasks are shown in Figure 3. One can
observe that FoD is capable of handling complex image-to-image translation problems, even when
the source and target domains differ significantly, such as in edges to photos or photos to labels/maps.
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Table 2: Results of different sampling approaches using the same trained FoD model. Here, ‘FoD
w/ EM’ denotes the 100-step Euler–Maruyama sampling method, while ‘FoD w/ MC’ and ‘FoD w/
NMC’ denote 10-step Markov and non-Markov chain fast sampling, respectively.

Method Deraining Low-light enhance Dehazing Inpainting

PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓
FoD w/ EM 32.56 0.038 14.10 21.61 0.105 41.31 26.57 0.033 8.14 30.28 0.029 16.12
FoD w/ MC 33.27 0.039 15.14 23.12 0.093 32.37 26.76 0.031 10.07 31.02 0.031 18.06
FoD w/ NMC 33.63 0.041 15.64 23.05 0.098 47.87 26.77 0.032 10.31 31.32 0.038 23.28

In
pu

ts
R

es
ul

ts

Edges to Handbags Edges to Shoes Facade to Label Aerial to Maps Night to Day

Figure 3: Qualitative results of our FoD method on diverse image-to-image translation tasks.

Notably, the night to day dataset involves many-to-many mappings due to temporal variability, yet
FoD still produces satisfactory results, demonstrating its strong generative capability.

5 DISCUSSION
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Figure 4: Comparison of fast sampling
with Markov chain (MC) vs. with non-
Markov chain (NMC) on deraining task,
using the same pretrained model.

Fast Sampling As discussed in Section 3.3, FoD natu-
rally supports fast sampling using both Markov and non-
Markov chains. Table 2 demonstrates that with only 10
sampling steps, the non-Markov variant achieves even
better results than the standard Euler–Maruyama solver
in terms of PSNR, without significantly compromising
perceptual quality. To investigate the impact of sampling
steps, we provide a detailed analysis on image restoration
in Figure 4. For comparison, the Euler–Maruyama solver
with 100 steps is included as a baseline. We observe that
both sampling strategies yield improved distortion metrics
as the number of steps decreases, especially in the low-
step areas (5–20), where they substantially outperform the
baseline with a small perceptual performance drop. Sim-
ilar trends are observed for LPIPS and FID, although both
metrics show a modest decline in performance when reduc-
ing the number of steps from 20 to 5. More comparisons
and an illustration of the forward process are provided in
Appendix C.2. The overall results suggest that using 10 sampling steps can serve as a practical rule
of thumb for fast sampling with both Markov and non-Markov chains.

Effectiveness of Noise Injection This section explores the importance of noise injection in image-
conditioned generation. To this end, we conduct an additional experiment where a noise-free variant
of FoD is trained on four image restoration tasks, by setting σt = 0 for all t. This effectively reduces
FoD to a flow matching model, as described in Section 3.4. We keep the θ schedule the same as FoD
for a fair comparison. Quantitative results in Table 3 show a significant drop in performance across
all tasks and metrics. The corresponding visual results are also provided in the second-to-last column
of Figure 2, where the produced images are blurry and unclear compared to those of our original FoD.
Moreover, the training curves of FoD with and without noise injection on different image restoration
tasks are provided in Figure 5. FoD consistently outperforms its noise-free variant on all tasks, further
demonstrating the effectiveness and importance of noise injection in image-conditioned generation.
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Table 3: Quantitative results of FoD and its noise-free variant on four image restoration tasks.

Method Deraining Low-light enhance Dehazing Inpainting

PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓
FoD w/o noise 29.44 0.132 59.54 19.96 0.193 86.21 24.18 0.048 13.80 29.94 0.065 38.78
FoD (Ours) 32.56 0.038 14.10 21.61 0.105 41.31 26.57 0.033 8.14 30.28 0.029 16.12

0 200 400
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0.3

LP
IP

S

Image deraining
FoD w/o noise
FoD (Ours)

0 200 400
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Figure 5: Training curves of FoD and its noise-free variant on four image restoration tasks.

Limitations and Future Work Although FoD performs well for image-conditioned generation,
its multiplicative structure in the forward process poses a challenge for unconditional generation,
where the source distribution is typically Gaussian. Specifically, injecting log-Gaussian noise (as
defined in Eq. (6)) into a source sample x0 ∼ N (0, I) complicates the learning process and leads
to a decline in sample quality (See Appendix C.3 for additional details). In future work, we plan to
explore more advanced strategies, such as log-space transformations and optimal transport-based
drift paths, to further improve the unconditional generation capabilities of FoD. Additionally, this
work adopts the commonly used cosine and linear noise schedules and finds them effective for most
tasks. Alternatives will be explored in future work, as we believe that FoD offers a more flexible
framework for exploring different schedules due to its forward-only formulation.

6 RELATED WORK

Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Karras
et al., 2022) and flow matching models (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024;
Albergo et al., 2023a; Gat et al., 2024) are two popular frameworks in generative modelling and
have been widely applied to various applications including image generation (Dhariwal & Nichol,
2021; Ho et al., 2022; Peebles & Xie, 2023; Ho & Salimans, 2022; Ma et al., 2024), text-to-image
generation (Rombach et al., 2022; Ruiz et al., 2023; Podell et al., 2024; Saharia et al., 2022b), image
translation (Meng et al., 2022; Lugmayr et al., 2022; Saharia et al., 2022a; Su et al., 2022; Xia et al.,
2024b; Liu et al., 2023; Ben-Hamu et al., 2024; Li et al., 2023; Xia et al., 2024a; Zheng et al., 2024),
etc. Inspired by their success in producing photo-realistic images conforming to human preference,
these models have recently been applied to image restoration for advanced performance (Wang
et al., 2024; Saharia et al., 2022c; Yue et al., 2023; Kawar et al., 2022; Yue et al., 2024; Luo et al.,
2024a;b; Liu et al., 2024; Shi et al., 2024). In addition, Albergo et al. (2023a) unify diffusion and flow
matching models through stochastic interpolants. This formulation has also been applied to image
restoration (Albergo et al., 2023b), where stochastic flows guided by corrupted observations recover
clean images, effectively serving as a stochastic extension of flow matching for inverse problems.
Subsequent works enhance this approach using pretrained flow matching models (Ben-Hamu et al.,
2024) or refined training pipelines (Ohayon et al., 2024). These works are closely related to ours, but
they all adopt noise-free generation processes. In contrast, FoD involves a state-dependent diffusion
process for image generation, which is naturally well-suited for image-conditioned generation, and
which degrades to flow matching when the diffusion term vanishes.

7 CONCLUSION

This paper presents a new framework, named FoD, for generative modelling with a single forward
diffusion process. We show that FoD is analytically tractable and can be trained using a simple flow
matching objective. Our model is evaluated on various image-conditioned generation tasks, including
image restoration and image-to-image translation. FoD achieves strong performance compared to
other diffusion models and flow matching approaches, demonstrating its effectiveness and efficiency
in generative modelling, particularly for image restoration.
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A PROOFS

A.1 PROOF TO PROPOSITION 3.1 AND COROLLARY 3.2

Proposition 3.1. Given an initial state xs at time s < t, the unique solution to the SDE (5) is

xt =
(
xs − µ

)
e−

∫ t
s

(
θz+

1
2σ

2
z

)
dz+

∫ t
s
σzdwz + µ, (16)

where the stochastic integral is interpreted in the Itô sense and can be reparameterised as σ̄s:t ϵ,

where σ̄s:t =
√∫ t

s
σ2
z dz, and ϵ ∼ N (0, I) is a standard Gaussian noise.

Corollary 3.2. Under the same assumptions as in Proposition 3.1, the stochastic flow field µ− xt
satisfies the multiplicative stochastic structure. More precisely, it is log-normally distributed by

log(µ− xt) ∼ N
(
log(µ− xs)−

∫ t

s

(
θz +

1

2
σ2
z

)
dz,

∫ t

s

σ2
z dz I

)
. (17)

Proof. Recall the FoD process from Eq. (5):
dxt = θt (µ− xt) dt+ σt (xt − µ) dwt. (18)

To solve this SDE, we introduce a new variable yt = xt − µ and replace it into Eq. (18), which
typically yields a Geometric Brownian motion (Ross, 2014) on yt, given by

dyt = −θtyt dt+ σtyt dwt. (19)
To simplify the notation, we use y rather than yt in all the following equations. This equation can be
solved by applying Itô’s formula:

dψ(y, t) =
∂ψ

∂t
(y, t) dt+

∂ψ

∂y
(y, t)f(y, t) dt

+
1

2

∂2ψ

∂y2
(y, t)g(t)2 dt

+
∂ψ

∂y
(y, t)g(t) dw,

(20)

where ψ(y, t) = ln |y| is a surrogate differentiable function. By substituting f(y, t) and g(t) with the
drift and the diffusion functions in (19), we obtain

dψ(y, t) = −(θt +
σ2
t

2
) dt+ σt dw. (21)

Then we can solve yt conditioned on ys, by integrating both sides:

ln |yt| − ln |ys| = −
∫ t

s

(θz +
σ2
z

2
) dz +

∫ t

s

σzdw(z) (22)

where the stochastic interaction follow a Gaussian distribution, i.e.,
∫ t

s
σz dw(z) ∼ N

(
0,
∫ t

s
σ2
zdz
)
,

then we can rewrite:

ln |yt| = ln |ys| − (θ̄s:t +
σ̄2
s:t

2
) + σ̄s:tϵs→t, ϵs→t ∼ N (0, I), (23)

where θ̄s:t =
∫ t

s
θz dz, σ̄2

s:t =
∫ t

s
σ2
z dz, and σ̄s:t =

√
σ̄2
s:t. By replacing yt with the original xt − µ,

we have the following

ln |xt − µ| = ln |xs − µ| − (θ̄s:t +
σ̄2
s:t

2
) + σ̄s:tϵs→t. (24)

Note that the sign of xt − µ remains consistent across all times t, therefore, we can safely omit the
absolute value inside the logarithm, which leads to a log-normal distribution:

log(µ− xt) ∼ N
(
log(µ− xs)−

∫ t

s

(
θz +

1

2
σ2
z

)
dz,

∫ t

s

σ2
z dz I

)
., (25)

which gives the Corollary 3.2. In addition, applying the exponential function to both sides yields

(xt − µ) = (xs − µ)e−(θ̄s:t+
σ̄2
s:t
2 )+σ̄s:tϵs→t (26)

which is the solution to the SDE, and thus we complete the proof.
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A.2 PROOF OF THE KL DIVERGENCE

The KL divergence of (9) can be derived as follows:

L̃ := − log pϕ(xT )

= − log

∫
pϕ(x0:T ) dx0:T−1

= − log

∫
pϕ(x0:T )q(x0:T−1 | xT )

q(x0:T−1 | xT )
dx0:T−1

= − logEq(x0:T−1|xT )

[ pϕ(x0:T )

q(x0:T−1 | xT )

]
≤ Eq(x0:T−1|xT )

[
− log

pϕ(x0:T )

q(x0:T−1 | xT )

]
︸ ︷︷ ︸

negative evidence lower bound (ELBO)

(Jensen’s Inequality)

= Eq(x0:T−1|xT )

[
− log

p(x0)
∏T

t=1 pϕ(xt | xt−1)∏T
t=1 q(xt−1 | xt)

]
= Eq(x0:T−1|xT )

[
− log p(x0)−

T∑
t=1

log
pϕ(xt | xt−1)

q(xt−1 | xt)

]
= Eq(x0:T−1|xT )

[
− log p(x0)−

T−1∑
t=1

log
pϕ(xt | xt−1)

q(xt | xt−1, xT )
· q(xt | xT )
q(xt−1 | xT )︸ ︷︷ ︸

Bayes’ rule on q(xt−1|xt, xT )

− log
pϕ(xT | xT−1)

q(xT−1 | xT )

]

= Eq(x0:T−1|xT )

[
− log p(x0)−

T−1∑
t=1

log
pϕ(xt | xt−1)

q(xt | xt−1, xT )
− log

q(xT−1 | xT )
q(x0 | xT )

− log
pϕ(xT | xT−1)

q(xT−1 | xT )

]
= Eq(x0:T−1|xT )

[
− log

p(x0)

q(x0 | xT )
−

T−1∑
t=1

log
pϕ(xt | xt−1)

q(xt | xt−1, xT )
− log pϕ(xT | xT−1)

]
= DKL(q(x0 | xT ) || p(x0)) (DKL(p∥q) = E[− log

p

q
])

+

T−1∑
t=1

DKL(q(xt | xt−1, xT ) || pϕ(xt | xt−1))− Eq(xT−1|xT )

[
log pϕ(xT | xT−1)

]
,

(27)
where the first term can be ignored since it doesn’t have trainable parameters, and the third term can
be merged to the final stochastic flow matching objective.

A.3 DERIVATION OF STOCHASTIC FLOW MATCHING

Remark. For two log-normal distributions with log p1 ∼ N (µ1, σ
2
1) and log p2 ∼ N (µ2, σ

2
2), the

KL divergence between them is given by

DKL(p1∥p2) =
(µ1 − µ2)

2

2σ2
2

+
σ2
1

2σ2
2

+ ln
σ2
σ1

− 1

2
. (28)

This result is for scalars but can be naturally extended to high-dimensional cases. In the following,
we will use it to derive our stochastic flow matching objective.

More specifically, given the KL divergence

Ep

[ T−1∑
t=0

DKL(p(fµ(xt+1) | fµ(xt) ∥ p(fϕ(xt+1, t) | fϕ(xt, t))
]

(29)

and the truth that fϕ(xt, t) approximates µ−xt. Since the two transitions are log-normally distributed
and share the same parameters θt and σt as in Eq. (7), we can initially obtain a log space loss based
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on the Remark (28), as

L := Eµ∼pdata,xt∼q(xt|x0,µ)

[ 1

2σ2
t+1

∥ log fµ(xt, t)− log fϕ(xt, t)∥2
]
. (30)

However, this would run into issues when µ− xt ≤ 0. Though this can be alleviated using absolute
values and adding a small additive term ϵ, it complicates the learning and is still unstable.

To address it, we assume that, after some training, fϕ(xt, t)/fµ(xt, t) = 1 + δ where |δ| ≪ 1. The
first-order Taylor approximation is then

log fϕ(xt, t)− log fµ(xt, t) = log(1 + δ) ≈ fϕ(xt, t)− fµ(xt, t)

fµ(xt, t)
. (31)

Since the denominator does not depend on the parameters, we obtain our simplified loss function by
omitting all non-trainable weights:

L := Eµ∼pdata,xt∼q(xt|x0,µ)

[
∥fµ(xt, t)− fϕ(xt, t)∥2

]
, (32)

which is the proposed stochastic flow matching objective.

Note that the first-order Taylor approximation is not valid during the early stages of training, when the
predicted flow is typically far from the ground truth. In such cases, Eq. (11) no longer corresponds to
an exact KL objective, but instead serves as a surrogate loss for directly learning the flow. Nevertheless,
we emphasize that this surrogate objective can empirically achieve strong performance and simplify
the optimization. This is conceptually analogous to denoising objectives and those used in score
matching (not exact KL objectives, but have still proven effective in practice). Table 4 below tracks
both the approximation error (log(1 + δ)− δ) and magnitude of the higher-order terms (− 1

2δ
2). As

one can see, the approximation is loose during the early stages of training but becomes valid (≈ 0.1)
after ∼50,000 iterations.

Table 4: Tracking the approximation error and magnitude of the higher-order terms.

Training steps Approximation error Magnitude

1,000 0.404 0.333
10,000 0.183 0.224
50,000 0.105 0.108

100,000 0.095 0.086

B MAXIMUM LIKELIHOOD ESTIMATION

Following DDPMs (Ho et al., 2020), both our training and sampling are implemented with discrete
times, which can of course be converted into continuous times, as in Score SDEs (Song et al., 2021),
but that requires θ and σ schedules to be integrable. Below, we further show that the solution to FoD
also allows us to compute the maximum likelihood:

Given the clean data µ, assuming that there exists an optimal forward transition from zt to zt+1,
where zt = |µ− xt|. In other words, we want to maximize the likelihood of p(zt+1 | zt), which is a
log-normal distribution as illustrated in Corollary 3.2, and its density is given by

p(zt+1 | zt) =
1

zt+1σt+1

√
2π

exp

(
− 1

2σ2
t+1

[
ln zt+1 − lnzt +

(
θt+1 +

σ2
t+1

2

)]2)
. (33)

Then, we can minimize the negative log-likelihood:

− ln p(zt+1 | zt) = ln zt+1 +
1

2σ2
t+1

[
ln zt+1 − lnzt +

(
θt+1 +

σ2
t+1

2

)]2
+������

ln(σt+1

√
2π), (34)

which can be solved by setting the gradient to 0, as

∇zt+1
− ln p(zt+1 | zt) =

1

zt+1

[
1 +

1

σ2
t+1

(
ln zt+1 − lnzt +

(
θt+1 +

σ2
t+1

2

))]
= 0. (35)
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Since zt+1 is not zero, the optimal solution z∗t+1 is obtained according to

zt+1 = zte
−(θt+1+

σ2
t+1
2 )−σ2

t+1 . (36)

Recall that µ− xt has the same sign for all times t. Replacing zt with |µ− xt| gives the following:

(µ− xt+1)
∗ = (µ− xt)e

−(θt+1+
σ2
t+1
2 )−σ2

t+1 , (37)

which is the optimal forward flow from xt+1 to µ.

Based on it, we can get the maximum likelihood learning objective:

L =
∥∥(µ− xt+1)

∗ − E[µϕ − xt+1]
∥∥2, (38)

L =
∥∥x∗t+1 − Eϕ[xt+1 | xt]

∥∥2, (39)

where Eϕ[xt+1 | xt] is the expectation given xt in discrete time: Eϕ[xt+1 | xt] = xt + dxt.

E
[
µϕ − xt+1

]
= (µϕ − xt)e

−(θt+1+
σ2
t+1
2 )+

σ2
t+1
2

= (µϕ − xt)e
−θt+1 .

(40)

Combining (37) and (40) predicts xt+1 in the optimal path. This maximum likelihood-based loss
function performs similarly to stochastic flow matching and can be potentially used in future work.

C MORE EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION AND DATASETS

We set the number of diffusion steps to 100 for all tasks. Practically, we choose to use a discrete
time implementation for our method, where we let θ̄t =

∫ t

0
θz dz ≈

∑
θt∆t and σ̄2

t =
∫ t

s
σ2
z dz ≈∑

σ2
t∆t. To ensure that FoD converges to the clean data µ, we let the deterministic exponential term

at the terminal state be a smaller value, i.e. e−
∫ t
0
(θs+

1
2σ

2
s) ds = δ = 0.001. Solving it leads to an

updated time interval ∆t = log δ∫ t
0
(θs+

1
2σ

2
s) ds

2. For image-to-image translation, most datasets are the
same as in Pix2Pix (Isola et al., 2017), but with all images resized to 64× 64 to improve training and
testing efficiency. All these image-to-image translation experiments share the same settings, as the
goal is to illustrate the general applicability of FoD rather than to optimize performance for each task.
In addition, the details of image restoration datasets are listed below:

• Deraining: collected from the Rain100H (Yang et al., 2017) dataset containing 1800 images
for training and 100 images for testing.

• Dehazing: collected from the RESIDE-6k (Qin et al., 2020) dataset which has mixed indoor
and outdoor images with 6000 images for training and 1000 images for testing.

• Low-light enhancement: collected from the LOL (Wei et al., 2018) dataset containing 485
images for training and 15 images for testing.

• Face inpainting: we use CelebaHQ as the training dataset and divide 100 images with 100
thin masks from RePaint (Lugmayr et al., 2022) for testing.

C.2 ADDITIONAL DISCUSSIONS

Fast Sampling As mentioned in Section 3.3, we provide two fast sampling strategies with Markov
and non-Markov Chains. Their comparison on image deraining is illustrated in Section 5 of the
main paper. Here, we give more comparison results on four image restoration tasks, reporting PSNR,
SSIM, LPIPS, and FID values in Figure 9. The results with standard FoD sampling (See Algorithm 2)
are also reported as the baseline. It can be observed that, in most tasks, decreasing the number of
steps in fast sampling approaches leads to better performance, particularly in terms of PSNR and
SSIM. Their perceptual performance also decreases when the number of steps decreases from 20 to 5,

2Our code is provided in the supplementary material.
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Figure 6: Visualization of the diffusion
process using trained FoD models on var-
ious tasks, including deraining, dehazing,
low-light enhancement, face inpainting,
and unconditional generation. In each case,
FoD gradually injects noise into the de-
graded regions and subsequently denoises
these intermediate states, restoring images
with enhanced and corrected details.
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Figure 7: Training curves of our FoD and its noise-free variant on different tasks in terms of PSNR
and LPIPS. All these results demonstrate the effectiveness of noise injection in image restoration.

which suggests we set the sample step to 10 as a practical rule of thumb for efficient sampling. Note
that the key difference between faster sampling approaches and the standard FoD sampling is that
the latter’s iterative process highly depends on the µ prediction, while the former gradually refines
the state xt rather than µ. Also, we would recommend using non-Markov chain sampling for small
degradation problems (which means µ prediction is easier), such as image deraining and dehazing.
The visual comparisons are illustrated in Figure 10.

Illustration of the Diffusion Process To clearly show the noise injection process with our model,
we apply the trained FoD on various tasks, including both image restoration and unconditional image
generation, and illustrate their intermediate states along timesteps as shown in Figure 6. It can be
observed that, for image restoration tasks, the noise level for each task and even for each image is
different. This is given by the term µ− x0 in the solution, where areas with large difference (between
LQ and HQ images) tend to produce large noise. It also means our model focuses more on restoring
the degradations instead of reconstructing the whole image, yielding a more efficient solution to the
image restoration problem. We also find that the noise is only injected into the degraded areas, such
as the masked regions in deraining and face inpainting. Figure 7 provides additional training curves
of our FoD and its noise-free variant on different tasks to illustrate the significance of noise injection
in image restoration. More examples for the FoD diffusion process are provided in Figure 11.

C.3 UNCONDITIONAL IMAGE GENERATION

In this section, we evaluate the unconditional generation performance of our model on the CIFAR-10
dataset (Krizhevsky et al., 2009), using the same architecture as in image-conditioned generation
(i.e., attention is not used). Specifically, we showcase results from both our FoD model and its
ODE-based variant, FoD-ODE (see Section 3.4). Both models share the same θ schedule and are
sampled with 100 steps. We compare against several baselines, including 1) diffusion models with
forward-backward schemes such as DDPM (Ho et al., 2020) and Score SDE (Song et al., 2021), as
well as 2) forward-only frameworks: score-based generative models (SGMs) like NSCN (Song &
Ermon, 2019) and NSCNv2 (Song & Ermon, 2020), flow matching generative models using diffusion
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FoD-SDE FoD-ODE

Method FID↓
DDPM 3.17
DDPM* 4.36
Score SDE 2.38

forward-only scheme

NCSN 25.32
NCSNv2 10.87
Flow Matching w/ diff path 10.31
Flow Matching w/ OT path 6.96
Rectified Flow 2.58
FoD-SDE (T=100) 7.89
FoD-ODE (T=100) 5.01
FoD-ODE (T=1000) 4.60
FoD-ODE w/o α (T=1000) 4.33

Figure 8: Left: Visual results of unconditional generation on the CIFAR-10 dataset by two variants of
our FoD model. Right: Quantitative comparison of our methods with other approaches on CIFAR-10.
Here, ‘*’ means a re-implementation using our U-Net architecture and hyperparameter setting.

and optimal transport (OT) paths (Lipman et al., 2022), and Rectified Flow (Liu et al., 2022) which
also adopts the OT path for data transformation.

Results We present the generated image samples and quantitative comparisons in Figure 8, with
visual examples on the left and numerical results summarized in the table on the right. Under
the forward-only framework, our FoD model with SDE sampling achieves a competitive FID of
7.89, outperforming other score-based generative models as well as the flow matching approach
using diffusion paths. The ODE-based variant of FoD improves the performance to a FID of 5.01,
surpassing the flow matching model based on the optimal transport path. Similar to standard diffusion
models, increasing the sampling steps to 1000 improves the performance. Moreover, adopting the
rectified flow objective (i.e., ignoring αt in (15)) further decreases the FID to 4.33. Nonetheless,
our overall performance on CIFAR-10 remains inferior to Rectified Flow and conventional diffusion
models using a forward-backward scheme. We partly attribute this performance gap to differences in
architectural choices, hyperparameter tuning, etc. However, we also note that the main aim of this
paper is to construct an effective single diffusion process model, which we expect to be particularly
well-suited for image-conditioned generation tasks such as image restoration.

Table 5: FID results of our FoD and its noise-free variant on four image-to-image translation tasks.

Method Edges to handbags Facades to labels Photos to maps Night to day

FoD w/o noise 25.29 41.33 17.78 78.52
FoD (Ours) 8.45 7.95 0.93 52.11

Table 6: Comparison of our method with other approaches on the edges to handbags dataset.

Method MSE↓ LPIPS↓ FID↓
SDEdit (Meng et al., 2022) 0.510 0.271 26.5
Rectified Flow (Liu et al., 2022) 0.088 0.241 25.3
FoD (Ours) 0.025 0.198 8.45

C.4 ADDITIONAL RESULTS

In this section, we provide more results for four image restoration tasks including image deraining,
low-light enhancement, image dehazing, and image inpainting in Figure 12, Figure 13, Figure 14,
and Figure 15. In most tasks, the results produced by our method are sharper and more realistic.
For image-to-image translation, we report the FID results of our FoD and its noise-free variant on
the edges to handbags, facades to labels, photos to maps, and night to day datasets in Table 5. The
results further prove the importance of noise injection in image-conditioned generation. In addition,
Table 6 illustrates the comparison of our FoD with other approaches (SDEdit (Meng et al., 2022) and
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Rectified Flow (Liu et al., 2022)) on the edges to handbags dataset. For unconditional generation,
more results of our model with SDE and ODE on CIFAR-10 are provided in Figure 16 and Figure 17,
respectively. Please zoom in for the best view.
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Figure 9: Comparison of different sampling approaches with pretrained FoD models on four image
restoration tasks. The baseline is the Euler-Maruyama method with 100 sampling steps.
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Figure 10: Comparison of fast sampling with Markov and non-Markov chains with different steps.
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Figure 11: Visualization of the diffusion process using trained FoD models on various tasks, including
deraining, dehazing, low-light enhancement, face inpainting, and unconditional generation. In
each case, FoD gradually injects noise into the degraded regions and subsequently denoises these
intermediate states, restoring images with enhanced and corrected details.
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Figure 12: Visual results of image deraining on Rain100H (Yang et al., 2017) dataset.
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Figure 13: Visual results of image low-light enhancement on LOL (Wei et al., 2018) dataset.
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Figure 14: Visual results of image dehazing on RESIDE-6k (Qin et al., 2020) dataset.
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Figure 15: Visual results of image inpainting on CelebA-HQ (Karras et al., 2017) dataset.
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Figure 16: Unconditional generation by FoD (SDE sampler).
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Figure 17: Unconditional generation by the ODE variant of FoD.
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