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Abstract

Decision support systems based on prediction sets help humans solve multiclass
classification tasks by narrowing down the set of potential label values to a subset
of them, namely a prediction set, and asking them to always predict label values
from the prediction sets. While this type of systems have been proven to be effec-
tive at improving the average accuracy of the predictions made by humans, by
restricting human agency, they may cause harm—a human who has succeeded
at predicting the ground-truth label of an instance on their own may have failed
had they used these systems. In this paper, our goal is to control how frequently a
decision support system based on prediction sets may cause harm, by design. To
this end, we start by characterizing the above notion of harm using the theoretical
framework of structural causal models. Then, we show that, under a natural, albeit
unverifiable, monotonicity assumption, we can estimate how frequently a system
may cause harm using only predictions made by humans on their own. Further, we
also show that, under a weaker monotonicity assumption, which can be verified
experimentally, we can bound how frequently a system may cause harm again using
only predictions made by humans on their own. Building upon these assumptions,
we introduce a computational framework to design decision support systems based
on prediction sets that are guaranteed to cause harm less frequently than a user-
specified value using conformal risk control. We validate our framework using
real human predictions from two different human subject studies and show that,
in decision support systems based on prediction sets, there is a trade-off between
accuracy and counterfactual harm.

1 Introduction

The principle of “first, do no harm” holds profound significance in a variety of professions across
multiple high-stakes domains. For example, in the field of medicine, doctors swear an oath to prioritize
their patient’s well-being or, in the legal justice system, preserving the innocence of individuals is
paramount. As a result, in all of these domains, rules and guidelines have been established to prevent
decision makers—doctors or judges—from making decisions that harm individuals—patients or
suspects. In recent years, it has been increasingly argued that a similar principle should apply to
decision support systems using machine learning algorithms in high-stakes domains [1–4].1

The definition of harm is not unequivocally agreed upon, however, the most widely accepted definition
is the counterfactual comparative account of harm (in short, counterfactual harm) [5–7], which we
adopt in our work. Under this definition, an action causes harm to an individual if they would have

1The European Unions’ AI act mentions the term “harm” more than 35 times and points out that, its crucial
role in the design of algorithmic systems must be defined carefully.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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been in a worse state had the action been taken. Building upon this definition, we say that a decision
support system causes harm to an individual if a decision maker would have made a worse decision
about the individual had they used the system.

In machine learning for decision support, one of the main focus has been classification tasks. Here,
the most studied setting assumes the decision support system uses a classifier to predict the value of
a (ground-truth) label of interest and a human expert uses the predicted value to update their own
prediction [8–12]. Unfortunately, in this setting, it is yet unclear how to guarantee that the (average)
accuracy of the predictions made by an expert who uses the system is higher than the accuracy
of the predictions made by the expert and the classifier on their own, what is often referred to as
human-AI complementarity [13–16]. In this context, a recent line of work [17, 18] have argued, both
theoretically and empirically, that an alternative setting may enable human-AI complementarity. In
this alternative setting, the decision support system helps a human expert by providing a set of label
predictions, namely a prediction set, and asking them to always predict a label value from the set.
The key principle is that, by restricting human agency, good performance does not depend on the
expert developing a good sense of when to predict a label from the prediction set. In this context,
it is also worth noting that Google has recently developed a tool that uses patient history and skin
condition images to provide decision support using prediction sets [19], and a study by Jain et al. [20]
has found that physicians and nurses using this tool improved diagnoses for 1 in every 8 to 10 cases.

In this work, we argue that the same principle that enables human-AI complementarity on decision
support systems based on prediction sets may also cause counterfactual harm—a human expert who
has succeeded at predicting the label of an instance on their own may have failed had they used these
systems. Consequently, our goal is to design decision support systems based on prediction sets that
are guaranteed to cause, in average, less counterfactual harm than a user-specified value.

Our contributions. We start by formally characterizing the predictions made by a decision maker
using a decision support system based on prediction sets using a structural causal model (SCM)
and, based on this characterization, formalize our notion of counterfactual harm. In general, since
counterfactual harm lies within level three in the “ladder of causation” [21], it is not (partially)
identifiable—it cannot be estimated (bounded) from data. However, we show that, under a natural
counterfactual monotonicity assumption on the predictions made by decision makers using decision
support systems based on prediction sets, counterfactual harm is identifiable. Further, we show that,
under a weaker interventional monotonicity assumption, which can be verified experimentally, the
average counterfactual harm is partially identifiable. Then, building upon these assumptions, we
develop a computational framework to design decision support systems based on prediction sets
that are guaranteed to cause, in average, less counterfactual harm than a user-specified value using
conformal risk control [22]. Finally, we validate our framework using real human predictions from
two different human subject studies and show that, in decision support systems based on prediction
sets, there is a trade-off between accuracy and counterfactual harm.

Further related work. Our work builds upon further related work on set-valued predictors, critiques
of prediction optimization, counterfactual harm and algorithmic triage.

Set-valued predictors output a set of label values, namely a prediction set, rather than single labels [23].
However, set-valued predictors have not been typically designed nor evaluated by their ability to help
human experts make more accurate predictions [24–29]. Only very recently, an emerging line of work
has shown that conformal predictors, a specific type of set-valued predictors, may help human experts
make more accurate predictions [17, 18, 30–33]. Within this line of work, the work most closely
related to ours is by Straitouri et al. [17, 18], which has introduced the setting, and counterfactual and
interventional monotonicity properties we build upon.

Prediction optimization has been recently put into question in the context of decision support [34–36].
More specifically, it has been argued that optimizing decision support systems to improve prediction
accuracy does not always translate to better decision-making. Our work aligns with this critique since
we argue that improving prediction accuracy may come at the cost of counterfactual harm.

The literature on counterfactual harm in machine learning is still quite small and has focused on
traditional machine learning settings in which machine learning models replace human decision
makers and make automated decisions [1–4]. Within this literature, the work most closely related to
ours is by Richens et al. [1], which also uses a structural causal model to define counterfactual harm.
However, their definition of counterfactual harm differs in a subtle, but important, way from ours. In
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our setting, their definition of counterfactual harm would compare the accuracy of a factual prediction
made by an expert using the decision support system against the counterfactual prediction that the
same expert would have made on their own. That means, under their definition, one would need to
deploy the system to estimate the harm it may cause, potentially causing harm. In contrast, under our
definition, one does not need to deploy the system to estimate (or bound) the harm it may cause, as it
will become clear in Section 4, and thus we argue that our definition may be more practical.

Learning under algorithmic triage seeks to develop classifiers that make predictions for a given
fraction of the samples and leave the remaining ones to human experts, as instructed by a triage
policy [37–42]. In contrast, in our work, for each sample, a classifier is used to construct a prediction
set and a human expert needs to predict a label value from the set. In this context, it is also worth noting
that learning under algorithmic triage has been extended to reinforcement learning settings [43–46].

2 Decision support systems based on prediction sets

We consider a multiclass classification task in which, for each task instance, a human expert has to
predict the value of a ground-truth label y ∈ Y = {1, . . . , L}. Then, our goal is to design a decision
support system C : X → 2Y that, given a set of features x ∈ X , helps the expert by narrowing down
the label values to a subset of them C(x) ⊆ Y , namely a prediction set. Here, we focus on a setting
in which the system asks the expert to always predict a label value ŷ from the prediction set C(x).
Note that, by restricting the expert’s agency, good performance does not depend on the human expert
developing a good sense of when to predict a label from the prediction set. Moreover, we assume that
the set of features, the ground-truth label and the expert’s prediction are sampled from an unknown
fixed distribution2, i.e., x, y ∼ P (X,Y ) and ŷ ∼ P (Ŷ |X,Y, C(X)).

Further, similarly as in Straitouri et al. [17, 18], we consider that, given a set of features x ∈ X , the
system constructs the prediction set C(x) using the following set-valued predictor [23]. First, the
set-valued predictor ranks each potential label value y ∈ Y using the softmax output of a pre-trained
classifier my(x) ∈ [0, 1]. Then, given a user-specified threshold λ ∈ [0, 1], it uses the resulting
ranking to construct the prediction set C(x) = Cλ(x) as follows:

Cλ(x) = {y(i)}ki=1, with k = 1 +

L∑
j=2

1
{
my(j)

(x) ≥ 1− λ
}
, (1)

where ·(i) denotes the i-th label value in the ranking. Here, note that, for λ = 0, the prediction set
contains just the top ranked label value, for λ = 1, it contains all label values.3

Given the above parameterization, one may just focus on finding the optimal threshold λ∗ under
which the human expert achieves the highest average accuracy as in Straitouri et al. [17, 18], i.e.,

λ∗ = argmax
λ∈[0,1]

A(λ), with A(λ) = EX,Y∼P (X,Y ), Ŷ∼P (Ŷ |X,Y,Cλ(X))[1{Ŷ = Y }]. (2)

However, this focus does not prevent the resulting system Cλ from causing harm—an expert may
succeed to predict the value of the ground-truth label on their own on instances in which they would
have failed had they used Cλ. In this work, our goal is to design a computational framework that,
given a user-specified bound α ∈ [0, 1], finds the set of λ values which are all guaranteed to cause
less harm, in average, than the bound α.

Remark. We would like to clarify that, if one sets the value of the threshold λ to be roughly the 1−α
quantile of the empirical distribution of the scores 1−my(x) in a calibration set, then, the set valued
predictor defined by Eq. 1 is equivalent to a vanilla conformal predictor with nonconformity scores
1−my(x) and coverage 1− α. Under this view, it becomes apparent that, by searching for λ values
in [0, 1] that are harm controlling, we are essentially searching for vanilla conformal predictors that
are harm controlling. In this context, we would like to further clarify that our framework is agnostic
to the choice of nonconformity score or more generally, the set-valued predictor, used to construct
the prediction sets [47–49]. Motivated by this observation, in Appendix E, we include additional
experiments where we evaluate our framework using a more complex set-valued predictor [49].

2We denote random variables with capital letters and realizations of random variables with lowercase letters.
3The assumption that my(x) ∈ [0, 1] and λ ∈ [0, 1] is without loss of generality.
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Figure 1: Our structural causal model M. Circles represent endogenous random variables and boxes
represent exogenous random variables. The value of each endogenous variable is given by a function
of the values of its ancestors, as defined by Eq. 3. The value of each exogenous variable is sampled
independently from a given distribution.

3 Counterfactual harm of decision support systems

To formalize our notion of harm, we characterize how human experts make predictions using a
decision support system C via a structural causal model (SCM) [21], which we denote as M. More
specifically, similarly as in Straitouri et al. [18], we define M by the following set of assignments:

X = fX(V ), Y = fY (V ), CΛ(X) = fC(Λ, X), Ŷ = fŶ (U, V, CΛ(X)), (3)

where Λ, U and V are exogenous random variables and fX , fY , fC and fŶ are given functions.4 The
exogenous variables Λ, U and V characterize the user-specified threshold, the expert’s individual
characteristics and the data generating process, respectively. The function fC is directly defined by
Eq. 1, i.e., fC(Λ, X) = CΛ(X). Further, as argued elsewhere [21], we can always find a distribution
for the exogenous variables Λ, U and V as well as a functional form for the functions fX , fY and
fŶ such that the distributions of the features, the ground-truth label and the expert’s prediction
introduced in Section 2 are given by the observational distribution entailed by the SCM M. For ease
of exposition, we assume that, under no interventions, the distribution of the exogenous variable Λ is
P (Λ) = 1{Λ = 1} and thus human experts make predictions on their own. Figure 1 shows a visual
representation of our SCM M.

Building upon the above characterization, we are now ready to formalize the following notion of
counterfactual harm, which essentially compares the accuracy of a factual prediction made by an
expert on their own against the counterfactual prediction that the same expert would have made had
they used a decision support system Cλ:

Definition 1 (Counterfactual Harm) For any x, y, ŷ ∼ PM, the counterfactual harm that a deci-
sion support system Cλ would have caused, if deployed, is given by5

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y(Ŷ )[max{0,1{ŷ = y} − 1{Ŷ = y}}], (4)

where do(Λ = λ) denotes a (hard) intervention on the exogenous variable Λ.

Here, note that counterfactual harm can only be nonzero if the expert has made a successful prediction
on their own, i.e., ŷ = y. Otherwise, the expert’s prediction ŷ could not have become worse had they
used the decision support system Cλ.

4The functions fX , fY , fC and fŶ are causal mechanisms and not equations that can be manipulated [50].
5To denote interventions in a counterfactual distribution, we follow the notation by Peters et al. [51]. Refer to

Appendix A for a comparison to Pearl’s notation [50].
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Given the above definition of counterfactual harm and a user-specified bound α ∈ [0, 1], our goal is
to find the largest harm-controlling set of values Λ(α) ⊆ [0, 1] such that, for each λ ∈ Λ(α), it holds
that the counterfactual harm is, in expectation across all possible instances, smaller than α, i.e.,

Λ(α) =
{
λ ∈ [0, 1] | H(λ) = EX,Y,Ŷ∼PM(X,Y,Ŷ )[hλ(X,Y, Ŷ )] ≤ α

}
. (5)

At this point, we cannot expect to find the set Λ(α) because counterfactual harm lies within level
three in the “ladder of causation” [21] and thus it is not identifiable from observational data without
further assumptions. However, in what follows, we will show that, under certain assumptions, the
average counterfactual harm H(λ) is (partially) identifiable, i.e., it can be estimated (bounded) using
observational data.

Comparison to Richens’s definition of counterfactual harm. Richens et al. [1] define counterfactual
harm as follows:

hλ(x, y, ŷ) = EŶ∼PM|Ŷ =ŷ,X=x,Y =y(Ŷ )[max{0,1{Ŷ = y} − 1{ŷ = y}}],

where x, y, ŷ ∼ PM;do(Λ=λ) and λ = 1 is considered to be the default action in the language of
Richens et al. [1]. This definition implicitly assumes that the system Cλ is deployed and it compares
the factual prediction ŷ made by an expert using the deployed system against the counterfactual
prediction Ŷ had the expert made on their own. On the contrary, our definition does not assume that
the system Cλ is deployed and instead it compares the factual prediction ŷ made by an expert on their
own against the counterfactual prediction Ŷ had the expert made using the system Cλ.

4 Counterfactual harm under counterfactual and interventional monotonicity

In this section, we analyze counterfactual harm hλ(x, y, ŷ), as defined in Eq. 4, from the perspective
of causal identifiability under two natural monotonicity assumptions—counterfactual monotonicity
and interventional monotonicity. Both of these assumptions, which were first studied by Straitouri et
al. [18], formalize the intuition that increasing the number of label values in a prediction set increases
its difficulty.

Under counterfactual monotonicity, for any x ∈ X and λ, λ′ ∈ [0, 1] such that Y ∈ Cλ(x) ⊆ Cλ′(x),
if an expert has succeeded at predicting Y using Cλ′ , they would have also succeeded had they used
Cλ and, conversely, if they have failed at predicting Y using Cλ, they would have also failed had
they used Cλ′ , while holding “everything else fixed”. More formally, counterfactual monotonicity is
defined as follows:

Assumption 1 (Counterfactual Monotonicity) Counterfactual monotonicity holds if and only if,
for any x ∈ X and any λ, λ′ ∈ [0, 1] such that Y ∈ Cλ(x) ⊆ Cλ′(x), we have that

1{fŶ (u, v, Cλ(x)) = Y } ≥ 1{fŶ (u, v, Cλ′(x)) = Y } (6)

for any u ∼ PM(U) and v ∼ PM(V |X = x).

Under interventional monotonicity, for any x ∈ X and λ, λ′ ∈ [0, 1] such that Y ∈ Cλ(x) ⊆ Cλ′(x),
the probability that experts succeed at predicting Y using Cλ is equal or greater than using Cλ′ . More
formally, interventional monotonicity is defined as follows6:

Assumption 2 (Interventional Monotonicity) Interventional monotonicity holds if and only if, for
any x ∈ X , y ∈ Y , and λ, λ′ ∈ [0, 1] such that y ∈ Cλ(x) ⊆ Cλ′(x), we have that

PM ; do(Λ=λ)(Ŷ = Y |X = x, Y = y) ≥ PM ; do(Λ=λ′)(Ŷ = Y |X = x, Y = y), (7)

where the probability is over the exogenous random variables U and V characterizing the expert’s
individual characteristics and the data generating process, respectively.

In what follows, we first show that, under the counterfactual monotonicity assumption, counterfactual
harm is identifiable (we provide all proofs in Appendix B):

6In Straitouri et al. [18], interventional monotonicity is originally defined unconditionally of the value of
ground-truth label Y .
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Proposition 1 Under the counterfactual monotonicity assumption, for any x, y, ŷ ∼ PM, the
counterfactual harm that a decision support system Cλ would have caused, if deployed, is given by

hλ(x, y, ŷ) = 1{ŷ = y ∧ y /∈ Cλ(x)}. (8)

As an immediate consequence, we can conclude that, under counterfactual monotonicity, the average
counterfactual harm H(λ), as defined in Eq. 5, is identifiable and can be estimated using observational
data sampled from PM. However, since the inequality condition of the counterfactual monotonicity
assumption compares counterfactual predictions and thus cannot be experimentally verified, one
should be cautious about using the above proposition to estimate counterfactual harm in high-stakes
applications.

Next, we show that, under the interventional monotonicity assumption, the average counterfactual
harm is partially identifiable:

Proposition 2 Under the interventional monotonicity assumption, the average counterfactual harm
H(λ) that a decision support system Cλ would have caused, if deployed, satisfies that

EX,Y,Ŷ∼PM(X,Y,Ŷ )[1{Ŷ = Y ∧ Y /∈ Cλ(X)}] ≤ H(λ)

≤ EX,Y,Ŷ∼PM(X,Y,Ŷ )[1{Ŷ = Y ∧ Y /∈ Cλ(X)}+ 1{Ŷ ̸= Y ∧ Y ∈ Cλ(X)}]. (9)

Importantly, note that, in the above proposition, the lower bound on the left hand side of Eq. 9 matches
the average counterfactual harm under the counterfactual monotonicity assumption and thus, holding
“everything else fixed”, the average counterfactual harm under interventional monotonicity is always
greater or equal than the average counterfactual harm under counterfactual monotonicity. Moreover,
further note that the inequality condition of the interventional monotonicity assumption compares
interventional probabilities and thus we can experimentally verify it (see Appendix F), lending support
to using the above proposition to bound average counterfactual harm in high-stakes applications.

5 Controlling counterfactual harm using conformal risk control

In this section, we develop a computational framework that, given a decision support system Cλ and a
user-specified bound α, aims to find the largest harm-controlling set Λ(α), as defined in Eq. 5. In the
development of our framework, we will first assume that counterfactual monotonicity holds and, later
on, we will relax this assumption, and assume instead that interventional monotonicity holds.

Our framework builds upon the the idea of conformal risk control, which has been introduced very
recently by Angelopoulos et al. [22]. Given any monotone loss function ℓ(Cλ(X), Y ) with respect to
λ and a calibration set {(Xi, Yi)}ni=1, with (Xi, Yi) ∼ P (X,Y ), conformal risk control finds a value
of λ under which the expected loss of a test sample (Xn+1, Yn+1) ∼ P (X,Y ) does not exceed a
user-specified bound α, i.e., E[ℓ(Cλ(Xn+1), Yn+1)] ≤ α. However, in our framework, we re-define
the loss ℓ so that it does not only depend on the prediction set and the label value but also on the
expert’s prediction on their own.

Under the counterfactual monotonicity assumption, we set the value of the loss ℓ using the expression
of counterfactual harm in Eq. 8 and, using a similar proof technique as in Angelopoulous et al., first
prove the following theorem:

Theorem 1 Let D = {(Xi, Yi, Ŷi)}ni=1 be a calibration set, with (Xi, Yi, Ŷi) ∼ PM(X,Y, Ŷ ),
α ∈ [0, 1] be a user-specified bound, and

λ̂(α) = inf

{
λ :

n

n+ 1
Ĥn(λ) +

1

n+ 1
≤ α

}
where Ĥn(λ) =

∑n
i=1 1{Ŷi = Yi ∧ Yi /∈ Cλ(Xi)}

n
.

(10)
If counterfactual monotonicity holds, a test sample (Xn+1, Yn+1, Ŷn+1) ∼ PM(X,Y, Ŷ ) satisfies
that

E
[
1{Ŷn+1 = Yn+1 ∧ Yn+1 /∈ Cλ̂(α)(Xn+1)}

]
≤ α,

where the expectation is over the randomness in the calibration set used to compute the threshold
λ̂(α) and the test sample.
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Then, we leverage the above theorem and the fact that, under counterfactual monotonicity, the
counterfactual harm is nonincreasing with respect to λ, as shown in Lemma 3 in Appendix B.5, to
recover the largest harm-controlling set Λ(α):

Corollary 1 Let α ∈ [0, 1] be a user-specified bound. Then, under the counterfactual monotonicity
assumption, it holds that Λ(α) = {λ ∈ [0, 1] |λ ≥ λ̂(α)}, where λ̂(α) is given by Eq. 10.

Under the interventional monotonicity assumption, rather than directly controlling the counterfactual
harm, we will control the upper bound given by Eq. 9. Consequently, rather than recovering the
largest harm-controlling set Λ(α), we will recover a harm-controlling set Λ′(α) ⊆ Λ(α). However,
since the expression inside the expectation of the upper bound is nonmonotone with respect to λ, we
cannot directly use it to set the value of the loss ℓ in conformal risk control. That said, since the first
term of the expression is nonincreasing and the second term is nondecreasing, as shown in Lemmas 3
and 4 in Appendix B.5, we can apply conformal risk control separately for each term. For the first
term, we use Theorem 1 because the term matches the counterfactual harm under the counterfactual
monotonicity assumption. For the second term, we prove the following theorem:

Theorem 2 Let D = {(Xi, Yi, Ŷi)}ni=1 be a calibration set, with (Xi, Yi, Ŷi) ∼ PM, α ∈
[

1
n+1 , 1

]
be a user-specified bound, and

λ̌(α) = sup

{
λ :

n

n+ 1
Ĝn(λ) +

1

n+ 1
≤ α

}
where Ĝn(λ) =

∑n
i=1 1{Ŷi ̸= Yi ∧ Yi ∈ Cλ(Xi)}

n
.

(11)
If interventional monotonicity holds and λ̌ exists, a test sample (Xn+1, Yn+1, Ŷn+1) ∼ PM(X,Y, Ŷ )
satisfies that

E
[
1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̌(α)(Xn+1)}

]
≤ α,

where the expectation is over the randomness in the calibration set used to compute the threshold
λ̌(α) and the test sample (Xn+1, Yn+1, Ŷn+1).

Finally, we leverage the above theorems and the fact that the first term inside the expectation of the
upper bound of counterfactual harm in Eq. 9 is nonincreasing and the second term is nondecreasing
with respect to λ to recover a harm-controlling set Λ′(α) ⊆ Λ(α):

Corollary 2 Let α ∈ [0, 1] be a user-specified bound. Then, under the interventional monotonicity
assumption, for any choice of α′ ≤ α, the set

Λ′(α) = {λ ∈ [0, 1] | λ̂(α′) ≤ λ ≤ λ̌(α− α′)},

where λ̂(α′) is given by Eq. 10 and λ̌(α− α′) is given by Eq. 11 satisfies that Λ′(α) ⊆ Λ(α).

Note that, in practice, the above corollaries can be implemented efficiently since, by definition, the
functions Ĥn(λ) and Ĝn(λ) are piecewise constant functions of λ with n different pieces.

6 Experiments

In this section, we use data from two different human subject studies to: a) evaluate the average
counterfactual harm caused by decision support systems based on prediction sets; b) validate the the-
oretical guarantees offered by our computational framework (i.e., Corollaries 1 and 2); c) investigate
the trade-off between the average counterfactual harm caused by decision support systems based on
prediction sets and the average accuracy achieved by human experts using these systems. In what
follows, we assume that counterfactual monotonicity holds. In Appendix G, we conduct experiments
where we relax this assumption and assume instead that interventional monotonicity holds.7

Experimental setup. We first experiment with the ImageNet16H dataset by Steyvers et al. [52],
which comprises 32,431 predictions made by 145 human participants on their own about noisy

7All experiments ran on a Mac OS machine with an M1 processor and 16GB Memory. An open-source
implementation of our methodology is publicly available at https://github.com/Networks-Learning/controlling-
counterfactual-harm-prediction-sets.
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(a) α = 0.01

0.8

0.9

0.05

VGG19

0.8

0.9
DenseNet161

0.75

0.85
GoogleNet

0.75

0.85
ResNet152

0.00 0.05 0.10 0.15 0.20
0.7

0.8 AlexNet

A
ve

ra
ge

A
cc

u
ra

cy

Average Counterfactual Harm

(b) α = 0.05

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 110. Each point corresponds to a λ value from 0 to 1 with step 0.001
and the coloring indicates the relative frequency with which each λ value is in Λ(α) across random
samplings of the calibration set. Each row corresponds to decision support systems Cλ with a different
pre-trained classifier with average accuracies 0.846 (VGG19), 0.830 (DenseNet), 0.722 (GoogleNet),
0.727 (ResNet152), and 0.691 (AlexNet). The average accuracy achieved by the simulated human
experts on their own is 0.771. The results are averaged across 50 random samplings of the test and
calibration set. In both panels, 95% confidence intervals are represented using shaded areas and
always have width below 0.02.

images created using 1,200 unique natural images from the ImageNet Large Scale Visual Recognition
Challenge (ILSRVR) 2012 dataset [53]. More specifically, each of the natural images was used to
generate four noisy images with different amount of phase noise distortion ω ∈ {80, 95, 110, 125}
and with the same ground-truth label y from a label set Y of size L = 16. Here, the amount
of phase noise controls the difficulty of the classification task—the higher the noise, the more
difficult the classification task. In our experiments, we use (all) the noisy images with noise value
ω ∈ {80, 95, 110} because, for the noisy images with ω = 125, humans perform poorly; moreover,
we stratify these images (and human predictions) with respect to their amount of phase noise.

For each stratum of images, we apply our framework to decision support systems Cλ with different
pre-trained classifiers, namely VGG19 [54], DenseNet161 [55], GoogleNet [56], ResNet152 [57]
and AlexNet [58] after 10 epochs of fine-tuning, as provided by Steyvers et al. [52].8 To this end,
we randomly split the images (and human predictions) into a calibration set (10%), which we use to
find the harm-controlling sets Λ(α) by applying Corollary 1, and a test set (90%), which we use to
estimate the average counterfactual harm H(λ) caused by the decision support systems Cλ as well
as the average accuracy A(λ) of the predictions made by a human expert using Cλ. Here, since the
dataset only contains predictions made by human participants on their own, we use the mixture of
multinomial logit models (MNLs) introduced by Straitouri et al. [17] to estimate the average accuracy
A(λ). Refer to Appendix C for more details regarding the mixture of MNLs and to Appendix D for
additional experiments studying the relationship between average counterfactual harm H(λ), average
prediction set size and empirical coverage9.

Then, we experiment with the ImageNet16H-PS dataset10 by Straitouri et al. [18], which comprises
194,407 predictions made by 2,751 human participants using decision support systems Cλ about the

8All classifiers and images are publicly available at https://osf.io/2ntrf.
9By empirical coverage, we refer to the fraction of the test samples for which the prediction sets include the

ground truth label value.
10The dataset is publicly available at https://github.com/Networks-Learning/counterfactual-prediction-sets/.
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Figure 3: Average accuracy estimated using predictions by human participants (Real) and using the
mixture of MNLs (Predicted) against the average counterfactual harm for images with ω = 110.
Each point corresponds to a λ value from 0 to 1 with step 0.001 and the coloring indicates the relative
frequency with which the λ value is in Λ(α) across random samplings of the calibration set. The
decision support systems Cλ use the pre-trained classifier VGG19. The results are averaged across
50 random samplings of the test and calibration set. In both panels, 95% confidence intervals are
represented using shaded areas and always have width below 0.02.

set of noisy images with ω = 110 described above. More specifically, for each noisy image, the
dataset contains human predictions made under any possible prediction set that can be constructed
using Eq. 1 with (the softmax output of) VGG19 after 10 epochs of fine-tuning, as provided by
Steyvers et al. [52]. Here, similarly as in the ImageNet16H dataset, we randomly split the images
(and human predictions) into a calibration set (10%), which we use to find Λ(α), and a test set (90%),
which we use to estimate H(λ) and A(λ). However, in this case, we can estimate A(λ) using the
predictions made by human participants using Cλ from the dataset, and we can compare this empirical
estimate to the one using the mixture of MNLs.

In both datasets, we calculate confidence intervals and validate the theoretical guarantees offered by
Corollary 1 by repeating each experiment 50 times and, each time, sampling different calibration and
test sets.

Results. Figure 2 shows the average accuracy A(λ) achieved by a human participant using Cλ, as
predicted by the mixture of MNLs, against the average counterfactual harm H(λ) caused by Cλ for
α ∈ {0.01, 0.05} on the stratum of images with ω = 110 from the ImageNet16H dataset. Refer
to Appendix D for results on other strata. Here, each point corresponds to a different λ value and
its coloring indicates the empirical probability that λ is included in the harm-controlling set Λ(α).
The results show several interesting insights. First, we find that, as long as λ < 1, the decision
support systems Cλ always cause some amount of counterfactual harm11. This suggests that, while
restricting human agency enables human-AI complementarity, it inevitably causes (some amount
of) counterfactual harm. Second, we find that the sets of λ values provided by our framework are
typically harm-controlling, i.e., they do not include λ values such that H(λ) > α. However, the sets
are often conservative and do not include all the harm-controlling λ values due to estimation error in
the the empirical estimate Ĥn(λ) of the average counterfactual harm using data from the calibration
set. In Appendix D, we show that using larger calibration sets reduces the above mentioned estimation
error and results in sets of λ values that are less conservative. Third, we find that there is a trade-off
between accuracy and counterfactual harm and this trade-off is qualitatively consistent across decision
support systems using different pre-trained classifiers. In fact, for α = 0.01, the decision support
systems Cλ∗ offering the greatest average accuracy A(λ∗) are not harm-controlling.

Figure 3 shows the average accuracy A(λ) achieved by a human participant using Cλ, as estimated
using predictions made by human participants using Cλ, against the average counterfactual harm

11For λ = 1, the decision support system Cλ does not cause harm because the prediction sets always contain
all label values and thus human participants always make predictions on their own.
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H(λ) caused by Cλ for α ∈ {0.01, 0.05} on the ImageNet16H-PS dataset. Here, the meaning and
coloring of each point is the same as in Figure 2. The results also support the findings derived from
the experiments with the ImageNet16H dataset—the decision support systems Cλ always cause some
amount of harm, our framework succeeds at identifying harm-controlling sets, and there is a trade-off
between accuracy and counterfactual harm. Further, they also show that, while there is a gap between
the average accuracy estimated using the mixture of MNLs and the average accuracy estimated using
predictions made by human participants using Cλ, they follow the same trend and support the same
qualitative conclusions.

7 Discussion and limitations

In this section, we highlight several limitations of our work, discuss its broader impact, and propose
avenues for future work.

Assumptions. We have assumed that the data samples and the expert predictions are drawn i.i.d.
from a fixed distribution and the calibration set contains samples with noiseless ground truth labels
and expert label predictions. It would be very interesting to extend our framework to allow for
distribution shifts and label noise. Moreover, we have considered prediction sets constructed with
a fixed user-specified threshold value λ. In light of recent work by Gibbs et al. [59], it would be
interesting to extend our framework to allow for threshold values that depend on the data samples.
Furthermore, in our definition of counterfactual harm we have treated all inaccurate predictions
as equally harmful. Expanding our definition of harm to weigh different inaccurate predictions
according to their consequences would be a very interesting avenue for future work. In addition,
under the interventional monotonicity assumption, we have empirically observed that the gap between
our lower- and upper-bounds is often large. Therefore, it would be useful to identify other natural
assumptions under which this gap is smaller.

Methodology. In our framework, the prediction sets are constructed using the softmax output of a pre-
trained classifier. However, we hypothesize that, by accounting for the similarity between the mistakes
made by humans and those made by the pre-trained classifier, we may be able to construct prediction
sets that cause counterfactual harm less frequently. Moreover, we have focused on controlling
the average counterfactual harm. However, whenever the expert’s predictions are consequential to
individuals, this may lead significant disparities across demographic groups. Therefore, it would be
important to extend our framework to account for fairness considerations.

Evaluation. Our experimental evaluation comprises a single benchmark dataset of noisy natural
images and thus one may question the generalizability of the conclusions we draw from our results. To
overcome this limitation, it would be important to further investigate the trade-off between accuracy
and counterfactual harm in decision support systems based on prediction sets in real-world application
domains (e.g., medical diagnosis).

8 Conclusions

In this paper, we have initiated the study of counterfactual harm in decision support systems based
on prediction sets. We have introduced a computational framework that, under natural monotonicity
assumptions on the predictions made by experts using these systems, can control how frequently
these systems cause harm. Moreover, we have validated our framework using data from two different
human subject studies and shown that, in decision support systems based on prediction sets, there is a
trade-off between accuracy and counterfactual harm.
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A Comparison to Pearl’s notation

Using Pearl’s notation [50], our definition of counterfactual harm reads as follows:

hλ(x, y, ŷ) = E[max{0,1{ŷ = y} − 1{Ŷλ = y}}|X = x, Y = y, Ŷ1 = ŷ],

where the subindices in Ŷλ and Ŷ1 denote (hard) interventions on the exogenous variable Λ, the
random variables x, y, ŷ ∼ P (X,Y, Ŷ1), and the expectation is over the prediction Ŷλ made by the
expert using the system Cλ. Using the above notation, the definition does not explicitly specify the
(counterfactual) distribution used in the expectation, in contrast to the definition using the notation by
Peters et al. [51], which explicitly specifies the counterfactual distribution used in the expectation, as
restated below for clarity.

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y(Ŷ )[max{0,1{ŷ = y} − 1{Ŷ = y}}].
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B Proofs

B.1 Proof of Proposition 1

Given an observation (x, y, ŷ) under no intervention, we have

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0,1{ŷ = y} − 1{Ŷ = y}}]
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1{Ŷ = y}}] · 1{ŷ = y}
+ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 0− 1{Ŷ = y}}] · 1{ŷ ̸= y}
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1{Ŷ = y}}] · 1{ŷ = y}+ 0

= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 0}] · 1{ŷ = y} · 1{y /∈ Cλ(x)} (12)
= 0 · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 0}] · 1{ŷ = y} · 1{y /∈ Cλ(x)}
= 1 · 1{ŷ = y} · 1{y /∈ Cλ(x)}
= 1{ŷ = y} · 1{y /∈ Cλ(x)}
= 1{ŷ = y ∧ y /∈ Cλ(x)},

where, in Eq. 12, we used the counterfactual monotonicity property by setting 1{Ŷ = y} = 1 if
y ∈ Cλ(x).

B.2 Proof of Proposition 2

Under interventional monotonicity, by Lemma 1, we have

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [1{Ŷ ̸= y}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ 1{ŷ = y} · 1{y /∈ Cλ(x)}
≤ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [1{Ŷ ̸= y}] · 1{y ∈ Cλ(x)}
+ 1{ŷ = y} · 1{y /∈ Cλ(x)},

where we used that 1{ŷ = y} ≤ 1.

By taking the expectation on both sides over ŷ under no intervention we have

EŶ ′∼PM

[
hλ(x, y, Ŷ

′)
]
≤ EŶ ′∼PM

[
EŶ∼PM;do(Λ=λ) | Ŷ =Ŷ ′,X=x,Y =y

[
1{Ŷ ̸= y}

]
· 1{y ∈ Cλ(x)}

]
(13)

+ EŶ ′∼PM

[
1{Ŷ ′ = y} · 1{y /∈ Cλ(x)}

]
(14)

= EŶ ′∼PM

[
EŶ∼PM;do(Λ=λ) | Ŷ =Ŷ ′,X=x,Y =y

[
1{Ŷ ̸= y}

]]
· 1{y ∈ Cλ(x)}

(15)

+ EŶ ′∼PM

[
1{Ŷ ′ = y} · 1{y /∈ Cλ(x)}

]
, (16)

since 1{y ∈ Cλ(x)} is a constant with respect to the expectation over Ŷ ′ ∼ PM.

By Lemma 2, Eq. 13 becomes

EŶ ′∼PM

[
hλ(x, y, Ŷ

′)
]
≤ EŶ∼PM;do(Λ=λ)

[
1{Ŷ ̸= Y } |X = x, Y = y

]
· 1{y ∈ Cλ(x)}

+ EŶ ′∼PM

[
1{Ŷ ′ = y} · 1{y /∈ Cλ(x)}

]
. (17)

By Assumption 2 for λ′ = 1 and any λ such that y ∈ Cλ(x), we have that

PM;do(Λ=λ)(Ŷ = Y |X = x, Y = y) ≥ PM(Ŷ = Y |X = x, Y = y),

which we can rewrite as

EŶ∼PM;do(Λ=λ) [1{Ŷ = Y } |X = x, Y = y] ≥ EŶ∼PM [1{Ŷ = Y } |X = x, Y = y],
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and is equivalent to

EŶ∼PM;do(Λ=λ) [1{Ŷ ̸= Y } |X = x, Y = y] ≤ EŶ∼PM [1{Ŷ ̸= Y } |X = x, Y = y].

Using the above result, Eq. 17 becomes

EŶ ′∼PM

[
hλ(x, y, Ŷ

′)
]
≤ EŶ∼PM

[
1{Ŷ ̸= Y } |X = x, Y = y

]
· 1{y ∈ Cλ(x)}

+ EŶ ′∼PM

[
1{Ŷ ′ = y} · 1{y /∈ Cλ(x)}

]
.

If we now take the expectation in both sides over X,Y ∼ PM and use that Ŷ ′ is equal in distribution
with Ŷ , we have

EX,Y,Ŷ∼PM

[
hλ(X,Y, Ŷ )

]
≤ EX,Y,Ŷ∼PM

[
1{Ŷ ̸= Y } · 1{Y ∈ Cλ(X)}

]
+ EX,Y,Ŷ∼PM

[
1{Ŷ = Y } · 1{Y /∈ Cλ(X)}

]
,

that is equivalent to

EX,Y,Ŷ∼PM

[
hλ(X,Y, Ŷ )

]
≤ EX,Y,Ŷ∼PM

[
1{Ŷ ̸= Y } · 1{Y ∈ Cλ(X)}+ 1{Ŷ = Y } · 1{Y /∈ Cλ(X)}

]
,

which we can write as

EX,Y,Ŷ∼PM

[
hλ(X,Y, Ŷ )

]
≤ EX,Y,Ŷ∼PM

[
1{Ŷ ̸= Y ∧ Y ∈ Cλ(X)}+ 1{Ŷ = Y ∧ Y /∈ Cλ(X)}

]
.

For the lower-bound, by Lemma 1, we have

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [1{Ŷ ̸= y}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ 1{ŷ = y} · 1{y /∈ Cλ(x)}
≥ 1{ŷ = y} · 1{y /∈ Cλ(x)},

where we used that EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [1{Ŷ ̸= y}] · 1{ŷ = y} · 1{y ∈ Cλ(x)} ≥ 0. By
taking the expectation in both sides over X,Y, Ŷ ∼ PM, we have

EX,Y,Ŷ∼PM

[
1{Ŷ = Y } · 1{Y /∈ Cλ(X)}

]
≤ EX,Y,Ŷ∼PM

[
hλ(X,Y, Ŷ )

]
,

that is equivalent to

EX,Y,Ŷ∼PM

[
1{Ŷ = Y ∧ Y /∈ Cλ(X)}

]
≤ EX,Y,Ŷ∼PM

[
hλ(X,Y, Ŷ )

]
,

thus we conclude the proof.

B.3 Proof of Theorem 1

We will show that 1{Ŷi = Yi∧Yi /∈ Cλ(Xi)} are exchangeable and that they satisfy the requirements
of Theorem 1 in [22] for each Xi, Yi, Ŷi. Since Xi, Yi, Ŷi are i.i.d., 1{Ŷi = Yi ∧ Yi /∈ Cλ(Xi)} are
also i.i.d thus exchangeable. Considering each 1{Ŷi = Yi ∧ Yi /∈ Cλ(Xi)} for each Xi, Yi, Ŷi ∈ D
as a function of λ, it holds by Lemma 3 that for each Xi, Yi, Ŷi, 1{Ŷi = Yi ∧ Yi /∈ Cλ(Xi)} is non-
increasing in λ and right-continuous. In addition, it holds that 1{Ŷi = Yi ∧ Yi /∈ C1(Xi)} = 0 ≤ α

and that supλ 1{Ŷi = Yi ∧ Yi /∈ Cλ(Xi)} ≤ 1 surely by definition.
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B.4 Proof of Theorem 2

For the proof we will follow a similar procedure as in [22]. Since 1{Ŷ ̸= Y ∧ Y ∈ Cλ(X)} ≤ 1,
∀X,Y, Ŷ , λ, it will hold that

Ĝn+1(λ) =
nĜn(λ) + 1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ(Xn+1)}

n+ 1
≤ n

n+ 1
Ĝn(λ) +

1

n+ 1
, (18)

for every λ ∈ L. Now, let

λ̂′ = sup{λ ∈ L : Ĝn+1(λ) ≤ α}. (19)

If such λ̂′ does not exist, by Eq. 19 λ̂ will also not exist. If λ̂′ exists,

we will show that λ̂ ≤ λ̂′. If λ̂ = 0, then it will hold that λ̂′ ≥ λ̂ = 0 = minλ∈L λ. If λ̂ > 0, then by
Eq. 19, λ̂ must satisfy

Ĝn+1(λ̂) ≤
n

n+ 1
Ĝn(λ̂) +

1

n+ 1
≤ α, (20)

which means that λ̂ ≤ λ̂′. Therefore, in any case we have that λ̂ ≤ λ̂′.

From Lemma 4, the random functions 1{Ŷi ̸= Yi ∧ Yi ∈ Cλ(Xi)} are non-decreasing for each
i ∈ [n+ 1]. As a result, since λ̂ ≤ λ̂′, we have that

EXi,Yi,Ŷi∼PM [1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̂(Xn+1)}]

≤ EXi,Yi,Ŷi∼PM [1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̂′(Xn+1)}], (21)

where i = {1, . . . , n + 1}. Given that the data samples (Xi, Yi, Ŷi) for i ∈ [1, n + 1] are ex-
changeable, the values 1{Ŷi ̸= Yi ∧ Yi ∈ Cλ̂′(Xi)} for i ∈ [n + 1] are also exchangeable.
Therefore, due to exchangeability and given that λ̂′ is fixed given (Xi, Yi, Ŷi) for i ∈ [1, n + 1],
1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̂′(Xn+1)} has the same probability of taking any value in
Dλ̂′ = {1{Ŷi ̸= Yi ∧ Yi ∈ Cλ̂′(Xi)}}n+1

i=1 , i.e., the value of 1{Ŷi ̸= Yi ∧ Yi ∈ Cλ̂′(Xi)} for
the n + 1-th sample in {(Xi, Yi, Ŷi)}n+1

i=1 follows a uniform distribution over all the possible val-
ues in Dλ̂′ . As a result, from the law of total expectation it holds for i = {1, . . . , n + 1} that
EXi,Yi,Ŷi∼PM [1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̂′(Xn+1)}] = EDλ̂′ [1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈

Cλ̂′(Xn+1)} |Dλ̂′ ] =
∑n+1

i=1 1{Ŷi ̸=Yi∧Yi∈Cλ̂′ (Xi)}
n+1 = Ĝn+1(λ̂

′). Finally, from Eq. 20 and the above
we have

EXi,Yi,Ŷi∼PM [1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̂(Xn+1)}]

≤ EXi,Yi,Ŷi∼PM [1{Ŷn+1 ̸= Yn+1 ∧ Yn+1 ∈ Cλ̂′(Xn+1)}] = Ĝn+1(λ̂
′) ≤ α, (22)

where i = {1, . . . , n+ 1}.

B.5 Additional Lemmas

Lemma 1 Under the interventional monotonicity assumption, for any x, y, ŷ ∼ PM, the counterfac-
tual harm that a decision support system Cλ would have caused, if deployed, is given by

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [1{Ŷ ̸= y}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ 1{ŷ = y} · 1{y /∈ Cλ(x)}. (23)
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Proof. Given an observation (x, y, ŷ) under no intervention, we have

hλ(x, y, ŷ) = EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0,1{ŷ = y} − 1{Ŷ = y}}]
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1{Ŷ = y}}] · 1{ŷ = y}
+ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 0− 1{Ŷ = y}}] · 1{ŷ ̸= y}
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1{Ŷ = y}}] · 1{ŷ = y}+ 0

= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1{Ŷ = y}}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 1{Ŷ = y}}] · 1{ŷ = y} · 1{y /∈ Cλ(x)}
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0,1{Ŷ ̸= y}}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0, 1− 0}] · 1{ŷ = y} · 1{y /∈ Cλ(x)}
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [max{0,1{Ŷ ̸= y}}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}
+ 1 · 1{ŷ = y} · 1{y /∈ Cλ(x)}
= EŶ∼PM;do(Λ=λ) | Ŷ =ŷ,X=x,Y =y [1{Ŷ ̸= y}] · 1{ŷ = y} · 1{y ∈ Cλ(x)}+ 1{ŷ = y} · 1{y /∈ Cλ(x)}

Lemma 2 Under the structural causal model M satisfying Eq. 3, given an observation (x, y) it
holds

EŶ ′∼PM

[
EŶ∼PM;do(Λ=λ) |X=x,Y =y,Ŷ =Ŷ ′

[
1{Ŷ ̸= Y }

]]
= EŶ∼PM;do(Λ=λ) [1{Ŷ ̸= Y } |X = x, Y = y]. (24)

Proof. Given an observation (x, y, ŷ) under no intervention, for the expectation of the prediction of
the human Ŷ ∼ PM;do(Λ=λ) |X=x,Y=y,Ŷ=ŷ it holds

EŶ∼PM;do(Λ=λ) |X=x,Y =y,Ŷ =ŷ

[
1{Ŷ ̸= Y }

]
=

∑
u,v

P (U = u, V = v |X = x, Y = y, Ŷ = ŷ) · 1{fŶ (u, v, Cλ(x)) ̸= y},

where P (U = u, V = v |X = x, Y = y, Ŷ = ŷ) is the posterior distribution of the exogenous
variables U, V conditional on the observation (x, y, ŷ).

By taking the expectation of the above with respect to the human prediction ŷ under no intervention
we have

EŶ ′∼PM

[
EŶ∼PM;do(Λ=λ) |X=x,Y =y,Ŷ =Ŷ ′

[
1{Ŷ ̸= Y }

]]
=

∑
ŷ

PM(Ŷ ′ = ŷ |X = x, Y = y)

·
∑
u,v

P (U = u, V = v |X = x, Y = y, Ŷ = ŷ) · 1{fŶ (u, v, Cλ(x)) ̸= y}

=
∑
u,v

∑
ŷ

P (U = u, V = v |X = x, Y = y, Ŷ = ŷ) · PM(Ŷ ′ = ŷ |X = x, Y = y)

· 1{fŶ (u, v, Cλ(x)) ̸= y}.

Since Ŷ ′ is equal in distribution to Ŷ we can rewrite the above as

EŶ ′∼PM

[
EŶ∼PM;do(Λ=λ) |X=x,Y =y,Ŷ =Ŷ ′

[
1{Ŷ ̸= Y }

]]
=

∑
u,v

∑
ŷ

P (U = u, V = v |X = x, Y = y, Ŷ = ŷ) · PM(Ŷ = ŷ |X = x, Y = y)

· 1{fŶ (u, v, Cλ(x)) ̸= y}

19



and since P (U = u, V = v |X = x, Y = y) =
∑

ŷ P (U = u, V = v |X = x, Y = y, Ŷ =

ŷ) · PM(Ŷ = ŷ |X = x, Y = y), we have

EŶ ′∼PM

[
EŶ∼PM;do(Λ=λ) |X=x,Y =y,Ŷ =Ŷ ′

[
1{Ŷ ̸= Y }

]]
=

∑
u,v

P (U = u, V = v |X = x, Y = y) · 1{fŶ (u, v, Cλ(x)) ̸= y}

=
∑
u

P (U = u |X = x, Y = y) ·
∑
v

P (V = v |X = x, Y = y) · 1{fŶ (u, v, Cλ(x)) ̸= y}

= EŶ∼PM;do(Λ=λ) [1{Ŷ ̸= Y } |X = x, Y = y],

where we used that the exogenous variables U and V are independent.

Lemma 3 Under counterfactual monotonicity, for a given x, y, ŷ the counterfactual harm hλ(x, y, ŷ)
is non-increasing as a function of λ and right-continuous.

Proof. If y ∈ Cλ(x) ∀λ ∈ L then hλ(x, y, ŷ) = 0,∀λ ∈ Λ given Eq. 8. If ∃λ̃ ∈ Λ such that
λ̃ = inf{λ ∈ Λ : y ∈ Cλ(x)}, then ∀λ ≥ λ̃, it holds that y ∈ Cλ(x), and as a result hλ(x, y, ŷ) = 0.
For ∀λ′ < λ̃, it holds that y /∈ Cλ′(x) and as a result Eq. 8 becomes

hλ′(x, y, ŷ) = 1{ŷ = y} · 1 = 1{ŷ = y} ≥ 0 = hλ(x, y, ŷ), (25)

where 1{ŷ = y} is constant ∀λ′ < λ̃.

Lemma 4 For a given data sample x with label y, let G : L → {0, 1} be the function G(λ) =

1{Ŷ ̸= y ∧ y ∈ Cλ(x)}. Under interventional monotonicity, G is non-decreasing in λ.

Proof.

Let λ, λ′ ∈ L such that λ ≤ λ′. Then it will always hold that Cλ(x) ⊆ Cλ′(x). We distinguish the
following cases for Cλ(x), Cλ′(x):

• y /∈ Cλ′(x). Then G(λ) = G(λ′) = 0.

• y /∈ Cλ(x) and y ∈ Cλ′(x). Then, G(λ) = 0 and G(λ′) = 1{Ŷ ̸= y} ≥ 0 = G(λ)

• y ∈ Cλ(x) ⊆ Cλ′(x). Then, G(λ) = G(λ′) = 1{Ŷ ̸= y}.
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C Additional experimental details

In this section, we describe the experimental details that are omitted from the main paper due to space
constraints.

Mixture of multinomial logit models. Multinomial logit models (MNLs) [60] are among the most
popular discrete choice models used to predict the probability that a human chooses an alternative,
given a set of alternatives within a particular context [61]. Straitouri et al. [17] used MNLs to predict
the probability that a human expert predicts a label (e.g., the ground truth label), given a prediction
set, while considering as context the ground truth label and the level of difficulty of the image. To
this end, for images with the same level of difficulty, they estimate the confusion matrix of the expert
predictions on their own and use it to parameterize an MNL model. Therefore, their mixture of MNLs
comprises of a different MNL model for each level of difficulty. To distinguish images based on
their level of difficulty, they consider different quantiles of the experts’ average accuracy values of all
images. In our experiments, we consider two levels of difficulty, where in the first level we consider
images for which the average accuracy of experts is smaller than the 0.5 quantile, and consider the
rest of the images in the second level.

Labels of the ImageNet16H dataset. The ImageNet16H [52] was created using 1,200 unique images
labeled into 207 different fine-grained categories from the ILSRVR 2012 dataset [53]. Steyvers et
al. [52] mapped each of these fine-grained categories into one out of 16 coarse-grained categories—
namely airplane, bear, bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard, knife,
oven, and truck—that serve as the ground truth labels. This mapping essentially eliminated any label
disagreement that could potentially occur between annotators in the ILSRVR 2012 dataset.

Implementation details and licenses. We implement our methods and execute our experiments using
Python 3.10.9, along with the open-source libraries NumPy 1.26.4 (BSD License), and Pandas
2.2.1 (BSD 3-Clause License). For reproducibility, we used a different fixed random seed for each
random sampling of the test and calibration sets. Both datasets used in our experiments are distributed
under the Creative Commons Attribution License 4.0 (CC BY 4.0).
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D Additional experimental results on counterfactual monotonicity

In this section, we evaluate our methodology on additional strata of images and on larger calibration
sets, and study the relationship between average counterfactual harm, average prediction set size and
empirical coverage.

Other strata of images. Figures 4 and 5 show the average accuracy A(λ) achieved by a human
expert using Cλ, as predicted by the mixture of MNLs, against the average counterfactual harm H(λ)
caused by Cλ for α ∈ {0.01, 0.05} on the strata of images with ω = 80 and ω = 95, respectively.
The meaning and coloring of each point are the same as in Figure 2. The results on both strata of
images are consistent with the results on the stratum of images with ω = 110—the decision support
systems Cλ always cause some amount of counterfactual harm, our framework successfully identifies
harm-controlling sets and there is a trade-off between accuracy and counterfactual harm. However,
for the strata with ω ∈ {80, 95}, where the classification task has lower difficulty compared to the
stratum with ω = 110, we observe that the trade-off between accuracy and counterfactual is minimal.
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Figure 4: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 80. Each point corresponds to a λ value from 0 to 1 with step 0.001 and the
coloring indicates the relative frequency with which each λ value is in Λ(α) across random samplings
of the calibration set. Each row corresponds to decision support systems Cλ with a different pre-
trained classifier with average accuracies 0.891 (VGG19), 0.892 (DenseNet161), 0.802 (GoogleNet),
0.804 (ResNet152), and 0.784 (AlexNet). The average accuracy achieved by human experts on their
own is 0.9. The results are averaged across 50 random samplings of the test and calibration set.
In both panels, 95% confidence intervals have width always below 0.02 and are represented using
shaded areas.
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Figure 5: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 95. Each point corresponds to a λ value from 0 to 1 with step 0.001 and the
coloring indicates the relative frequency with which each λ value is in Λ(α) across random samplings
of the calibration set. Each row corresponds to decision support systems Cλ with a different pre-
trained classifier with average accuracies 0.88 (VGG19), 0.868 (DenseNet161), 0.775 (GoogleNet),
0.773 (ResNet152), and 0.745 (AlexNet). The average accuracy achieved by human experts on their
own is 0.86. The results are averaged across 50 random samplings of the test and calibration set.
In both panels, 95% confidence intervals have width always below 0.02 and are represented using
shaded areas.

Larger calibration sets. Figure 6 shows the average accuracy A(λ) achieved by a human expert
using Cλ, as predicted by the mixture of MNLs, against the average counterfactual harm H(λ) caused
by Cλ for α = 0.01 on the stratum of images with ω = 110. The results show that the larger
the calibration set, the more often λ values with average counterfactual harm H(λ) close to α12

are included in the harm-controlling set Λ(α). This is because, the larger the number of samples
in the calibration set (n), the lower the estimation error in the empirical estimate of the average
counterfactual harm Ĥn. We find qualitatively similar results for the other strata of images.

Average prediction set-size and empirical coverage. Figure 7(a) shows the average prediction
set-size of each decision support system Cλ against the average counterfactual harm H(λ) caused
by Cλ on the stratum of images with ω = 110. Figure 7(b) shows the empirical coverage, i.e., the
fraction of samples x in the test set, for which ground truth label y ∈ Cλ(x), for each decision support
system Cλ against the average counterfactual harm H(λ) caused by Cλ on the same stratum of images.
The results show that systems with higher coverage construct larger prediction sets in average and
cause less counterfactual harm. We find similar results for the other strata of images.

12Here, note that for α = 0.01, these λ values happen to achieve the highest average accuracy A(λ).
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(a) Calibration samples n = 360 (30%)
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(b) Calibration samples n = 600 (50%)
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Figure 6: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 110 and different sizes of the calibration set. Each point corresponds to a
λ value from 0 to 1 with step 0.001 and the coloring indicates the relative frequency with which each
λ value is in Λ(α) across random samplings of the calibration set. Each row corresponds to decision
support systems Cλ with a different pre-trained classifier with average accuracies 0.846 (VGG19),
0.830 (DenseNet), 0.722 (GoogleNet), 0.727 (ResNet152), and 0.691 (AlexNet). The average
accuracy achieved by the simulated human experts on their own is 0.771. The results are averaged
across 50 random samplings of the test and calibration set. In both panels, 95% confidence intervals
are represented using shaded areas and always have width below 0.02.
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(a) Average Set-Size
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(b) Empirical Coverage

Figure 7: Average set size and empirical coverage against the average counterfactual harm for images
with ω = 110. Each point corresponds to a λ value from 0 to 1 with step 0.001. Each row corresponds
to decision support systems Cλ with a different pre-trained classifier with average accuracies as in
Figure 6 above. The average accuracy achieved by the simulated human experts on their own is 0.771.
The results are averaged across 50 random samplings of the test and calibration set. In both panels,
95% confidence intervals are represented using shaded areas and always have width below 0.025.
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E Experimental results on counterfactual monotonicity with a more complex
set-valued predictor

In this section, we experiment with a system that constructs the prediction set C(x) using a more com-
plex set-valued predictor [49]. This set-valued predictor first computes the following nonconformity
score for each label value y ∈ Y using the softmax output of a pre-trained classifier my(x) ∈ [0, 1]:

s(y, x, u;w) =

{
u ·my(1)

(x), if y = y(1)
my(1)

+ (i− 2 + u) · w, if y = y(i)
, (26)

where y(i) denotes the label value with the i-th largest classifier output, u ∼ U(0, 1) is a uniform
random variable and w is a hyperparameter representing the weight of the ranking of the label value.
Then, given a user-specified threshold λ ∈ R, it constructs the prediction sets C(x) = Cλ(x) as
follows:

Cλ(x) = {y(L−i)}k−1
i=0 , with k = 1 +

L−1∑
j=1

1{s(y(j), x, u;w) ≤ λ}, (27)

where, with a slight abuse of notation, y(i) is the label value with the i-th largest s(y, x, u;w) value.
Here, we should note that may exist data samples with s(y, x, u;w) > 1. Therefore, considering
λ ∈ [0, 1] may not include every set-valued predictor given by Eq. 27. For this reason, in what
follows, we consider λ ∈ [0,max s(y, x, u, w)], where the maximum is essentially over the classifier
output my(x), the uniform random variable u and the hyperparameter w.

Experimental setup. We use the ImageNet16H dataset and follow the same setup as described in
Section 6, with only difference that we split the images into a calibration set (10%), which we use to
find Λ(α), a validation set (10%), which we use to select the value of the hyperparameter w following
a similar procedure as in Huang et al. [49], and a test set (80%). In each iteration of the experiment,
given a λ value, we select the value of w ∈ {0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35} for which the
set-valued predictor achieves the smallest average prediction set-size over the data samples in the
validation set.

Results. The meaning and coloring of each point are the same as in Figure 2. The results on all strata
of images are consistent with the results using the set-valued predictor given by Eq. 1—the decision
support systems Cλ always cause some amount of counterfactual harm, our framework successfully
identifies harm-controlling sets and there is a trade-off between accuracy and counterfactual harm.

Figure 11(a) shows the average prediction set-size of each decision support system Cλ against the
average counterfactual harm H(λ) caused by Cλ on the stratum of images with ω = 110. Figure 11(b)
shows the empirical coverage for each decision support system Cλ against the average counterfactual
harm H(λ) caused by Cλ on the stratum of images with ω = 110. Our results are consistent with
the results for the set-valued predictor given by Eq. 1 in Figure 7—systems Cλ that achieve higher
coverage, construct larger prediction sets on average and cause less harm.
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Figure 8: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 80. Each point corresponds to a λ value from 0 to 6.25 with step
0.00625 and the coloring indicates the relative frequency with which each λ value is in Λ(α) across
random samplings of the calibration set. Each row corresponds to decision support systems Cλ
with a different pre-trained classifier with average accuracies 0.891 (VGG19), 0.892 (DenseNet161),
0.802 (GoogleNet), 0.804 (ResNet152), and 0.784 (AlexNet). The average accuracy of human
experts on their own is 0.9. The results are averaged across 50 random samplings of the test and
calibration set. In both panels, 95% confidence intervals have width always below 0.02 and are
represented using shaded areas.
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Figure 9: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 95. Each point corresponds to a λ value from 0 to 6.25 with step
0.00625 and the coloring indicates the relative frequency with which each λ value is in Λ(α) across
random samplings of the calibration set. Each row corresponds to decision support systems Cλ
with a different pre-trained classifier with average accuracies 0.88 (VGG19), 0.868 (DenseNet161),
0.775 (GoogleNet), 0.773 (ResNet152), and 0.745 (AlexNet). The average accuracy of human
experts on their own is 0.86. The results are averaged across 50 random samplings of the test and
calibration set. In both panels, 95% confidence intervals have width always below 0.02 and are
represented using shaded areas.
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Figure 10: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm for images with ω = 110. Each point corresponds to a λ value from 0 to 6.25 with step 0.00625
and the coloring indicates the relative frequency with which each λ value is in Λ(α) across random
samplings of the calibration set. Each row corresponds to decision support systems Cλ with a different
pre-trained classifier with average accuracies 0.846 (VGG19), 0.830 (DenseNet), 0.722 (GoogleNet),
0.727 (ResNet152), and 0.691 (AlexNet). The average accuracy achieved by the simulated human
experts on their own is 0.771. The results are averaged across 50 random samplings of the test and
calibration set. In both panels, 95% confidence intervals are represented using shaded areas and
always have width below 0.02.
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(b) Empirical Coverage

Figure 11: Average set size and empirical coverage against the average counterfactual harm for
images with ω = 110. Each point corresponds to a λ value from 0 to 6.25 with step 0.00625. Each
row corresponds to decision support systems Cλ with a different pre-trained classifier with average
accuracies as in Figure 10 above. The average accuracy achieved by the simulated human experts on
their own is 0.771. The results are averaged across 50 random samplings of the test and calibration
set. In both panels, 95% confidence intervals are represented using shaded areas and always have
width below 0.025.
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F Average accuracy vs. prediction set size

In this section, we use the ImageNet16H-PS [18] dataset to verify the interventional monotonicity
assumption, i.e., whether human experts achieve higher average accuracy when predicting from
smaller prediction sets that include the ground truth label. To this end, we follow a procedure,
similar to the one used by Straitouri et al. [18] to verify the interventional monotonicity assumption
unconditionally of the value of the ground truth label.

Straitouri et al. estimate the average accuracy per prediction set size on images with similar difficulty,
averaged across all experts and across experts with the same level of competence. They consider
images with similar difficulty instead of single images, as the dataset ImageNet16H-PS does not
include enough human predictions per image to faithfully estimate the average accuracy per image.
They stratify the images into groups of similar difficulty, following the same procedure used in
Straitouri et al. [17] based on different quantiles of the average accuracy values of all images. In our
work, we stratify images with the same ground truth label into the following four groups:

— High difficulty: images with average accuracy within the 0.25 quantile of the average
accuracy values of all images with the same ground truth label.

— Medium to high difficulty: images with average accuracy within the 0.5 quantile and outside
the 0.25 quantile of the average accuracy values of all images with the same ground truth
label.

— Medium to low difficulty: images with average accuracy within the 0.75 quantile and outside
the 0.5 quantile the of the average accuracy values of all images with the same ground truth
label.

— Low difficulty: images with average accuracy outside the 0.75 quantile of the average
accuracy values of all images with the same ground truth label.

We follow a similar method to stratify experts based on their level of competence into two groups for
each ground truth label. To measure the level of competence of an expert for a ground truth label,
we use the average accuracy across all the predictions that she made on images with this ground
truth label. For each ground truth label, we consider the 50% of experts with the highest average
accuracy as the experts with high level of competence and the rest 50% as experts with low level of
competence.

Figure 12 shows the average accuracy per prediction set size—for prediction sets that include the
ground truth label—across images of various levels of difficulty and experts with different levels of
competence for some of the ground truth labels. We find qualitatively similar results for the rest of
the ground truth labels. The results are consistent with the results on the unconditional interventional
monotonicity by Straitouri et al. [18], showing that as long as the classification task is not too easy,
the experts achieve higher average accuracy when predicting from smaller prediction sets, i.e., the
interventional monotonicity holds.
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(c) Experts with low level of competence, ground truth label bottle
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(d) Experts with high level of competence, ground truth label bottle

Figure 12: Empirical success probability per prediction set size averaged across (a) all experts for
images with ground truth label bottle, (b) all experts for images with ground truth label oven, (c)
experts with low level of competence for images with ground truth label bottle, and (d) experts
with high level of competence for images with ground truth label bottle with high, medium to high
and medium to low difficulty. In all panels, we have only considered prediction sets that included the
ground truth label and thus have omitted showing the empirical success probability for singletons, as
it is always 1. Error bars denote standard error.
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G Experiments under the interventional monotonicity assumption

In this section, we show the average accuracy A(λ) achieved by a human expert using Cλ, as predicted
by the mixture of MNLs, against the average counterfactual harm upper-bound caused by Cλ for
several α values on the strata of images with ω = 80 in Figure 13, with ω = 95 in Figure 14 and with
ω = 110 in Figure 15. Here, each point corresponds to a different λ value and its coloring indicates
the empirical probability that λ is included in the harm-controlling set Λ′(α) given by Corollary 2, for
a fixed α′ value across the random samplings of the test and calibration sets. For each classifier and
stratum of images, we select the α′ value maximizing the expected size of the harm-controlling set
Λ′(α). The results on all strata of images support the findings derived from the experiments assuming
that the counterfactual monotonicity assumption holds. In addition, we observe that the gap between
the lower-bound of the average counterfactual harm (that is equal to the average counterfactual harm
under the counterfactual monotonicity assumption) and the upper-bound is often large.
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Figure 13: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm upper bound for images with ω = 80. Each point corresponds to a λ value from 0 to 1 with step
0.001 and the coloring indicates the relative frequency with which each λ value is in Λ′(α) across
random samplings of the calibration set for a fixed α′. Each row corresponds to decision support
systems with a different pre-trained classifiers as in Figure 4. The results are averaged across 50
random samplings of the test and calibration set. In both panels, 95% confidence intervals have width
always below 0.02 and are represented using shaded areas.
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Figure 14: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm upper bound for images with ω = 95. Each point corresponds to a λ value from 0 to 1 with step
0.001 and the coloring indicates the relative frequency with which each λ value is in Λ′(α) across
random samplings of the calibration set for a fixed α′. Each row corresponds to decision support
systems with a different pre-trained classifiers as in Figure 5. The results are averaged across 50
random samplings of the test and calibration set. In both panels, 95% confidence intervals have width
always below 0.02 and are represented using shaded areas.
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Figure 15: Average accuracy estimated by the mixture of MNLs against the average counterfactual
harm upper bound for images with ω = 110. Each point corresponds to a λ value from 0 to 1 with
step 0.001 and the coloring indicates the relative frequency with which each λ value is in Λ′(α)
across random samplings of the calibration set for a fixed α′. Each row corresponds to decision
support systems with a different pre-trained classifiers as in Figure 2. For the classifier VGG19, the
average counterfactual harm bound is ∼ 0.23 for each λ value. The results are averaged across 50
random samplings of the test and calibration set. In both panels, 95% confidence intervals have width
always below 0.02 and are represented using shaded areas.

31



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The proofs of all the theoretical results are provided in Appendix B.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information to reproduce the experimental results is provided in Section 6
and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets as well as the source code we use are publicly available (see
Footnotes 7, 8, and 10).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the details in Section 6 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 6, and Appendix D, Appendix E and Appendix G we report 95%
confidence intervals, and in Appendix F we report standard errors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report computer resources in Footnote 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive and negative societal impacts of
the work in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not introduce any data nor models with high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the datasets we use are credited in Section 6 and Appendix C,
the URLs of the datasets are provided in Footnotes 8 and 10 and the licenses of the datasets
and of the libraries used in the code are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The open-source implementation of our methodology that we publicly release
contains documentation.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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