
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLOITING CLIENT HETEROGENEITY FOR FORGETTING
MITIGATION IN FEDERATED CONTINUAL LEARNING:

A SPATIO-TEMPORAL GRADIENT ALIGNMENT APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Continual Learning (FCL) has recently emerged as a crucial research
area, as data from distributed clients typically arrives as a stream, requiring se-
quential learning. This paper explores a more practical and challenging FCL
setting, where clients may have unrelated or even heterogeneous tasks, leading
to gradient conflicts where local updates point in divergent directions. In such a
scenario, statistical heterogeneity and data noise can create spurious correlations,
leading to biased feature learning and severe catastrophic forgetting. Existing
FCL approaches often use generative replay to create pseudo-datasets of previous
tasks. However, generative replay itself suffers from catastrophic forgetting and
task divergence among clients, leading to overfitting phenomenon. To address
these challenges, we propose a novel approach called Spatio-Temporal grAdient
alignMent with Prototypical Coreset (STAMP). Our contributions are threefold: 1)
We develop a model-agnostic method to determine subset of samples that effec-
tively form prototypes when using a prototypical network, making it resilient to
continual learning challenges; 2) We introduce a spatio-temporal gradient align-
ment approach, applied at both the client-side (temporal) and server-side (spatio),
to mitigate catastrophic forgetting and data heterogeneity; 3) We leverage proto-
types to approximate task-wise gradients, improving gradient alignment on the
client-side. Extensive experiments demonstrate the superiority of our method over
existing baselines, particularly in scenarios with a large number of sequential tasks,
highlighting its effectiveness in addressing the complexities of real-world FCL.

1 INTRODUCTION

In Federated Continual Learning (FCL), clients collaboratively learn models for their private, se-
quential tasks while preserving data privacy. However, due to the sequential nature of these tasks,
each client only has access to a limited amount of data from the current task (Li et al., 2025b). This
constraint often leads to the loss of previously acquired knowledge, resulting in catastrophic forgetting.
The challenge becomes even more pronounced in heterogeneous FCL (Wuerkaixi et al., 2024), where
the clients are engaged in non-identical tasks at any given time, resulting in a non-uniform learning
environment. Specifically, the model suffers from both catastrophic forgetting and client drift, which
causes negative transfer from the client’s current tasks to the previous tasks and other clients’ tasks,
respectively. Our empirical analysis reveals that existing FCL methods fail to adequately address
these issues. Most approaches focus solely on mitigating catastrophic forgetting at the client level,
while overlooking the generalization of the global model (see Figure 1). Other methods (Zhang et al.,
2023b; Tran et al., 2024) attempt to share knowledge among clients by training a generative model
at the server to produce synthetic data for clients. However, broadcasting such synthetic data to all
clients introduces significant communication overhead, which can severely limit the scalability and
efficiency of the federated system. Acknowledging these challenges, we take a different perspective:

Rather than viewing task heterogeneity as a limitation, can we leverage the diverse tasks across
clients to improve generalization in FCL, while maintaining communication efficiency?

Our intuition is straightforward. Temporal tasks (arising from different time steps within a client) and
spatio tasks (arising from heterogeneous clients) can both be viewed as distinct tasks. If an invariant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

gradient trajectory can be identified across these tasks, it may guide the model toward improved
generalization. Such generalization across heterogeneous tasks can, in turn, promote both stability
(by maintaining performance on past tasks) and plasticity (by leveraging diverse spatio tasks), thereby
achieving a more balanced and effective FCL system.

0 25 50 75 100 125 150 175 200
Task Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.431

0.552
0.280

0.433

CIFAR100 - 2 classes/task
FedAvg Global
FedAvg Local
AF-FCL Global
AF-FCL Local
FedSSI Global
FedSSI Local
STAMP Global
STAMP Local

0 25 50 75 100 125 150 175 200
Task Index

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

0.560

0.683

0.373
0.521

ImageNet1K - 2 classes/task
FedAvg Global
FedAvg Local
AF-FCL Global
AF-FCL Local
FedSSI Global
FedSSI Local
STAMP Global
STAMP Local

Figure 1: We evaluate leading FCL methods (e.g.,
AF-FCL (Wuerkaixi et al., 2024), FedSSI (Li et al.,
2025c)) under heterogeneous settings and observe
a notable gap between local and global test accu-
racy. These methods exhibit strong personalized
performance, as reflected in their high accuracy
on local test data. However, their low accuracy
on global test data demonstrates limited general-
ization capability in heterogeneous FCL environ-
ments. This limited generalization further indicates
insufficient model plasticity when adapting to both
previously and new unseen tasks. Our proposed
method STAMP shows state-of-art robustness by
mitigating inter-client divergence throughout the
learning process, leading to a reduced local-global
generalization gap.

From these intuitions, we propose a novel
method, dubbed Federated Continual Learning
via Spatio-Temporal grAdient alignMent with
Prototypical Coreset (STAMP). In our design,
we apply gradient alignment across both spatio
and temporal dimensions of the FCL system. By
aligning gradients along these two dimensions,
STAMP identifies aggregated gradients that min-
imize negative transfer both across sequential
tasks and between clients, thereby improving
the generalization ability of the global model.
In STAMP, the utilization of temporal gradient
alignment requires access to gradients from both
current and previous tasks on the current model.
However, straightforward approach of storing
raw gradients in memory (Luo et al., 2023; Saha
et al., 2021; Deng et al., 2021) is insufficient for
gradient alignment, as it only preserves past gra-
dients tied to specific tasks and lacks robustness
for FCL.

To overcome this limitation, we propose a pro-
totypical coreset selection strategy, in which
a compact set of representative data points is
stored and subsequently used to construct pro-
totypes. Prototypes provide stable and invariant
representations of task-wise gradients (Lv et al.,
2022), thereby enabling more reliable gradient
alignment. To further enhance the representa-
tional power of the prototypes, we employ a
prototypical network that ensures accurate proto-
types for the prototypical coreset selection even
under data perturbations. This approach offers
two key advantages. (1) By carefully selecting a
compact set of representative samples (coresets),
our method maintains prototype quality and di-
versity over time with significantly reduced de-
pendence on the prototypical networks or gen-
erative replay mechanisms used in prior work
(Wei et al., 2023; Li et al., 2024a; Chen et al.,
2023; Goswami et al., 2023; Qi et al., 2023;
Zhen et al., 2020), both of which are vulnerable
to catastrophic forgetting. (2) Unlike traditional
coreset selection methods that aim to capture the
most representative data, our approach focuses
on selecting just enough information to ensure
stable prototype estimation. This enables our system to store significantly fewer samples per class
compared to prior methods, while still maintaining sufficient information to approximate gradient
trajectories for reliable gradient alignment.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUNDS & PRELIMINARIES

2.1 FEDERATED CONTINUAL LEARNING

FCL refers to a practical learning scenario that melds the principles of FL and CL. Suppose that
there are U clients. On each client u, the model is trained on a sequence of T tasks. At a given step
t× R + r, where R represents the number of communication rounds per task and r is the current
round of task t, client u holds model parameters θt,ru and only has access to the data from task t. On
client u, data Dt

u of task t consists of N t
u pairs of samples and their labels, i.e., Dt

u = {(xt
i, y

t
i)

Nt
u

i=1}.
In existing literature, the primary focus is on a specific task reshuffling setting, wherein the task set
is identical for all clients, yet the arrival sequence of tasks differs (Yoon et al., 2021). In practical
scenarios, it may be observed that the task set of clients is not necessarily correlated. There is no
guaranteed relation among the tasks {D1

u,D2
u, . . . ,DT

u } of client u at different steps. Similarly,
there is no guaranteed relation among the tasks {Dt

1,Dt
2, . . . ,Dt

U} across different clients. Thus, we
consider a more practical setting, the Limitless Task Pool (LTP).

Limitless Task Pool. In the setting of LTP, tasks are selected randomly from a substantial repository
of tasks, creating a situation where two clients may not share any common tasks (i.e., {Di

u}
tu
i=1 ∩

Di
v}

tv
i=1 = ∅, ∀u, v ∈ {1, 2, . . . , U}). More importantly, clients possess diverse joint distributions

of data and labels p(x, y) due to statistical heterogeneity. Therefore, features learned from other
clients could invariably introduce bias when applied to the current task of a client.

At every task t, our goal is to facilitate the collaborative construction of the global model with
parameter θt. Under the privacy constraint inherent in FL and CL, we aim to harmoniously learn
current tasks while preserving performance on previous tasks for all clients, thereby seeking to
optimize performance across all tasks seen so far by all clients as follows:

min
θt

[St1,St2, . . . ,StU], where St
u = [L(θt;D1

u),L(θt;D2
u), . . . ,L(θt;Dt

u)]. (1)

However, due to the resource limitation of distributed devices, the replay memory on clients are
limited. Each client u, while performing the task t, does not have access to the samples of the
previously learned task D[1:t−1]

u . Thus, the client model θtu cannot be directly optimized to minimize
the corresponding empirical risk

∑t
i=1 L(θtu;Di

u). Moreover, data heterogeneity on each client at
specific task t introduces domain or label shifts, leading to discrepancies in data distributions across
tasks and clients. This heterogeneity causes gradient conflict during training (Nguyen et al., 2025).

2.2 GRADIENT ALIGNMENT

When learning with various non-identical tasks, gradient conflict is one of the most critical issues.

Definition 1 (Gradient conflict) The gradient gi and gj (i ̸= j) between two tasks i, j are consid-
ered to be in conflict if their cosine similarity is negative, i.e., cos(gi, gj) =

gi·gj
|gi|·|gj | < 0. In this

scenario, progress along the gradient gi results in negative transfer with respect to gj , and vice versa.

To mitigate the gradient conflict among tasks as in Definition 1, we leverage the Gradient Alignment
(GA) approach proposed in (Nguyen et al., 2025) to achieve this objective

GA(g(r)) = ḡ(r) +
κ∥ḡ(r)∥
∥Γ∗g(r)∥

Γ∗g(r), s.t. Γ∗ = argmin
Γ

Γg(r) · ḡ(r) + κ∥ḡ(r)∥∥g(r)Γ ∥, (2)

where g(r) = [g
(r)
t | t ∈ T] are the set of task-wise gradients, ḡ(r) =

∑
t∈T

g
(r)
t

|T | is the averaged

gradient over set of tasks T . The learned gradient gG = GA(g(r)) utilizes the gradients of multiple
tasks g(r) = [g

(r)
t | t ∈ T] to preserve the invariant properties of individual task-specific gradients.

Specifically, since gG satisfies the condition gG · gi ≥ 0, ∀i ∈ T , it ensures that the resulting gradient
does not induce negative transfer across tasks. Consequently, the aggregated gradient facilitates
generalization across all tasks within the CL framework. The formal proof of the gradient alignment
update rule is provided in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PROPOSED METHOD

We propose a novel framework, STAMP, for heterogeneous FCL. At its core, STAMP involves a
gradient alignment on both temporal and spatio tasks to both improving the plasticity while guarantee
the stability. Additionally, replay memory with prototypical exemplars is introduced to reduce the
memory cost while improving the stability of task-wise gradient approximation.

3.1 SPATIO-TEMPORAL GRADIENT ALIGNMENT

Motivation. In FCL under heterogeneous settings (Wuerkaixi et al., 2024), the challenges become
particularly severe due to the diversity of tasks and data distributions across clients. A major difficulty
arises from the inherent communication constraints, which make direct sharing of data or model
parameters between clients impractical. Consequently, handling heterogeneous tasks in FCL has
remained a largely intractable problem. In this work, we are motivated by drawing an analogy
between spatio and temporal tasks in FCL. Specifically, we conceptualize the heterogeneous tasks
across clients as a joint composition of spatio and temporal tasks. More importantly, rather than
focusing solely on mitigating catastrophic forgetting and client heterogeneity, we investigate the
generalization capability of heterogeneous FCL systems through the lens of the generalization gap.

Theorem 1 Let H be a hypothesis space of VC-dimension M , dH△H(Di
u,Di

v) is the spatio di-
vergence between clients u, v at task i, dH△H(Di

u,Dj
u) is the temporal divergence of client u

at two different tasks i, j. Let DP = {Di
u,∀i ∈ [1 : t], u ∈ U} as the dataset of seen

tasks, and DQ = D\DP as the dataset of unseen task. For any δ ∈ (0, 1), the general-
ization gap on an unseen task DQ is bounded by the following with a probability of at least

1−δ: E(θ;DQ) ≤
∑

i∈T
∑

u∈U γu

[
E(θ;Di

u)+
∑

j∈T dH△H(Di
u,Dj

u)+
∑

v∈U dH△H(Di
u,Di

v)+√
logM+log 1

δ

2Nu

]
+ ζ∗, where ζ∗ is the optimal combined risk on DP ,DQ, respectively.

From the Theorem 1, we can see that, to improve the generalization of the FCL system on the
unseen task, it is crucial to minimize the temporal divergence dH△H(Di

u,Dj
u) and spatio divergence

dH△H(Di
u,Di

v). Current works focus on minimizing the dH△H(Di
u,Dj

u) among the seen classes
[1 : t], t ∈ T and not efficiently minimize the gap among the clients dH△H(Di

u,Di
v). This is because

the minimization of dH△H(Di
u,Di

v),∀u, v ∈ U requiring the knowledge transfer among clients.
Recent works (Zhang et al., 2023b; Tran et al., 2024) attempt to solve this challenge by generating
synthetic data on the server at each communication round and broadcasting it back to the clients.
While this approach enables partial alignment across clients, it incurs substantial communication
overhead, which significantly limits the scalability of FCL in large-scale deployments.

Spatio Gradient
Matching

Models Parameters

Models Gradients

CLIENT

...
...

...

Image
Stream

...

Learnable
Matrix

...

Prototypical
Network

Coreset
Selection

Mix
Style

Prototypes

G
radient M

atching

Prototypical Network Prototypes Classifiers

Selected
Images

CLIENT

...
...

...

Image
Stream

...

Learnable
Matrix

...

Prototypical
Network

Coreset
Selection

Mix
Style

Prototypes

G
radient M

atching

Prototypical Network Prototypes Classifiers

Selected
Images

CLIENT

...
...

...

Image
Stream

...

Learnable
Matrix

...

Prototypical
Network

Coreset
Selection

Mix
Style

Prototypes

Tem
poral G

radient
M

atching

Prototypical Network Prototypes Classifiers

Selected
Images

Replay MemoryLoad previous task

Figure 2: Illustration of STAMP architecture.

To jointly minimize both
temporal and spatio di-
vergences, we focus on
leveraging gradients across
temporal and spatio tasks.
This strategy eliminates the
need for explicit knowledge
transfer between clients
and the server, making
it highly communication-
efficient. Our primary ob-
jective is to identify an in-
variant gradient trajectory
that remains stable across
both temporal and spatio
tasks. By aligning gradients
in this manner, the learned model can generalize effectively to previously unseen tasks (Shi et al.,
2022). From a generalization perspective, improving the model’s ability to generalize to unseen

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tasks enhances its plasticity, enabling it to more effectively adapt to new tasks without significant
performance degradation. Moreover, such generalization inherently mitigates catastrophic forgetting,
as the model becomes less prone to overfitting to newly encountered tasks while retaining knowledge
from previously learned ones.

Temporal Gradient Alignment. The temporal gradient alignment technique is implemented on
the client side in the local training. In particular, we take the gradients of previous tasks as input
data for the gradient alignment optimization problem as follows: θt,r+1

u = θt,ru − GA(g
[0:t]
u), where

g
[0:t]
u = [giu| i = {1, 2, . . . , t}] denotes the set of task-specific gradients, including the gradients

of previous tasks g[0:t−1]
u and current task gtu. Traditionally, the gradients from previous tasks are

computed using stored data samples from past tasks to approximate the true gradients (Lopez-Paz
& Ranzato, 2017; Luo et al., 2023; Wu et al., 2024). However, this approach requires a substantial
memory buffer to store a sufficient amount of data for accurate gradient estimation. In scenarios
where storage capacity is limited, the precision of the gradient approximation may be significantly
compromised. An alternative solution to compute gradients is via prototype as follows:

g(t)u =
1

C

C∑
c=1

∇θt,r,E
u
L
(
f(ptu,c; θ

t,r,E
u); c

)
. (3)

To efficiently compute the prototypes for the gradient estimation, we employ the prototypical network
(Snell et al., 2017). However, the prototypical network and its continual counterpart (Wei et al.,
2023) may still suffer from catastrophic forgetting when deployed in the CL system. To mitigate
this challenge, our intuition is to design prototypes that are learned without relying on prototype
networks. To do so, we leverage a prototypical coreset which stores meaningful features for the
prototype measurements in CL. The details of the prototypical coreset and its selection method are
demonstrated in Section 3.2.

Spatio Gradient Alignment. Building upon the work of (Nguyen et al., 2025), the spatial gradient
is computed on the server to identify a consistent gradient direction that remains invariant across
heterogeneous tasks in FCL. This facilitates the global model in establishing a stable gradient
direction, thereby mitigating the negative transfer that can occur due to task diversity. The update is
given as follows:

θt,r+1 = θt,r − GA(gt), gt = [gtu| u = {1, 2, . . . , U}], (4)

where gt represents the collection of local gradients obtained from the participating clients. Each local
gradient is computed as gtu = θt,r+1

u − θt,ru , using the model updates, and thus incurs no additional
communication overhead. By aligning the gradient directions across clients, this method effectively
addresses task heterogeneity, reducing the detrimental impact of client drift in heterogeneous FCL.

3.2 PROTOTYPICAL CORESET ASSISTED REPLAY MEMORY

Prototypical Coreset Selection. For each class l, our objective is to identify salient set of samples
such that their combined representations, as processed by the encoder ϕ form a prototype on class l.
At each task t, when we observe data N t

l of label l, we select a subset X̃ l as follows:

X̃ l = argmin
A

∥∥∥[1

|Ml|
∑
i∈Ml

g(xi;ϕ) +
1

|N t
l |

∑
i∈N t

l

ai · g(xi;ϕ)
]
− pl

∥∥∥2, (5)

s.t. pl =
1∑T

t=1 |N t
l |

[
g(x̃l;ϕ) ·

t−1∑
j=1

|N j
l |+

∑
i∈N t

l

g(xi;ϕ)
]
· 1{yj = l},

X l = {xi | ai ∈ A}, |X l| = |Ml|.

Here,Ml is the replay memory for class l, with pre-defined memory budget |Ml|. If the number of
selected samples exceeds |Ml|, we apply MixStyle to blend the style of the newly selected data with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that of the previously identified samples, as formulated below:

MixStyle(x̃l;x) = γmix
x̃l − µ(x̃l)

σ(x̃l)
+ βmix, (6)

s.t. γmix = λσ(x̃l) + (1− λ)σ(x), βmix = λµ(x̃l) + (1− λ)µ(x),

where x are the newly satisfying prototypical exemplars found from (6). To make the encoder ϕ learn
the prototype better, we inherit the prototypical network (Snell et al., 2017) learning process to learn
the encoder ϕ.

Prototypical Network with Coreset. On each client u, the prototype ptu,l on label l are computed
via a prototypical network (Snell et al., 2017) via ptu,l =

1
|Dt

u,l|
∑

xi∈Dt
u,l

g(xi;ϕ). The prototypical
network is learned via a loss function as follows:

ϕ∗ = argmin
ϕ

L∑
l=1

d
(
g(x;ϕ), pl

)
− log

∑
l′

exp
(
d
(
g(x;ϕ), pl

))
. (7)

The objective of (7) is to ensure that the learned prototype g(x;ϕ), derived from the input data
x, closely aligns with the computed prototype of the same class l across the entire batch, while
simultaneously maintaining a significant distance from approximated prototypes of other classes l′.

4 THEORETICAL ANALYSIS

To conduct the theoretical analysis of STAMP, we examine the generalization gap between the model
trained at a specific round R and the model trained on the unseen task dataset DQ.

Theorem 2 Let θR denote the global model after R rounds and at current task t ∈ T , θ∗u and θ∗Q
mean the optimal of the model on each client and the unseen tasks, respectively. The local objectives
follow the µ strongly convex from Assumption 2. For any δ ∈ (0, 1), the generalization gap for the
unseen tasks DQ can be bounded by the following equation with a probability of at least 1− δ:

EDQ(θ
R)− EDQ(θ

∗
DQ

) ≤
∑

i∈[1:t]

∑
u∈U

γuζt

[
ED̂u

(θ) +
∑

j∈[1:t]

dG◦θ(D̂i
u, D̂j

u)

µ
+

∑
v∈U

dG◦θ(D̂i
u, D̂i

v)

µ

+ dH△H(DP ,DQ) +

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗, t ∈ T ,

where D̂i
u, D̂j

u, D̂i
v are the sampled counterparts from the domain Di

u,Dj
u,Di

u, respectively.
dG◦θ(D̂i

u, D̂j
u) denotes the gradient divergence when training on temporal tasks D̂i

u and D̂j
u.

dG◦θ(D̂i
u, D̂i

v) denotes the gradient divergence when training on spatio tasks D̂i
u and D̂i

v .

In contrast to existing studies on convergence in FCL (Keshri et al., 2025), our work focuses on
establishing theoretical guarantees for the generalization gap. This generalization perspective enables
a principled assessment of how reliably an FCL model can extend to both previously encountered
and new unseen tasks, thereby characterizing its stability and plasticity.

The generalization gap at round R on the target domain is defined as EDQ(θ
R) − EDQ(θ

∗
DQ

). In
Theorem 2, the first term ED̂u

(θ) is the loss on the local datasets. The fourth term dH△H(DP ,DQ)

is the task divergence between the seen and unseen tasks. The fifth term
√

log M
δ +
√

log UM
δ√

2Nu
is the

gap due to the infinite sampling. The last term ζ∗ is the gap due to the optimal risk. While the first
term is the main minimization on every FCL methods, the three last terms are irreducible. To further
reduce the generalization gap, our objective is to minimize this gradient divergence at each round.
Specifically, STAMP focuses on reducing the temporal gradient divergence

∑
j∈[1:t]

dG◦θ(D̂i
u,D̂

j
u)

µ ,

and spatio gradient divergence
∑

v∈U
dG◦θ(D̂i

u,D̂
i
v)

µ , using spatio and temporal gradient alignment
every server aggregation round. Following Appendix B, we have the temporal and spatio gradient

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

divergence are minimized over the gradient alignment. As a consequence, we can directly reduce
those gap. By effectively leveraging STAMP, we can reduce the generalization gap between seen
and unseen tasks, thereby enhancing the overall generalization capability of the heterogeneous FCL
system.

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of STAMP. The
implementation details and additional experiments are provided in Appendices E . To ensure a fair
assessment of FCL baselines under heterogeneous settings and catastrophic forgetting, we do not use
pretrained models, as their training data (e.g., ImageNet1K) overlaps with our dataset, potentially
biasing the evaluation. The detailed configurations of the continual data settings, model settings, and
baseline setups are provided in Appendix E.

5.1 BENCHMARKING

Table 1: We report the average per-task performance of FCL under a setting where each task is
assigned 2 classes. Evaluations are conducted using 10 clients (fraction = 1.0) across 5 independent
trials. OOM refers to the out of memory in GPU. ↑ and ↓ indicate that higher and lower values are
better, respectively. C→S and S→C denote communication from the client to the server and from the
server to the client, respectively.

S-CIFAR100 (U = 10, C = 2)

Methods Accuracy ↑ AF ↓ Avg. Comp. ↓ Comm. Cost ↓ GPU (Peak) ↓ Disk ↓
(Sec/Round) C→S S → C

FedAvg 31.7 (± 1.7) 25.2 (± 1.3) 3.3 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedDBE 37.0 (± 1.6) 26.1 (± 0.7) 3.6 sec 44.6 MB 44.6 MB 1.91 GB N/A
FedAS 58.2 (± 0.1) 56.1 (± 0.1) 13.7 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedOMG 39.1 (± 1.3) 24.5 (± 0.4) 4.1 sec 44.6 MB 44.6 MB 1.92 GB N/A

GLFC 44.8 (± 2.1) 29.5 (± 0.4) 18.3 sec 88.2 MB 46.5 MB 4.33 GB 22.1 MB
FedCIL 46.5 (± 2.2) 28.8 (± 1.2) 22.3 sec 95.3 MB 44.6 MB 4.81 GB 18.5 MB
LANDER 50.8 (± 1.3) 26.9 (± 0.4) 15.8 sec 88.2 MB 104.3 MB 5.26 GB 131.5 MB
TARGET 45.1 (± 2.4) 28.6 (± 1.6) 25.6 sec 112.4 MB 44.6 MB 3.65 GB 18.5 MB
FedL2P 48.2 (± 1.8) 28.1 (± 0.6) 8.6 sec 56.3 MB 56.3 MB 2.56 GB N/A
Re-Fed+ 52.3 (± 1.1) 31.9 (± 0.5) 3.9 sec 44.6 MB 44.6 MB 2.17 GB 18.5 MB

FedWeIT 52.6 (± 1.3) 25.7 (± 0.9) 5.4 sec 44.6 MB 44.6 MB 5.83 GB 61.7 GB
FedSSI 51.6 (± 1.3) 35.4 (± 1.1) 7.7 sec 44.6 MB 44.6 MB 2.53 GB N/A
AF-FCL 51.4 (± 0.7) 48.7 (± 1.2) 4.9 sec 156.3 MB 121.3 MB 8.93 GB N/A

STAMP 52.8 (± 0.9) 24.3 (± 0.8) 9.1 sec 44.6 MB 44.6 MB 1.92 GB 16.3 MB

S-ImageNet1K (U = 10, C = 2)

FedAvg 24.3 (± 5.1) 19.6 (± 0.1) 133.2 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedDBE 29.2 (± 7.2) 19.4 (± 0.2) 142.7 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedAS 43.5 (± 4.4) 40.2 (± 0.4) 498.5 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedOMG 30.4 (± 3.8) 21.1 (± 0.7) 171.3 sec 112.5 MB 112.5 MB 16.11 GB N/A

GLFC 31.4 (± 3.1) 27.4 (± 0.6) 466.7 sec 225.3 MB 121.2 MB 20.24 GB 221.4 MB
FedCIL 33.8 (± 3.6) 25.8 (± 0.7) 652.3 sec 245.5 MB 112.5 MB 23.47 GB 184.3 MB
LANDER 34.9 (± 2.7) 26.1 (± 0.9) 573.8 sec 267.4 MB 453.6 MB 26.54 GB 1.31 GB
TARGET 33.2 (± 4.2) 25.2 (± 0.4) 913.2 sec 287.4 MB 112.5 MB 21.08 GB 184.3 MB
FedL2P 34.5 (± 4.8) 26.4 (± 0.2) 303.7 sec 146.6 MB 146.6 MB 18.21 GB N/A
Re-Fed+ 35.3 (± 0.7) 26.1 (± 1.0) 146.8 sec 112.5 MB 112.5 MB 16.71 GB 184.3 MB

FedWeIT 39.7 (± 3.1) 21.5 (± 0.9) 194.2 sec 111.8 MB 111.8 MB 62.7 GB 640 GB
FedSSI 38.4 (± 1.2) 31.9 (± 0.8) 298.1 sec 112.5 MB 112.5 MB 17.66 GB N/A
AF-FCL 38.3 (± 5.3) 36.6 (± 0.3) 176.7 sec 421.3 MB 336.8 MB 46.81 GB N/A

STAMP 41.5 (± 2.4) 24.2 (± 0.8) 321.2 sec 112.5 MB 112.5 MB 16.11 GB 152.6 MB

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Main Results. Table 1 reports results on the S-CIFAR100 dataset (Boschini et al., 2022) and the
S-ImageNet1K dataset (Dohare et al., 2024), which are continual learning versions of CIFAR100
and ImageNet1K. In these settings, each task comprises two distinct classes. In addition to average
accuracy and average forgetting (AF), we assess key system-level metrics: computational overhead,
communication cost, GPU utilization, and disk usage. Computational overhead is measured as the
average time per round, reflecting the cost of client-side training, especially for generative models.
Communication cost denotes the average data transferred (in GB) per client-server round. GPU
utilization captures peak memory usage, critical in resource-limited settings, while disk usage reflects
the total client-side storage required, including replay buffers and task-specific model parameters.
The vanilla FL baselines, e.g., FedAvg, FedAS, FedDBE, and FedOMG, may lead the model easily
to forget the knowledge from past tasks, as indicated by high average forgetting.

FedWeIT1 stores task-specific head parameters in GPU memory. However, when both the number
of classes (e.g., 1000 classes in S-ImageNet1K) and the number of tasks (e.g., 500 tasks in our
S-ImageNet1K setup) become large, the total number of parameters grows significantly2. As a
result, storing all task-specific parameters in GPU memory becomes infeasible, and they must instead
be saved to disk. However, this approach leads to a substantial increase in average training time.
LANDER stores all generated pseudo task-specific data on disk, incurring client-side storage overhead
comparable to conventional CL methods using replay memory. Additionally, broadcasting synthetic
data from the server to clients introduces substantial communication overhead.

The key observations from Tables 1 indicate that the more challenging setting, with only two
classes per task, exhibit greater susceptibility to catastrophic forgetting. This is because each task
provides less comprehensive information about the overall dataset, thereby leading to a higher average
forgetting (AF) score. STAMP achieves the state-of-art overall trade-off, delivering higher accuracy
and lower forgetting than almost all methods. At the same time, STAMP communication cost remains
comparable to that of standard FL and requires relatively modest RAM and disk resources. For
example, it is worth noting that FedWeIT achieves slightly lower forgetting on S-CIFAR100 at the
expense of nearly 3900× higher disk usage. This making STAMP suitable for deployment on
resource-constrained devices. To ensure comparability with other popular works in FCL, we also
evaluate the benchmark on an easier class distribution, where each task contains 20 distinct classes.
The corresponding results are reported in appendix F.1.

Performance under tasks with non-IID settings. Figure 3 illustrates the test accuracy across
varying levels of data heterogeneity for CIFAR10, CIFAR100, Digit10, and Office31 datasets. As
shown in the figure, all methods improve test accuracy as data heterogeneity decreases (i.e., larger
α). Notably, STAMP consistently achieves superior and stable performance across different levels of
heterogeneity, indicating its robustness under non-IID conditions.

5.2 EXPERIMENTAL ANALYSES AND ABLATION TESTS

=100 =10 =1.0 =0.1
Data Heterogeneity

35

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y

CIFAR10 Dataset

=100 =10 =1.0 =0.1
Data Heterogeneity

20

25

30

35

40

45

50
CIFAR100 Dataset

=100 =10 =1.0 =0.1
Data Heterogeneity

65

70

75

80

85

90
Digit10 Dataset

=100 =10 =1.0 =0.1
Data Heterogeneity

35

40

45

50

55

60

65

70

Office31 Dataset

Figure 3. Performance w.r.t data heterogeneity for four datasets.

FedAvg FL+EWC GLFC FedCIL LANDER TARGET FedL2P FedWeIT AFFCL FedSSI STAMP

Figure 3: Performance w.r.t data heterogeneity α for four datasets.

Efficiency of Prototypical Coreset. To evaluate the effectiveness of our proposed coreset selection
method, we compare STAMP with a vanilla FL framework incorporating alternative data condensation
techniques on the client side, including SRe2L (Yin et al., 2023), BCSR (Hao et al., 2023), and OCS

1The official code of FedWeIT can be found at: https://github.com/wyjeong/FedWeIT.
2We observe from the official code that FedWeIT needs more than 512 GB of RAM memory to be able to

run a simple LeNet on ImageNet. As such, we have to save the task-adaptive parameters in memory. In our
reformatted implementation, we mitigate this memory constraint by utilizing disk storage for model loading.

8

https://github.com/wyjeong/FedWeIT

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(Yoon et al., 2022), CSReL (Tong et al., 2025). The experimental results in Figure 4 show that our
method consistently outperforms these coreset selection-based FL algorithms. Notably, our approach
can reduce the coreset size to as few as 20 images per class without significantly compromising
performance compared to training on the full-scale dataset for previous tasks.

10 20 50 100
Subset size (images per class)

10

15

20

25

30

35

40

45

Te
st

 A
cc

ur
ac

y

CIFAR100 - 20 classes/task

10 20 50 100
Subset size (images per class)

20

25

30

35

40

45

50
CIFAR100 - 2 classes/task

10 20 50 100
Subset size (images per class)

5

10

15

20

25

30
ImageNet1K - 20 classes/task

10 20 50 100
Subset size (images per class)

0

5

10

15

20

25

30

35

40

45
ImageNet1K - 2 classes/task

FL+SRe²L FL+BCSR FL+CSReL FL+OCS STAMP

Figure 4: Performance comparisons in coreset selection demonstrate that our approach outperforms
the integration of alternative baseline methods within vanilla FL.

Efficiency of Temporal Gradient Alignment. To evaluate the effectiveness of temporal gradient
alignment on the client side, we analyze the gradient angles produced by STAMP on S-CIFAR100
and S-ImageNet1K datasets and compare them with two sets of baseline methods: FedAvg and
FedL2P for standard FL, and FedWeIT and AF-FCL, for FCL. The results are presented in Figure 5.
As shown, STAMP demonstrates superior gradient alignment with previously learned tasks. This
improvement suggests that STAMP is less prone to catastrophic forgetting compared to existing
approaches. Additional results linking gradient angles to catastrophic forgetting are provided in
Appendix F.3.

Efficiency of Spatio Gradient Alignment. Figure 6 presents the gradient divergence across various
baseline methods on S-CIFAR100 and S-ImageNet1K, evaluated under two different settings: 20
classes per task and the more challenging 2 classes per task. It is evident that, unlike existing baselines
which generally overlook the alignment among client gradients, STAMP achieves significantly better
gradient alignment. This improved alignment facilitates model updates that more effectively seek
invariant aggregated gradient directions across clients for specific tasks, thereby enhancing the
generalization capability of the aggregated model. This observation is consistent with the reduced
global-local generalization gap demonstrated in Figure 1.

50 100 150 200 250 300
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

CIFAR100 - 2 classes/task
FedAvg
FedL2P
FedSSI
STAMP

(a)

50 100 150 200 250 300
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

CIFAR100 - 20 classes/task
FedAvg
FedL2P
FedWeIT
STAMP

(b)

50 100 150 200 250 300
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

ImageNet1K - 2 classes/task
FedAvg
FedL2P
FedWeIT
STAMP

(c)

50 100 150 200 250 300
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

ImageNet1K - 20 classes/task
FedAvg
FedL2P
AF-FCL
STAMP

(d)

Figure 5: The figures illustrate the average temporal gradient angles across different baseline methods.
Specifically, Figure 5a shows the results for S-CIFAR100 under 2 classes per task. Figure 5b shows
the gradient cosine similarity on S-CIFAR100 under a 20 classes per task setting. Figure 5c presents
the gradient cosine similarity for S-ImageNet1K with 2 classes per task, and Figure 5d depicts the
results for S-ImageNet1K under 20 classes per task configuration.

Ablation Study on STAMP. Table 2 presents the ablation results for each component. The results
demonstrate that both Spatio grAdient alignMent (SAM) and Temporal grAdient alignMent (TAM)
consistently enhance the average classification accuracy. Notably, SAM contributes more significantly
to accuracy improvement by enhancing generalization across tasks within a single communication
round. In contrast, TAM plays a more critical role in reducing average forgetting by mitigating
catastrophic forgetting; it achieves this by aligning the learned gradients with those from previous

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Communication Rounds

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

CIFAR100 - 2 classes/task
FedAvg
FedL2P
FedSSI
STAMP

(a)

0 50 100 150 200 250 300
Communication Rounds

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

CIFAR100 - 20 classes/task
FedAvg
FedL2P
FedSSI
STAMP

(b)

0 50 100 150 200 250 300
Communication Rounds

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

ImageNet1K - 2 classes/task
FedAvg
FedL2P
FedSSI
STAMP

(c)

0 50 100 150 200 250 300
Communication Rounds

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

ImageNet1K - 20 classes/task
FedAvg
FedL2P
FedSSI
STAMP

(d)

Figure 6: The figures illustrate the average spatio gradient angles across different baseline methods.
Specifically, Figure 6a shows the gradient cosine similarity on S-CIFAR100 under a 2 classes per task
setting, Figure 6b shows the results for S-CIFAR100 under 20 classes per task, Figure 6c presents the
gradient cosine similarity for S-ImageNet1K with 2 classes per task, and Figure 6d depicts the results
for S-ImageNet1K under 20 classes per task configuration.

Table 2: We conduct ablation studies on the S-CIFAR100 and S-ImageNet1K datasets, using 10
clients and 2 classes per task. Specifically, (1) refers to spatio-temporal gradient alignment performed
on the server side, (2) denotes temporal gradient alignment executed on the client side, and (3)
corresponds to the use of a prototypical coreset implemented with ProtoNet.

Dataset Metric FedAvg (1) (2) (1) + (2) (1) + (3) (2) + (3) STAMP

S-CIFAR100 Acc. 31.7 (± 1.7) 38.1 (± 1.3) 37.8 (± 0.6) 44.7 (± 1.5) 46.1 (± 0.7) 44.9 (± 1.4) 52.8 (± 0.9)
AF 22.1 (± 1.3) 23.8 (± 0.4) 21.7 (± 0.9) 21.5 (± 1.0) 24.7 (± 1.4) 21.8 (± 0.6) 24.3 (± 0.8)

S-ImageNet1K Acc. 24.3 (± 5.1) 30.5 (± 2.8) 28.3 (± 2.6) 34.1 (± 0.7) 37.4 (± 1.1) 36.5 (± 1.3) 41.5 (± 2.8)
AF 19.6 (± 0.1) 26.1 (± 0.7) 23.8 (± 0.6) 24.3 (± 0.9) 26.1 (± 1.8) 23.3 (± 0.8) 24.2 (± 0.8)

tasks on the same client. Additionally, the use of the prototypical coreset selection method further
boosts the performance of STAMP by improving data representation through ProtoNet.

6 CONCLUSION

In this paper, we have tackled the challenges of FCL in realistic settings characterized by client data
heterogeneity and task conflicts. Recognizing the limitations of existing generative replay-based
methods, we have introduced a novel model-agnostic approach, Spatio-Temporal Gradient Alignment
with Prototypical Coreset. Our method effectively mitigates catastrophic forgetting and data bias by
leveraging prototype samples for robust gradient approximation and applying gradient alignment both
temporally and spatially. Through extensive experiments, we have demonstrated that our approach
consistently outperforms existing baselines, highlighting its potential as a powerful solution for
resilient FCL in diverse, dynamic environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, Jul. 2020.

Mislav Balunovic, Dimitar Iliev Dimitrov, Robin Staab, and Martin Vechev. Bayesian framework for
gradient leakage. In Int. Conf. Learn. Represent., May 2022.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

Jinpeng Chen, Runmin Cong, Yuxuan LUO, Horace Ip, and Sam Kwong. Saving 100x storage:
Prototype replay for reconstructing training sample distribution in class-incremental semantic
segmentation. In Adv. Neural Inform. Process. Syst., Dec. 2023.

Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening
sharpness for dynamic gradient projection memory benefits continual learning. In Adv. Neural
Inform. Process. Syst., Dec. 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conf. Comput. Vis. Pattern Recog., Aug. 2009.

Dimitar Iliev Dimitrov, Mislav Balunovic, Nikola Konstantinov, and Martin Vechev. Data leakage in
federated averaging. Transactions on Machine Learning Research, Nov. 2022.

S. Dohare, J. F. Hernandez-Garcia, Q. Lan, et al. Loss of plasticity in deep continual learning. Nature,
Aug. 2024.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In IEEE Conf. Comput. Vis. Pattern Recog., Apr. 2022.

Jiahua Dong, Duzhen Zhang, Yang Cong, Wei Cong, Henghui Ding, and Dengxin Dai. Federated
incremental semantic segmentation. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 3934–3943,
Jun. 2023.

Jiahua Dong, Hongliu Li, Yang Cong, Gan Sun, Yulun Zhang, and Luc Van Gool. No One Left
Behind: Real-World Federated Class-Incremental Learning. IEEE Patt. Ana. and Mach. Intell., 46
(04):2054–2070, Apr. 2024. ISSN 1939-3539.

Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. FeCAM: Exploiting
the heterogeneity of class distributions in exemplar-free continual learning. In Adv. Neural Inform.
Process. Syst., Dec. 2023.

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formulation
and algorithm. In Adv. Neural Inform. Process. Syst., Dec. 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Jiahui Hu, Jiacheng Du, Zhibo Wang, Xiaoyi Pang, Yajie Zhou, Peng Sun, and Kui Ren. Does differ-
ential privacy really protect federated learning from gradient leakage attacks? IEEE Transactions
on Mobile Computing, 23(12):12635–12649, 2024.

Satish Kumar Keshri, Nazreen Shah, and Ranjitha Prasad. On the convergence of continual federated
learning using incrementally aggregated gradients. In International Conference on Artificial
Intelligence and Statistics, pp. 5068–5076. PMLR, 2025.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Technical Report.

Royson Lee, Minyoung Kim, Da Li, Xinchi Qiu, Timothy Hospedales, Ferenc Huszár, and
Nicholas Donald Lane. Fedl2p: Federated learning to personalize. In Adv. Neural Inform.
Process. Syst., Dec. 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dong Li, Aijia Zhang, Junqi Gao, and Biqing Qi. An efficient memory module for graph few-shot
class-incremental learning. In Adv. Neural Inform. Process. Syst., Dec. 2024a.

Yichen Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Wenliang Zhong, and Guannan Zhang. Towards
efficient replay in federated incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 12820–12829, Jun. 2024b.

Yichen Li, Wenchao Xu, Yining Qi, Haozhao Wang, Ruixuan Li, and Song Guo. SR-FDIL: Syn-
ergistic replay for federated domain-incremental learning. IEEE Transactions on Parallel and
Distributed Systems, 35(11):1879–1890, 2024c.

Yichen Li, Haozhao Wang, Yining Qi, Wei Liu, and Ruixuan Li. Re-fed+: A better replay strategy for
federated incremental learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2025a.

Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin
Yang, Rui Zhang, Shui Yu, et al. Unleashing the power of continual learning on non-centralized
devices: A survey. IEEE Communications Surveys & Tutorials, 2025b.

Yichen Li, Yuying Wang, Tianzhe Xiao, Haozhao Wang, Yining Qi, and Ruixuan Li. FedSSI:
Rehearsal-free continual federated learning with synergistic synaptic intelligence. In Int. Conf.
Mach. Learn., Jul. 2025c.

Yichen Li, Wenchao Xu, Haozhao Wang, Yining Qi, Jingcai Guo, and Ruixuan Li. Personalized
federated domain-incremental learning based on adaptive knowledge matching. In Eur. Conf.
Comput. Vis., Apr. 2025d.

Ze Liu, Yutong Lin, Yuqi Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, 2021.

David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Adv. Neural Inform. Process. Syst., Dec. 2017.

Kangyang Luo, Xiang Li, Yunshi Lan, and Ming Gao. Gradma: A gradient-memory-based accelerated
federated learning with alleviated catastrophic forgetting. In IEEE Conf. Comput. Vis. Pattern
Recog., pp. 3708–3717, Jun. 2023.

Fangrui Lv, Jian Liang, Shuang Li, Bin Zang, Chi Harold Liu, Ziteng Wang, and Di Liu. Causality
inspired representation learning for domain generalization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8046–8056, 2022.

Peihua Mai, Ran Yan, and Yan Pang. Rflpa: A robust federated learning framework against poisoning
attacks with secure aggregation. Advances in Neural Information Processing Systems, 37:104329–
104356, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Int. Conf. on
AISTATS, Apr. 2017.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Dilan Görür, Razvan Pascanu, and Hassan Ghasemzadeh.
Linear mode connectivity in multitask and continual learning. In Proceedings of the 9th Interna-
tional Conference on Learning Representations (ICLR), 2021.

Thuy Dung Nguyen, Tuan A Nguyen, Anh Tran, Khoa D Doan, and Kok-Seng Wong. IBA: Towards
irreversible backdoor attacks in federated learning. In Adv. Neural Inform. Process. Syst., Dec.
2023.

Trong-Binh Nguyen, Minh-Duong Nguyen, Jinsun Park, Quoc-Viet Pham, and Won Joo Hwang.
Federated domain generalization with data-free on-server gradient matching. In Int. Conf. Learn.
Represent., May 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ivo Petrov, Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, and Martin Vechev. DAGER:
Exact gradient inversion for large language models. In Adv. Neural Inform. Process. Syst., Dec.
2024.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning.
In Int. Conf. Learn. Represent., May 2023.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
Int. Conf. Learn. Represent., May 2021.

Yuge Shi, Jeffrey Seely, Philip Torr, Siddharth N, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. In Int. Conf. Learn. Represent., May
2022.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Adv.
Neural Inform. Process. Syst., Dec. 2017.

Jinhyun So, Ramy E Ali, Başak Güler, Jiantao Jiao, and A Salman Avestimehr. Securing secure
aggregation: Mitigating multi-round privacy leakage in federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 9864–9873, 2023.

Ruilin Tong, Yuhang Liu, Javen Qinfeng Shi, and Dong Gong. Coreset selection via reducible loss in
continual learning. In Int. Conf. Learn. Represent., Dec. 2025.

Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi, and Dinh Phung. Text-enhanced
data-free approach for federated class-incremental learning. In IEEE Conf. Comput. Vis. Pattern
Recog., Jun. 2024.

Yichen Wan, Youyang Qu, Wei Ni, Yong Xiang, Longxiang Gao, and Ekram Hossain. Data and
model poisoning backdoor attacks on wireless federated learning, and the defense mechanisms: A
comprehensive survey. IEEE Comm. Surveys & Tutorials, Feb. 2024.

Qiang Wang, Bingyan Liu, and Yawen Li. Traceable federated continual learning. In IEEE Conf.
Comput. Vis. Pattern Recog., Jul. 2024.

Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. Online Prototype
Learning for Online Continual Learning. In Int. Conf. Comput. Vis., Oct. 2023.

Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learning
revisited: Implicitly enhancing online hessian approximation via variance reduction. In Int. Conf.
Learn. Represent., Dec. 2024.

Abudukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang,
Changshui Zhang, and Masashi Sugiyama. Accurate forgetting for heterogeneous federated
continual learning. In Int. Conf. Learn. Represent., May 2024.

Xiyuan Yang, Wenke Huang, and Mang Ye. Fedas: Bridging inconsistency in personalized federated
learning. In IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2024.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
imagenet scale from a new perspective. In Adv. Neural Inform. Process. Syst., Dec. 2023.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual
learning with weighted inter-client transfer. In Int. Conf. Mach. Learn., Jul. 2021.

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for
rehearsal-based continual learning. In Int. Conf. Learn. Represent., May 2022.

Jianqing Zhang, Yang Hua, Jian Cao, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing
Guan. Eliminating domain bias for federated learning in representation space. In Adv. Neural
Inform. Process. Syst., Dec. 2023a.

Jianqing Zhang, Yang Liu, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Jian
Cao. PFLlib: A beginner-friendly and comprehensive personalized federated learning library and
benchmark. Journal of Machine Learning Research, Feb. 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lyu. TARGET: Federated Class-Continual
Learning via Exemplar-Free Distillation . In Int. Conf. Comput. Vis., Oct. 2023b.

Ruipeng Zhang, Qinwei Xu, Jiangchao Yao, Ya Zhang, Qi Tian, and Yanfeng Wang. Federated
domain generalization with generalization adjustment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3954–3963, 2023c.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In Int. Conf. Mach. Learn., Jun. 2019.

Xiantong Zhen, Yingjun Du, Huan Xiong, Qiang Qiu, Cees Snoek, and Ling Shao. Learning to learn
variational semantic memory. In Adv. Neural Inform. Process. Syst., Dec. 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROOF ON THEOREMS

A.1 TECHNICAL ASSUMPTIONS

Assumption 1 (L-smoothness) Each local objective function is Lipschitz smooth, that is,

∥∇E(x;Du)−∇E(y;Du)∥ ≤ L∥E(x;Du)− E(y;Du)∥,∀u ∈ U . (8)

Assumption 2 (µ-strongly convex) Each local objective function is Lipschitz smooth, that is,

∥∇E(x;Du)−∇E(y;Du)∥ ≥ µ∥E(x;Du)− E(y;Du)∥,∀u ∈ U . (9)

Assumption 3 (Domain triangle inequality (Zhao et al., 2019)) For any hypothesis space H, it
can be readily verified that dH(·, ·) satisfies the triangular inequality:

dH△H(D,D
′′
) ≤ dH△H(D,D

′
) + dH△H(D

′
,D

′′
). (10)

A.2 TECHNICAL LEMMAS

Lemma 1 (Task Divergence Decomposition) For any hypothesis space H, it can be readily veri-
fied that the distance function dH(·, ·) satisfies the triangle inequality. Specifically, for any three
distributions Di

u, D
j
v, D

j
u defined over the same space, we have:

dH(Di
u, D

j
v) ≤ dH(Di

u, D
j
u) + dH(Dj

u, D
j
v).

Proof. Applying Assumption 3, we solved the lemma.

Lemma 2 If we have ED̂(θ) =
∑

u∈U γuED̂u
, then for any unseen domain DQ, we have:

dH△H(DP ,DQ) =
∑
u∈U

γudH△H(Du,DQ). (11)

Proof. From the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we can get

dH△H(DP ,DQ) = 2 sup
A∈AH△H

|PrD̂(A)− PrDQ(A)| = 2 sup
A∈AH△H

∣∣∣∑
u∈U

γuPrD̂(A)− PrDQ(A)
∣∣∣

≤ 2 sup
A∈AH△H

∣∣∣∑
u∈U

γu

[
PrD̂(A)− PrDQ(A)

]∣∣∣
≤ 2 sup

A∈AH△H

∑
u∈U

γu|PrD̂(A)− PrDQ(A)|

≤ 2
∑
u∈U

γu sup
A∈AH△H

|PrD̂(A)− PrDQ(A)|

=
∑
u∈U

γudH△H(D̂u,DQ). (12)

Lemma 3 For any θ ∈ Θ, the expectation risk gap between domain A and domain B is bounded by
the domain divergence dH△H(A,B).

|EA(θ)− EB(θ)| ≤
1

2
dH△H(A,B). (13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. By the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we have:

dH△H(A,B) = 2 sup
θ,θ′∈Θ

∣∣∣Prx∼A[f(x; θ) ̸= f(x; θ
′
)]− Prx∼B [f(x; θ) ̸= f(x; θ

′
)]
∣∣∣, (14)

where f(x; θ) means the prediction function on data x with model parameter θ. We chose θ
′

as
parameter of the label function, then f(x; θ) ̸= f(x; θ

′
) means the loss function L(x; θ), so we have:

dH△H(A,B) = 2 sup
θ∈Θ

∣∣∣Prx∼A[L(x; θ)]− Prx∼B [L(x; θ)]
∣∣∣ ≥ 2|EA(θ)− EB(θ)|. (15)

Here, (a) holds due to Assumption 1.

Lemma 4 (Guarantee of inter-client spatio task divergence) If we have ED̂(θ) =
∑

u∈U γuED̂u
,

then for any domain DP , we have:∑
u∈U

γudH△H(D̂u,DP) ≤
∑
u∈U

∑
v∈U

γuγvdH△H(D̂u, D̂v). (16)

Proof. From the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we can get∑
u∈U

γudH△H(D̂u,DP) = 2
∑
u∈U

γu sup
A∈AH△H

|PrD̂u
(A)− PrDP (A)|

= 2
∑
u∈U

γu sup
A∈AH△H

|PrD̂u
(A)−

∑
v∈U

γvPrD̂v
(A)|

= 2
∑
u∈U

γu sup
A∈AH△H

|
∑
v∈U

γvPrD̂u
(A)−

∑
v∈U

γvPrD̂v
(A)|

≤ 2
∑
u∈U

γu
∑
v∈U

γv sup
A∈AH△H

|PrD̂u
(A)− PrD̂v

(A)|

≤
∑
u∈U

∑
v∈U

γuγvdH△H(D̂u, D̂v). (17)

Lemma 5 (Guarantee of intra-client temporal task divergence) Consider a client u, where Du

is the on-client joint dataset, consisting of T tasks Du = {Dt
u|t ∈ {1, . . . , T}}. If we have

ED̂(θ) =
∑

u∈U γuED̂u
, then for any domain DP , we have:∑

t∈T
ζtdH△H(D̂t

u, D̂u) ≤
∑
i∈T

∑
j∈T

ζiζjdH△H(D̂i
u, D̂j

u). (18)

Proof. From the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we can get∑
t∈T

ζtdH△H(D̂t
u, D̂u) = 2

∑
t∈T

ζt sup
A∈AH△H

|PrD̂t
u
(A)− PrD̂u

(A)|

= 2
∑
i∈T

ζi sup
A∈AH△H

|PrD̂i
u
(A)−

∑
j∈T

ζjPrD̂j
u
(A)|

= 2
∑
i∈T

ζi sup
A∈AH△H

|
∑
j∈T

ζjPrD̂i
u
(A)−

∑
j∈T

ζjPrD̂j
u
(A)|

≤ 2
∑
i∈T

ζi
∑
j∈T

ζj sup
A∈AH△H

|PrD̂i
u
(A)− PrD̂j

u
(A)|

≤
∑
i∈T

∑
j∈T

ζiζjdH△H(D̂i
u, D̂j

u). (19)

A.3 PROOF ON LEMMA 6

Lemma 6 For any θ ∈ Θ, the domain divergence dH△H(A,B) is bounded by the expectation of
gradient divergence between domain A and domain B.

dH△H(A,B) ≤ 1

µ
dG◦θ(A,B), (20)

where dG◦θ(A,B) is the gradient divergence of model θ when training in two domains A and B.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. By the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we have:

dH△H(A,B) = 2 sup
θ,θ′∈Θ

∣∣∣Prx∼A[f(x; θ) ̸= f(x; θ
′
)]− Prx∼B [f(x; θ) ̸= f(x; θ

′
)]
∣∣∣, (21)

where f(x; θ) means the prediction function on data x with model parameter θ. We chose θ
′

as
parameter of the label function, then f(x; θ) ̸= f(x; θ

′
) means the loss function L(x; θ), so we have:

dH△H(A,B) = 2 sup
θ∈Θ

∣∣∣Prx∼A[L(x; θ)]− Prx∼B [L(x; θ)]
∣∣∣

= 2 sup
θ∈Θ
|EA(θ)− EB(θ)|.

(a)

≤ 2

µ
sup
θ∈Θ
|∇EA(θ)−∇EB(θ)| ≤

1

µ
dG◦θ(A,B). (22)

Here, dG◦θ(A,B) as the gradient divergence, given the model θ and (a) holds due to Assumption 2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 PROOF ON THEOREM 1

From Lemma 3 (Zhang et al., 2023c), we have:

E(θ;DQ) ≤ E(θ;DP) +
1

2
dH△H(D̂P ,DQ) + ζ∗. (23)

Here, we have E(θ;DP) =
∑U

u=1 γuE(θ;Di
u) =

∑
i∈T

∑U
u=1 γuE(θ;Di

u), and

E(θ;DQ) ≤ E(θ;DP) +
1

2
dH△H(D̂P ,DP) +

1

2
dH△H(DP ,DQ) + ζ∗

≤
∑
u∈U

γu

[
E(θ;DP) +

1

2
dH△H(D̂P ,DP) +

1

2
dH△H(DP ,DQ)

]
+ ζ∗

≤
∑
u∈U

γu

[
E(θ; D̂u) +

1

2
dH△H(D̂u,DP) +

1

2
dH△H(DP ,DQ) +

√
logM + log 1

δ

2Nu

]
+ ζ∗

(a)

≤
∑
u∈U

γu

[
E(θ; D̂u) +

∑
v∈U

1

2
dH△H(D̂u, D̂v) +

1

2
dH△H(DP ,DQ)

+

√
logM + log 1

δ

2Nu

]
+ ζ∗

≤
∑
t∈T

∑
u∈U

γu

[
E(θ; D̂t

u) +
∑
v∈U

1

2
dH△H(D̂t

u, D̂v) +
1

2
dH△H(DP ,DQ)

+

√
logM + log 1

δ

2Nu

]
+ ζ∗

(b)

≤
∑
t∈T

∑
u∈U

γu

[
E(θ; D̂t

u) +
∑
v∈U

∑
j∈T

1

2
dH△H(D̂t

u, D̂j
v) +

1

2
dH△H(DP ,DQ)

+

√
logM + log 1

δ

2Nu

]
+ ζ∗

(c)

≤
∑
t∈T

∑
u∈U

γu

[
E(θ; D̂t

u) +
∑
v∈U

∑
j∈T

1

2
dH△H(D̂t

u, D̂j
u) +

∑
v∈U

∑
j∈T

1

2
dH△H(D̂t

u, D̂t
v)

+
1

2
dH△H(DP ,DQ) +

√
logM + log 1

δ

2Nu

]
+ ζ∗, (24)

where (a) is according to Lemma 4, (b) is according to Lemma 5, (c) is according to Lemma 1.
Simplify Eq. 24, we have

E(θ;DQ) ≤
∑
i∈T

∑
u∈U

γu

[
E(θ;Di

u) +
∑
j∈T

dH△H(Di
u,Dj

u) +
∑
v∈U

dH△H(Di
u,Di

v)

+

√
logM + log 1

δ

2Nu

]
+ ζ∗. (25)

A.5 PROOF ON THEOREM 2

Let D̂u be the sampled counterpart from the domain Du, we have ED̂u
is an empirical risk of

Du, i.e., ED̂u
= 1/Nu

∑Nu

i=1 L(f(xi
u; θ), y

i
u). We also have expected risk EDu

defined as EDu
=

E(x,y∈Du)[L(f(x; θ), y)]. For a given θ ∈ Θ, with the definition of generalization bound, the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

following inequality holds with at most δ
U for each domain D̂u (U is the number of users, which is

also the number of spatial tasks).

ED̂u
(θ)− EDu(θ) >

√
logM + logU/δ

2Nu
. (26)

Moreover, from Lemma 3, we have |EDu
(θ) − EDQ(θ)| ≤ 1

2dH△H(Du,DQ) for each user u, and
|ED̂t

u
(θ)− ED̂u

(θ)| ≤ 1
2dH△H(D̂t

u, D̂u) for each temporal task t. Then let us consider (26), we can
obtain the following inequalities with the probability at least greater than 1− δ

U :

min
θ′
ED̂t

u
(θ

′
) ≤ ED̂t

u
(θ) ≤ ED̂u

(θ) +
1

2
dH△H(D̂t

u, D̂u)

≤ EDu(θ) +
1

2
dH△H(D̂t

u, D̂u) +

√
logM + logU/δ

2Nu

≤ EDQ(θ) +
1

2
dH△H(D̂t

u, D̂u) +
1

2
dH△H(D̂u,DQ) +

√
logM + logU/δ

2Nu
. (27)

We denote the local optimal on each client of source set u, u ∈ U as θ∗u. If we choose a specific
parameter θ∗T = minθ EDQ(θ) which is the local optimal on the unseen domain T , the above third
inequality still holds. Then, we can rewrite the above inequalities into:

ED̂t
u
(θ∗u) ≤ EDQ(θ

∗
u) +

1

2
dH△H(D̂t

u, D̂u) +
1

2
dH△H(D̂u,DQ) +

√
logM + logU/δ

2Nu
. (28)

Considering on each domain, equation (28) holds. By a similar derivation process, we can obtain the
inequality between T and D̂ with the probability at least greater than 1− δ.

∑
t∈T

∑
u∈U

γuζtED̂t
u
(θ∗u) ≤ EDQ(θ

∗
u) (29)

+
∑
t∈T

∑
u∈U

γuζt

[
1

2
dH△H(D̂u,DQ) +

1

2
dH△H(D̂t

u, D̂u) +

√
logM + logU/δ

2Nu

]
.

From the above equation, we have Theorem 2 with the global model θ after R rounds FL. For instance,

EDQ(θ
R)− EDQ(θ

∗
DQ

)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂t

u
(θ)− ED̂t

u
(θ∗u) + dH△H(D̂u,DQ) + dH△H(D̂t

u, D̂u)

+

√
logM + log 1

δ√
2Nu

+

√
logM + log U

δ√
2Nu

]
+ ζ∗ (30)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂t

u
(θ) + dH△H(D̂u,DQ) + dH△H(D̂t

u, D̂u) +

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To further analyze the convergence bound, we consider the Assumption 3. For instance,

EDQ(θ
R)− EDQ(θ

∗
DQ

)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂u

(θ) + dH△H(D̂u,DQ) + dH△H(D̂t
u, D̂u) +

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗

(31)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂u

(θ) + dH△H(D̂t
u, D̂u) + dH△H(D̂u,DP) + dH△H(DP ,DQ) (32)

+

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗

(b)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂u

(θ) + dH△H(D̂t
u, D̂u) +

∑
v∈U

dH△H(D̂u, D̂v)

µ
+ dH△H(DP ,DQ) (33)

+

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗.

(c)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂u

(θ) +
∑
j∈T

dH△H(D̂t
u, D̂j

u)

µ
+

∑
v∈U

dH△H(D̂t
u, D̂t

v)

µ
+ dH△H(DP ,DQ)

(34)

+

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗.

holds due to Lemma 5. Applying Lemma 6, we have:We have (b) holds due to Lemma ?? and (c)
holds due to Lemma 5. Applying Lemma 6, we have:

EDQ(θ
R)− EDQ(θ

∗
DQ

)

≤
∑
t∈T

∑
u∈U

γuζt

[
ED̂u

(θ) +
∑
j∈T

dG◦θ(D̂t
u, D̂j

u)

µ
+

∑
v∈U

dG◦θ(D̂t
u, D̂t

v)

µ
+ dH△H(DP ,DQ) (35)

+

√
log M

δ +
√
log UM

δ√
2Nu

]
+ ζ∗.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B GRADIENT ALIGNMENT UPDATE RULE

We consider the parameter update rule θ(τ,r+1) = θ(τ,r) − ηx, where η denotes the learning rate and
x is the update direction to be determined. Our goal is to select x such that not only the average loss
ḡ(r) decreases, but each individual task loss decreases as well. To enforce this, we consider the worst
generalization case among all seen tasks. Specifically,

GAP(θ, x) = max
t∈T

{1

η
L(θ(τ,r) − ηx;Dt)− L(θ(τ,r);Dt)

}
≈ min

t∈T
⟨g(t,r), x⟩. (36)

Here, we use g(t,r) to denote, for simplicity, the gradient of the model at the current task τ when
trained on the dataset of task t. Under the spatio gradient alignment setting, the spatio task is handled
by taking g

(t,r)
u as the gradient from client u, and the aggregation is performed over the set of U

clients rather than over the set of T tasks.

To derive the invariant update direction gG, we treat x = gG as the optimization variable and
formulate the following maximization problem. Let ϕ = κ2∥ḡ(r)∥2. The Lagrangian becomes

max
x

min
λ,γ

(
∑
t∈T

γtg
(t,r))⊤x− λ

2
∥ḡ(r) − x∥2 + λ

2
ϕ, s.t. λ ≥ 0. (37)

Because the formulation is convex and satisfies Slater’s condition for κ > 0 (and trivially holds for
κ = 0), strong duality applies. Hence, we can exchange the min and max operators:

min
λ,γ

max
x

(
∑
t∈T

γtg
(t,r))⊤x− λ

2
∥ḡ(r) − x∥2 + λ

2
ϕ︸ ︷︷ ︸

A1

, s.t. λ ≥ 0. (38)

Fixing (λ, γ) and optimizing over x, the optimality condition ∂A1/∂x = 0 yields

λ(x− ḡ(r))−
T∑

t=1

γtg
(t,r) = 0,

which implies

x = ḡ(r) +
(T∑

t=1

γtg
(t,r)

)
/λ. (39)

Therefore, we have the followings:

A1 = (

T∑
t=1

γtg
(t,r))⊤

(
ḡ(r) +

(T∑
t=1

γtg
(t,r)

)
/λ

)
− λ

2
∥ḡ(r) −

(
ḡ(r) +

(T∑
t=1

γtg
(t,r)

)
/λ

)
∥2 + λ

2
ϕ

= (

T∑
t=1

γtg
(t,r))⊤

(
ḡ(r) +

(T∑
t=1

γtg
(t,r)

)
/λ

)
− λ

2
∥ 1
λ

T∑
t=1

γtg
(t,r)∥2 + λ

2
ϕ. (40)

Substituting the shorthand g
(r)
Γ =

∑T
t=1 γtg

(t,r) into equation 38, we obtain

A1 = g
(r)⊤
Γ

(
ḡ(r) + g

(r)
Γ /λ

)
− λ

2
∥g(r)Γ /λ∥2 + λ

2
ϕ

= g
(r)⊤
Γ ḡ(r) +

1

λ
g
(r)⊤
Γ g

(r)
Γ −

1

2λ
∥g(r)Γ ∥

2 +
λ

2
ϕ

= g
(r)⊤
Γ ḡ(r) +

1

2λ
∥g(r)Γ ∥

2 +
λ

2
ϕ. (41)

Thus the problem in Eq. equation 38 reduces to

min
λ,γ

g
(r)⊤
Γ ḡ(r) +

1

2λ
∥g(r)Γ ∥

2 +
λ

2
ϕ︸ ︷︷ ︸

A2

. (42)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To obtain the optimal λ, we differentiate A2:

∂

∂λ
A2 = − 1

2λ2
∥g(r)Γ ∥

2 +
1

2
ϕ = 0,

which gives
λ = ∥g(r)Γ ∥/ϕ

1/2.

Finally, inserting this expression back into equation 42 and using equation 39, we obtain the invariant
gradient direction:

gG = ḡ(r) +
κ∥ḡ(r)∥
∥g(r)Γ∗ ∥

g
(r)
Γ∗ s.t. Γ∗ = argmin

Γ
Γg(r) · ḡ(r) + κ∥ḡ(r)∥∥g(r)Γ ∥. (43)

This concludes the derivation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C DETAILED ALGORITHMS

Algorithm 1: The box refers to the Spatio grAdient Matching (SAM), the box refers to the
Temporal grAdient Matching (TAM), the box refers to the prototypical coreset selection (PCS).

Input: set of source clients U , number of communication rounds R, local learning rate η, global
learning rate ηg , searching space hyper-parameter κ.

Output: θ(R)
g

1 Clients Update:
2 for client u ∈ U do
3 Receive global model θ(r)u = θ

(r)
g ;

4 Compute pl = 1∑T
t=1 |N t

l |

[
g(x̃l;ϕ) ·

∑t−1
j=1 |N

j
l |+

∑
i∈N t

l
g(xi;ϕ)

]
· 1{yj = l},

5 Initialize learnable coefficient set A = {ai|i ∈ N t
l }

6 Solve X̃ l = argminA

∥∥∥[1
|Ml|

∑
i∈Ml g(xi;ϕ) +

1
|N t

l |
∑

i∈N t
l
ai · g(xi;ϕ)

]
− pl

∥∥∥2,
7 x̃l = MixStyle(x̃l;x),

8 Save new proto into replay memoryMt = x̃l.
9 for local epoch e ∈ E do

10 Sample mini-batch ζ from local data Du;
11 Calculate gradient gt,r,eu = ∇E(θ(r,e)u , ζ);
12 end for

13 Calculate g̃t = 1
E

∑E
e=1 g

t,r,e
u .

14 for task i = 1, . . . , t− 1 do
15 Sample coreset ζ from replay memoryMi according to task i ,

16 Calculate task-wise gradients: g̃iu = ∇E(θ(r,e)u , ζ) .
17 end for

18 g = [g̃1u, . . . , g̃
t
u], and ḡ =

∑t
i=1 g

i
u ,

19 Solve: Γ∗ = argminΓ Γg · ḡ + κ∥ḡ∥∥Γg(t,r)∥,

20 Update TAM: gTAM = ḡ + κ∥ḡ∥
∥Γ∗g(r)∥Γ

∗g(t,r),

21 Model steps with aggregated gradient: θ(t,r)u = θ
(t,r−1)
u − ηgg

(t,r)
TAM .

22 Upload client’s model θ(t,r+1)
u to server;

23 end for
24 Server Optimization:
25 for task t = 0, . . . do
26 for round r = 0, . . . , R do
27 Clients Updates;
28 Calculate g

(t,r)
u = θ

(t,r+1)
u − θ

(t,r)
u , g(t,r) = {g(t,r)u |u ∈ U};

29 Calculate g
(t,r)
FL (e.g., g(t,r)FL = 1

U

∑U
u=1 g

(t,r)
u as the FedAvg update);

30 Solve: Γ∗ = argminΓ Γg
(t,r) · g(t,r)FL + κ∥g(t,r)FL ∥∥Γg(t,r)∥,

31 Update SAM: g(t,r)SAM = g
(t,r)
FL +

κ∥g(t,r)
FL ∥

∥Γ∗g(t,r)∥Γ
∗g(t,r),

32 Model steps with aggregated gradient: θ(t,r+1)
u = θ

(t,r)
u − ηug

(t,r)
SAM .

33 end for
34 end for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 2: Prototypical Coreset Selection at task t

Input: Replay memoryM with budget |M| =
∑L

l |Ml|, new class data N t
l , encoder ϕ

Output: updated replay memoryMl

1 for label l ∈ L do
2 Step 1: Compute class prototype target
3 pl = 1∑T

j=1 |N j
l |

[
g(x̃l;ϕ)·

∑t−1
j=1 |N

j
l |+

∑
i∈N t

l
g(xi;ϕ)

]
· 1{yi = l}.

4 Step 2: Initialize optimization variables
5 Initialize coefficient set A = {ai | i ∈ N t

l } = {1/N t
l | i ∈ N t

l }.
6 Step 3: Solve prototype-matching objective
7 for epoch e ∈ E do

8 Lproto =
∥∥∥ 1
|Ml|

∑
i∈Ml g(xi;ϕ) +

1
|N t

l |
∑

i∈N t
l
ai g(xi;ϕ)− pl

∥∥∥2.
9 A = A− ηA∇ALproto.

10 end for
11 X̃ l =

{
xi ∈ N t

l

∣∣ ai ∈ Top-k(A)
}
, s.t. k = |Ml|.

12 Step 4: Style mixing if selected samples exceed memory
13 if |X̃ l| > |Ml| then
14 foreach x ∈ X̃ l do
15 x̃l = MixStyle(x̃l;x) ;
16 end foreach
17 end if
18 Step 5: Update replay memory
19 Ml ← X̃ l

20 end for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D RELATED WORKS

D.1 IMPORTANCE-BASED SAMPLING

LGA (Dong et al., 2024) introduces a method to balance the contributions of different classes to
the gradient, aiming to mitigate catastrophic forgetting caused by imbalance among incremental
tasks. Re-Fed (Li et al., 2024b) presents a method for quantifying an importance score, which is
utilized to selectively retain cached samples within the replay memory. FedWeIT (Yoon et al., 2021)
partitions network weights into global federated and sparse task-specific parameters, enabling clients
to selectively acquire knowledge through a weighted combination of others’ task-specific parameters.
FedSSI (Li et al., 2025c) introduces a regularization technique that estimates the importance of each
synaptic weight change during training. It penalizes substantial changes to weights deemed important
for previously learned tasks, thereby helping to preserve prior knowledge.

D.2 PROTOTYPE-BASED LEARNING

SR-FDIL (Li et al., 2024c) introduces an approach that utilizes data from the local replay memory to
train both the prototype generator and the discriminator on local devices. TagFed (Wang et al., 2024)
proposes a method to identify repetitive data features from previous tasks and augment them for the
current task prior to federation, thereby enhancing overall performance.

D.3 GRADIENT MEMORY

GradMA (Luo et al., 2023) employs gradient projection on the client side, correcting gradients via
quadrature optimization using stored gradients from other clients.

D.4 GENERATIVE REPLAY MEMORY

FedCIL (Qi et al., 2023) introduces an efficient approach for training GAN-based replay memory in
distributed systems. TARGET (Zhang et al., 2023b) introduces an approach that learns a server-side
generative model capable of producing data that adheres to the global model distribution. This
generated data is subsequently used to update the client-side student model via knowledge distillation.
AF-FCL (Wuerkaixi et al., 2024) introduces a generative model that employs a learned normalizing
flow to capture and retain the essential data distribution while effectively eliminating biased features.
pFedDIL (Li et al., 2025d) proposes an approach that transfers knowledge across incremental tasks
by using a small auxiliary classifier in each personalized model to distinguish its specific task from
others. FBL (Dong et al., 2023) uses adaptive class-balanced pseudo labeling along with semantic
compensation and relation consistency losses to generate reliable pseudo labels and balance gradient
propagation, thereby mitigating the effects of background shifts.

D.5 EPISODIC REPLAY MEMORY FOR CONTINUAL LEARNING

GEM (Lopez-Paz & Ranzato, 2017) introduced an episodic memory mechanism that stores a subset
of data samples, enabling the estimation of task-specific gradients. This approach facilitates gradient
projection, thereby mitigating catastrophic forgetting in CL. VR-MCL (Wu et al., 2024) introduced a
meta CL approach that effectively utilizes data stored in the memory buffer.

Authors in (Qi et al., 2023) demonstrate that incorporating a GAN-based replay memory in a
distributed system can be significantly affected by feature shifts among clients. To address this
challenge, FedCIL introduces a distillation-based approach designed to mitigate discrepancies across
different domains. GPM (Saha et al., 2021) introduces a method for storing gradient projections in
replay memory as an alternative to retaining previous data, thereby facilitating CL. FS-DGPM (Deng
et al., 2021) introduces an enhanced version of GPM, in which the projected gradients are flattened.
This flattening process improves generalization and enhances robustness to noise caused by a sharp
loss landscape.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

We utilize the pFLLib framework (Zhang et al., 2025) as FL core framework to design the FCL
settings. All experiments are conducted using six NVIDIA GeForce RTX 4090 GPUs and two
NVIDIA GeForce RTX 3090 GPUs. The detailed experimental configurations are outlined below:

E.1 DATASETS

E.1.1 HETEROGENEOUS FEDERATED CONTINUAL LEARNING SETTINGS

Our work investigates the behavior of various algorithms in a heterogeneous FCL setting. To align
with a realistic and challenging non-IID federated scenario, we increase the difficulty by adopting the
task design proposed by (Dohare et al., 2024), in which we construct a sequence of classification
tasks by taking the classes in groups.

Example 1 For example, in case of binary classification, one task could involve differentiating
chickens from llamas, while another might focus on differentiating phones from computers.

To consider the performance of baselines under different level of heterogeneity, we consider two
experimental scenarios. In the first, each task comprises 20 distinct classes. This setup represents
the conventional task configuration commonly used in existing literature (Wuerkaixi et al., 2024). In
the second, each task contains only 2 classes, creating a more challenging environment. In this case,
models are more likely to overfit to individual tasks, making them more susceptible to catastrophic
forgetting when adapting to new tasks. Simultaneously, client divergence becomes more pronounced
under this configuration.

Specifically, we utilize two widely adopted benchmark datasets:

Sequenced-CIFAR100. The CIFAR100 dataset (Krizhevsky, 2009) consists of 100 object categories,
with a total of 60,000 images. Each image has a resolution of 32× 32 pixels. In case 1 task comprises
2 classes, we can form 4950 distinct tasks. In case 1 task comprises 20 classes, we can form more
than 5×1020 distinct tasks.

Sequenced-ImageNet1K. ImageNet1K dataset (Deng et al., 2009) contains 1,000 diverse object
categories, with over 1.3 million high-resolution training images. All images are resized to 224× 224
pixels during preprocessing. In case 1 task comprises 2 classes, we can form half a million tasks. We
show the illustration for this case in Fig. 7. In case 1 task comprises 20 classes, we can form more
than 3×1041 distinct tasks. The scale and diversity of ImageNet1K pose greater challenges in terms
of memory footprint, computational cost, and model scalability.

Client 1

Client 2

Client 3

Client 4

Client 5

Task 1 Task 2 Task 3 Task 4 Task 5

88,837

605,250

531,254

240,522

886,216

342,701

424,751

652,858

627,194

470,185

727,388

199,353

7,285

248,92

817,320

36,976

516,633

285,246

82,144

45, 312

532,355

82,257

627,110

611,941

97,412

Figure 7: The data distribution when using S-ImageNet1K in case 1 task comprises 2 classes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.2 BASELINES

We evaluate our approach against several established baselines from FL, and FCL. For conventional
FL baselines, we compare with standard methods such as FedAvg (McMahan et al., 2017) , FedDBE
(Zhang et al., 2023a), FedL2P (Lee et al., 2023), and FedAS (Yang et al., 2024), FedOMG (Nguyen
et al., 2025). FedAvg serves as the foundational baseline in FL. FedL2P and FedAS focus on
personalized FL, enabling models to adapt to client-specific tasks and thereby mitigating the effects
of task heterogeneity. In contrast, FedDBE and FedOMG aim to construct a more robust global model
by reducing inter-client bias, thereby enhancing generalization across both tasks and clients.

For FCL, we assess several state-of-the-arts, including FedWeIT (Yoon et al., 2021), GLFC (Dong
et al., 2022), FedCIL (Qi et al., 2023), LANDER (Tran et al., 2024), TARGET (Zhang et al., 2023b),
FedSSI (Li et al., 2025c), ReFed+ (Li et al., 2025a), and AF-FCL (Wuerkaixi et al., 2024). FedWeIT
exemplifies approaches that allocate specialized expert modules for each task, allowing task-specific
adaptation. GLFC uses a distillation-based approach to address catastrophic forgetting, considering
both local and global aspects. FedCIL, LANDER, TARGET, and AF-FCL adopt generative replay
strategies, training generative models on each client to synthesize pseudo-data for previously encoun-
tered tasks. Among these, AF-FCL is the most recent and directly addresses the challenges posed by
heterogeneous FCL settings, making it a particularly relevant benchmark for comparison.

E.3 EVALUATION METRICS

To evaluate the baselines, we utilize two standard metrics from the CL literature (Yoon et al., 2021),
(Mirzadeh et al., 2021), which are well-suited for tracking the performance of a global model in FL,
coined accuracy and averaged forgetting.

Averaged Forgetting. This metric measures the decline from a task’s highest accuracy, which is
typically achieved right after it is trained, to its final accuracy after all tasks have been learned. For T
tasks, the forgetting is defined as

AF =
1

T − 1

T−1∑
i=1

max
t∈[1:T−1]

(at,i − aT,i). (44)

As the model shifts focus to new tasks, its performance on earlier ones often decreases. Therefore,
minimizing forgetting is important to maintain overall performance.

E.4 ARCHITECTURE DETAILS

For CIFAR-10, CIFAR100, Digit10, and Office31, we adopt conventional ResNet-18 (He et al., 2016)
as the backbone network architecture for all validation experiments. For S-ImageNet1K, we employ
Swin Transformer Tiny (Swin-T) (Liu et al., 2021) as the backbone. It is noted that FCIL, LANDER,
TARGET, FedL2P, FedWeIT and AF-FCL use addition generative networks or modify their network
architectures, with details summarized in the following table. We denote FedWeIT (T) as the version
theoretically proposed in the original paper, while FedWeIT (C) represents the configuration observed
in our experimental implementation.

Specifically, FedWeIT augments the base model with sparse task-adaptive parameters, task-specific
masks over local base parameters, and attention weights for inter-client knowledge transfer. FCIL,
LANDER, and TARGET incorporate additional GANs to learn past task features. FedL2P introduces
a meta-net that generates personalized hyper-parameters, such as batch normalization statistics and
learning rates, adapted to each client’s local data distribution to improve learning on non-IID data. AF-
FCL additionally requires a normalizing flow generative model (NFlow1) for credibility estimation
and generative replay mechanism, which guide selective retention and forgetting.

E.5 TRAINING DETAILS

In our proposed heterogeneous federated continual learning framework for the S-CIFAR100 and
S-ImageNet1K datasets, we consider a setting involving 10 clients with a client participation fraction

1NFlow refers to the normalizing flow model, where the example is provided in https://github.com/
zaocan666/AF-FCL/blob/main/FLAlgorithms/PreciseFCLNet/model.py

27

https://github.com/zaocan666/AF-FCL/blob/main/FLAlgorithms/PreciseFCLNet/model.py
https://github.com/zaocan666/AF-FCL/blob/main/FLAlgorithms/PreciseFCLNet/model.py

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 3: Architectural details of methods with modified models.

Method CIFAR-10, CIFAR100, Digit10, Office31 ImageNet1K
Model #Params Model #Params

FedAvg ResNet-18 11.7 M Swin-T 28.8 M
FedSSI ResNet-18 11.7 M Swin-T 28.8 M
ReFed+ ResNet-18 11.7 M Swin-T 28.8 M

FCIL ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7 M
LANDER ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7 M
TARGET ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7 M
FedL2P ResNet-18 + Meta-Net 13.5 M Swin-T + Meta-Net 32.6 M

FedWeIT (T) Modified ResNet-18 596.2 M Modified Swin-T 7192.3 M
FedWeIT (C) Modified LeNet 171.8 B
AF-FCL ResNet-18 + NFlow 21.3 M Swin-T + NFlow 53.4 M

of 1.0. We do not adopt a conventional non-IID distribution in this scenario; instead, each client is
assigned distinct classes, which introduces a level of heterogeneity that is more challenging than
typical non-IID configurations.

Additionally, we evaluate the proposed approach under non-IID conditions using four benchmark
datasets: CIFAR-10, CIFAR100, Digit-10, and Office-31. For these experiments, we simulate data
heterogeneity using the Dirichlet distribution with varying concentration parameters (e.g., α = 0.1,
1.0, 10.0, and 100.0) to control the degree of non-IID-ness. The complete details of the experimental
settings are provided in Table 4.

Table 4: Experimental Details. Settings for heterogeneous and non-IID distributed FCL.

Attributes Heterogeneous FCL Non-IID distributed FCL
S-CIFAR100 ImageNet1K CIFAR10 S-CIFAR100 Digit10 Office31

Task size 141 MB / 14 MB 8 GB / 0.8 GB 141 MB 141 MB 480 M 88 M
Image number 60K 1.3M 60K 60K 110K 4.6K
Image Size 3× 32× 32 3× 224× 224 3× 32× 32 3× 32× 32 1× 28× 28 3× 300× 300
Task number 5 / 50 50 / 500 5 10 4 3

Batch Size 128 128 64 64 64 32
Learning Rate 0.005 0.005 0.01 0.01 0.001 0.01
Data heterogeneity N/A N/A 0.1 10.0 0.1 1.0
Client numbers 10 10 10 10 10 10
Local training epoch 5 5 5 5 5 5
Client selection ratio 1.0 1.0 1.0 1.0 1.0 1.0
Rounds per Task 25 25 80 100 60 60

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTAL EVALUATIONS

F.1 EXPERIMENTAL EVALUATIONS ON THE POPULAR CLASS DISTRIBUTION USED BY OTHER
WORKS

The results in Table 5 show that when each task contains 20 classes, the problem becomes easier,
leading to much lower forgetting across all methods compared to the 2-class setting. Even under
this easier scenario, STAMP maintains a strong overall trade-off, achieving higher accuracy and
competitive forgetting while keeping communication cost comparable to standard FL. At the same
time, STAMP requires only modest GPU and disk resources, unlike methods such as LANDER or
FedWeIT that consume significantly more memory. This efficiency highlights STAMP’s robustness
and practicality for real-world deployment, even when class distributions are less challenging.

Table 5: We report the average per-task performance of FCL under a setting where each task is
assigned 20 classes. Evaluations are conducted using 10 clients (fraction = 1.0) across 5 independent
trials. OOM refers to the out of memory in GPU. ↑ and ↓ indicate that higher and lower values are
better, respectively. C→S and S→C denote communication from the client to the server and from the
server to the client, respectively.

S-CIFAR100 (U = 10, C = 20)

Methods Accuracy ↑ AF ↓ Avg. Comp. ↓ Comm. Cost ↓ GPU (Peak) ↓ Disk ↓
(Sec/Round) C→S S → C

FedAvg 27.2 (± 2.2) 5.9 (± 0.9) 27.6 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedDBE 28.3 (± 1.6) 5.5 (± 0.7) 28.3 sec 44.6 MB 44.6 MB 1.91 GB N/A
FedAS 40.2 (± 1.1) 30.7 (± 0.3) 135.7 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedOMG 36.8 (± 1.4) 8.5 (± 0.6) 32.7 sec 44.6 MB 44.6 MB 1.92 GB N/A

GLFC 29.8 (± 2.1) 7.5 (± 0.4) 167.8 sec 88.2 MB 46.5 MB 3.83 GB 22.1 MB
FedCIL 32.4 (± 1.7) 6.3 (± 1.2) 199.3 sec 95.3 MB 44.6 MB 4.21 GB 18.5 MB
LANDER 35.1 (± 1.3) 5.4 (± 0.8) 153.6 sec 112.4 MB 138.7 MB 4.83 GB 131.5 MB
TARGET 32.1 (± 2.3) 5.9 (± 1.6) 236.4 sec 112.4 MB 44.6 MB 3.65 GB 18.5 MB
FedL2P 30.2 (± 1.8) 6.3 (± 1.3) 78.1 sec 56.3 MB 56.3 MB 2.56 GB N/A
Re-Fed+ 37.4 (± 1.6) 6.3 (± 1.3) 29.2 sec 44.6 MB 44.6 MB 2.17 GB 18.5 MB

FedWeIT 37.3 (± 2.3) 4.7 (± 0.8) 38.7 sec 44.2 MB 44.2 MB 7.21 GB 6.1 GB
FedSSI 39.2 (± 1.5) 8.9 (± 1.1) 61.7 sec 44.6 MB 44.6 MB 2.53 GB N/A
AF-FCL 35.6 (± 0.4) 5.2 (± 0.5) 45.3 sec 156.3 MB 121.3 MB 8.93 GB N/A

STAMP 41.3 (± 0.9) 5.4 (± 0.6) 56.3 sec 44.6 MB 44.6 MB 1.92 GB 16.3 MB

S-ImageNet1K (U = 10, C = 20)

FedAvg 17.3 (± 3.3) 14.1 (± 0.2) 1485.2 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedDBE 18.8 (± 5.2) 13.9 (± 0.3) 1572.7 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedAS 22.3 (± 5.0) 18.2 (± 0.6) 5108.5 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedOMG 21.2 (± 3.3) 11.3 (± 0.7) 1821.2 sec 112.5 MB 112.5 MB 16.11 GB N/A

GLFC 22.5 (± 2.1) 6.3 (± 0.2) 5647.3 sec 225.3 MB 121.2 MB 20.24 GB 112.6 MB
FedCIL 24.1 (± 2.8) 7.3 (± 0.4) 7120.3 sec 245.5 MB 112.5 MB 23.47 GB 184.3 MB
LANDER 26.9 (± 1.4) 7.8 (± 0.9) 6825.8 sec 267.4 MB 453.6 MB 26.54 GB 1.31 GB
TARGET 25.8 (± 3.8) 6.7 (± 0.4) 9958.2 sec 287.4 MB 112.5 MB 21.08 GB 184.3 MB
FedL2P 22.3 (± 3.7) 9.4 (± 0.6) 3278.7 sec 146.6 MB 146.6 MB 18.21 GB N/A
Re-Fed+ 25.4 (± 1.9) 7.4 (± 0.6) 1508.4 sec 112.5 MB 112.5 MB 16.71 GB 184.3 MB

FedWeIT 24.8 (± 1.3) 5.1 (± 0.8) 1763.8 sec 110.4 MB 110.4 MB 41.23 GB 61.7 GB
FedSSI 25.1 (± 2.4) 8.6 (± 0.9) 3111.8 sec 287.4 MB 112.5 MB 17.66 GB N/A
AF-FCL 21.3 (± 5.1) 4.5 (± 0.6) 1823.7 sec 421.3 MB 336.8 MB 46.81 GB N/A

STAMP 26.8 (± 2.3) 5.8 (± 0.4) 3041.2 sec 112.5 MB 112.5 MB 16.11 GB 152.6 MB

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F.2 EXPERIMENTAL EVALUATIONS ON PRETRAINED MODELS

Figure 8 illustrates the performance of FedAvg and STAMP on the S-ImageNet1K dataset using a
pretrained model. Given that the model is pretrained on the same dataset, the evaluation may suffer
from overfitting. Consequently, the experimental results show no substantial performance difference
between the two algorithms. Moreover, the issue of catastrophic forgetting appears to be minimal in
this evaluation setting.

0 20 40 60 80 100
Task Index

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995
Ac

cu
ra

cy
Performance Over Tasks Using Pre-trained Model

STAMP
FedAvg

Figure 8: Accuracy on S-ImageNet1K with Pretrained Models.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F.3 EXPERIMENTAL EVALUATIONS ON CATASTROPHIC FORGETTING

2 4 6 8 10 12
Task Number

20

25

30

35

40

45

50

55
Ac

cu
ra

cy
 (%

)
CIFAR100 - 2 classes/task

FedAvg
FedCIL
FedL2P
TARGET
FedSSI
AF-FCL
STAMP

(a)

2 4 6 8 10 12
Task Number

15

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

ImageNet1K - 2 classes/task

FedAvg
FedCIL
FedL2P
TARGET
FedSSI
AF-FCL
STAMP

(b)

Figure 9: Analysis on forgetting curves.

Figure 9 shows that STAMP consistently exhibits substantially less performance degradation as the
number of tasks increases, maintaining higher accuracy across both S-CIFAR100 and S-ImageNet1K.
In contrast, other methods display similar downward trends, with accuracy declining more rapidly
as tasks progress. Moreover, as illustrated in Figures 5 and 6, higher gradient angles between tasks
correspond to more gradual decline in the forgetting curves, indicating less catastrophic forgetting.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.4 HYPER-PARAMETER TUNING FOR STAMP

In this section, we examine the impact of various hyperparameters through a series of experiments
conducted on the ImageNet-1K dataset. For each experiment, one specific hyperparameter is varied
while all other hyperparameters are held constant.

F.4.1 GRADIENT NORMALIZATION

Since STAMP is sensitive to the magnitude of local gradients, the presence of a dominant subset with
disproportionately large gradient magnitudes can bias the optimization process toward that subset
during gradient alignment. Figure 10 illustrates the impact of applying gradient normalization on
both the client and server sides before performing gradient alignment. With gradient normalization in
place, STAMP demonstrates a notable improvement in performance.

0 20 40 60 80 100
Task Index

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Grad Balance
True
False

Figure 10: Analysis on Gradient Normalization.

F.4.2 GLOBAL TRAINING EPOCHS NUMBER PER ROUND

Fig 11 shows that using 25 training epochs achieves the best balance between performance and
stability. Increasing the number of epochs beyond 25 does not lead to higher accuracy, while it results
in increased forgetting, as indicated by the rise in average forgetting.

15 20 25 30 35
Training Epochs Number

20

25

30

35

40

45

50

55

Pe
rc

en
ta

ge
 (%

)

Last Accuracy
Average Forgetting

Figure 11: Analysis on Gradient Normalization.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F.4.3 LOCAL EPOCH

Selecting the number of local epochs is crucial, as increasing the number of local epochs leads to a
more accurate approximation of the local gradient trajectory. Figure 12 illustrates the performance of
STAMP under varying numbers of local epochs.

0 20 40 60 80 100
Task Index

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Local Epochs
3 epochs
5 epochs
7 epochs

Figure 12: Analysis on different number of local epochs.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F.4.4 LOCAL LEARNING RATE

Figure 13 illustrates the performance of STAMP under different local learning rate.

0 20 40 60 80 100
Task Index

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Local Learning Rate

0.001
0.005
0.01
0.05

Figure 13: Analysis on different local learning rate.

F.4.5 GRADIENT ALIGNMENT SEARCHING RADIUS

Figure 14 illustrates the impact of the search radius on gradient alignment in STAMP. Selecting an
appropriate search radius (e.g., 0.5) is critical for achieving an optimal gradient alignment solution.
A smaller radius (e.g., 0.1) constrains the search space too tightly, causing the solution to converge
toward the average gradient and reducing matching effectiveness. Conversely, a larger radius (e.g.,
0.75) broadens the search space excessively, making it difficult to identify an optimal solution.

0 20 40 60 80 100
Task Index

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

STAMP Searching Radius

0.1
0.25
0.5
0.75

Figure 14: Analysis on different searching radius.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

F.4.6 GRADIENT ALIGNMENT STEP SIZE & MOMENTUM

Figures 15 and 16 demonstrate the effects of momentum and learning rate scheduling on gradient
alignment performance.

0 20 40 60 80 100
Task Index

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

STAMP Learning Rate Scheduling Step Size
0.1
0.25
0.5
0.75

Figure 15: Analysis on different learning rate scheduling step size.

0 20 40 60 80 100
Task Index

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Ac
cu

ra
cy

STAMP Momentum
0.25
0.5
0.75

Figure 16: Analysis on different momentum for gradient alignment.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F.4.7 GRADIENT ALIGNMENT NUMBER OF ROUNDS

Figure 17 illustrates the impact of the number of optimization steps on the efficiency of gradient
alignment.

0 20 40 60 80 100
Task Index

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

STAMP Rounds

50
100
150

Figure 17: Analysis on different number of rounds

F.4.8 GRADIENT ALIGNMENT SCHEDULING STEP SIZE

Figure 18 illustrates the performance of STAMP under various learning rate scheduler step sizes.
Selecting an appropriate step size (e.g., 30) facilitates optimal gradient alignment decisions, thereby
enhancing the stability and efficiency of FCL training.

0 20 40 60 80 100
Task Index

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

STAMP Step Size

10
30
50

Figure 18: Analysis on different scheduling step size.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

F.4.9 GRADIENT ALIGNMENT LEARNING RATE

Figure 19 illustrates the effect of varying learning rates on the optimization of gradient alignment.
The results indicate that STAMP achieves optimal performance when the learning rate is set to 25.

0 20 40 60 80 100
Task Index

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

STAMP Learning Rate

10
25
50

Figure 19: Analysis on different gradient alignment learning rate.

F.4.10 GLOBAL UPDATE LEARNING RATE

The global update learning rate significantly influences the norm of the aggregated gradient. As
shown in Figure 20a, selecting a lower learning rate can reduce the norm of the aggregated gradient
(see Figure 20b). This reduction may lead to slower convergence or result in gradient magnitudes
that are insufficient to escape sharp minima.

0 20 40 60 80 100
Task Index

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

STAMP Meta-Learning Rate

0.5
0.75
1

(a)

0 20 40 60 80 100
Task Index

1

2

3

4

5

Gr
ad

ie
nt

 N
or

m

1e 7
Meta-Learning Rate Impact on Gradient Norm

0.5
0.75
1

(b)

Figure 20: Analysis on global learning rate.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

F.5 EFFECTIVENESS OF GRADIENT ALIGNMENT

F.5.1 CASE OF 10 CLIENTS

To investigate the presence of gradient conflicts in federated learning (FL), we begin with a small-
scale experiment involving 10 clients, each performing a classification task on the CIFAR-100 dataset,
following the setup described above. We randomly select one client (denoted as client 1) and compute
the cosine similarity between its gradient and those of the remaining 9 clients throughout the training
process.

Figure 21 illustrates the cosine similarities between client 1 and each of the other clients (clients
2–10). It can be observed that under our proposed STAMP method, the gradients of client 1 are more
consistently aligned with those of the other clients, as evidenced by higher cosine similarity values.
This alignment indicates a reduction in gradient conflict and supports more stable collaborative
learning.

0 50 100 150 200 250
Communication Rounds

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(a) Client 2

0 50 100 150 200 250
Communication Rounds

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(b) Client 3

0 50 100 150 200 250
Communication Rounds

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(c) Client 4

0 50 100 150 200 250
Communication Rounds

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(d) Client 5

0 50 100 150 200 250
Communication Rounds

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(e) Client 6

0 50 100 150 200 250
Communication Rounds

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(f) Client 7

0 50 100 150 200 250
Communication Rounds

0.2

0.1

0.0

0.1

0.2

0.3

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(g) Client 8

0 50 100 150 200 250
Communication Rounds

0.2

0.1

0.0

0.1

0.2

0.3

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(h) Client 9

0 50 100 150 200 250
Communication Rounds

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(i) Client 10

Figure 21: Cosine similarity between the gradient of client 1 and the gradients of clients 2–10.
STAMP helps improve gradient alignment across clients by increasing cosine similarities.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

To further quantify this effect, we aggregate the number of positive and negative cosine similarities
across training rounds. As shown in Figure 22a and Figure 22b, the standard FedAvg method results
in frequent gradient conflicts, indicated by a large number of negative similarities. In contrast,
STAMP significantly reduces these conflicts, increasing the number of positively aligned gradients
and thereby promoting more effective global model updates.

0 50 100 150 200 250
Communication Rounds

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
os

iti
ve

 C
os

in
e

Si
m

ila
rit

ie
s

FedAvg
STAMP

(a)
;

0 50 100 150 200 250
Communication Rounds

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f N
eg

at
iv

e
Co

sin
e

Si
m

ila
rit

ie
s

FedAvg
STAMP

(b)
;

Figure 22: Comparison between STAMP and FedAvg in terms of gradient alignment. STAMP
significantly reduces gradient conflicts in a 10-client FL system.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

F.5.2 CASE OF 100 CLIENTS

To further validate the trend at a larger scale, we repeat the experiment using an FL setup with
100 clients. A client is again selected at random (denoted as client 1), and we compute the cosine
similarities between its gradient and those of the remaining 99 clients during training. Figure 23
illustrates the gradient cosine similarities between client 1 and 9 representative clients chosen from
the remaining pool. It is evident that STAMP consistently improves gradient alignment between
client 1 and the selected peers, as indicated by higher cosine similarity values across training rounds.

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(a) Client 2

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(b) Client 3

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(c) Client 4

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(d) Client 5

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(e) Client 6

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(f) Client 7

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(g) Client 8

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(h) Client 9

0 50 100 150 200 250
Communication Rounds

0.1

0.0

0.1

0.2

0.3

0.4

Co
sin

e
Si

m
ila

rit
y

Va
lu

e

FedAvg
STAMP

(i) Client 10

Figure 23: Cosine similarity between the gradient of client 1 and those of 9 selected clients in
a 100-client FL system. STAMP improves alignment by increasing the cosine similarities across
training rounds.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

To summarize the overall trend across all clients, we count the number of positive and negative cosine
similarities between client 1 and the other 99 clients at each training round. As shown in Figure 24a
and Figure 24b, under FedAvg, client 1’s gradient conflicts with more than 60% of the other clients
for most of the training process. In contrast, STAMP significantly reduces the prevalence of gradient
conflicts, lowering the proportion of negative similarities to below 10% in most rounds.

0 50 100 150 200 250
Communication Rounds

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
os

iti
ve

 C
os

in
e

Si
m

ila
rit

ie
s

FedAvg
STAMP

(a)
;

0 50 100 150 200 250
Communication Rounds

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f N
eg

at
iv

e
Co

sin
e

Si
m

ila
rit

ie
s

FedAvg
STAMP

(b)
;

Figure 24: Comparison between STAMP and FedAvg in aligning gradients in a 100-client FL system.
STAMP significantly reduces gradient conflicts and increases agreement among client updates.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

F.6 EFFECTIVENESS OF PROTOTYPICAL CORESET

F.6.1 EFFECTIVESS OF PROTONET

To evaluate the impact of prototypical coreset selection in STAMP with and without ProtoNet, we
conduct an ablation study, with the results presented in Table 6. To further investigate why ProtoNet
improves performance, we analyze the gradient alignment and its variance for STAMP and STAMP
without ProtoNet, as shown in Figure 25. Two key observations emerge from Figure 25: first, STAMP
without ProtoNet exhibits higher gradient variance; second, its gradient angles are lower compared to
the full version. This can be attributed to the fact that higher gradient variance leads to less accurate
gradient alignment.

Table 6: Ablation studies of the efectiveness of ProtoNet.

Method S-CIFAR-100 S-ImageNet1K
Acc ↑ Acc ↑

ProtoNet 52.8±0.9 41.5±2.8
w/o ProtoNet 47.6±0.8 36.3±1.3

0 50 100 150 200 250 300
Communication Rounds

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Gr
ad

ie
nt

 A
ng

le
 C

os
in

e

w/o ProtoNet

0 50 100 150 200 250 300
Communication Rounds

ProtoNet

Figure 25: Effectiveness of ProtoNet on gradient angle. This is done on dataset S-ImageNet1K

F.6.2 T-SNE VISUALIZATIONS

Figure 26 illustrates the effectiveness of prototype learning from a prototypical coreset. This figure
highlights two key observations: (1) the inability of vanilla FL to effectively learn prototypes from
hidden representations, and (2) the improved prototype learning capability achieved by STAMP. In the
case of FedAvg, the model fails to acquire sufficiently representative features due to the limitations
imposed by the single-pass data stream.

In contrast, STAMP demonstrates strong class discrimination as it progresses through tasks, which
enhances its ability to learn prototypes from a compact coreset. This improvement stems from the
coreset selection process, which is guided by class-specific criteria. As a result, it reduces inter-class
confusion that could otherwise lead to inaccurate or misleading prototype representations.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Tr
ai

ni
ng

 S
tr

ea
m

FedAvg

Ta
sk

 1
Ta

sk
 5

Ta
sk

 1
0

Ta
sk

 1
5

Ta
sk

 2
0

STAMP

Figure 26: t-SNE visualizations of features learned by FedAvg and STAMP on the CIFAR-10 test set
reveal notable differences. FedAvg exhibits significant class confusion when learning new classes,
likely due to shortcut learning. In contrast, STAMP, leveraging a prototypical coreset, effectively
mitigates forgetting and maintains clearer class separation.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

F.7 ADDITIONAL EVALUATIONS ON STAMP WITH VARYING CLIENT NUMBER

Table 7: Evaluation of STAMP and FedAvg on S-CIFAR100 and S-ImageNet1K datasets with 2
classes per client task. The experiments are conducted under different numbers of clients to assess
scalability. Each result is averaged over 5 runs with standard deviation.

S-CIFAR100 (C = 2)

Method Metric 10 20 50 100

FedAvg Acc. 31.7 (± 1.7) 26.8 (± 1.9) 16.2 (± 2.5) 8.8 (± 2.9)
AF 22.1 (± 1.3) 20.3 (± 0.9) 13.7 (± 1.7) 6.8 (± 1.1)

STAMP Acc. 52.8 (± 0.9) 48.3 (± 0.6) 41.7 (± 1.1) 31.4 (± 0.9)
AF 24.3 (± 0.8) 23.3 (± 0.4) 20.5 (± 0.8) 18.4 (± 0.9)

ImageNet1K (C = 2)

FedAvg Acc. 24.3 (± 5.1) 17.6 (± 4.3) 10.7 (± 6.7) 4.8 (± 3.7)
AF 19.6 (± 0.1) 15.3 (± 0.3) 8.9 (± 0.4) 4.1 (± 0.2)

STAMP Acc. 41.5 (± 2.8) 38.8 (± 1.9) 33.1 (± 1.3) 24.4 (± 1.1)
AF 24.2 (± 0.8) 22.8 (± 0.6) 18.9 (± 0.3) 15.1 (± 0.4)

Table 7 presents an additional evaluations of the STAMP framework under varying numbers of clients
(10, 20, 50, 100) on two benchmark datasets: S-CIFAR100 and S-ImageNet1K, with 2 classes per
task. Across both datasets, as the number of clients increases, performance degrades for both methods
due to increased heterogeneity and gradient conflicts. However, STAMP consistently outperforms
FedAvg in all configurations, demonstrating stronger robustness and scalability. Notably, STAMP
achieves higher accuracy with lower forgetting, especially in more challenging settings with a large
number of clients.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

F.8 ADDITIONAL EVALUATIONS ON STAMP UNDER DIFFERENT PARTIAL PARTICIPATION
RATES

Table 8: Performance of FedAvg and STAMP with 10 clients under different partial participation
rates. STAMP is designed to remain robust as participation decreases.

S-CIFAR100 (C = 2)

Method Metric 0.1 0.2 0.5 1.0

FedAvg Acc. 22.5 (± 2.8) 26.1 (± 2.3) 29.7 (± 1.8) 31.7 (± 1.7)
AF 16.4 (± 1.9) 18.2 (± 1.4) 20.5 (± 1.1) 22.1 (± 1.3)

STAMP Acc. 45.3 (± 1.6) 48.0 (± 1.2) 51.0 (± 1.0) 52.8 (± 0.9)
AF 20.8 (± 1.0) 22.1 (± 0.8) 23.5 (± 0.6) 24.3 (± 0.8)

ImageNet1K (C = 2)

FedAvg Acc. 13.8 (± 6.5) 16.3 (± 5.4) 20.9 (± 4.7) 24.3 (± 5.1)
AF 10.8 (± 1.1) 13.7 (± 0.9) 17.3 (± 0.6) 19.6 (± 0.1)

STAMP Acc. 33.7 (± 3.9) 36.9 (± 3.2) 39.8 (± 2.6) 41.5 (± 2.8)
AF 19.1 (± 1.2) 21.0 (± 0.9) 23.1 (± 0.6) 24.2 (± 0.8)

Table 8 shows FedAvg is heavily impacted by low partial client participation. In contrast, STAMP
remains substantially more robust thanks to temporal gradient alignment and prototypical core-
set selection mechanism. This robustness becomes more pronounced as more clients participate,
where STAMP consistently outperforms FedAvg by a large margin across both S-CIFAR100 and
S-ImageNet1K. This is thanks to the proposed spatio gradient alignment.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

G TIME COMPLEXITY OF PROTOTYPICAL CORESET SELECTION

Theorem 3 (Time Complexity of Prototypical Coreset Selection) Under standard assumptions,
Algorithm 2 has time complexity O(E · Cϕ · (|M| + |N t|)), where L is the number of classes,
E is the number of epochs, |Ml| is the memory size per class, |N t

l | is the number of new samples per
class at task t, and Cϕ is the computational cost of the encoder forward pass.

Proof. Let m = |Ml|, n = |N t
l |, we analyze the time complexity by examining each step of

Algorithm 2 for a single class l, then aggregate over all L classes.

Step 1 (Prototype Computation): Computing g(xi;ϕ) for each xi ∈ N t
l requires n encoder forward

passes. The summation and normalization operations over d-dimensional vectors require O(nd)
arithmetic operations. For instance,

T1 = O(n · Cϕ + nd). (45)

Step 2 (Initialization): Initializing |A| = n coefficients requires:

T2 = O(n). (46)

Step 3 (Optimization Loop): For each epoch e ∈ {1, . . . , E}:

• Computing embeddings for samples inMl requires m encoder forward passes: O(m · Cϕ)

• Computing embeddings for samples in N t
l requires n encoder forward passes: O(n · Cϕ)

• Computing weighted sums
∑

i∈Ml g(xi;ϕ) and
∑

i∈N t
l
aig(xi;ϕ) requires O((m+ n)d)

operations
• Computing the squared norm requires O(d) operations
• Computing gradient∇ALproto and updating A requires O(n) operations

Over E epochs, we have the following time complexity:

T3 = O(E · [(m+ n) · Cϕ + (m+ n)d+ n]) (47)

The Top-k selection can be implemented using quickselect in expected O(n) time or heap-based
selection in O(n logm) time:

T3,select = O(n logm) (48)

Step 4 (Style Mixing): In the worst case, applying MixStyle to m samples requires:

T4 = O(m · Cmix) (49)

Step 5 (Memory Update): Updating the memory requires:

T5 = O(m) (50)

Combining all steps, we have the following computation complexity as follows:

Tclass = T1 + T2 + T3 + T3,select + T4 + T5
= O

(
n · Cϕ + nd+ n+ E · [(m+ n) · Cϕ + (m+ n)d+ n]

+ n logm+m · Cmix +m
)

(51)

To simplify the computation complexity, we follow the following assumptions typical in continual
learning settings:

Assumption 4 (Encoder Dominance) The encoder forward pass dominates other operations:
Cϕ ≫ d,Cmix.

Assumption 5 (Multiple Epochs) The number of optimization epochs satisfies E ≥ 1, typically
E ≫ 1 in practice.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Under Assumptions 4 and 5, the dominant term in Tclass is E · (m + n) · Cϕ because we have the
three following statements:

E · (m+ n) · Cϕ ≫ n · Cϕ (for E ≥ 1 and m > 0) (52)
E · (m+ n) · Cϕ ≫ E · (m+ n) · d (by Assumption 4) (53)
E · (m+ n) · Cϕ ≫ n logm,m · Cmix (by Assumption 4) (54)

As a consequence, we have the following simplified complexity for each class as follows:

Tclass = O(E · (m+ n) · Cϕ) (55)

Since the algorithm iterates over L classes independently, we have the following total computational
complexity as follows:

Ttotal = L · Tclass = O(L · E · (m+ n) · Cϕ)

= O(L · E · (|Ml|+ |N t
l |) · Cϕ) = O(E · (|M|+ |N t|) · Cϕ) (56)

This completes the proof.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

H PRIVACY OF STAMP

FL (McMahan et al., 2017), and FCL in particular, are vulnerable to various attacks such as data
poisoning, model poisoning (Wan et al., 2024), backdoor attacks (Nguyen et al., 2023), and gradient
inversion attacks (Petrov et al., 2024; Balunovic et al., 2022; Dimitrov et al., 2022). Our proposed
method does not introduce any additional privacy risks beyond those inherent to the standard FedAvg
algorithm. Consequently, it is compatible with existing defense mechanisms developed for FedAvg,
including secure aggregation (Mai et al., 2024; So et al., 2023) and noise injection prior to aggregation
(Hu et al., 2024).

Unlike several prior FCL approaches (Zhang et al., 2023b; Qi et al., 2023) that require clients to
share either locally trained generative models or perturbed private data, STAMP relies solely on
gradient alignment. It utilizes the global model weights and the uploaded local model updates,
information already exchanged among clients in the standard FedAvg setting, thus avoiding the need
for additional private data sharing, especially over open communication environments (e.g., 5G/6G
wireless networks).

I LIMITATIONS AND FUTURE WORKS

A primary limitation of our method lies in the sensitivity of gradient alignment to the stability of
task-wise and client-wise gradient trajectory approximation. Moreover, existing gradient alignment
approaches typically learn a single parameter set that adjusts the magnitude of task-specific gradients
through a convex combination. Such approaches do not influence the direction of the gradients.
Therefore, enhancing the stability of gradient trajectory approximation and improving gradient
alignment performance, particularly by extending the learnable parameter set to operate at the
layer-wise or element-wise level, emerge as a promising direction for future research.

48

	Introduction
	Backgrounds & Preliminaries
	Federated Continual Learning
	Gradient Alignment

	Proposed Method
	Spatio-Temporal Gradient Alignment
	Prototypical Coreset assisted Replay Memory

	Theoretical Analysis
	Experimental Results
	Benchmarking
	Experimental Analyses and Ablation Tests

	Conclusion
	Proof on Theorems
	Technical Assumptions
	Technical Lemmas
	Proof on Lemma 6
	Proof on Theorem 1
	Proof on Theorem 2

	Gradient Alignment Update Rule
	Detailed Algorithms
	Related Works
	Importance-based Sampling
	Prototype-based Learning
	Gradient Memory
	Generative Replay Memory
	Episodic Replay Memory for Continual Learning

	Experimental Details
	Datasets
	Heterogeneous Federated Continual Learning Settings

	Baselines
	Evaluation Metrics
	Architecture Details
	Training Details

	Additional Experimental Evaluations
	Experimental Evaluations on the popular class distribution used by other works
	Experimental Evaluations on Pretrained Models
	Experimental Evaluations on Catastrophic Forgetting
	Hyper-parameter tuning for STAMP
	Gradient Normalization
	Global Training Epochs Number per Round
	Local Epoch
	Local Learning Rate
	Gradient Alignment Searching Radius
	Gradient Alignment Step Size & Momentum
	Gradient Alignment Number of Rounds
	Gradient Alignment Scheduling Step Size
	Gradient Alignment Learning Rate
	Global Update Learning Rate

	Effectiveness of Gradient Alignment
	Case of 10 clients
	Case of 100 clients

	Effectiveness of Prototypical Coreset
	Effectivess of ProtoNet
	t-SNE visualizations

	Additional evaluations on STAMP with varying client number
	Additional evaluations on STAMP under different partial participation rates

	Time Complexity of Prototypical Coreset Selection
	Privacy of STAMP
	Limitations and Future Works

