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Summary
Conventional reinforcement learning (RL) methods often fix a single discount factor for

future rewards, limiting their ability to handle diverse temporal requirements. We propose a
framework that trains an agent across a spectrum of discount factors—interpreting each value
function as a sample of a Laplace transform—then applies an inverse transform to recover
a log-compressed representation of expected future reward. This representation enables post
hoc adjustments to the discount function (e.g., exponential, hyperbolic, or finite horizon) with-
out retraining. Furthermore, by precomputing a library of policies, the agent can dynamically
select which policy maximizes a newly specified discount objective at runtime, effectively
constructing a hybrid policy in environments with shifting deadlines or reward structures. The
log-compressed timeline aligns with human temporal perception, as described by the Weber-
Fechner law, maintaining uniform relative precision across timescales thus enhancing effi-
ciency in scale-free environments. We demonstrate this framework in a grid-world navigation
task, where the agent adapts to varying time horizons.

Contribution(s)
1. We describe a method for computing log-compressed representation of expected future re-

ward and demonstrate that when a library of policies is available, this representation enables
immediate re-evaluation of these policies under any desired discount function.
Context: Prior work established methods for computing log-compressed representation
of expected future reward (Momennejad & Howard, 2018; Tiganj et al., 2019; Tano et al.,
2020; Masset et al., 2023). We extend prior work to dynamical policy evaluation setting
with arbitrary temporal discounting.

2. We demonstrate that a logarithmic representation of future time aligns with human temporal
perception (Weber-Fechner law) and provides efficient decision-making in scale-free envi-
ronments by maintaining uniform relative precision across time scales.
Context: The Weber-Fechner law Fechner (1860/1912) is a widely referenced principle in
psychophysics, stating that perceived magnitude is proportional to the logarithm of stimulus
intensity, implying a logarithmic scale.
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Abstract

Conventional reinforcement learning (RL) methods often fix a single discount fac-1
tor for future rewards, limiting their ability to handle diverse temporal requirements.2
We propose a framework that trains an agent across a spectrum of discount fac-3
tors—interpreting each value function as a sample of a Laplace transform—then applies4
an inverse transform to recover a log-compressed representation of expected future re-5
ward. This representation enables post hoc adjustments to the discount function (e.g.,6
exponential, hyperbolic, or finite horizon) without retraining. Furthermore, by precom-7
puting a library of policies, the agent can dynamically select which policy maximizes8
a newly specified discount objective at runtime, effectively constructing a hybrid pol-9
icy in environments with shifting deadlines or reward structures. The log-compressed10
timeline aligns with human temporal perception, as described by the Weber-Fechner11
law, maintaining uniform relative precision across timescales thus enhancing efficiency12
in scale-free environments. We demonstrate this framework in a grid-world navigation13
task, where the agent adapts to varying time horizons.14

1 Introduction15

In traditional RL setting, agents learn by maximizing a cumulative future reward, which is typi-16
cally exponentially discounted over time using a fixed temporal discount factor (γ) (Sutton & Barto,17
2018). Despite its widespread adoption, such discounting approach presents limitations, particularly18
in dynamic environments where the relevance of future rewards may vary over time. For example,19
if an agent encounters an emergency situation where immediate action is critical a high discount on20
future rewards is beneficial. Conversely, in investment scenarios, considering longer-term outcomes21
might be preferred in some cases, necessitating a lower discount rate while in other cases the focus22
might be on short-term investments where a higher discount rate would be preferred. Furthermore,23
while the exponential discounting has been widely used since exponentially discounted future re-24
ward can be efficiently computed using temporal difference (TD) learning thanks to the efficiency25
of Bellman equation, other types of temporal discounting are often preferred. Specifically, hyper-26
bolic discounting has gained attention for its ability to more closely mimic human decision-making27
processes. Unlike exponential discounting, hyperbolic discounting reduces the value of rewards less28
steeply over time, which has been shown to reflect more accurately how people value immediate29
versus delayed rewards (Ainslie, 1975). This form of discounting suggests that people often display30
a preference for smaller-sooner rewards over larger-later rewards when the delays are short, but this31
preference can switch as the delays increase, a phenomenon often referred to as “temporal inconsis-32
tency” or “preference reversal” (Green & Myerson, 1994; Laibson, 1997). More generally, humans33
can adjust the discounting function to adapt to the temporal statistics of the environment (Redish,34
2004; Frederick et al., 2002). These considerations highlight the need for more flexible approaches35
to temporal discounting in RL, where discounting can be adjusted dynamically after the agent has36
been trained.37
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1.1 Related work38

Limitations of exponential discounting were addressed in a number of previous studies. Inspired39
by human decision-making, previous work mainly focused on hyperbolic discounting by integrating40
over a spectrum of γ values (Kurth-Nelson & Redish, 2009; Fedus et al., 2019; Masset et al., 2023;41
Tiganj et al., 2019; Tano et al., 2020). Tang et al. (2021) used Taylor expansion of discount rates to42
interpolate value functions of two distinct discount factors.43

Going beyond integration across γ values, previous work proposed the use of inverse Laplace trans-44
form to convert a value function across the set of γ values into a function of future time (Momenne-45
jad & Howard, 2018; Tiganj et al., 2019; Tano et al., 2020; Masset et al., 2023). This was primarily46
applied to modeling of human decision making as existence of a mental timeline of the future has47
been supported by behavioral (Tiganj et al., 2022) and neural evidence (Cao et al., 2024). Proposed48
approach builds on this work and integrates the Laplace framework into a setting where agents need49
to select actions at every step. We propose that agents construct multiple timelines of the future and50
use policy selection at every step.51

This approach is in general compatible with model-free and model-based setting. For example, Tano52
et al. (2020) used spectrum of γ values to compute a reward as a function of future time in a model-53
free setting with TD learning. Model-based RL learning of arbitrary discount functions, including54
hyperbolic was also done using function approximation of the optimal policy (Schultheis et al.,55
2022). Model based RL approaches used successor representation and statistical learning computed56
with a spectrum of γ values to estimate timeline of the future (Tano et al., 2020; Momennejad &57
Howard, 2018; Tiganj et al., 2019).58

1.2 Summary of the proposed approach59

Here we describe an RL method with adaptive temporal discounting, where the discounting func-60
tion can be chosen after training and dynamically adjusted. This is achieved by computing expected61
reward as a function of future time τ∗ for a policy π. Such function then enables temporal dis-62
counting with arbitrary functional forms, such as exponential and power-law as well as temporal63
windows (e.g., expected reward from time ti to time tj at a given state) by varying the weight given64
to different parts of the future timeline.65

To compute expected reward as a function of future time for a given state under a policy π, we66
compute a set of values V for a spectrum exponential discount rates γs. Using a linear transformation67
this set of values can then be converted from a function of γ into a function of future time, τ∗ . From68
a set of candidate policies π, this approach can then select a policy that maximizes a reward under69
the desired temporal discounting.70

In the limit where the value V is computed for all possible γ values (i.e., γ is a continuous variable)71
we show that this approach can select an optimal policy from a set of precomputed policies under a72
user-specified temporal discounting function. For practical applications, we consider a discrete set73
of geometrically spaced γ values. This gives rise to a log-compressed representation of the future74
time where the temporal resolution gradually decreases as a function of distance from the current75
state.76

Log-compressed time reflects the Weber-Fechner law which governs scale-invariance in human per-77
ception across a number of domains, including time: perceived magnitude is proportional to the78
logarithm of the true magnitude of the stimulus (Fechner, 1860/1912). In time perception the scale-79
invariance is manifested in behavioral tasks such as interval reproduction, where variability of repro-80
duced interval by human participants is proportional to the duration of the interval. In other words,81
timing precision is proportional to the length of the interval itself, a phenomenon known as the82
scalar property (Gibbon, 1977; Wilkes, 2015). Such a logarithmically compressed representation of83
time is argued to be advantageous when the environment lacks a single dominant timescale (i.e., it is84
scale-free), so that events or correlations extend across multiple orders of magnitude in a self-similar85
manner (Howard & Shankar, 2018; Shankar & Howard, 2013). We show that the log-compressed86
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representation of the future time described here, captures the scalar property and enables efficient87
decision making under the assumption that variability in reward time (or spatial position) scales with88
its temporal (or spatial) distance.89

2 Methods90

We consider a standard RL framework modeled as a Markov Decision Process (MDP), defined by91
the tuple ⟨S,A,P,R⟩, where:92

• S represents the state space, encompassing all possible states the agent may encounter,93

• A denotes the action space, consisting of all actions available to the agent,94

• P : S × A × S → [0, 1] is the state transition probability function, specifying the probability95
P(s′|s, a) of transitioning to state s′ ∈ S from state s ∈ S upon taking action a ∈ A,96

• R : S × A × S → R is the reward function, defining the immediate reward R(s, a, s′) received97
when transitioning from state s to state s′ via action a.98

The agent’s goal is to learn a policy π(a|s), which maps states to a probability distribution over99
actions, maximizing the expected cumulative reward over time under a specified temporal discount-100
ing scheme. In the traditional RL formulation, this is captured by the state-value function with an101
exponential discount factor γ ∈ [0, 1]:102

V π
γ (s) = Eπ

[ ∞∑
τ∗=0

γτ∗
rt+τ∗ | st = s

]
, ∀s ∈ S, (1)

where rt+τ∗ = R(st+τ∗ , at+τ∗ , st+τ∗+1) is the reward at time step t + τ∗, τ∗ denotes future time103
steps relative to the current time t, and the expectation Eπ is taken over trajectories induced by the104
policy π and the transition dynamics P . The discount factor γ exponentially weights future rewards,105
prioritizing immediate rewards when γ < 1. However, this formulation fixes the temporal preference106
at training time, limiting adaptability to different discounting schemes or planning horizons post-107
training.108

2.1 Computing Expected Rewards as a Function of Future Time109

To enable this adaptability, we compute the state-value function V π
γ (s) across a discrete set of dis-110

count factors Γ = {γ1, γ2, . . . , γm}, where each γi ∈ [0, 1]. For a specific discount factor γi, the111
value function is:112

V π
γi
(s) = Eπ

[ ∞∑
τ∗=0

γτ∗

i rt+τ∗ | st = s

]
. (2)

Define g(τ∗) = Eπ [rt+τ∗ | st = s], which represents the expected reward at future time step τ∗113
under policy π, starting from state s at time t. This allows us to rewrite the value function as:114

V π
γi
(s) =

∞∑
τ∗=0

γτ∗

i g(τ∗). (3)

This expression resembles the discrete analog of the Laplace transform (or unilateral Z-transform)115
of the sequence g(τ∗), with γi acting as the transform variable. Equivalently, letting σi = − ln(γi)116
(so γi = e−σi ), we can express it as:117

V π
γi
(s) =

∞∑
τ∗=0

e−σiτ
∗
g(τ∗), (4)
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where V π
γi
(s) can be interpreted as the Laplace transform of g(τ∗) evaluated at σi, i.e., V π

γi
(s) =118

L{g(τ∗)}(σi). By computing V π
γi
(s) for multiple γi ∈ Γ, we obtain a set of samples of this trans-119

form at points σi:120

Vπ(s) = [V π
γ1
(s), V π

γ2
(s), . . . , V π

γm
(s)]. (5)

To recover the expected reward function g(τ∗) from these samples, we apply an inverse transform.121
With a finite set of γi, we approximate g(τ∗) for discrete τ∗ = 0, 1, 2, . . . using numerical methods,122
such as the Post inversion formula Post (1930) (see Sec. S1 for discussion on numerical stability123
and demonstrations of other approaches for computing the inverse that can provide better numerical124
stability than Post inversion formula). The Post method approximates g(τ∗) as:125

g(τ∗) ≈ (−1)k

k!

(
k

τ∗

)k+1
dk

dσk
V π
γ (s)

∣∣∣∣
σ=k/τ∗

, (6)

where k is a parameter chosen to balance accuracy and computational stability as discussed in the126
next section, and γ = e−σ .127

Once g(τ∗) is estimated, we can compute the value of the policy under any arbitrary temporal128
discounting function. Examples include finite horizon: for a horizon T , the cumulative expected129
reward is:130

V π
0→T (s) =

T∑
τ∗=0

g(τ∗), (7)

and hyperbolic and power-law discounting: with a discount function f(τ∗) = 1
(1+Kτ∗)β

, the value131
is:132

V π
hyperbolic(s) =

∞∑
τ∗=0

1

(1 +Kτ∗)
β
g(τ∗), (8)

where K > 0 controls the discounting rate.133

Fig.1a shows how value increases as a function of τ∗: without temporal discounting the value134
reaches the true magnitude of the reward. Fig. 2 illustrate the impact of finite horizon on the value135
for different distances from the goal.136

(a) (b)

Figure 1: Value function as a result of integrating expected reward at future time steps for different
values of reward (with k = 10) (a) and parameter k (b). The reward is located at a distance of 10
steps from the agent.
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Figure 2: Value of
∫ τ∗=m

τ∗=0
g(τ∗) across varying deadlines (m) and distance from rewarding goal

state (τ ) for a terminal reward of magnitude 1 for k = 30.

Overall, this approach eliminates the need to retrain the policy for different temporal preferences,137
offering a flexible framework for post-hoc adaptation. We next discuss the properties of the discrete138
approximation and implication of the log-compression of the timeline.139

2.2 Emergence of Log-Compression in the Estimation of Future Time140

In this section, we investigate how the discrete approximation employed to estimate the expected141
reward function g(τ∗) naturally yields a log-compressed representation of future time. This property142
arises from the mathematical structure of the inverse transform approximation and carries important143
implications for an agent’s temporal perception and decision-making.144

To illustrate the emergence of log-compression we take advantage of linearity of the Laplace and145
inverse Laplace transform and first derive its impulse response and later generalize that to arbitrary146
reward functions. To compute the impulse response, we consider an environment where a single147
reward of magnitude 1 is positioned at a temporal distance τ from the current state, indicating the148
number of steps to reach the reward. The expected reward at a future time step τ∗ is:149

g(τ, τ∗) =
1

τ

kk+1

k!

( τ

τ∗

)k+1

e−k( τ
τ∗ ). (9)

The result has a form of gamma distribution (Weisstein, 2004), and has been widely used in learning150
temporal relationships (Hopfield & Tank, 1990; Grossberg & Schmajuk, 1989; Shankar & Howard,151
2012; Jacques et al., 2021).152

As shown by Shankar & Howard (2012) taking the partial derivative of the impulse response of153
g(τ, τ∗) with respect to τ∗ and setting it to zero, we find that it is a unimodal function of time t with154
a maximum at τ∗ k

k+1 (in the limit when k → ∞, the peak is exactly at τ∗, see Appendix S3 for155
derivation). Expected reward as a function of future time for reward magnitude of 1 and distance of156
25 steps is shown in Fig. 3 for different values of k. We used 50 log-spaced τ∗ values ranging from157
1 to 50.158

To demonstrate that the representation is indeed log-compressed, we express the width of the uni-159
modal impulse response of g(τ, τ∗) through the coefficient of variation CV = 1√

k+1
, which is a160

ratio of standard deviation and mean (see Appendix S4 for derivation). Critically, CV does not161
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Figure 3: Expected reward at future time steps for different values of k. The reward of magnitude
1 is presented at distance 25. Increasing k results in more narrow peaks that approach closer to the
value of the reward (since τ∗peak = τk/(k + 1)).

depend on t and τ∗, implying that the width of the unimodal basis functions increases linearly with162
their peak time indicating log-compression.163

If discrete time steps τ∗1 , τ
∗
2 , . . . , τ

∗
m are log-spaced, i.e., τ∗i = eci (where c sets the spacing), then164

log(τ∗i ) = ci, yielding constant intervals on a logarithmic scale. Peaks at τ∗peak = k
k+1τ are also165

log-spaced, as log(τ∗peak) = log
(

k
k+1

)
+ log(τ). With constant CV, peak widths scale with τ∗peak,166

maintaining consistent relative width on a log scale, thus compressing distant time steps relative to167
near ones.168

For temporal discounting with a finite horizon we provide lemmas and proofs for analytical solutions169
for three different integral bounds: 0 to m (Fig. 4a), m to n (Fig. 4b) and m to∞ (Fig. 4c). Proofs170
for the lemmas are in Supplemental Information (Sec. S2).171

Lemma 1: The value of a state at distance τ from the reward given the deadline m can be computed172
as:173

∫ m

0

g(τ, τ∗)dτ∗ = e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (10)

Lemma 2: The state-value perceived by the agent between steps τ∗ = m and τ∗ = n in the future174
where m < n when the agent is at distance τ from the reward can be computed as follows:175

S(n, c, x) = ecx
n∑

i=0

(−1)n−i n!

i!cn−i+1
xi

∫ n

m

g(τ, τ∗)dτ∗ = (−1)k+1(
kk+1

k!
)[S(k − 1, k,

−τ
n

)− S(k − 1, k,
−τ
m

)] (11)

Lemma 3: The value perceived by the agent between step m and∞ in the future when the agent is176
at a distance τ from the reward can be computed as follows:177

∫ ∞

m

g(τ, τ∗)dτ∗ = 1− e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
(12)
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(a) (b) (c)

Figure 4: Illustration of expected reward as a function of the future time integrated over different
bounds: 0 to m (a), m to n (b) and m to∞ (c). In this example, the reward of magnitude 1 is located
25 steps from the current state (marked as 0). The total area under each curve corresponds to the
magnitude of the reward. Analytical derivation for each integral is provided in the Supplemental
Information (Sec. S2).

2.3 Policy Selection Under Arbitrary Discounting Functions178

In this subsection, we extend our framework to select the optimal policy from a set of precomputed179
policies under any user-specified temporal discounting function. This method leverages the expected180
reward function g(τ∗) introduced earlier, enabling adaptability to diverse temporal preferences with-181
out requiring retraining or additional environment interactions.182

Given a set of precomputed policies Π = {π1, π2, . . . , πp}, we assume each policy πk has been183
evaluated to compute state-value functions V πk

γi
(s) for a discrete set of discount factors Γ. As184

described above, we approximate the expected reward function gk(τ
∗) = Eπk

[rt+τ∗ | st = s] for185
each policy πk using the inverse transform applied to the sampled values V πk

γi
(s).186

For a user-specified temporal discounting function f : N → R+, which assigns weights to rewards187
based on their temporal distance τ∗, we compute the value of each policy πk as:188

V πk

f (s) =

∞∑
τ∗=0

f(τ∗)gk(τ
∗). (13)

This value represents the expected cumulative reward under policy πk adjusted by the discounting189
function f . The optimal policy from the set Π is then selected as:190

π∗ = arg max
πk∈Π

V πk

f (s). (14)

This approach allows the agent to adapt to arbitrary discounting schemes post-training. Under ide-191
alized conditions—where the set of discount factors Γ is continuous and gk(τ

∗) is perfectly re-192
covered—the selected policy π∗ is optimal within Π (not globally optimal) for the given f (see193
Appendix S5 for proof of optimality).194

In practice, Γ is finite, and gk(τ
∗) is approximated as ĝk(τ

∗). Thus, we compute V̂ πk

f (s) =195 ∑∞
τ∗=0 f(τ

∗)ĝk(τ
∗), and the selected policy is optimal with respect to these approximations.196

2.4 Dynamic Policy Selection197

In this subsection, we present an extension to our framework that enables dynamic policy selection198
at each time step. This approach allows the agent to adapt its strategy based on the current state and199
a user-specified temporal discounting function f .200
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At each time step t, the agent, in state st, computes the value of each policy πk from that state under201
the discounting function f . This value is given by:202

V πk

f (st) =

∞∑
τ∗=0

f(τ∗)gk(τ
∗ | st), (15)

where gk(τ
∗ | st) represents the expected reward at time t + τ∗ under policy πk, starting from st.203

The agent selects the policy πk∗ that maximizes this value:204

πk∗ = arg max
πk∈Π

V πk

f (st). (16)

The action at st is then at = πk∗(st). Upon transitioning to the next state st+1, the agent repeats this205
process, recomputing V πk

f (st+1) for all πk ∈ Π and selecting the optimal policy for st+1, which206
may differ from the previous choice.207

This dynamic process constructs a hybrid policy πhybrid, where the action at each state st is de-208
termined by the policy πk∗ that maximizes V πk

f (st) at that time. The hybrid policy πhybrid is not209
necessarily an element of Π, as it may combine actions from multiple policies depending on the210
state, where πk∗ = argmaxπk∈Π V πk

f (st). By greedily selecting the action from the policy that211
maximizes the value at each state, πhybrid locally optimizes the expected cumulative reward under f .212
In environments where different policies perform better in different regions of the state space, this213
approach can outperform any single policy in Π.214

We illustrate this approach through a grid-world example (Fig. 5). The agent starts from a corner of215
the grid. Five rewards are placed at different locations in the environment such that rewards with a216
larger magnitude are placed further from the agent’s start location. We first compute five different217
policies and corresponding values such that each of the policies leads the agent to a different reward.218
When the agent starts navigating, it is given a number of steps to complete the task (finite horizon).219
The agent follows Alg. 1 and at each state computes the expected future reward for each of 5 policies220
for the available remaining number of steps. The agent always selects a policy that leads to the221
largest reward and takes the corresponding action. In our example, the agent always reached the222
largest possible reward given the available number of steps (note that this is not guaranteed, as we223
investigate in the following subsections). We emphasize that agents based on traditional exponential224
discounting with a single value of γ would always converge to the same reward since those agents225
do not have the capability to take into account the available horizon.226

(a) T=4 (b) T=9 (c) T=12 (d) T=25 (e) T=38

Figure 5: Paths chosen by the model for a varying number of available steps, T . The colors represent
reward locations and correspond to rewards of different magnitudes. Higher rewards are located
further. Given a longer horizon, the agent chooses rewards located further to obtain a larger reward.

2.5 Efficient Performance in Scale-Free Environments227

In environments lacking a single dominant timescale—often called scale-free—reward timing may228
follow a power-law pattern in its temporal correlations, for instance E[ rt rt+τ∗ ] ∝ (τ∗)−α with229
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Algorithm 1 Dynamic Policy Selection

1: Input: Set of policies Π = {π1, π2, . . . , πp}, temporal discounting function f , initial state
s0, maximum time steps T , horizon for each time step h0, h1, ...hT−1, approximated expected
reward functions gk(τ∗ | s) for each πk ∈ Π and state s

2: Set s← s0
3: Set t← 0
4: while t < T and s is not terminal do
5: for each πk ∈ Π do
6: Compute V πk

f (s) =
∑ht

τ∗=0 f(τ
∗)gk(τ

∗ | s)
7: end for
8: Select πk∗ = argmaxπk∈Π V πk

f (s)
9: Take action a = πk∗(s)

10: Observe next state s′ and reward r
11: Set s← s′

12: Set t← t+ 1
13: end while

α > 0. This implies that reward timing variances scale with the square of their mean, Var(τ) ∝230
τ2—a relationship observed in interval-timing tasks in humans and other animals.231

To illustrate this, suppose the agent can pursue two rewards: one at τ = 10 steps (with variance ±1232
step), and another at τ = 100 steps (with variance±10 steps). In our log-compressed timeline, each233
reward is represented by a unimodal function centered near its mean arrival time, whose “width” is234
proportional to that mean. Thus, the reward at 10 steps exhibits a narrow peak, while the reward at235
100 steps has a broader peak. When integrating the expected reward up to a finite horizon T = 50,236
that is237

V π
0→T (s) =

T∑
τ∗=0

g(τ∗), (17)

the entire distribution for the near reward lies within the 50-step horizon. In contrast, only a portion238
of the broader distribution at 100 steps overlaps the first 50 steps. However, if that distant reward239
is large enough, the probability of it arriving earlier than 100 steps can contribute a higher total240
expected value than the smaller near reward. By preserving the full variance structure around each241
expected time, the agent’s scale-adaptive representation captures this partial overlap automatically.242

The efficiency of such a log-compressed representation can be framed in terms of minimizing the243
maximum relative error under a scale-invariant prior p(τ) ∝ 1/τ . Specifically, for the expected244
squared relative error,245

Error = E
[(

ĝ(τ∗)−g(τ∗)
g(τ∗)

)2
]
, (18)

this approach ensures that246 √
Var(ĝ(τ∗))

g(τ∗) = CV = 1√
k+1

, (19)

remains constant across τ∗. By contrast, a linear-time representation with uniform variance allo-247
cates precision in a way that either under-resolves near-future rewards or over-resolves distant ones.248
The key is that the logarithmic transform stabilizes variance, because Var(log(τ)) ≈ ( 1τ )

2 Var(τ)249
is nearly constant when Var(τ) ∝ τ2. Consequently, the log compression allocates resources pro-250
portionally to the relevant timescale, ensuring uniform relative precision for near and distant re-251
wards—particularly advantageous in scale-free settings and under limited time horizons.252

2.6 Controlling the Precision of Reward Estimation253

The parameter k in the log-compressed representation governs the precision of reward estimation,254
with the coefficient of variation given by CV. Larger values of k reduce the CV (Fig. 3), enhancing255
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accuracy but increasing computational demands and impact stability of the inverse transform (since256
k controls the order of the numerical derivative in the Post inversion, Eq 6). The change in expected257
future reward as a function of future time for different values of k is shown in Fig. 1b. The choice258
of k can impact the choice that the agent makes. This is illustrated in Fig 6a where with k = 3 agent259
prefers a closer but smaller reward and in Fig 6b where the only change is that k = 80 but the agent260
now prefer more distant but larger reward. This flexibility in k reflects a tunable trade-off between261
precision and computational cost, allowing the representation to adapt to different environments or262
resource constraints. We emphasize that this does not undermine the representation’s optimality,263
which ensures uniform relative precision across τ∗ for any chosen k. This variability in k also offers264
a parallel to human timing behavior, where the scalar property implies a constant CV that differs265
across individuals.266

(a) k = 3 (b) k = 80

Figure 6: Comparison of value function for different values of k in the presence of rewards of
different magnitudes at different distances.

3 Discussion267

This paper introduces a framework for reinforcement learning (RL) that separates temporal discount-268
ing from the training phase, allowing adjustments to the discount function after training without the269
need for retraining. By employing a log-compressed representation of expected future rewards, de-270
rived from value functions computed across a range of discount factors, the approach enables agents271
to adapt flexibly to various temporal preferences—such as exponential, hyperbolic, or finite-horizon272
discounting. Additionally, we propose a dynamic policy selection mechanism, utilizing a precom-273
puted library of policies to construct a hybrid strategy that adjusts to shifting objectives at runtime.274
These contributions enhance the adaptability of RL systems, which could prove useful in applica-275
tions where temporal preferences vary, such as robotics or financial decision-making. Furthermore,276
the log-compressed representation aligns conceptually with human perception of time, as described277
by the Weber-Fechner law, suggesting a potential avenue for modeling human-like decision pro-278
cesses in artificial agents.279

Despite its potential, the framework has several limitations that warrant consideration:280

• Approximation Errors: The reliance on an approximated inverse Laplace transform, based on a fi-281
nite set of discount factors, introduces possible inaccuracies in reconstructing the desired discount282
function. The quality of this approximation depends heavily on the number and distribution of283
discount factors chosen, which may not generalize across all environments.284

• Computational Overhead: Reconstructing the reward timeline and selecting policies dynamically285
at each step can demand significant computational resources, particularly in large or complex state286
spaces. The feasibility of scaling this approach to high-dimensional tasks, such as continuous287
control, has yet to be demonstrated.288
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• Policy Library Dependence: The success of dynamic policy selection hinges on the diversity and289
quality of the precomputed policy library. If the library lacks policies suited to a specific discount290
objective, performance may fall short compared to a policy trained specifically for that purpose.291

This work offers a step toward greater flexibility in RL, enabling agents to adapt to varying temporal292
preferences and objectives in a manner that may resonate with human perception.293
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Supplementary Materials352

The following content was not necessarily subject to peer review.353
354

S1 Numerical Approximations of the Inverse Laplace Transform355

In this section, we describe a numerical approximation for computing the inverse Laplace transform356
using the CME-R (Complex Matrix Exponentials with Real eigenvalues) method (introduced by357
Mészáros & Telek (2022)). This method provides better numerical stability when compared to Post358
method (Post, 1930) (Fig S1).359

Let β, η ∈ RM , where τ∗i ∈ R, σij =
βj

τ∗
i

and γij = e−σij . The approximation takes the form:360

g(τ∗i ) ≈
M∑
k=1

ηk
τ∗i

V π
γi,k

(20)

Here, M represents the maximum number of function evaluations and serves a similar role to the361
parameter k in the post-inverse method. Both η and β are real-valued tensors. It is worth noting that362
Equation 20 requires higher numerical precision as M increases to obtain accurate inverse Laplace363
transform results. The detailed methodology for computing the parameters η and β is thoroughly364
documented in the work of Mészáros & Telek (2022).365

Figure S1: Comparing expected return between CME-R inverse, Offline Post Inverse and Online
Post Inverse. While this figure represents a general property of the inverse Laplace transform for a
time-series input, in our case, the input (blue) is a time-varying reward function. Despite high tem-
poral variability of the input (reward), CME-R (orange) is able to construct a fateful log-compressed
estimate with temporal resolution gradually decaying from 0 (the current state) towards the future.
Offline Post inverse (red) is an analytically computed offline solution that convolves the input func-
tion with the set of impulse responses defined in Eq. 9. (It serves as a ground truth since it does not
suffer from numerical issues.) A high match between CME-R and the Offline Post inverse indicates
the good fidelity of the CME-R representation. On the other hand, Online Post inverse (computed
online using Eq. 6) suffers from numerical instabilities when the input signal has high temporal vari-
ability (green).

S2 Lemmas and Proofs366

We define τ∗, τ ∈ [0,∞]. τ is the distance from the reward and τ∗ refers to the number of steps367
in the future from the agent’s current position and σ = k

τ∗ . If we assume there is a single terminal368
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reward with magnitude 1 in an environment, then the value of state s at distance τ from the reward369
is given by γτ = (e−σ)τ = e−στ . Then we can compute the expected reward at time step τ∗i in the370
future as follows:371

g(τ, τ∗) = L−1{V π
γ=e−στ (s)}

= L−1{e−στ}

=
(−1)k

k!
σk+1 dk

dτk
e−στ

=
(−1)k

k!
σk+1(−τ)ke−στ

=
1

τ

kk+1

k!
(
τ

τ∗
)k+1e−k( τ

τ∗ )

Lemma 1: The value of a state at distance τ from the reward given the deadline m can be computed372
as:373

∫ m

0

g(τ, τ∗)dτ∗ = e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (21)

Proof:374

∫ m

0

g(τ, τ∗)dτ∗ =

∫ m

0

1

τ

kk+1

k!
(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗

=
1

τ

kk+1

k!

∫ m

0

(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗

Substituting u = τ
τ∗ ,

= −kk+1

k!

∫ τ
m

∞
uk−1e−kudu

=
kk+1

k!

∫ ∞

τ
m

uk−1e−kudu

=
kk+1

k!
[

∫ ∞

0

uk−1e−kudu−
∫ (τ)

m

0

uk−1e−kudu]

Using
∫∞
0

yme−kydy = Γ(m+1)
km+1 ,

=
kk+1

k!
[
Γ(k)

kk
−
∫ (τ)

m

0

uk−1e−kudu]

= 1− kk+1

k!

∫ (τ)
m

0

uk−1e−kudu
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Using
∫ b

0
xne−axdx = n!

an+1

[
1− e−ab

∑i=n
i=0

(ab)i

i!

]
,

= 1− kk+1

k!

(k − 1)!

kk

[
1− e−k

(τ)
m

i=k−1∑
i=0

(k (τ)
m )i

i!

]

= 1− 1

[
1− e−k

(τ)
m

i=k−1∑
i=0

(k (τ)
m )i

i!

]

= e−k
(τ)
m

i=k−1∑
i=0

(k (τ)
m )i

i!

Lemma 2: The state-value perceived by the agent between steps τ∗ = m and τ∗ = n in the future375
where m < n when the agent is at distance τ from the reward can be computed as follows:376

S(n, c, x) = ecx
n∑

i=0

(−1)n−i n!

i!cn−i+1
xi

∫ n

m

g(τ, τ∗)dτ∗ = (−1)k+1(
kk+1

k!
)[S(k − 1, k,

−τ
n

)− S(k − 1, k,
−τ
m

)]. (22)

Proof:377 ∫ n

m

g(τ, τ∗)dτ∗ =

∫ n

m

1

τ

kk+1

k!
(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗

= (−1)k+1 1

τ

kk+1

k!

∫ n

m

(
−τ
τ∗

)k+1e−k( τ
τ∗ )dτ∗

Substituting u = −τ
τ∗ ,378

= (−1)k+1 1

τ

kk+1

k!

∫ −τ
n

−τ
m

uk+1eku
τ

u2
du

= (−1)k+1 1

τ

kk+1

k!

∫ −τ
n

−τ
m

uk−1ekudu

Using S(n, c, x) =
∫
xnecxdx = ecx

∑n
i=0(−1)n−i n!

i!cn−i+1x
i,379

= (−1)k+1(
kk+1

k!
)[S(k − 1, k,

−τ
n

)− S(k − 1, k,
−τ
m

)

Lemma 3: The value perceived by the agent between step m and∞ in the future when the agent is380
at a distance τ from the reward can be computed as follows:381

∫ ∞

m

g(τ, τ∗)dτ∗ = 1− e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (23)

Proof:382

∫ ∞

m

g(τ, τ∗)dτ∗ =

∫ ∞

0

g(τ∗)dτ∗ −
∫ m

0

g(τ∗)dτ∗

= (
1

τ

kk+1

k!

∫ ∞

0

(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗)− (

∫ m

0

g(τ∗)dτ∗)
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Substituting u = τ
τ∗ ,

= (
−kk+1

k!

∫ 0

∞
uk−1e−kudu)− (

∫ m

0

g(τ∗)dτ∗)

= (
kk+1

k!

∫ ∞

0

uk−1e−kudu)− (

∫ m

0

g(τ∗)dτ∗)

Using
∫∞
0

yme−kydy = Γ(m+1)
km+1 ,

= 1−
∫ m

0

g(τ∗)dτ∗

Using Lemma 1,

= 1− e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!

S3 Derivation of the Peak Time of the Impulse Response383

∂T (τ, τ∗)
∂τ∗

= 0.

Define u = τ
τ∗ , so the function becomes T (τ, τ∗) = 1

τ
kk+1

k! uk+1e−ku. Since τ is fixed, we differ-384
entiate with respect to u, where τ∗ = τ

u and dτ∗

du = − τ
u2 . Using the chain rule:385

∂T
∂τ∗

=
∂T
∂u
· du
dτ∗

,

with du
dτ∗ = − τ

(τ∗)2 . Compute the derivative:386

∂T
∂u

=
1

τ

kk+1

k!

[
(k + 1)uke−ku − kuk+1e−ku

]
=

1

τ

kk+1

k!
e−kuuk [(k + 1)− ku] .

Setting this to zero:387

(k + 1)− ku = 0 ⇒ u =
k + 1

k
.

Since u = τ
τ∗ , we solve for τ∗:388

τ∗ =
k

k + 1
τ.

Thus, the peak occurs at τ∗peak = k
k+1τ , showing a linear relationship with τ , where the factor k

k+1389
approaches 1 as k grows, enhancing accuracy.390
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S4 Derivation of CV of the Impulse Response391

The mean of the impulse response of g(τ, τ∗) is:392

µ =

∫ ∞

0

tf̃(s; t)dt

=

∫ ∞

0

t
1

t

kk+1

k!

(
t

τ∗

)k+1

e−k t
τ∗ dt

=
kk+1

k!

∫ ∞

0

(
t

τ∗

)k+1

e−k t
τ∗ dt

= τ
k + 1

k
.

The standard deviation of the impulse response of g(τ, τ∗) is:393

σ =

√∫ ∞

0

(t− µ)2f̃(s; t)dt

=

√∫ ∞

0

(t− µ)2
1

t

kk+1

k!

(
t

τ∗

)k+1

e−k t
τ∗ dt

= τ

√
k + 1

k
.

Finally, the coefficient of variation is then:394

CV =
σ

µ
=

1√
k + 1

.

S5 Proof of Optimality for Policy Selection395

Consider a finite set of policies Π and a discounting function f(τ∗) ≥ 0 with
∑∞

τ∗=0 f(τ
∗) < ∞.396

For each policy πk ∈ Π, the true value under f is:397

V πk

f (s) =

∞∑
τ∗=0

f(τ∗)gk(τ
∗),

where gk(τ
∗) = Eπk

[rt+τ∗ | st = s] is the exact expected reward at time τ∗, fully determined398
by πk, P , and R. In the limit of continuous Γ, the inverse Laplace transform recovers gk(τ

∗)399
exactly from V πk

γ (s) =
∑∞

τ∗=0 γ
τ∗
gk(τ

∗), as V πk
γ (s) is the Laplace transform of gk(τ∗) evaluated400

at σ = − ln(γ). Thus, V πk

f (s) precisely captures the expected discounted reward under discount401
function f .402

Since Π is finite, there exists a policy π∗ ∈ Π such that:403

V π∗

f (s) = max
πk∈Π

V πk

f (s).

The selection π∗ = argmaxπk∈Π V πk

f (s) identifies this policy, proving that π∗ is optimal within Π404
for the given f under these idealized conditions.405
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