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ABSTRACT

Federated Continual Learning (FCL) has recently emerged as a crucial research
area, as data from distributed clients typically arrives as a stream, requiring se-
quential learning. This paper explores a more practical and challenging FCL
setting, where clients may have unrelated or even heterogeneous tasks, leading
to gradient conflicts where local updates point in divergent directions. In such a
scenario, statistical heterogeneity and data noise can create spurious correlations,
leading to biased feature learning and severe catastrophic forgetting. Existing
FCL approaches often use generative replay to create pseudo-datasets of previous
tasks. However, generative replay itself suffers from catastrophic forgetting and
task divergence among clients, leading to overfitting phenomenon. To address
these challenges, we propose a novel approach called Spatio-Temporal grAdient
alignMent with Prototypical Coreset (STAMP). Our contributions are threefold: 1)
We develop a model-agnostic method to determine subset of samples that effec-
tively form prototypes when using a prototypical network, making it resilient to
continual learning challenges; 2) We introduce a spatio-temporal gradient align-
ment approach, applied at both the client-side (temporal) and server-side (spatio),
to mitigate catastrophic forgetting and data heterogeneity; 3) We leverage proto-
types to approximate task-wise gradients, improving gradient alignment on the
client-side. Extensive experiments demonstrate the superiority of our method over
existing baselines, particularly in scenarios with a large number of sequential tasks,
highlighting its effectiveness in addressing the complexities of real-world FCL.

1 INTRODUCTION

In Federated Continual Learning (FCL), clients collaboratively learn models for their private, se-
quential tasks while preserving data privacy. However, due to the sequential nature of these tasks,
each client only has access to a limited amount of data from the current task (Li et al., 2025b). This
constraint often leads to the loss of previously acquired knowledge, resulting in catastrophic forgetting.
The challenge becomes even more pronounced in heterogeneous FCL (Wuerkaixi et al.| [2024)), where
the clients are engaged in non-identical tasks at any given time, resulting in a non-uniform learning
environment. Specifically, the model suffers from both catastrophic forgetting and client drift, which
causes negative transfer from the client’s current tasks to the previous tasks and other clients’ tasks,
respectively. Our empirical analysis reveals that existing FCL methods fail to adequately address
these issues. Most approaches focus solely on mitigating catastrophic forgetting at the client level,
while overlooking the generalization of the global model (see Figure[T). Other methods (Zhang et al.]
2023b} [Tran et al., 2024) attempt to share knowledge among clients by training a generative model
at the server to produce synthetic data for clients. However, broadcasting such synthetic data to all
clients introduces significant communication overhead, which can severely limit the scalability and
efficiency of the federated system. Acknowledging these challenges, we take a different perspective:

Rather than viewing task heterogeneity as a limitation, can we leverage the diverse tasks across
clients to improve generalization in FCL, while maintaining communication efficiency?

Our intuition is straightforward. Temporal tasks (arising from different time steps within a client) and
spatio tasks (arising from heterogeneous clients) can both be viewed as distinct tasks. If an invariant
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gradient trajectory can be identified across these tasks, it may guide the model toward improved
generalization. Such generalization across heterogeneous tasks can, in turn, promote both stability
(by maintaining performance on past tasks) and plasticity (by leveraging diverse spatio tasks), thereby
achieving a more balanced and effective FCL system.

From these intuitions, we propose a novel
method, dubbed Federated Continual Learning
via Spatio-Temporal grAdient alignMent with
Prototypical Coreset (STAMP). In our design,
we apply gradient alignment across both spatio
and temporal dimensions of the FCL system. By
aligning gradients along these two dimensions,
STAMP identifies aggregated gradients that min-
imize negative transfer both across sequential
tasks and between clients, thereby improving
the generalization ability of the global model.
In STAMP, the utilization of temporal gradient
alignment requires access to gradients from both
current and previous tasks on the current model.
However, straightforward approach of storing
raw gradients in memory (Luo et al., 2023} |Saha’
et al., 2021} Deng et al.l2021) is insufficient for
gradient alignment, as it only preserves past gra-
dients tied to specific tasks and lacks robustness
for FCL.

To overcome this limitation, we propose a pro-
totypical coreset selection strategy, in which
a compact set of representative data points is
stored and subsequently used to construct pro-
totypes. Prototypes provide stable and invariant
representations of task-wise gradients (Lv et al.,
2022), thereby enabling more reliable gradient
alignment. To further enhance the representa-
tional power of the prototypes, we employ a
prototypical network that ensures accurate proto-
types for the prototypical coreset selection even
under data perturbations. This approach offers
two key advantages. (1) By carefully selecting a
compact set of representative samples (coresets),
our method maintains prototype quality and di-
versity over time with significantly reduced de-
pendence on the prototypical networks or gen-
erative replay mechanisms used in prior work
(Wei et al., 2023 L1 et al., [2024a; |Chen et al.,
2023 |Goswami et al., 2023 |Q1 et al.l 2023
Zhen et al.| 2020)), both of which are vulnerable
to catastrophic forgetting. (2) Unlike traditional
coreset selection methods that aim to capture the
most representative data, our approach focuses
on selecting just enough information to ensure
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Figure 1: We evaluate leading FCL methods (e.g.,
AF-FCL (Wuerkaixi et al.,[2024), FedSSI (Li et al.,
2025c¢))) under heterogeneous settings and observe
a notable gap between local and global test accu-
racy. These methods exhibit strong personalized
performance, as reflected in their high accuracy
on local test data. However, their low accuracy
on global test data demonstrates limited general-
ization capability in heterogeneous FCL environ-
ments. This limited generalization further indicates
insufficient model plasticity when adapting to both
previously and new unseen tasks. Our proposed
method STAMP shows state-of-art robustness by
mitigating inter-client divergence throughout the
learning process, leading to a reduced local-global
generalization gap.

stable prototype estimation. This enables our system to store significantly fewer samples per class
compared to prior methods, while still maintaining sufficient information to approximate gradient

trajectories for reliable gradient alignment.
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2 BACKGROUNDS & PRELIMINARIES

2.1 FEDERATED CONTINUAL LEARNING

FCL refers to a practical learning scenario that melds the principles of FL and CL. Suppose that
there are U clients. On each client u, the model is trained on a sequence of 7' tasks. At a given step
t x R+ r, where R represents the number of communication rounds per task and 7 is the current
round of task ¢, client u holds model parameters 6" and only has access to the data from task ¢. On

client u, data D!, of task ¢ consists of N pairs of samples and their labels, i.e., D!, = {(x}, yz)Z 1}

In existing literature, the primary focus is on a specific task reshuffling setting, wherein the task set
is identical for all clients, yet the arrival sequence of tasks differs (Yoon et al., 2021)). In practical
scenarios, it may be observed that the task set of clients is not necessarily correlated. There is no
guaranteed relation among the tasks {DL, D2, ..., DI} of client u at different steps. Similarly,
there is no guaranteed relation among the tasks {D{, D5, ..., Dl } across different clients. Thus, we
consider a more practical setting, the Limitless Task Pool (LTP).

Limitless Task Pool. In the setting of LTP, tasks are selected randomly from a substantial repos1t0ry
of tasks, creating a situation where two clients may not share any common tasks (i.e., {D2 N
Dlu}@:1 =@, Yu,v € {1,2,...,U}). More importantly, clients possess diverse joint d1str1but1ons
of data and labels p(z,y) due to statistical heterogeneity. Therefore, features learned from other
clients could invariably introduce bias when applied to the current task of a client.

At every task ¢, our goal is to facilitate the collaborative construction of the global model with
parameter 6. Under the privacy constraint inherent in FL and CL, we aim to harmoniously learn
current tasks while preserving performance on previous tasks for all clients, thereby seeking to
optimize performance across all tasks seen so far by all clients as follows:

néitn[sf,sg...,sg,], where S% = [£(0%;D}), L(0%;D2),...,L(0% D). (1)

However, due to the resource limitation of distributed devices, the replay memory on clients are

limited. Each client u, while performing the task ¢, does not have access to the samples of the

previously learned task Di[}:t_l].

the corresponding empirical risk Z§=1 L(0;D!). Moreover, data heterogeneity on each client at
specific task ¢ introduces domain or label shifts, leading to discrepancies in data distributions across
tasks and clients. This heterogeneity causes gradient conflict during training (Nguyen et al., [2025)).

Thus, the client model 6%, cannot be directly optimized to minimize

2.2 GRADIENT ALIGNMENT
When learning with various non-identical tasks, gradient conflict is one of the most critical issues.

Definition 1 (Gradient conflict) The gradient g; and g; (i # j) between two tasks i, j are consid-

ered to be in conflict if their cosine similarity is negative, i.e., cos(g;, g;) = ‘gl‘ “q; < 0. In this

scenario, progress along the gradient g; results in negative transfer with respect to g;, and vice versa.

To mitigate the gradient conflict among tasks as in Definition[I] we leverage the Gradient Alignment
(GA) approach proposed in (Nguyen et al., [2025) to achieve this objective

,(7.>
d r K * r * . T —(r —(r ”
GA(g™) = 5 + HFH*iz“’HF g st T* = argmrmpg< )3 RllE e, @)
where g(") = [ | t € T are the set of task-wise gradients, §(" ZteT IT\ is the averaged

gradient over set of tasks 7. The learned gradient g = GA(g (T)) utilizes the gradients of multiple

tasks g(") = [ggr)| t € T] to preserve the invariant properties of individual task-specific gradients.
Specifically, since g satisfies the condition g - g; > 0, Vi € T, it ensures that the resulting gradient
does not induce negative transfer across tasks. Consequently, the aggregated gradient facilitates
generalization across all tasks within the CL framework. The formal proof of the gradient alignment
update rule is provided in Appendix [B]
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3 PROPOSED METHOD

We propose a novel framework, STAMP, for heterogeneous FCL. At its core, STAMP involves a
gradient alignment on both temporal and spatio tasks to both improving the plasticity while guarantee
the stability. Additionally, replay memory with prototypical exemplars is introduced to reduce the
memory cost while improving the stability of task-wise gradient approximation.

3.1 SPATIO-TEMPORAL GRADIENT ALIGNMENT

Motivation. In FCL under heterogeneous settings (Wuerkaixi et al.,2024)), the challenges become
particularly severe due to the diversity of tasks and data distributions across clients. A major difficulty
arises from the inherent communication constraints, which make direct sharing of data or model
parameters between clients impractical. Consequently, handling heterogeneous tasks in FCL has
remained a largely intractable problem. In this work, we are motivated by drawing an analogy
between spatio and temporal tasks in FCL. Specifically, we conceptualize the heterogeneous tasks
across clients as a joint composition of spatio and temporal tasks. More importantly, rather than
focusing solely on mitigating catastrophic forgetting and client heterogeneity, we investigate the
generalization capability of heterogeneous FCL systems through the lens of the generalization gap.

Theorem 1 Let H be a hypothesis space of VC-dimension M, dyay (D%, D!) is the spatio di-
vergence between clients u,v at task i, dysrw(D:,DJ) is the temporal divergence of client u
at two different tasks i,j. Let Dp = {D!,Vi € [l : t|,u € U} as the dataset of seen
tasks, and Dg = D\Dp as the dataset of unseen task. For any § € (0,1), the general-
ization gap on an unseen task Do is bounded by the following with a probability of at least

1-94: 5(97])9) < ZieT Zueb{ Yu 5(97D2)+23e7’ d’HA’H(DquZ,)—"_ZUEM dHAH(D;aD;)_F

log M +log %
2N’U,

From the Theorem [I] we can see that, to improve the generalization of the FCL system on the
unseen task, it is crucial to minimize the temporal divergence d A% (D!, DJ) and spatio divergence
dyn (DL, DE). Current works focus on minimizing the dy a3 (D%, D)) among the seen classes
[1:],t € T and not efficiently minimize the gap among the clients dz; A3 (D%, D). This is because
the minimization of dya (D%, DE),Vu,v € U requiring the knowledge transfer among clients.
Recent works (Zhang et al.,|2023b}; [Tran et al.,[2024) attempt to solve this challenge by generating
synthetic data on the server at each communication round and broadcasting it back to the clients.
While this approach enables partial alignment across clients, it incurs substantial communication
overhead, which significantly limits the scalability of FCL in large-scale deployments.

+ (*, where (* is the optimal combined risk on Dp, Dg, respectively.

To jointly minimize both
temporal and spatio di-
vergences, we focus on
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tasks enhances its plasticity, enabling it to more effectively adapt to new tasks without significant
performance degradation. Moreover, such generalization inherently mitigates catastrophic forgetting,
as the model becomes less prone to overfitting to newly encountered tasks while retaining knowledge
from previously learned ones.

Temporal Gradient Alignment. The temporal gradient alignment technique is implemented on
the client side in the local training. In particular, we take the gradients of previous tasks as input

GA( [0:t]

data for the gradient alignment optimization problem as follows: %71 = g%" gu ), where

gl = = [g%] i = {1,2,...,t}] denotes the set of task-specific gradients, including the gradients

of previous tasks gL _1] and current task g% . Traditionally, the gradients from previous tasks are
computed using stored data samples from past tasks to approximate the true gradients (Lopez-Paz
& Ranzatol 2017;|Luo et al.,|[2023; Wu et al.| |2024). However, this approach requires a substantial
memory buffer to store a sufficient amount of data for accurate gradient estimation. In scenarios
where storage capacity is limited, the precision of the gradient approximation may be significantly
compromised. An alternative solution to compute gradients is via prototype as follows:

g szenEﬁ(f(puc,a”E%c)- &)

To efficiently compute the prototypes for the gradient estimation, we employ the prototypical network
(Snell et al., [2017). However, the prototypical network and its continual counterpart (Wei et al.,
2023) may still suffer from catastrophic forgetting when deployed in the CL system. To mitigate
this challenge, our intuition is to design prototypes that are learned without relying on prototype
networks. To do so, we leverage a prototypical coreset which stores meaningful features for the
prototype measurements in CL. The details of the prototypical coreset and its selection method are
demonstrated in Section[3.21

Spatio Gradient Alignment. Building upon the work of (Nguyen et al.| [2025), the spatial gradient
is computed on the server to identify a consistent gradient direction that remains invariant across
heterogeneous tasks in FCL. This facilitates the global model in establishing a stable gradient
direction, thereby mitigating the negative transfer that can occur due to task diversity. The update is
given as follows:

ottt =0t — GA(gh), g'=¢.|u={1,2,...,U}], 4)

where g’ represents the collection of local gradients obtained from the participating clients. Each local
gradient is computed as g, = 65" +1 — @17 using the model updates, and thus incurs no additional
communication overhead. By aligning the gradient directions across clients, this method effectively
addresses task heterogeneity, reducing the detrimental impact of client drift in heterogeneous FCL.

3.2 PROTOTYPICAL CORESET ASSISTED REPLAY MEMORY

Prototypical Coreset Selection. For each class [, our objective is to identify salient set of samples
such that their combined representations, as processed by the encoder ¢ form a prototype on class [.

At each task ¢, when we observe data /\/It of label [, we select a subset X! as follows:

)?l—argmmH[‘Ml‘ Z g(xi; d) |Nt Z a; - g(xi; 0 } 5)
iemM!
S.t. pl Zt 11|./\ft [ Z |./V'J\ + ZEZN; g(xs; ¢ } ]l{yj I},

X' ={z; | a; € A}, |Xl|:|/\/l |.

Here, M is the replay memory for class [, with pre-defined memory budget | M!|. If the number of
selected samples exceeds | M|, we apply MixStyle to blend the style of the newly selected data with
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that of the previously identified samples, as formulated below:

MixStyle(7'; z) = y,mx(“()) + Bumix, (©)

St Amix = Ao (@) + (1= Mo (@), Ban = Mi(@) + (1 = Npa(a),
where  are the newly satisfying prototypical exemplars found from (6)). To make the encoder ¢ learn

the prototype better, we inherit the prototypical network (Snell et al.l 2017) learning process to learn
the encoder ¢.

Prototypical Network with Coreset. On each client u, the prototype pfl’ , on label [ are computed
via a prototypical network (Snell et al., [2017) via p, , = ﬁ I~ l g(z;; ¢). The prototypical
’ u,l 4 u,

network is learned via a loss function as follows:

o =ang S (o)) o e (4 ).)) o

The objective of (7)) is to ensure that the learned prototype g(x; ¢), derived from the input data
x, closely aligns with the computed prototype of the same class [ across the entire batch, while
simultaneously maintaining a significant distance from approximated prototypes of other classes I’.

4 THEORETICAL ANALYSIS

To conduct the theoretical analysis of STAMP, we examine the generalization gap between the model
trained at a specific round R and the model trained on the unseen task dataset Dg.

Theorem 2 Let 0T denote the global model after R rounds and at current task t € T, 07 and 05
mean the optimal of the model on each client and the unseen tasks, respectively. The local objectives
follow the p strongly convex from Assumption Forany § € (0, 1), the generalization gap for the
unseen tasks Do can be bounded by the following equation with a probability of at least 1 — §:

dgos (D}, Di) dgeo (D%, D)
Epo (0%) — Epg (0p,) < ZZ%[ +oY T gy e
i€[1:t] uel jE(1:1] H veld H

\/log + \/log UM
)+ NG

where ﬁ;,@{uﬁf) are the sampled counterparts from the domain D!, DJ, D:

w
dgeo(D?,, D) denotes the gradient divergence when training on temporal tasks D}, and D.

+dHAH('D7>,'DQ +C¢teT,

respectively.

dgon (f);, D!) denotes the gradient divergence when training on spatio tasks 15; and D!,

In contrast to existing studies on convergence in FCL (Keshri et al., [2025)), our work focuses on
establishing theoretical guarantees for the generalization gap. This generalization perspective enables
a principled assessment of how reliably an FCL model can extend to both previously encountered
and new unseen tasks, thereby characterizing its stability and plasticity.

The generalization gap at round R on the target domain is defined as Ep,, (67) — Ep, (05 )- In
Theorem the first term 5 (0) is the loss on the local datasets. The fourth term dy a3 (Dp, Do)

. . log M y/log & ++/log =5+ + log UM
is the task divergence between the seen and unseen tasks. The fifth term is the

gap due to the infinite sampling. The last term (* is the gap due to the optimal rlsk While the first
term is the main minimization on every FCL methods, the three last terms are irreducible. To further
reduce the generalization gap, our objective is to minimize this gradient divergence at each round.
Ai P
Specifically, STAMP focuses on reducing the temporal gradient divergence Zje[ 144 % ,

and spatio gradient divergence ), ;, M, using spatio and temporal gradient alignment

every server aggregation round. Following Appendix |Bf we have the temporal and spatio gradient
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divergence are minimized over the gradient alignment. As a consequence, we can directly reduce
those gap. By effectively leveraging STAMP, we can reduce the generalization gap between seen
and unseen tasks, thereby enhancing the overall generalization capability of the heterogeneous FCL
system.

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of STAMP. The
implementation details and additional experiments are provided in Appendices|[E]. To ensure a fair
assessment of FCL baselines under heterogeneous settings and catastrophic forgetting, we do not use
pretrained models, as their training data (e.g., ImageNet1K) overlaps with our dataset, potentially
biasing the evaluation. The detailed configurations of the continual data settings, model settings, and
baseline setups are provided in Appendix [E]

5.1 BENCHMARKING

Table 1: We report the average per-task performance of FCL under a setting where each task is
assigned 2 classes. Evaluations are conducted using 10 clients (fraction = 1.0) across 5 independent
trials. OOM refers to the out of memory in GPU. 1" and | indicate that higher and lower values are
better, respectively. C—S and S—C denote communication from the client to the server and from the
server to the client, respectively.

S-CIFAR100 (U =10, C = 2)

Methods Accuracyt AF]  Avg. Comp. | Comm. Cost | GPU (Peak) | Disk |
(Sec/Round) C—S S—C

FedAvg 31.7 17 252 *13) 3.3 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedDBE 37.0 (£1.6) 26.1 (£0.7) 3.6 sec 44.6 MB 44.6 MB 1.91 GB N/A
FedAS 58.2(+£0.1) 56.1 (+0.1) 13.7 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedOMG 39.1 (+£1.3) 24.5(+04) 4.1 sec 44.6 MB 44.6 MB 1.92 GB N/A

GLFC 448 (£2.1) 29.5 (£ 04) 18.3 sec 88.2MB 46.5 MB 4.33 GB 22.1 MB
FedCIL 46.5 (£22) 28.8(£1.2) 22.3 sec 953MB 44.6 MB 4.81 GB 18.5 MB
LANDER 50.8 (+13) 26.9 (+04) 15.8 sec 88.2MB 104.3 MB 5.26 GB 131.5 MB
TARGET 45.1 (£24) 28.6 (+1.6) 25.6 sec 1124 MB 44.6 MB 3.65 GB 18.5 MB
FedL2P 48.2 (+1.8) 28.1 (£0.6) 8.6 sec 56.3MB 56.3 MB 2.56 GB N/A

Re-Fed+ 523 (11 319 (+05) 3.9 sec 44.6 MB 44.6 MB 2.17 GB 18.5 MB

FedWelT 52.6 (+£13) 25.7 (£09) 5.4 sec 44.6 MB 44.6 MB 5.83 GB 61.7 GB
FedSSI 51.6 (+13) 35411 7.7 sec 44.6 MB 44.6 MB 2.53GB N/A
AF-FCL 514 07 487 (%12 4.9 sec 156.3 MB 121.3 MB 8.93 GB N/A

STAMP  52.8 (£09) 24.3(£08) 9.1 sec 446 MB 44.6 MB 1.92 GB 16.3 MB

S-ImageNetlK (U = 10, C = 2)

FedAvg 243 (51 19.6 (£0.1) 133.2 sec 1125MB 112.5 MB 16.11 GB N/A
FedDBE 29.2(£72) 19.4(£02) 142.7 sec 1125 MB 112.5 MB 16.11 GB N/A
FedAS 435 (+44) 40.2x04) 4985 sec 1125MB 112.5 MB 16.11 GB N/A
FedOMG 30.4 (£3.8) 21.1(£0.7) 171.3 sec 1125 MB 112.5 MB 16.11 GB N/A

GLFC 31431 274 06) 466.7 sec 2253 MB 121.2 MB 20.24 GB 221.4 MB
FedCIL 33.8(+36) 25.8F07) 652.3 sec 245.5MB 112.5 MB 23.47 GB 184.3 MB
LANDER 349 (£27) 26.1 (£0.9) 573.8 sec 267.4 MB 453.6 MB 26.54 GB 1.31 GB
TARGET 332 (£42) 252 (+04) 913.2 sec 287.4MB 112.5 MB 21.08 GB 184.3 MB
FedL2P 34.5(+48) 26.4(+02) 303.7 sec 146.6 MB 146.6 MB 18.21 GB N/A
Re-Fed+ 353 (*07) 26.1 (1.0 146.8 sec 1125 MB 112.5 MB 16.71 GB 184.3 MB

FedWelT 39.7 (+3.1) 21.5(£09) 194.2 sec 111.8 MB 111.8 MB 62.7 GB 640 GB
FedSSI 384 (x12) 31.9*08) 298.1 sec 112.5MB 112.5 MB 17.66 GB N/A
AF-FCL  38.3 (£53) 36.6 (£03) 176.7 sec 421.3MB 336.8 MB  46.81 GB N/A

STAMP 41524 24208  321.2sec 1125 MB 112.5 MB 16.11 GB 152.6 MB
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Main Results. Tablereports results on the S-CIFAR100 dataset (Boschini et al., [2022) and the
S-ImageNet1K dataset (Dohare et al., [2024), which are continual learning versions of CIFAR100
and ImageNet1K. In these settings, each task comprises two distinct classes. In addition to average
accuracy and average forgetting (AF), we assess key system-level metrics: computational overhead,
communication cost, GPU utilization, and disk usage. Computational overhead is measured as the
average time per round, reflecting the cost of client-side training, especially for generative models.
Communication cost denotes the average data transferred (in GB) per client-server round. GPU
utilization captures peak memory usage, critical in resource-limited settings, while disk usage reflects
the total client-side storage required, including replay buffers and task-specific model parameters.
The vanilla FL baselines, e.g., FedAvg, FedAS, FedDBE, and FedOMG, may lead the model easily
to forget the knowledge from past tasks, as indicated by high average forgetting.

FedWeI stores task-specific head parameters in GPU memory. However, when both the number
of classes (e.g., 1000 classes in S-ImageNet1K) and the number of tasks (e.g., 500 tasks in our
S-ImageNet1K setup) become large, the total number of parameters grows signiﬁcantlyﬂ As a
result, storing all task-specific parameters in GPU memory becomes infeasible, and they must instead
be saved to disk. However, this approach leads to a substantial increase in average training time.
LANDER stores all generated pseudo task-specific data on disk, incurring client-side storage overhead
comparable to conventional CL methods using replay memory. Additionally, broadcasting synthetic
data from the server to clients introduces substantial communication overhead.

The key observations from Tables [1| indicate that the more challenging setting, with only two
classes per task, exhibit greater susceptibility to catastrophic forgetting. This is because each task
provides less comprehensive information about the overall dataset, thereby leading to a higher average
forgetting (AF) score. STAMP achieves the state-of-art overall trade-off, delivering higher accuracy
and lower forgetting than almost all methods. At the same time, STAMP communication cost remains
comparable to that of standard FL and requires relatively modest RAM and disk resources. For
example, it is worth noting that FedWelT achieves slightly lower forgetting on S-CIFAR100 at the
expense of nearly 3900x higher disk usage. This making STAMP suitable for deployment on
resource-constrained devices. To ensure comparability with other popular works in FCL, we also
evaluate the benchmark on an easier class distribution, where each task contains 20 distinct classes.
The corresponding results are reported in appendix [F1}

Performance under tasks with non-IID settings. Figure [3] illustrates the test accuracy across
varying levels of data heterogeneity for CIFAR10, CIFAR100, Digit10, and Office31 datasets. As
shown in the figure, all methods improve test accuracy as data heterogeneity decreases (i.e., larger
«). Notably, STAMP consistently achieves superior and stable performance across different levels of
heterogeneity, indicating its robustness under non-IID conditions.

5.2 EXPERIMENTAL ANALYSES AND ABLATION TESTS

[-o— FedAvg —e— FL+EWC GLFC —®— FedCIL —e— LANDER —®— TARGET Fedl2P  —@— FedWelT AFFCL FedsS| -e@- STAMP“
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Figure 3: Performance w.r.t data heterogeneity « for four datasets.

Efficiency of Prototypical Coreset. To evaluate the effectiveness of our proposed coreset selection
method, we compare STAMP with a vanilla FL framework incorporating alternative data condensation
techniques on the client side, including SRe2L (Yin et al.,[2023), BCSR (Hao et al.,[2023), and OCS

!The official code of FedWelT can be found at: |https://github.com/wyjeong/FedWeIT,

>We observe from the official code that FedWelT needs more than 512 GB of RAM memory to be able to
run a simple LeNet on ImageNet. As such, we have to save the task-adaptive parameters in memory. In our
reformatted implementation, we mitigate this memory constraint by utilizing disk storage for model loading.


https://github.com/wyjeong/FedWeIT

Under review as a conference paper at ICLR 2026

(Yoon et al.,2022), CSReL (Tong et al.|[2025)). The experimental results in Figure E] show that our
method consistently outperforms these coreset selection-based FL algorithms. Notably, our approach
can reduce the coreset size to as few as 20 images per class without significantly compromising
performance compared to training on the full-scale dataset for previous tasks.

[—o— FL+sRerL FL+BCSR  —o— FL+CSReL —®— FL+OCS —®- STAMP|

CIFAR100 - 20 classes/task 0 CIFAR100 - 2 classes/task 30 ImageNet1K - 20 classes/task 5 ImageNet1K - 2 classes/task

Test Accuracy

2 0 2 0 2 0 10 20 50 100
Subset size (images per class) Subset size (images per class) Subset size (images per class) Subset size (images per class)

Figure 4: Performance comparisons in coreset selection demonstrate that our approach outperforms
the integration of alternative baseline methods within vanilla FL.

Efficiency of Temporal Gradient Alignment. To evaluate the effectiveness of temporal gradient
alignment on the client side, we analyze the gradient angles produced by STAMP on S-CIFAR100
and S-ImageNet1K datasets and compare them with two sets of baseline methods: FedAvg and
FedL2P for standard FL, and FedWelT and AF-FCL, for FCL. The results are presented in Figure E}
As shown, STAMP demonstrates superior gradient alignment with previously learned tasks. This
improvement suggests that STAMP is less prone to catastrophic forgetting compared to existing
approaches. Additional results linking gradient angles to catastrophic forgetting are provided in

Appendix [F3]

Efficiency of Spatio Gradient Alignment. Figure[6]presents the gradient divergence across various
baseline methods on S-CIFAR100 and S-ImageNet1K, evaluated under two different settings: 20
classes per task and the more challenging 2 classes per task. It is evident that, unlike existing baselines
which generally overlook the alignment among client gradients, STAMP achieves significantly better
gradient alignment. This improved alignment facilitates model updates that more effectively seek
invariant aggregated gradient directions across clients for specific tasks, thereby enhancing the
generalization capability of the aggregated model. This observation is consistent with the reduced
global-local generalization gap demonstrated in Figure [I]

CIFAR100 - 2 CIFAR100 - 20 ImageNet1K - 2 ImageNet1K - 20

— FedAvg — FedAvg
0301 — FedL2p 0.25) — FedL2p
2 Fedss! g

— FedAvg
— FedL2P
AF-FCL
STAMP

5 100

250 300 5 100 250 300 5 100 250 300 5 100 250 300

150 200 150 200 150 200
Communication Rounds Communication Rounds Communication Rounds

(a) (b) (©) ()]

150 200
Communication Rounds

Figure 5: The figures illustrate the average temporal gradient angles across different baseline methods.
Specifically, Figure [Sa] shows the results for S-CIFAR100 under 2 classes per task. Figure [5b|shows
the gradient cosine similarity on S-CIFAR100 under a 20 classes per task setting. Figure [5c|presents
the gradient cosine similarity for S-ImageNet1K with 2 classes per task, and Figure[5d|depicts the
results for S-ImageNet1K under 20 classes per task configuration.

Ablation Study on STAMP. Table 2] presents the ablation results for each component. The results
demonstrate that both Spatio grAdient alignMent (SAM) and Temporal grAdient alignMent (TAM)
consistently enhance the average classification accuracy. Notably, SAM contributes more significantly
to accuracy improvement by enhancing generalization across tasks within a single communication
round. In contrast, TAM plays a more critical role in reducing average forgetting by mitigating
catastrophic forgetting; it achieves this by aligning the learned gradients with those from previous
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Figure 6: The figures illustrate the average spatio gradient angles across different baseline methods.
Specifically, Figure [6a] shows the gradient cosine similarity on S-CIFAR100 under a 2 classes per task
setting, Figure [6b] shows the results for S-CIFAR100 under 20 classes per task, Figure[6c| presents the
gradient cosine similarity for S-ImageNet1K with 2 classes per task, and Figure [6d|depicts the results
for S-ImageNet1K under 20 classes per task configuration.

Table 2: We conduct ablation studies on the S-CIFAR100 and S-ImageNet1K datasets, using 10
clients and 2 classes per task. Specifically, (1) refers to spatio-temporal gradient alignment performed
on the server side, (2) denotes temporal gradient alignment executed on the client side, and (3)
corresponds to the use of a prototypical coreset implemented with ProtoNet.

Dataset Metric FedAvg @ 2) Mm+2 M+3 @+@3) STAMP

Acc. 31717 38.1(x13) 37.8(x06) 447 (£15) 46.1 (£0.7) 449 (+14) 52.8 (£0.9)

S-CIFAR100 AF 221 (£13) 23.8(*04) 21.7 (£09 21.5F1.00 24.7 (+14) 21.8 (+0.6) 24.3 (£0.8)

Acc. 243 (£51) 30.528) 283 (26 34.1 07 374 F11) 36.5(x£13) 41.5F28)

§-ImageNetIK AF  19.6 (£0.1) 26.1 (£0.7) 23.8(+0.6) 24.3 (£09) 26.1 (£1.8) 23.3 (+08) 24.2 (£0.8)

tasks on the same client. Additionally, the use of the prototypical coreset selection method further
boosts the performance of STAMP by improving data representation through ProtoNet.

6 CONCLUSION

In this paper, we have tackled the challenges of FCL in realistic settings characterized by client data
heterogeneity and task conflicts. Recognizing the limitations of existing generative replay-based
methods, we have introduced a novel model-agnostic approach, Spatio-Temporal Gradient Alignment
with Prototypical Coreset. Our method effectively mitigates catastrophic forgetting and data bias by
leveraging prototype samples for robust gradient approximation and applying gradient alignment both
temporally and spatially. Through extensive experiments, we have demonstrated that our approach
consistently outperforms existing baselines, highlighting its potential as a powerful solution for
resilient FCL in diverse, dynamic environments.

10
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A PROOF ON THEOREMS

A.1 TECHNICAL ASSUMPTIONS

Assumption 1 (L-smoothness) Each local objective function is Lipschitz smooth, that is,

IVE(x; Du) = VE(y; Du)l < LIIE(2; Du) = E(y; Du)l, Vu € U. ®)

Assumption 2 (u-strongly convex) Each local objective function is Lipschitz smooth, that is,

Assumption 3 (Domain triangle inequality (Zhao et al., 2019)) For any hypothesis space H, it
can be readily verified that dy (-, -) satisfies the triangular inequality:

dyrn(D,D") < dyan(D,D') + dyan(D,D"). (10

A.2 TECHNICAL LEMMAS

Lemma 1 (Task Divergence Decomposition) For any hypothesis space H, it can be readily veri-
fied that the distance function dy (-, ) satisfies the triangle inequality. Specifically, for any three

distributions D', D}, D defined over the same space, we have:

Proof. Applying Assumption 3] we solved the lemma.

Lemma 2 [fwe have E5(0) = >, 1y YuEp,, then for any unseen domain Dg, we have:

duan(Pp,Do) = > Yudsan(Du, Do) (11)
ueU

Proof. From the definition of dy A% (-, -) in (Arjovsky et al., 2020), we can get

dien(Dp. Do) =2 sup [Pro(d) ~Prog(A) =2 sup | 3 7.Prp(4) - Prog (4)
A€Ay AN A€Anan ' oy

<2 s |35 [Pra(4) — Prog (4)]|
A€AnAn % { P ° }

<2 sup Z YulPrp(A) — Prpg (A)]
A€AN AN ey

<2 Z Yu  SUP |Prf) (A) - Png (A)‘
weu  A€Anamn

=Y Yudnan(Du, Do). (12)
uelU

Lemma 3 For any 6 € O, the expectation risk gap between domain A and domain B is bounded by
the domain divergence dyar# (A, B).

1
1E4(0) — EB(O)] < EdHAH(AvB) (13)
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Proof. By the definition of dy;a%/(-, ) in (Arjovsky et al., 2020), we have:

sl A, B) =2 sup [Proealf(:0) # 10 0] = Pronnlf:0) # S0, 19
0,0"c

where f(x;0) means the prediction function on data x with model parameter 6. We chose 6" as
parameter of the label function, then f(z;6) # f(x;0 ) means the loss function £(z; ), so we have:

dnan(A, B) = 22118 ‘PTMA[ﬁ(J?; 0)] — Pro~p[L(x; 9)]‘ > 2|E4(0) — Ep(0)]. (15)
€
Here, (a) holds due to Assumption [1}

Lemma 4 (Guarantee of inter-client spatio task divergence) If we have E5(0) = 3,y 7u€p,,
then for any domain Dp, we have:

> ldrurn(Pu,Pp) < Y wyodaan(Du, D). (16)
ueU ued veld

Proof. From the definition of dy % (-, -) in (Arjovsky et al.|[2020), we can get
> Wduan(Du,Dp) =2 v sup  |Prp (A) = Prp, (A)]

ueU ueU A€Anan
=2y sup  [Prp (A) =Y YPrp (A)
e~ A€Anan veld
=23 swp |3 wPrp (4) =Y wPrp (A
wed  A€Aman oy veld
<2¥ WY W sup [Py (A) —Prp (A)|
wed  wveu  A€Aman
S Z Z PYu'YUdHAH(ﬁuv Yjv) (17)
ueld veld

Lemma 5 (Guarantee of intra-client temporal task divergence) Consider a client u, where D,,
is the on-client joint dataset, consisting of T tasks D, = {D.|t € {1,...,T}}. If we have
Ep(0) = > ey Wulp,» then for any domain Dp, we have:

> Cduan(Dh,Du) <D0 GiGdyan(DL, D). (18)

teT i€T jET

Proof. From the definition of dq.[ Ax (¢, +) in (Arjovsky et al.,[2020), we can get

Y Gduan(Dy, D) =2) (¢ sup  [Prp, (A) = Prp (A)]
teT teT  A€Anan
=2) G sup  [Prp (A) = > (P (A)
€T A€Anan JjeT
=2 ZQ sup | Z CJPrDL A) — Z (iPrp; (A
ieT ASAnan jer JET

<23 Gy ¢ sup [Prp, (A) = Pry, (A)

ieT  jeT A€Aman

<D 0> GGduan(D, DY) (19)

€T JET
A.3 PROOF ON LEMMA [

Lemma 6 For any 0 € ©, the domain divergence dy s+ (A, B) is bounded by the expectation of
gradient divergence between domain A and domain B.

1
dyunrn(A,B) < ;dgoe(A,BL (20

where dgog(A, B) is the gradient divergence of model 0 when training in two domains A and B.
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Proof. By the definition of dy;a%/(-, ) in (Arjovsky et al., 2020), we have:

dusn(AB) =2 sup |Provalf(z;0) # f(w;0)] = Prowplf(a:0) # fx:0))], @D
0,0’ cO

where f(z;6) means the prediction function on data = with model parameter 6. We chose 6" as
parameter of the label function, then f(z; ) # f(x;0") means the loss function £(x; ), so we have:

duan(A, B) = 2sup (Prya[L(x;0)] — Prop[L(x;0)]
0€6

(a) 2 1
=2sup|€a(l) —EB(O)]. < —sup|VEA(D) — VEB(O)| < —dgon(A, B). (22)
0ce Hoco 2

Here, dgog(A, B) as the gradient divergence, given the model 6 and (a) holds due to Assumption 2}
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A.4 PROOF ON THEOREM[I]

From Lemma 3 (Zhang et al.| 2023c), we have:
1 ~
E(0; Do) < E(0;Dp) + idHAH(DP;IDQ) + ¢ (23)
Here, we have £(0; Dp) = 320 7 E(0;D%) = e S0 7, E(0; DY), and

1 N 1
E(0;Dg) < E(0;Dp) + id?-LA’H(DPaDP) + §dHAH(DP,DQ) + ¢

<Y T

ueU

1 . 1 .
E(0;Dp) + gdHAH(D%DP) + idHAH(DPa’DQ) +¢

. 1 A 1
< ;D = Dy, D = Dp,D
<> [5(9, u) + 5dusn(Du, Dp) + Sdusn(Dp, Do) + SN,

log M =+ log 1
o ‘| C*
ucl

(a) R 1 PN 1
<> [E(G;Du) + Y 5dua#(Du, Do) + 5duan(Dp, Do)
ueU veld

log M + log%

2N, +¢

R 1 AT 1
<> [5(9;295) + Y 5dan(Dy, Do) + 5duan(Dp, Do)
teT ueld veU
log M + log % .
2N, +6

(b) . 1 PPNy 1
<Y [5(6;19;) + D> 5duan(Dy, DY) + 5duan(Dp, Do)

teT ueld veU jeT

log M + log % N
2N, e

) . 1 oA 1 A

S59) SAETEIND 9 s TRIC R IFD 3) pTE X2
teT ueld veEU JET veU jET

log M + log %

1
—d Dp. D
+2 1o (Dp, Do) + 9N,

+ ¢, (24)

where (a) is according to Lemmalfd] (b) is according to Lemma 5] (c) is according to Lemma
Simplify Eq.[24] we have

£(0: Do) <> > [5(9;772) + Y duan(Di, D) + Y duan(D;, D;)
€T ueld JET veU
log M + log }

o, +C* 25)

A.5 PROOF ON THEOREM[Z]

Let D, be the sampled counterpart from the domain D,,, we have 575“ is an empirical risk of

Dy, ie., Ep = 1/N, SN L(f (25 0),y"). We also have expected risk Ep, defined as Ep, =
E(e,yep)[L(f(2;0),y)]. For a given § € ©, with the definition of generalization bound, the
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K

o for each domain ﬁu (U is the number of users, which is

following inequality holds with at most
also the number of spatial tasks).

[log M +log U /5
Ep.(0) — Ep,(0) > W. 26)

Moreover, from Lemma we have |€p,, (0) — Epy (0)| < dyawn(Du, Do) for each user u, and
€50 (0) = Ep (0)] < 2dyan (D}, D,) for each temporal task ¢. Then let us consider , we can

obtain the following inequalities with the probability at least greater than 1 — 2

U
/ 1 A N
minép, (0) < Ep, (9) < Ep, (0) + Fduan(Dy, Du)
1 I log M +1ogU/6
< = D!.D —_—
<é&p,(0) + QdHAH( s Du) + 5N,
log M +1ogU/é

27)

1 PO 1 .
<E&p,(0)+ §dHAH(Dquu) + idHAH(Du,DQ) + \/ oN,

We denote the local optimal on each client of source set v, v € U as 6;,. If we choose a specific
parameter 65 = ming Ep, () which is the local optimal on the unseen domain 7, the above third
inequality still holds. Then, we can rewrite the above inequalities into:

N . 1 PN 1 A log M +logU/d
Epy (02) < Eg(0) + Sdnan(Dly Du) + 5duan(Pu Do) + 4 ng/. (28)

Considering on each domain, equation (28] holds. By a similar derivation process, we can obtain the
inequality between 7 and D with the probability at least greater than 1 — 6.

S G (6) < Epa(6) @9)
teT ueld
1 . 1 AN log M +logU/§
: — D,, D — Dt D — = .
+ tEe’TuEEZ/{ Yult [2d7my( w, Do) + 2dHAH( w» Du) + 5N,

From the above equation, we have Theorem with the global model 6 after R rounds FL. For instance,

Epg (07) — Epo (¥p,)

<Y D G [6@3 (0) = Epe (03) + drnn(Du, Do) + dunn (D), Do)
teT ueld

(30)

\/logM—i-log% \/logM—i-log%
+ + -
2N, 2N,

R o log%—i-\/log%
< WGt | Ep: (0) +d D.,D d D!, D, \/
_;1;7 Ct[ e (0) + dran( o) + dyan(Dy, Du) + o
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To further analyze the convergence bound, we consider the Assumption[3} For instance,

Epg (07) = £y (05,

_ ) o \/log My \/log Uéw
<N G |Ep, (0) + drgan(Du, Do) + daan (DL, D) + L + ¢

teT ueld L 2Ny

31)

< k| Ep, (0) + duan (D, Du) + dyan(Du, Dp) + dian(Dp, Do) (32)

teT ueld L

\/log % + \/log %
+ +¢*
V2N,

(b) ~ ~ d 257“ ,ZA)v
I [%u (0) + dpan (D, D) + 3 e DuD) 4y Dp Do) (33)
teT ueld veU K

. \/logﬂf;\\f/log(]ﬂ e

V u
© dyan(DL, Df dynn(DL, D}
<3SN [Eﬁw +3 dnan(DuDh) | > IornDu Do) 4 (Dp, D)
teT ueld JET H veU ®
(34)

\/log % + \/log%
+ + ¢
V2N,

holds due to Lemma 5. Applying Lemma 6, we have:We have (b) holds due to Lemma ?? and (c)
holds due to Lemma[5] Applying Lemmal6 we have:

Epg (07) — Epg (Up,,)

dgoo (D, DI dgog (DL, D,
<> G [S@u(e) +3° ‘”(M) +3 ”(u) +dyan(Dp,Dg) (35

teT ueld JET veU

\/log % + \/log%
+ + ("
V2N,
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B GRADIENT ALIGNMENT UPDATE RULE

We consider the parameter update rule (7" +1) = §(77) — pa where 1) denotes the learning rate and
x is the update direction to be determined. Our goal is to select = such that not only the average loss
g™ decreases, but each individual task loss decreases as well. To enforce this, we consider the worst
generalization case among all seen tasks. Specifically,

1
— - (r,r) _ .Mt (7,7) .t ~ mi (t,r) -\
GAP(0,z) = rtneax{nﬁ(ﬂ nx; D") — L(6 ;D )} mt€1n<g LX) (36)

Here, we use ¢ to denote, for simplicity, the gradient of the model at the current task 7 when
trained on the dataset of task ¢. Under the spatio gradient alignment setting, the spatio task is handled
by taking gut’r) as the gradient from client u, and the aggregation is performed over the set of U
clients rather than over the set of T tasks.

To derive the invariant update direction gg, we treat © = g as the optimization variable and
formulate the following maximization problem. Let ¢ = x2||g("||>. The Lagrangian becomes

A A
max min (Z YegB N T — 2™ — 2|2+ Z¢, st A>0. 37
o teT 2 2

Because the formulation is convex and satisfies Slater’s condition for £ > 0 (and trivially holds for
r = 0), strong duality applies. Hence, we can exchange the min and max operators:

A A
3 (t,r) _ gl 2 - >
pin max (teg Yeg't") 5 llg z||* + 2(;57 s.t. A > 0. (38)

Aq

Fixing (), ) and optimizing over x, the optimality condition 9A; /0x = 0 yields

T
Mo =g") = Y g =0,
t=1
which implies
T
r=g" + (Z%g(t’”)/ A (39)
t=1

Therefore, we have the followings:

T T \ T A
A= wmg®)T (E/(” + (Z%g(t”")>/x\) - lla" — (g(’“> + (Z%g(”»/k) I*+5¢
t=1 t=1

= (Z g7 (g(r) + (Z%g(t’r))//\> - §”X Z%g(t’r)HZ + §¢- (40)
t=1 t=1 t=1

Substituting the shorthand gl(f) = ZtT: 1 7:9™) into equation , we obtain

AT (r A A
A= (87 + o7 /) = Glaf /NP + 5o

)T —(r 1 r)T (r 1 r A
=g Tyl )+X9§) g _ﬁ||91(“)||2+§¢
_ T Ly ey A 41
g 97+ 5illar I + 50 (41)
Thus the problem in Eq. equation [38]reduces to
T o), L gz A
min gp© g+ orllor T IT 4+ 50 (42)

Az
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To obtain the optimal A, we differentiate As:

0

I TN CO N S

which gives
A= lgt” /o2,

Finally, inserting this expression back into equation[#2]and using equation[39] we obtain the invariant
gradient direction:

0]
—=(r K9 T * . T —(r —(r T
= <>+””(T)g§2 st. T :argmrmrg<>~g(>+n||g<>|\||g§)u. (43)
Ir+

This concludes the derivation.

ga
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C DETAILED ALGORITHMS

Algorithm 1: The box refers to the Spatio grAdient Matching (SAM), the box refers to the
Temporal grAdient Matching (TAM), the box refers to the prototypical coreset selection (PCS).

Input: set of source clients /, number of communication rounds R, local learning rate 7, global

1

learning rate 74, searching space hyper-parameter k.

Output: GéR)
Clients Update:

2 for client u € U do

15

16

17

18

20

21

22
23
24
25
26
27

28

29

30

31

32

33

w

4

Receive global model o) — ﬁg(f);

Compute p' = =757 [9(51; ¢) - s W+ Tiewr g(xi;(b)} Uy, =1},

Initialize learnable coefficient set A = {a;]i € N}

=~ 2
Sotve %1 = axgmin | [y S 9005 )+ gy Treng 0 oes )] ~ [

7! = MixStyle(7; z),
Save new proto into replay memory M* = Z'.

for local epoch e € E do
Sample mini-batch ¢ from local data D,;

Calculate gradient g;™¢ = VE (91(;“’6)7 Q)
end for

Calculate §* = = 37 | gtme.
for taski=1,...,t —1do
Sample coreset ¢ from replay memory M? according to task i ,

Calculate task-wise gradients: g, = VE(0S9 () .
end for
g=1[3,...,3 ), andg=>"_, g\ ,
Solve: T'* = argminr I'g - g + ||| |Tg®™ ||,

Update TAM: gram = g + ”F’i“gg(ﬂ) i [*gtr)

(t,r) Gq(j,'r‘fl) —n g(t,r)

Model steps with aggregated gradient: 9 9 ITAM -

Upload client’s model Hut’rﬂ) to server;

end for

Server Optimization:

for taskt = 0,...do

for roundr =0,..., Rdo

Clients Updates;

Calculate g™ = oD — g{hr) gltir) = { (t’r)|u euy;

Calculate gFL) (e.g., gp ¢, T) =z Zu 1 gu ) as the FedAvg update);
Solve: I'* = arg minr Fg(t 4] - géL” + /$||g(t ITg®n),

el gl
Update SAM: g{31) = gt " + Flo L pegtn),
Model steps with aggregated gradient: 65" = i) — ), gltr).
end for
end for
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Algorithm 2: Prototypical Coreset Selection at task ¢

Input: Replay memory M with budget |M| = ZlL | M|, new class data \V}f, encoder ¢

Output: updated replay memory M’
for label | € L do
Step 1: Compute class prototype target

P = s [9350) ST N+ Tiewy (i 6)] - 1w = 1),

Step 2: Initialize optimization variables
Initialize coefficient set A = {a; | i € N} = {1/N} | i € N}
Step 3: Solve prototype-matching objective
for epoch e € E do
2
ﬁproto = Hﬁ ZieMl g(xi; ¢) + ﬁﬂ Zq;e/\/lt az'g(xz'? ¢) *PlH .

A=A- nAvAﬁprotw
end for

)?l:{xq;e,/\/'lﬂaieTop-k(A)}, st k=M.

Step 4: Style mixing if selected samples exceed memory
if | X!| > | M| then

foreach z € X' do

| 2" = MixStyle(z';z) ;

end foreach
end if
Step 5: Update replay memory
M X
end for

24



Under review as a conference paper at ICLR 2026

D RELATED WORKS

D.1 IMPORTANCE-BASED SAMPLING

LGA (Dong et al. [2024)) introduces a method to balance the contributions of different classes to
the gradient, aiming to mitigate catastrophic forgetting caused by imbalance among incremental
tasks. Re-Fed (Li et al., |2024b) presents a method for quantifying an importance score, which is
utilized to selectively retain cached samples within the replay memory. FedWelT (Yoon et al.| [2021)
partitions network weights into global federated and sparse task-specific parameters, enabling clients
to selectively acquire knowledge through a weighted combination of others’ task-specific parameters.
FedSSI (Li et al.l 2025¢) introduces a regularization technique that estimates the importance of each
synaptic weight change during training. It penalizes substantial changes to weights deemed important
for previously learned tasks, thereby helping to preserve prior knowledge.

D.2 PROTOTYPE-BASED LEARNING

SR-FDIL (Li et al., 2024c) introduces an approach that utilizes data from the local replay memory to
train both the prototype generator and the discriminator on local devices. TagFed (Wang et al., [2024)
proposes a method to identify repetitive data features from previous tasks and augment them for the
current task prior to federation, thereby enhancing overall performance.

D.3 GRADIENT MEMORY

GradMA (Luo et al.,[2023)) employs gradient projection on the client side, correcting gradients via
quadrature optimization using stored gradients from other clients.

D.4 GENERATIVE REPLAY MEMORY

FedCIL (Qi et al.} 2023)) introduces an efficient approach for training GAN-based replay memory in
distributed systems. TARGET (Zhang et al.,[2023b) introduces an approach that learns a server-side
generative model capable of producing data that adheres to the global model distribution. This
generated data is subsequently used to update the client-side student model via knowledge distillation.
AF-FCL (Wuerkaixi et al.}2024) introduces a generative model that employs a learned normalizing
flow to capture and retain the essential data distribution while effectively eliminating biased features.
pFedDIL (Li et al., 2025d) proposes an approach that transfers knowledge across incremental tasks
by using a small auxiliary classifier in each personalized model to distinguish its specific task from
others. FBL (Dong et al.| 2023) uses adaptive class-balanced pseudo labeling along with semantic
compensation and relation consistency losses to generate reliable pseudo labels and balance gradient
propagation, thereby mitigating the effects of background shifts.

D.5 EPISODIC REPLAY MEMORY FOR CONTINUAL LEARNING

GEM (Lopez-Paz & Ranzatol 2017) introduced an episodic memory mechanism that stores a subset
of data samples, enabling the estimation of task-specific gradients. This approach facilitates gradient
projection, thereby mitigating catastrophic forgetting in CL. VR-MCL (Wu et al., 2024)) introduced a
meta CL approach that effectively utilizes data stored in the memory buffer.

Authors in (Q1 et al., 2023)) demonstrate that incorporating a GAN-based replay memory in a
distributed system can be significantly affected by feature shifts among clients. To address this
challenge, FedCIL introduces a distillation-based approach designed to mitigate discrepancies across
different domains. GPM (Saha et al., 2021) introduces a method for storing gradient projections in
replay memory as an alternative to retaining previous data, thereby facilitating CL. FS-DGPM (Deng
et al.| 2021)) introduces an enhanced version of GPM, in which the projected gradients are flattened.
This flattening process improves generalization and enhances robustness to noise caused by a sharp
loss landscape.
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E EXPERIMENTAL DETAILS

We utilize the pFLLib framework (Zhang et al.l [2025)) as FL core framework to design the FCL
settings. All experiments are conducted using six NVIDIA GeForce RTX 4090 GPUs and two
NVIDIA GeForce RTX 3090 GPUs. The detailed experimental configurations are outlined below:

E.1 DATASETS

E.1.1 HETEROGENEOUS FEDERATED CONTINUAL LEARNING SETTINGS

Our work investigates the behavior of various algorithms in a heterogeneous FCL setting. To align
with a realistic and challenging non-IID federated scenario, we increase the difficulty by adopting the
task design proposed by (Dohare et all 2024), in which we construct a sequence of classification
tasks by taking the classes in groups.

Example 1 For example, in case of binary classification, one task could involve differentiating
chickens from llamas, while another might focus on differentiating phones from computers.

To consider the performance of baselines under different level of heterogeneity, we consider two
experimental scenarios. In the first, each task comprises 20 distinct classes. This setup represents
the conventional task configuration commonly used in existing literature (Wuerkaixi et al.} [2024)). In
the second, each task contains only 2 classes, creating a more challenging environment. In this case,
models are more likely to overfit to individual tasks, making them more susceptible to catastrophic
forgetting when adapting to new tasks. Simultaneously, client divergence becomes more pronounced
under this configuration.

Specifically, we utilize two widely adopted benchmark datasets:

Sequenced-CIFAR100. The CIFAR100 dataset consists of 100 object categories,
with a total of 60,000 images. Each image has a resolution of 32 x 32 pixels. In case 1 task comprises
2 classes, we can form 4950 distinct tasks. In case 1 task comprises 20 classes, we can form more
than 5x102° distinct tasks.

Sequenced-ImageNet1K. ImageNet1K dataset (Deng et al.l 2009) contains 1,000 diverse object
categories, with over 1.3 million high-resolution training images. All images are resized to 224 x 224
pixels during preprocessing. In case 1 task comprises 2 classes, we can form half a million tasks. We
show the illustration for this case in Fig. [7} In case 1 task comprises 20 classes, we can form more
than 3x10*! distinct tasks. The scale and diversity of ImageNet1K pose greater challenges in terms
of memory footprint, computational cost, and model scalability.

A

Client 5 (88,837] (342,701] [727,388] (36,976] (532,355]

Client 4 605,250 [ 424,751 |l 199,353 | 516,633 |l 82,257

Client 3 ‘531,254’ ‘652,858’ [7,285] ‘285,246’ ‘627,110’

Client 2 [240,522} [627,194} [248,92] [82,144} [611,941}

Client 1 886,216 470,185 817,320 45, 312 97,412

N,
>

Task 1 Task2 Task3 Task4 Task5

Figure 7: The data distribution when using S-ImageNet1K in case 1 task comprises 2 classes.
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E.2 BASELINES

We evaluate our approach against several established baselines from FL, and FCL. For conventional
FL baselines, we compare with standard methods such as FedAvg (McMahan et al.,[2017) , FedDBE
(Zhang et al.| [2023a)), FedL2P (Lee et al.,[2023)), and FedAS (Yang et al.,|2024), FedOMG (Nguyen
et al.} [2025). FedAvg serves as the foundational baseline in FL. FedL2P and FedAS focus on
personalized FL, enabling models to adapt to client-specific tasks and thereby mitigating the effects
of task heterogeneity. In contrast, FedDBE and FedOMG aim to construct a more robust global model
by reducing inter-client bias, thereby enhancing generalization across both tasks and clients.

For FCL, we assess several state-of-the-arts, including FedWelT (Yoon et al., 2021, GLFC (Dong
et al.}2022), FedCIL (Qi et al.;2023)), LANDER (Tran et al.| 2024), TARGET (Zhang et al.| 2023b),
FedSSI (Li et al., 2025¢), ReFed+ (L1 et al.,[2025a), and AF-FCL (Wuerkaixi et al.| 2024). FedWelT
exemplifies approaches that allocate specialized expert modules for each task, allowing task-specific
adaptation. GLFC uses a distillation-based approach to address catastrophic forgetting, considering
both local and global aspects. FedCIL, LANDER, TARGET, and AF-FCL adopt generative replay
strategies, training generative models on each client to synthesize pseudo-data for previously encoun-
tered tasks. Among these, AF-FCL is the most recent and directly addresses the challenges posed by
heterogeneous FCL settings, making it a particularly relevant benchmark for comparison.

E.3 EVALUATION METRICS

To evaluate the baselines, we utilize two standard metrics from the CL literature (Yoon et al., 2021)),
(Mirzadeh et al., 2021}, which are well-suited for tracking the performance of a global model in FL,
coined accuracy and averaged forgetting.

Averaged Forgetting. This metric measures the decline from a task’s highest accuracy, which is
typically achieved right after it is trained, to its final accuracy after all tasks have been learned. For T’
tasks, the forgetting is defined as

1 T-1

AF = —— C—ar). 44
712 tegggl](at,z ar,) (44)

As the model shifts focus to new tasks, its performance on earlier ones often decreases. Therefore,
minimizing forgetting is important to maintain overall performance.

E.4 ARCHITECTURE DETAILS

For CIFAR-10, CIFAR100, Digit10, and Office31, we adopt conventional ResNet-18 (He et al.,[2016)
as the backbone network architecture for all validation experiments. For S-ImageNet1K, we employ
Swin Transformer Tiny (Swin-T) (Liu et al., 2021)) as the backbone. It is noted that FCIL, LANDER,
TARGET, FedL2P, FedWelT and AF-FCL use addition generative networks or modify their network
architectures, with details summarized in the following table. We denote FedWelT (T) as the version
theoretically proposed in the original paper, while FedWelT (C) represents the configuration observed
in our experimental implementation.

Specifically, FedWelT augments the base model with sparse task-adaptive parameters, task-specific
masks over local base parameters, and attention weights for inter-client knowledge transfer. FCIL,
LANDER, and TARGET incorporate additional GANSs to learn past task features. FedL.2P introduces
a meta-net that generates personalized hyper-parameters, such as batch normalization statistics and
learning rates, adapted to each client’s local data distribution to improve learning on non-IID data. AF-
FCL additionally requires a normalizing flow generative model (NFlo for credibility estimation
and generative replay mechanism, which guide selective retention and forgetting.

E.5 TRAINING DETAILS

In our proposed heterogeneous federated continual learning framework for the S-CIFAR100 and
S-ImageNet1K datasets, we consider a setting involving 10 clients with a client participation fraction

'NFlow refers to the normalizing flow model, where the example is provided in https: //github. com/
zaocan666/AF-FCL/blob/main/FLAlgorithms/PreciseFCLNet/model.py
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Table 3: Architectural details of methods with modified models.

Method | CIFAR-10, CIFAR100, Digit10, Office31 | ImageNet1K

\ Model #Params \ Model #Params
FedAvg ResNet-18 11.7M Swin-T 28.8 M
FedSSI ResNet-18 11.7M Swin-T 28.8 M
ReFed+ ResNet-18 11.7M Swin-T 28.8 M
FCIL ResNet-18 + GAN 16.1 M Swin-T + GAN 497 M
LANDER ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7M
TARGET ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7M
FedL.2P ResNet-18 + Meta-Net 13.5M Swin-T + Meta-Net 32.6 M
FedWelT (T) Modified ResNet-18 596.2 M Modified Swin-T  7192.3 M
FedWelT (C) Modified LeNet 171.8 B
AF-FCL ResNet-18 + NFlow 21.3M Swin-T + NFlow 534 M

of 1.0. We do not adopt a conventional non-IID distribution in this scenario; instead, each client is
assigned distinct classes, which introduces a level of heterogeneity that is more challenging than
typical non-IID configurations.

Additionally, we evaluate the proposed approach under non-IID conditions using four benchmark
datasets: CIFAR-10, CIFAR100, Digit-10, and Office-31. For these experiments, we simulate data
heterogeneity using the Dirichlet distribution with varying concentration parameters (e.g., « = 0.1,
1.0, 10.0, and 100.0) to control the degree of non-IID-ness. The complete details of the experimental
settings are provided in Table 4]

Table 4: Experimental Details. Settings for heterogeneous and non-IID distributed FCL.

Attri Heterogeneous FCL \ Non-IID distributed FCL

ributes

S-CIFAR100 ImageNetlK | CIFARI0  S-CIFAR100 Digit10 Office31

Task size 141MB/14MB 8GB/0.8GB 141 MB 141 MB 480 M 88 M
Image number 60K 1.3M 60K 60K 110K 4.6K
Image Size 3 x 32 x 32 3x224x224 | 3x32x32 3x32x32 1x28x28 3 x300x 300
Task number 5750 50/ 500 5 10 4 3
Batch Size 128 128 64 64 64 32
Learning Rate 0.005 0.005 0.01 0.01 0.001 0.01
Data heterogeneity N/A N/A 0.1 10.0 0.1 1.0
Client numbers 10 10 10 10 10 10
Local training epoch 5 5 5 5 5 5
Client selection ratio 1.0 1.0 1.0 1.0 1.0 1.0
Rounds per Task 25 25 80 100 60 60
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F ADDITIONAL EXPERIMENTAL EVALUATIONS

F.1 EXPERIMENTAL EVALUATIONS ON THE POPULAR CLASS DISTRIBUTION USED BY OTHER
WORKS

The results in Table |§| show that when each task contains 20 classes, the problem becomes easier,
leading to much lower forgetting across all methods compared to the 2-class setting. Even under
this easier scenario, STAMP maintains a strong overall trade-off, achieving higher accuracy and
competitive forgetting while keeping communication cost comparable to standard FL. At the same
time, STAMP requires only modest GPU and disk resources, unlike methods such as LANDER or
FedWelT that consume significantly more memory. This efficiency highlights STAMP’s robustness
and practicality for real-world deployment, even when class distributions are less challenging.

Table 5: We report the average per-task performance of FCL under a setting where each task is
assigned 20 classes. Evaluations are conducted using 10 clients (fraction = 1.0) across 5 independent
trials. OOM refers to the out of memory in GPU. 1 and | indicate that higher and lower values are
better, respectively. C—S and S—C denote communication from the client to the server and from the
server to the client, respectively.

S-CIFAR100 (U = 10, C' = 20)

Methods Accuracy 1 AF | Avg. Comp. | Comm. Cost | GPU (Peak) | Disk |
(Sec/Round) C—S S—»C

FedAvg 27.2(+22) 5909 27.6 sec 446 MB 44.6 MB 1.92 GB N/A
FedDBE 283 (£16) 5.5(£07) 28.3 sec 44,6 MB 44.6 MB 1.91 GB N/A
FedAS 40.2 (+1.1) 30.7 (£03) 135.7 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedOMG 36.8 (£14) 8.5(£06) 32.7 sec 44,6 MB 44.6 MB 1.92 GB N/A

GLFC 29.8 (£2.1) 7.5(x04) 167.8 sec 88.2MB 46.5 MB 3.83GB 22.1 MB
FedCIL 32417 6312 199.3 sec 953MB 44.6 MB 4.21 GB 18.5 MB
LANDER 35.1 (£13) 5.4 (£08) 153.6 sec 1124 MB 138.7 MB 4.83 GB 131.5 MB
TARGET 32.1(£23) 5916 236.4 sec 1124 MB 44.6 MB 3.65GB 18.5 MB
FedL2P  30.2(+18) 6.3 (+1.3) 78.1 sec 56.3MB 56.3 MB 2.56 GB N/A

Re-Fed+ 374 (=16 6.3 (£13) 29.2 sec 446 MB 44.6 MB 2.17GB 18.5 MB

FedWelT 37.3 (£23) 4.7 (+08) 38.7 sec 442 MB 442 MB 7.21 GB 6.1 GB
FedSSI 30215 8911 61.7 sec 446 MB 44.6 MB 2.53 GB N/A
AF-FCL  35.6 (£04) 5.2 (405) 45.3 sec 156.3MB 121.3 MB 8.93 GB N/A

STAMP 413 (£09) 5.4 (£0.6) 56.3 sec 446 MB 44.6 MB 1.92 GB 16.3 MB

S-ImageNet1K (U = 10, C = 20)

FedAvg 173 (x£33) 14.1(x02) 14852sec 112.5MB 112.5MB 16.11 GB N/A
FedDBE 18.8 (+52) 13.9(+03) 15727sec 112.5MB 112.5MB 16.11 GB N/A
FedAS 223 (500 18.2(+06) 5108.5sec 112.5MB 112.5MB 16.11 GB N/A
FedOMG 21.2(+33) 11.3(x07  1821.2sec 112.5MB 112.5MB 16.11 GB N/A

GLFC 22521 63(+02) 56473 sec 2253 MB 121.2 MB 20.24 GB 112.6 MB
FedCIL 24.1 (£28) 7.3 (x£04) 71203 sec  245.5MB 112.5 MB 23.47 GB 184.3 MB
LANDER 269 (+14) 7.8(£09) 6825.8 sec  267.4MB 453.6 MB 26.54 GB 1.31 GB
TARGET 25.8 (£38) 6.7 (£04) 9958.2sec  287.4MB 112.5 MB 21.08 GB 184.3 MB
FedL2P 22337 9.4 (+06) 3278.7sec  146.6 MB 146.6 MB 18.21 GB N/A
Re-Fed+ 254 (+19 7.4(£06) 1508.4sec 112.5MB 112.5 MB 16.71 GB 184.3 MB

FedWelT 24.8(+13) 5.1 (£08) 1763.8sec 1104 MB 1104 MB  41.23 GB 61.7 GB
FedSSI 251 (+24) 8.6(x£09  3111.8sec 287.4MB 112.5MB 17.66 GB N/A
AF-FCL 213 (51 4.506) 1823.7sec 4213 MB 336.8 MB  46.81 GB N/A

STAMP 268 (£23) 5.8(+£04 3041.2sec 1125MB 1125MB 16.11GB  152.6 MB

29



Under review as a conference paper at ICLR 2026

F.2 EXPERIMENTAL EVALUATIONS ON PRETRAINED MODELS

Figure [§]illustrates the performance of FedAvg and STAMP on the S-ImageNet1K dataset using a
pretrained model. Given that the model is pretrained on the same dataset, the evaluation may suffer
from overfitting. Consequently, the experimental results show no substantial performance difference
between the two algorithms. Moreover, the issue of catastrophic forgetting appears to be minimal in
this evaluation setting.

Performance Over Tasks Using Pre-trained Model

Accuracy

--- STAMP
—— FedAvg

0 20 40 60 80 100
Task Index

Figure 8: Accuracy on S-ImageNetl1K with Pretrained Models.
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F.3 EXPERIMENTAL EVALUATIONS ON CATASTROPHIC FORGETTING

55 CIFAR100 - 2 classes/task ImageNet1K - 2 classes/task

50 45
45 .40
X X
> 40 -~ 35
] @
535 €30
v} 3
<39 I 25

25 20

15
20
2 4 6 8 10 12 2 4 6 8 10 12
Task Number Task Number
(@ (b)

Figure 9: Analysis on forgetting curves.

Figure [0]shows that STAMP consistently exhibits substantially less performance degradation as the
number of tasks increases, maintaining higher accuracy across both S-CIFAR100 and S-ImageNet1K.
In contrast, other methods display similar downward trends, with accuracy declining more rapidly
as tasks progress. Moreover, as illustrated in Figures[5]and[f] higher gradient angles between tasks
correspond to more gradual decline in the forgetting curves, indicating less catastrophic forgetting.
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F.4 HYPER-PARAMETER TUNING FOR STAMP

In this section, we examine the impact of various hyperparameters through a series of experiments
conducted on the ImageNet-1K dataset. For each experiment, one specific hyperparameter is varied
while all other hyperparameters are held constant.

F.4.1 GRADIENT NORMALIZATION

Since STAMP is sensitive to the magnitude of local gradients, the presence of a dominant subset with
disproportionately large gradient magnitudes can bias the optimization process toward that subset
during gradient alignment. Figure[I0]illustrates the impact of applying gradient normalization on
both the client and server sides before performing gradient alignment. With gradient normalization in
place, STAMP demonstrates a notable improvement in performance.

Grad Balance

0.501 —— True

False
0.451

Accuracy
o ©
w b
(6] o

<
)
=)

0.251

0.201
0 20 40 60 80 100
Task Index

Figure 10: Analysis on Gradient Normalization.

F.4.2 GLOBAL TRAINING EPOCHS NUMBER PER ROUND

Fig [IT] shows that using 25 training epochs achieves the best balance between performance and
stability. Increasing the number of epochs beyond 25 does not lead to higher accuracy, while it results
in increased forgetting, as indicated by the rise in average forgetting.

551
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w w N N w
o w o (9] o

N
wv
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15 20 25 30 35
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Figure 11: Analysis on Gradient Normalization.
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F.4.3 LocaAL EPOCH

Selecting the number of local epochs is crucial, as increasing the number of local epochs leads to a
more accurate approximation of the local gradient trajectory. Figure[I2]illustrates the performance of
STAMP under varying numbers of local epochs.

Local Epochs

0.401 3 epochs
——— 5 epochs
—— 7 epochs
0.35 ‘

Accuracy
o
w
o

0.20

0 20 40 60 80 100
Task Index

Figure 12: Analysis on different number of local epochs.
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1782
1783
1784 Figure[[3]illustrates the performance of STAMP under different local learning rate.
1785

F.4.4 LoOCAL LEARNING RATE
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eut Figure 13: Analysis on different local learning rate.
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- F.4.5 GRADIENT ALIGNMENT SEARCHING RADIUS

1806 Figure[T4]illustrates the impact of the search radius on gradient alignment in STAMP. Selecting an
1807  appropriate search radius (e.g., 0.5) is critical for achieving an optimal gradient alignment solution.
1808 A smaller radius (e.g., 0.1) constrains the search space too tightly, causing the solution to converge
100 toward the average gradient and reducing matching effectiveness. Conversely, a larger radius (e.g.,
1210 0.75) broadens the search space excessively, making it difficult to identify an optimal solution.
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F.4.6 GRADIENT ALIGNMENT STEP SIZE & MOMENTUM

Figures [T3] and [T6]demonstrate the effects of momentum and learning rate scheduling on gradient
alignment performance.

STAMP Learning Rate Scheduling Step Size

0.40
— 0.1
—— 0.25
0.35{ — 0.5
— 0.75
z
& 0.30
>
19}
9]
<C
0.25
0.20
0 20 40 60 80 100

Task Index

Figure 15: Analysis on different learning rate scheduling step size.

STAMP Momentum

Accuracy

0 20 40 60 80 100
Task Index

Figure 16: Analysis on different momentum for gradient alignment.
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F.4.7 GRADIENT ALIGNMENT NUMBER OF ROUNDS

Figure [T7]illustrates the impact of the number of optimization steps on the efficiency of gradient
alignment.

STAMP Rounds
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Figure 17: Analysis on different number of rounds

F.4.8 GRADIENT ALIGNMENT SCHEDULING STEP SIZE

Figure [T8]illustrates the performance of STAMP under various learning rate scheduler step sizes.
Selecting an appropriate step size (e.g., 30) facilitates optimal gradient alignment decisions, thereby
enhancing the stability and efficiency of FCL training.

STAMP Step Size

0.35

0.30

30.251
o
5
g
£0.20
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Figure 18: Analysis on different scheduling step size.
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F.4.9 GRADIENT ALIGNMENT LEARNING RATE

Figure [T9]illustrates the effect of varying learning rates on the optimization of gradient alignment.
The results indicate that STAMP achieves optimal performance when the learning rate is set to 25.

STAMP Learning Rate
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Figure 19: Analysis on different gradient alignment learning rate.

F.4.10 GLOBAL UPDATE LEARNING RATE

The global update learning rate significantly influences the norm of the aggregated gradient. As
shown in Figure 204} selecting a lower learning rate can reduce the norm of the aggregated gradient
(see Figure 20b). This reduction may lead to slower convergence or result in gradient magnitudes
that are insufficient to escape sharp minima.

STAMP Meta-Learning Rate Meta-Learning Rate Impact on Gradient Norm
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0 20 40 60 80 100 0 20 40 60 80 100
Task Index Task Index
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Figure 20: Analysis on global learning rate.
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F.5 EFFECTIVENESS OF GRADIENT ALIGNMENT

F.5.1 CASE OF 10 CLIENTS

To investigate the presence of gradient conflicts in federated learning (FL), we begin with a small-
scale experiment involving 10 clients, each performing a classification task on the CIFAR-100 dataset,
following the setup described above. We randomly select one client (denoted as client 1) and compute
the cosine similarity between its gradient and those of the remaining 9 clients throughout the training
process.

Figure 21] illustrates the cosine similarities between client 1 and each of the other clients (clients
2-10). It can be observed that under our proposed STAMP method, the gradients of client 1 are more
consistently aligned with those of the other clients, as evidenced by higher cosine similarity values.
This alignment indicates a reduction in gradient conflict and supports more stable collaborative
learning.
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Figure 21: Cosine similarity between the gradient of client 1 and the gradients of clients 2—10.
STAMP helps improve gradient alignment across clients by increasing cosine similarities.
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To further quantify this effect, we aggregate the number of positive and negative cosine similarities
across training rounds. As shown in Figure 22a]and Figure 22B] the standard FedAvg method results
in frequent gradient conflicts, indicated by a large number of negative similarities. In contrast,
STAMP significantly reduces these conflicts, increasing the number of positively aligned gradients
and thereby promoting more effective global model updates.
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Figure 22: Comparison between STAMP and FedAvg in terms of gradient alignment. STAMP
significantly reduces gradient conflicts in a 10-client FL system.
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F.5.2 CASE OF 100 CLIENTS

To further validate the trend at a larger scale, we repeat the experiment using an FL setup with
100 clients. A client is again selected at random (denoted as client 1), and we compute the cosine
similarities between its gradient and those of the remaining 99 clients during training. Figure 23]
illustrates the gradient cosine similarities between client 1 and 9 representative clients chosen from
the remaining pool. It is evident that STAMP consistently improves gradient alignment between
client 1 and the selected peers, as indicated by higher cosine similarity values across training rounds.
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Figure 23: Cosine similarity between the gradient of client 1 and those of 9 selected clients in
a 100-client FL system. STAMP improves alignment by increasing the cosine similarities across
training rounds.
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To summarize the overall trend across all clients, we count the number of positive and negative cosine
similarities between client 1 and the other 99 clients at each training round. As shown in Figure 24|
and Figure 24b] under FedAvg, client 1’s gradient conflicts with more than 60% of the other clients
for most of the training process. In contrast, STAMP significantly reduces the prevalence of gradient
conflicts, lowering the proportion of negative similarities to below 10% in most rounds.

=
o
oS
=
o
o

80 80

60 60

40 40

Percentage of Positive Cosine Similarities

Percentage of Negative Cosine Similarities

20 1 20
| —— FedAvg 4 —— FedAvg
—— STAMP STAMP
0 0 snors. 7
0 50 100 150 200 250 0 50 100 150 200 250
Communication Rounds Communication Rounds
5 5
(a) (b)

Figure 24: Comparison between STAMP and FedAvg in aligning gradients in a 100-client FL system.
STAMP significantly reduces gradient conflicts and increases agreement among client updates.
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F.6 EFFECTIVENESS OF PROTOTYPICAL CORESET

F.6.1 EFFECTIVESS OF PROTONET

To evaluate the impact of prototypical coreset selection in STAMP with and without ProtoNet, we
conduct an ablation study, with the results presented in Table[6] To further investigate why ProtoNet
improves performance, we analyze the gradient alignment and its variance for STAMP and STAMP
without ProtoNet, as shown in Figure 23] Two key observations emerge from Figure[23} first, STAMP
without ProtoNet exhibits higher gradient variance; second, its gradient angles are lower compared to
the full version. This can be attributed to the fact that higher gradient variance leads to less accurate
gradient alignment.

Table 6: Ablation studies of the efectiveness of ProtoNet.

S-CIFAR-100  S-ImageNet1K

Method
Acc 1 Acc 1
ProtoNet 52.840.9 41.5+2.8
w/o ProtoNet 47.6+0.8 36.3+£1.3
030 w/o ProtoNet ProtoNet
0.25
[
£ 020
§
Q 015
2 o010
g o
& 005
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§ o000
-0.05
-0.10
0 50 100 150 200 250 300 50 100 150 200 250 300
Communication Rounds Communication Rounds

Figure 25: Effectiveness of ProtoNet on gradient angle. This is done on dataset S-ImageNet1 K
F.6.2 T-SNE VISUALIZATIONS

Figure 26]illustrates the effectiveness of prototype learning from a prototypical coreset. This figure
highlights two key observations: (1) the inability of vanilla FL to effectively learn prototypes from
hidden representations, and (2) the improved prototype learning capability achieved by STAMP. In the
case of FedAvg, the model fails to acquire sufficiently representative features due to the limitations
imposed by the single-pass data stream.

In contrast, STAMP demonstrates strong class discrimination as it progresses through tasks, which
enhances its ability to learn prototypes from a compact coreset. This improvement stems from the
coreset selection process, which is guided by class-specific criteria. As a result, it reduces inter-class
confusion that could otherwise lead to inaccurate or misleading prototype representations.
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Training Stream

Figure 26: t-SNE visualizations of features learned by FedAvg and STAMP on the CIFAR-10 test set
reveal notable differences. FedAvg exhibits significant class confusion when learning new classes,
likely due to shortcut learning. In contrast, STAMP, leveraging a prototypical coreset, effectively
mitigates forgetting and maintains clearer class separation.
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F.7 ADDITIONAL EVALUATIONS ON STAMP WITH VARYING CLIENT NUMBER

Table 7: Evaluation of STAMP and FedAvg on S-CIFAR100 and S-ImageNet1K datasets with 2
classes per client task. The experiments are conducted under different numbers of clients to assess
scalability. Each result is averaged over 5 runs with standard deviation.

S-CIFAR100 (C' = 2)
Method Metric 10 20 50 100

Acc. 31717 26819 16225 8.8(£29
AF 22.1(x13) 20309 13.7&17 6.8 £1D

Acc. 528 (+09) 48306 41.7F11) 31.4F09)

FedAvg

STAMP AF 243 (08 23304 20508 18.4(+09)
ImageNetlK (C = 2)

FedAv Acc. 24351 17.6 (43 10767 4.8 %37

g AF 19.6 (+0.1) 153 (03 89 (x04) 4.1£02)

STAMP Acc. 41528 388 *19 33.1F13) 24411

AF 242 (+08) 22.8(+06) 189 (£03) 15.1 (04

Table[7] presents an additional evaluations of the STAMP framework under varying numbers of clients
(10, 20, 50, 100) on two benchmark datasets: S-CIFAR100 and S-ImageNet1K, with 2 classes per
task. Across both datasets, as the number of clients increases, performance degrades for both methods
due to increased heterogeneity and gradient conflicts. However, STAMP consistently outperforms
FedAvg in all configurations, demonstrating stronger robustness and scalability. Notably, STAMP
achieves higher accuracy with lower forgetting, especially in more challenging settings with a large
number of clients.
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F.8 ADDITIONAL EVALUATIONS ON STAMP UNDER DIFFERENT PARTIAL PARTICIPATION

RATES

Table 8: Performance of FedAvg and STAMP with 10 clients under different partial participation

rates. STAMP is designed to remain robust as participation decreases.

S-CIFAR100 (C' = 2)

Method Metric 0.1 0.2 0.5 1.0
FedAv Acc. 22.5(+28) 26.1 (+23) 29.7*18 31717
g AF 164 (+19 18214 20511y 22.1*13)
STAMP Acc. 453 (16 480(*12) 51.0(x1.00 52.8(+09)
AF 20.8 (100 22.1(£08) 23.5(+06) 24.3(£08)

ImageNetlK (C = 2)

FedAv Acc. 13.8(x65 163 (£54 20947 243 *5.0)
g AF 108 (£ 1.1) 13.7(*09 17.3(+06) 19.6(x0.1)
STAMP Acc.  33.7(x39 369 *32 39.8(+£26 41.5F28)
AF 19.1 (12 21.0(*09 23.1(+06) 24.2(+0.8)

Table[8]shows FedAvg is heavily impacted by low partial client participation. In contrast, STAMP
remains substantially more robust thanks to temporal gradient alignment and prototypical core-
set selection mechanism. This robustness becomes more pronounced as more clients participate,
where STAMP consistently outperforms FedAvg by a large margin across both S-CIFAR100 and

S-ImageNet1K. This is thanks to the proposed spatio gradient alignment.
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G TIME COMPLEXITY OF PROTOTYPICAL CORESET SELECTION

Theorem 3 (Time Complexity of Prototypical Coreset Selection) Under standard assumptions,
AlgorithmIZlhas time complexity O(E - Cy - (|M| + |N|)), where L is the number of classes,
E is the number of epochs, | M| is the memory size per class, |N!| is the number of new samples per
class at task t, and Cy is the computational cost of the encoder forward pass.

Proof. Letm = |[M!|, n = IV}, we analyze the time complexity by examining each step of
Algorithm 2] for a single class [, then aggregate over all L classes.

Step 1 (Prototype Computation): Computing g(z;; ¢) for each x; € N} requires n encoder forward
P yp Y puting g 1 Teq

passes. The summation and normalization operations over d-dimensional vectors require O(nd)
arithmetic operations. For instance,

Ti = O(n - Cs + nd). (45)

Step 2 (Initialization): Initializing |A| = n coefficients requires:

T2 = O(n). (46)
Step 3 (Optimization Loop): For each epoch e € {1,..., E}:

« Computing embeddings for samples in M! requires m encoder forward passes: O(m - Cy)

* Computing embeddings for samples in N} requires n encoder forward passes: O(n - Cy)

* Computing weighted sums ) ., g(; ¢) and ZieNlt a;g(x;; @) requires O((m + n)d)
operations

» Computing the squared norm requires O(d) operations

» Computing gradient V 4 Lyrot, and updating A requires O(n) operations

Over E epochs, we have the following time complexity:

Ts=0O(E - [(m+n)-Cy+ (m+n)d+n]) (47)

The Top-k selection can be implemented using quickselect in expected O(n) time or heap-based
selection in O(nlogm) time:
7~3,selecl = O(TL log m) (48)

Step 4 (Style Mixing): In the worst case, applying MixStyle to m samples requires:
Ta = O(m - Chix) (49)
Step 5 (Memory Update): Updating the memory requires:
75 = O(m) (50)

Combining all steps, we have the following computation complexity as follows:

%]ass:ﬂ+7d2+7é+7d3,select+7jl+7d5
=0(n-Cy+nd+n+E-[(m+n)-Cy+ (m+n)d+n]
+ nlogm +m - Cpix +m) (5D

To simplify the computation complexity, we follow the following assumptions typical in continual
learning settings:

Assumption 4 (Encoder Dominance) The encoder forward pass dominates other operations:
C¢ > d, Cix-

Assumption 5 (Multiple Epochs) The number of optimization epochs satisfies E > 1, typically
E > 1in practice.
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Under Assumptions@ and the dominant term in Teiaes i8S E - (m + n) - Cy because we have the
three following statements:

E-(m+n)-Cy>n-Cy (for E>1andm > 0) (52)
E-(m+n)-Csy>E-(m+n)-d (by Assumption[d) (53)
E-(m+n)-Cs>nlogm,m- Cni (by Assumption ) (54)

As a consequence, we have the following simplified complexity for each class as follows:
Telass = O(E (m + n) ’ C¢) (55)

Since the algorithm iterates over L classes independently, we have the following total computational
complexity as follows:

ﬂotal =L 7;lass = O(L B (m+n) : C¢)
=O(L-E- (M| +|N])- Cs) = O(E - (IM] + N"]) - Cy) (56)

This completes the proof.
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H Privacy orF STAMP

FL (McMabhan et al., |2017), and FCL in particular, are vulnerable to various attacks such as data
poisoning, model poisoning (Wan et al., 2024), backdoor attacks (Nguyen et al.,|2023)), and gradient
inversion attacks (Petrov et al.| 2024} Balunovic et al., 2022; Dimitrov et al.||2022)). Our proposed
method does not introduce any additional privacy risks beyond those inherent to the standard FedAvg
algorithm. Consequently, it is compatible with existing defense mechanisms developed for FedAvg,
including secure aggregation (Mai et al.; 2024;|So et al.,[2023)) and noise injection prior to aggregation
(Hu et al ., 2024).

Unlike several prior FCL approaches (Zhang et al.| [2023b}; Qi et al.| 2023) that require clients to
share either locally trained generative models or perturbed private data, STAMP relies solely on
gradient alignment. It utilizes the global model weights and the uploaded local model updates,
information already exchanged among clients in the standard FedAvg setting, thus avoiding the need
for additional private data sharing, especially over open communication environments (e.g., 5G/6G
wireless networks).

I LIMITATIONS AND FUTURE WORKS

A primary limitation of our method lies in the sensitivity of gradient alignment to the stability of
task-wise and client-wise gradient trajectory approximation. Moreover, existing gradient alignment
approaches typically learn a single parameter set that adjusts the magnitude of task-specific gradients
through a convex combination. Such approaches do not influence the direction of the gradients.
Therefore, enhancing the stability of gradient trajectory approximation and improving gradient
alignment performance, particularly by extending the learnable parameter set to operate at the
layer-wise or element-wise level, emerge as a promising direction for future research.
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