
Fast Vision Transformers with HiLo Attention

Zizheng Pan Jianfei Cai Bohan Zhuang†

Department of Data Science & AI, Monash University, Australia

Abstract

Vision Transformers (ViTs) have triggered the most recent and significant break-
throughs in computer vision. Their efficient designs are mostly guided by the
indirect metric of computational complexity, i.e., FLOPs, which however has a
clear gap with the direct metric such as throughput. Thus, we propose to use
the direct speed evaluation on the target platform as the design principle for effi-
cient ViTs. Particularly, we introduce LITv2, a simple and effective ViT which
performs favourably against the existing state-of-the-art methods across a spec-
trum of different model sizes with faster speed. At the core of LITv2 is a novel
self-attention mechanism, which we dub HiLo. HiLo is inspired by the insight
that high frequencies in an image capture local fine details and low frequencies
focus on global structures, whereas a multi-head self-attention layer neglects the
characteristic of different frequencies. Therefore, we propose to disentangle the
high/low frequency patterns in an attention layer by separating the heads into two
groups, where one group encodes high frequencies via self-attention within each
local window, and another group encodes low frequencies by performing global
attention between the average-pooled low-frequency keys and values from each
window and each query position in the input feature map. Benefiting from the
efficient design for both groups, we show that HiLo is superior to the existing
attention mechanisms by comprehensively benchmarking FLOPs, speed and mem-
ory consumption on GPUs and CPUs. For example, HiLo is 1.4× faster than
spatial reduction attention and 1.6× faster than local window attention on CPUs.
Powered by HiLo, LITv2 serves as a strong backbone for mainstream vision tasks
including image classification, dense detection and segmentation. Code is available
at https://github.com/ziplab/LITv2.

1 Introduction

Real-world applications usually require a model to have an optimal speed and accuracy trade-off
under limited computational budget, such as UAV and autonomous driving. This motivates substantial
works toward efficient vision Transformer (ViT) design, such as PVT [51], Swin [32] and Focal
Transformer [60], among others. To measure the computational complexity, a widely adopted metric
in recent ViT design is the number of float-point operations, i.e., FLOPs. However, FLOPs is an
indirect metric, which can not directly reflect the real speed on the target platform. For example,
Focal-Tiny is much slower than Swin-Ti on GPUs although their FLOPs are comparable.

In general, the discrepancy between the indirect metric (FLOPs) and the direct metric (speed) in
recent ViTs can be attributed to two main reasons. First, although self-attention is efficient on
low-resolution feature maps, the quadratic complexity in both memory and time makes it much
slower on high-resolution images due to intensive memory access cost [34], where fetching data from
off-chip DRAM can be speed-consuming. Second, some efficient attention mechanisms in ViTs have
low theoretical complexity guarantee but are actually slow on GPUs due to particular operations that

†Corresponding author. E-mail: bohan.zhuang@monash.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ziplab/LITv2

Low Frequency Attention (Lo-Fi)

Avg Pool Concat

Input KV

Q

Scaled
Dot-Product

Attention

C
on

ca
t

Pr
oj

ec
tio

n

QKV

Scaled
Dot-Product

Attention

C
on

ca
t

Pr
oj

ec
tio

n

High Frequency Attention (Hi-Fi)

Figure 1: Framework of HiLo attention. Nh refers to the total number of self-attention heads at this
layer. α denotes the split ratio for high/low frequency heads. Best viewed in color.

are not hardware-friendly or cannot be parallelized, such as the multi-scale window partition [60],
recursion [44] and dilated window [20].

With these observations, in this paper we propose to evaluate ViT by the direct metric, i.e., throughput,
not only FLOPs. Based on this principle, we introduce LITv2, a novel efficient and accurate vision
Transformer that outperforms most state-of-the-art (SoTA) ViTs on standard benchmarks while being
practically faster on GPUs. LITv2 is bulit upon LITv1 [36], a simple ViT baseline which removes
all multi-head self-attention layers (MSAs) in the early stages while applying standard MSAs in
the later stages. Benefit from this design, LITv1 is faster than many existing works on ImageNet
classification due to no computational cost from the early MSAs while the later MSAs only need to
process downsampled low-resolution feature maps. However, the standard MSA still suffers from
huge computational cost on high-resolution images, especially for dense prediction tasks.

To address this problem, we propose a novel efficient attention mechanism, termed HiLo. HiLo is
motivated by the fact that natural images contain rich frequencies where high/low frequencies play
different roles in encoding image patterns, i.e., local fine details and global structures, respectively. A
typical MSA layer enforces the same global attention across all image patches without considering
the characteristics of different underlying frequencies. This motivates us to propose to separate an
MSA layer into two paths where one path encodes high-frequency interactions via local self-attention
with relatively high-resolution feature maps while the other path encodes low-frequency interactions
via global attention with down-sampled feature maps, which leads to a great efficiency improvement.

Specifically, HiLo employs two efficient attentions to disentangle High/Low frequencies in feature
maps. As shown in Figure 1, in the upper path, we allocate a few heads to the high frequency attention
(Hi-Fi) to capture fine-grained high frequencies by local window self-attention (e.g., 2× 2 windows),
which is much more efficient than standard MSAs. The lower path, implementing the low-frequency
attention (Lo-Fi), first applies average pooling to each window to obtain low-frequency signals. Then,
we allocate the remaining heads for Lo-Fi to model the relationship between each query position in the
input feature map and the average-pooled low-frequency keys and values from each window. Benefit
from the reduced length of keys and values, Lo-Fi also achieves significant complexity reduction.
Finally, we concatenate the refined high/low-frequency features and forward the resulting output into
subsequent layers. Since both Hi-Fi and Lo-Fi are not equipped with time-consuming operations such
as dilated windows and recursion, the overall framework of HiLo is fast on both CPUs and GPUs.
We show by comprehensive benchmarks that HiLo achieves advantage over the existing attention
mechanisms in terms of performance, FLOPs, throughput and memory consumption.

Besides, we find the fixed relative positional encoding in LITv1 dramatically slows down its speed on
dense prediction tasks due to the interpolation for different image resolutions. For better efficiency,
we propose to adopt one 3 × 3 depthwise convolutional layer with zero-padding in each FFN to
incorporate the implicitly learned position information from zero-padding [27]. Moreover, the
3× 3 convolutional filters simultaneously help to enlarge the receptive field of the early multi-layer
perceptron (MLP) blocks in LITv1. Finally, we conduct extensive experiments on ImageNet, COCO
and ADE20K to evaluate the performance of LITv2. Comprehensive comparisons with SoTA models
show that our architecture achieves competitive performance with faster throughput, making ViTs
more feasible to run low-latency applications for real-world scenarios.

2

2 Related Work

Vision Transformers. Vision Transformers are neural networks that adopt self-attention mechanisms
into computer vision tasks. In [18], Dosovitskiy et al. propose a ViT for image classification, which
inherits the similar architecture from a standard Transformer [48] in natural language processing
(NLP) tasks. Since then, subsequent works have been proposed to improve ViT by incorporating more
convolutional layers [54, 61], introducing pyramid feature maps [51, 32], enhancing the locality [62],
as well as automatically searching a well-performed architecture [5, 3] with neural architecture search
(NAS). Some others also seek for token pruning to accelerate the inference speed of ViTs [37] or
applying ViT into low-level vision tasks [47]. Compared to existing works, this paper focuses on a
general ViT-based backbone for computer vision (CV) tasks and aims to achieve better efficiency on
GPUs while maintaining competitive performance.

Efficient attention mechanisms. Efficient attention mechanisms aim to reduce the quadratic com-
plexity of standard MSAs. Existing efforts in NLP can be roughly categories into low-rank decom-
position [50], kernelization [28, 39], memory [40] and sparsity mechanism [10]. However, simply
adopting these method usually performs suboptimally in CV tasks [32, 63]. In CV, representative
efficient self-attention mechanisms includes spatial reduction attention (SRA) [51], local window
attention [32, 26] and Twins attention [12]. However, they only focus on either local or global
attention at the same layer. To address this problem, TNT [21] introduced additional global tokens
and MixFormer [6] mixed local window attention with depthwise convolutional layers. Some other
attention mechanisms consider both simultaneously, such as Focal [60] and QuadTree [44]. However,
due to the inefficient operations which are not hardware-friendly and cannot be reflected in FLOPs
(e.g., multi-scale window partition, recursion), they are slow on GPUs even compared to standard
MSA. To this end, the proposed HiLo attention simultaneously captures rich local-global information
at the same MSA layer and is faster and more memory-efficient compared to the existing works.

Frequency domain analysis in vision. The frequency domain analysis in CV has been well studied in
the literature. According to [13, 16], the low frequencies in an image usually capture global structures
and color information while the high frequencies contain fine details of objects (e.g., sharp edges).
Based on this insight, a plethora of solutions have been proposed for image super-resolution [66, 19],
generalization [25], image re-scaling [56] and neural network compression [59, 7]. Furthermore,
Octave convolution [9] targeted convolutional layers and proposed to locally applies convolution on
high/low-resolution feature maps, separately. Different from it, the proposed HiLo is a novel attention
mechanism that captures both local and global relationships with self-attention.

3 Background

Multi-head self-attention. Transformers are built upon multi-head self-attention, which enables to
capture long-range relationships for tokens at different positions. Specifically, let X ∈ RN×D be the
input sequence into a standard MSA layer, where N is the length of the input sequence and D refers
to the number of hidden dimensions. Each self-attention head calculates the query Q, key K and
value V matrices with a linear transformation from X,

Q = XWq,K = XWk,V = XWv, (1)

where Wq , Wk, Wv ∈ RD×Dh are learnable parameters and Dh is the number of hidden dimensions
for a head. Next, the output of a self-attention head is a weighted sum over N value vectors,

SAh(X) = Softmax(
QK⊤
√
Dh

)V. (2)

For an MSA layer with Nh heads, the final output is computed by a linear projection of the concate-
nated outputs from each self-attention head, which can be formulated by

MSA(X) = concat
h∈[Nh]

[SAh(X)]Wo, (3)

where Wo ∈ R(Nh×Dh)×D is a learnable parameter. In practice, D is usually equal to Nh ×Dh.
Overall, a standard MSA layer have the computational cost of 4ND2 + 2N2D, where 2N2D comes
from Eq. (2), 3ND2 and ND2 comes from Eq. (1) and Eq. (3), respectively.

3

Transformer blocks. A standard vision Transformer as described in [18] consists of a patch
embedding layer, several blocks and a prediction head. Let l be the index of a block. Then each block
contains an MSA layer and a position-wise feed-forward network (FFN), which can expressed as

X
′

l−1 = Xl−1 +MSA(LN(Xl−1)), (4)

Xl = X
′

l−1 + FFN(LN(X
′

l−1)), (5)

where LN denotes the LayerNorm [2] and an FFN consists of two FC layers with GELU [24] non-
linearity in between. Recent works on ViT have proposed to divide the blocks into several stages
(typically 4 stages) to generate pyramid feature maps for dense prediction tasks. Furthermore, to
reduce the computational cost on high-resolution feature maps in the early stages, the MSA in Eq. (4)
has been replaced with efficient alternatives, such as SRA [51] and W-MSA [32].

Bottlenecks of LITv1. Recent studies have shown that the MSA layers in the early stages in a
model still focus on local patterns [14]. With the same observation, LITv1 [36] removes all early
MSAs (i.e., exclude Eq. (4) in each block) while applying standard MSAs at the later stages. This
design principle has achieved better efficiency with competitive performance on ImageNet compared
to PVT [51] and Swin [32]. However, LITv1 still has two main bottlenecks in speed: 1) Given a
high-resolution image, the standard MSAs in the later stages still result in huge computational cost.
2) The fixed relative positional encoding [32] dramatically slows down the speed when dealing with
different image resolutions. This is due to interpolating the fixed-size positional encoding for each
different image resolution. In the next section, we describe a novel attention mechanism with zero
padding positional encoding to comprehensively accelerate LITv1.

4 Method

4.1 HiLo Attention

We propose to separately process high/low frequencies in a feature map at an attention layer. We name
the new attention mechanism as HiLo, which is depicted in Figure 1. Essentially, the low-frequency
attention branch (Lo-Fi) is to capture the global dependencies of the input (image/features), which
does not need a high-resolution feature map but requires global attention. On the other hand, the
high-frequency attention branch (Hi-Fi) is to capture the fine detailed local dependency, which
requires a high-resolution feature map but can be done via local attention. In the next, we describe
the two attentions in detail.

High-frequency attention. Intuitively, as high frequencies encode local details of objects, it can be
redundant and computationally expensive to apply global attention on a feature map. Therefore, we
propose to design Hi-Fi to capture fine-grained high frequencies with local window self-attention
(e.g., 2× 2 windows), which saves significant computational complexity. Furthermore, we employ
the simple non-overlapping window partition in Hi-Fi, which is more hardware-friendly compared to
the time-consuming operations such as window shifting [32] or multi-scale window partition [60].

Low-frequency attention. Recent studies have shown that the global attention in MSA helps to
capture low frequencies [38]. However, directly applying MSA to high-resolution feature maps
requires huge computational cost. As averaging is a low-pass filter [49], Lo-Fi firstly applies average
pooling to each window to get low-frequency signals in the input X. Next, the average-pooled feature
maps are projected into keys K ∈ RN/s2×Dh and values V ∈ RN/s2×Dh , where s is the window
size. The queries Q in Lo-Fi still comes from the original feature map X. We then apply the standard
attention to capture the rich low-frequency information in feature maps. Note that due to the spatial
reduction of K and V, Lo-Fi simultaneously reduces the complexity for both Eq. (1) and Eq. (2).

Head splitting. A naive solution for head assignment is to allocate both Hi-Fi and Lo-Fi the same
number of heads as the standard MSA layer. However, doubling heads results in more computational
cost. In order to achieve better efficiency, HiLo separates the same number of heads in an MSA into
two groups with a split ratio α, where (1−α)Nh heads will be employed for Hi-Fi and the other αNh

heads are used for Lo-Fi. By doing so, as each attention has a lower complexity than a standard MSA,
the entire framework of HiLo guarantees a low complexity and ensures high throughput on GPUs.
Moreover, another benefit of head splitting is that the learnable parameter Wo can be decomposed
into two smaller matrices, which helps to reduce model parameters. Finally, the output of HiLo is a

4

0.00 0.25 0.50 0.75 1.00
alpha

81.2

81.4

81.6

81.8

82.0

To
p-
1
A
cc
ur
ac
y
(%
)

3.70

3.75

3.80

3.85

3.90

3.95
FL
O
P
s
(G
)

200 400 600 800 1000
Resolution

0.0

0.5

1.0

1.5

2.0

2.5

FL
O
P
s

1e9 s = 2
Hi-Fi
Lo-Fi

200 400 600 800 1000
Resolution

0.00

0.25

0.50

0.75

1.00

1.25

FL
O
P
s

1e9 s = 4
Hi-Fi
Lo-Fi

200 400 600 800 1000
Resolution

0.0

0.5

1.0

1.5

FL
O
P
s

1e10

MSA
HiLo w/ s=2
HiLo w/ s=4

(a) (b) (c)

Figure 2: FLOPs comparison for Hi-Fi and Lo-Fi under different image resolutions and equal number
of heads (Figures a and b). A larger window size helps HiLo achieve better efficiency on high-
resolution images (Figure c).

concatenation of the outputs from each attention

HiLo(X) = [Hi-Fi(X);Lo-Fi(X)], (6)

where [·] denotes the concatenation operation.

Complexity Analysis. Without loss of generality, we assume Hi-Fi and Lo-Fi have an equal number
of heads (i.e., α = 0.5) and the feature map has equal width and height. Then, Hi-Fi and Lo-Fi have
a computational cost of 7

4ND2 + s2ND and (34 + 1
s2)ND2 + 1

s2N
2D, respectively. Derivation for

this result can be found in the supplementary material. As shown in Figure 2-(a) and (b), under a
small input image resolution and a small value of s (e.g., s = 2), both Hi-Fi and Lo-Fi are comparably
efficient. However, with a much higher resolution, Lo-Fi will result in a huge computational cost as it
still has a quadratic complexity in terms of N in Eq. (2), i.e., 1

s2N
2D. In this case, slightly increasing

s (e.g., s = 4) helps Lo-Fi achieve better efficiency while preserving the accuracy. Combining the
two attentions together, a larger window size also helps the overall framework of HiLo to reduce
more FLOPs on high-resolution images, as shown in Figure 2-(c). Thus, we suggest a practical
guideline for adopting HiLo into existing frameworks: increasing the window size in order to get
better efficiency on high-resolution images. We further show in Section 5.2 that this principle helps
LITv2 achieve a better speed and accuracy trade-off on downstream tasks, e.g., dense object detection.

4.2 Positional Encoding

Positional encoding is essential to self-attention due to its permutation-invariant property. In LITv1,
the later MSAs adopt the same relative positional encoding (RPE) scheme as Swin [32]. This
approach has significantly improves Swin by 0.7% in Top-1 accuracy on ImageNet compared to
using absolute positional encoding [32]. However, on dense prediction tasks, the fixed RPE has to be
interpolated for different image resolutions, which dramatically slows down the training/inference
speed of LITv1. As a recent study [27] has shown that position information can be implicitly learned
from zero-padding in CNNs, we propose to adopt one layer of 3× 3 depthwise convolutional layer
with zero-padding in each FFN to replace the time-consuming RPE. Notably, due to the elimination
of early MSAs, the early blocks in LITv1 only have FFNs left, which results in a tiny receptive field
of 1× 1. To this end, we show in Section 5.4 that the 3× 3 convolutional filters adopted in each FFN
also improve LITv2 by simultaneously enlarging the receptive field in the early stages.

4.3 Model Architecture

LITv2 has three variants: LITv2-S, LITv2-M and LITv2-B, corresponding to the small, medium and
base settings in LITv1, respectively. For a fair comparison, we keep the network width and depth
as the same as LITv1. The overall modifications are simply in two steps: 1) Adding one layer of
depthwise convolution with zero-padding in each FFN and removing all relative positional encodings
in all MSAs. 2) Replacing all attention layers with the proposed HiLo attention. Detailed architecture
configurations can be found in the supplementary material.

5

5 Experiment

In this section we conduct experiments to validate the effectiveness of the proposed LITv2. Following
common practice [51, 32, 12, 60], we experiment LITv2 on three tasks, including image classification
on ImageNet-1K [43], object detection and instance segmentation on COCO [31] and semantic
segmentation on ADE20K [65].

Table 1: Image classification results on ImageNet-1K. By default, the FLOPs, throughput and
memory consumption are measured based on the resolution 224× 224. We report the throughput and
training/test time memory consumption with a batch size of 64. Throughput is tested on one NVIDIA
RTX 3090 GPU and averaged over 30 runs. ResNet results are from "ResNet Stikes Back" [53].
“↑ 384” means a model is finetuned at the resolution 384× 384. “OOM” means “out-of-memory”.

Model
Param
(M)

FLOPs
(G)

Throughput
(imgs/s)

Train Mem
(GB)

Test Mem
(GB)

Top-1
(%)

ResNet-50 [53] 26 4.1 1,279 7.9 2.8 80.4
ConvNext-Ti [33] 28 4.5 1,079 8.3 1.7 82.1
PVT-S [51] 25 3.8 1,007 6.8 1.3 79.8
Swin-Ti [32] 28 4.5 961 6.1 1.5 81.3
CvT-13 [54] 20 4.5 947 6.1 1.5 81.6
Focal-Tiny [60] 29 4.9 384 12.2 3.3 82.2
Twins-PCPVT-S [12] 24 3.8 998 6.8 1.2 81.2
LITv1-S [36] 27 4.1 1,298 5.8 1.2 81.5
LITv2-S 28 3.7 1,471 5.1 1.2 82.0
ResNet-101 [53] 45 7.9 722 10.5 3.0 81.5
ConvNext-S [33] 50 8.7 639 12.3 1.8 83.1
PVT-M [51] 44 6.7 680 9.3 1.5 81.2
Twins-SVT-B [12] 56 8.3 621 9.8 1.9 83.2
Swin-S [32] 50 8.7 582 9.7 1.7 83.0
LITv1-M [36] 48 8.6 638 12.0 1.4 83.0
LITv2-M 49 7.5 812 8.8 1.4 83.3
ResNet-152 [53] 60 11.6 512 13.4 2.9 82.0
ConvNext-B [33] 89 15.4 469 16.9 2.9 83.8
Twins-SVT-L [12] 99 14.8 440 13.7 3.1 83.7
Swin-B [32] 88 15.4 386 13.4 2.4 83.3
LITv1-B [36] 86 15.0 444 16.4 2.1 83.4
LITv2-B 87 13.2 602 12.2 2.1 83.6
DeiT-B↑ 384 [45] 86 55.4 159 39.9 2.5 83.1
Swin-B↑ 384 [32] 88 47.1 142 OOM 6.1 84.5
LITv2-B↑ 384 87 39.7 198 35.8 4.6 84.7

5.1 Image Classification on ImageNet-1K

We conduct image classification experiments on ImageNet-1K [43], a large-scale image dataset which
contains ∼1.2M training images and 50K validation images from 1K categories. We measure the
model performance by Top-1 accuracy. Furthermore, we report the FLOPs, throughput, as well as
training/test memory consumption on GPUs. We compare with two CNN-based models [53, 33]
and several representative SoTA ViTs [51, 32, 54, 60, 12]. Note that this paper does not consider
mobile-level architectures [8, 35]. Instead, we focus on models with the similar model size. Besides,
we are also not directly comparable with NAS-based methods [3, 5] as LITv2 is manually designed.

Implementation details. All models are trained for 300 epochs from scratch on 8 V100 GPUs. At
training time, we set the total batch size as 1,024. The input images are resized and randomly cropped
into 224×224. The initial learning rate is set to 1×10−3 and the weight decay is set to 5×10−2. We
use AdamW optimizer with a cosine decay learning rate scheduler. All training strategies including
the data augmentation are same as in LITv1. For HiLo, the window size s is set to 2. The split
ratio α is set to 0.9, which is chosen from a simple grid search on ImageNet-1K. The depthwise
convolutional layers in FFNs are set with a kernel size of 3× 3, stride of 1 and zero padding size of 1.

6

Table 2: Object detection and instance segmentation performance on the COCO val2017 split using
the RetinaNet [30] and Mask R-CNN [22] framework. APb and APm denote the bounding box AP
and mask AP, respectively. “*” indicates the model adopts a local window size of 4 in HiLo.

Backbone RetinaNet Mask R-CNN
Params FLOPs (G) FPS APb Params FLOPs (G) FPS APb APm

ResNet-50 [23] 38M 239 18.5 36.3 44M 260 27.1 38.0 34.4
PVT-S [51] 34M 273 13.0 40.4 44M 292 16.2 40.4 37.8
Swin-T [32] 38M 251 17.0 41.5 48M 270 21.1 42.2 39.1
Twins-SVT-S [12] 34M 225 15.5 43.0 44M 244 20.4 43.4 40.3
LITv1-S [36] 39M 305 3.3 41.6 48M 324 3.2 42.9 39.6
LITv2-S 38M 242 18.7 44.0 47M 261 18.7 44.9 40.8
LITv2-S* 38M 230 20.4 43.7 47M 249 21.9 44.7 40.7
ResNet-101 [23] 57M 315 15.2 38.5 63M 336 20.9 40.4 36.4
PVT-M [51] 54M 348 10.5 41.9 64M 367 10.8 42.0 39.0
Swin-S [32] 60M 343 13.3 44.5 69M 362 15.8 44.8 40.9
Twins-SVT-B [12] 67M 358 10.8 45.3 76M 377 12.7 45.2 41.5
LITv2-M 59M 348 12.2 46.0 68M 367 12.6 46.8 42.3
LITv2-M* 59M 312 14.8 45.8 68M 315 16.0 46.5 42.0
ResNeXt101-64x4d [58] 96M 473 10.3 41.0 102M 493 12.4 42.8 38.4
PVT-L [51] 71M 439 9.5 42.6 81M 457 8.3 42.9 39.5
Swin-B [32] 98M 488 11.0 44.7 107M 507 11.3 45.5 41.3
Twins-SVT-L [12] 111M 504 9.9 45.7 120M 524 10.1 45.9 41.6
LITv2-B 97M 481 9.5 46.7 106M 500 9.3 47.3 42.6
LITv2-B* 97M 430 11.8 46.3 106M 449 11.5 46.8 42.3

Results. In Table 1, we report the experiment results on ImageNet-1K. First, compared to LITv1 base-
lines, LITv2 achieves consistent improvement on Top-1 accuracy while using less FLOPs. Moreover,
benefit from HiLo, LITv2 achieves faster throughput and significant training time memory reduction
(e.g., 13%, 27%, 36% inference speedup for the small, medium and base settings, respectively)
compared to LITv1. Second, compared to CNNs, LITv2 models outperform all counterparts of
ResNet and ConvNext in terms of FLOPs, throughput and memory consumption while achieving
comparable performance. Last, compared to SoTA ViTs, LITv2 surpasses many models in terms
of throughput and memory consumption with competitive performance. For example, under the
similar amount of FLOPs, LITv2-S achieves faster inference speed than PVT-S and Twins-PCPVT-S
with better performance. Although Focal-Tiny achieves better Top-1 accuracy than LITv2-S, it runs
much slower (i.e., 384 vs. 1,471 images/s) and requires a large amount of memory to train. Besides,
when finetuning on a higher resolution, LITv2-B outperforms both DeiT-B and Swin-B with a faster
throughput and lower complexity.

5.2 Object Detection and Instance Segmentation on COCO

In this section, we conduct experiments on COCO 2017, a common benchmark for object detection
and instance segmentation which contains ∼118K images for the training set and ∼5K images for the
validation set. Following common practice [12, 51], we experiment with two detection frameworks:
RetinaNet [30] and Mask R-CNN [22]. We measure model performance by Average Precision (AP).

Implementation details. All backbones are initialized with pretrained weights on ImageNet-1K.
We train each model on 8 GPUs with 1× schedule (12 epochs) and a total batch size of 16. For a
fair comparison, we adopt the same training strategy and hyperparameter settings as in LITv1 [36].
Note that we pretrain LITv2 with a local window size of 2 and α = 0.9 on ImageNet-1K. Under
the same α, a larger window size helps to achieve lower complexity and thus improves the speed at
high resolution, as explained in Section 4.1. In this case, we also train models with a slightly larger
window size of s = 4 for better efficiency, which we denote with “*”. By default, FLOPs is evaluated
based on the input resolution of 1280× 800. FPS is measured on one RTX 3090 GPU based on the
mmdetection [4] framework.

Results. In Table 2, we report the experimental results on COCO. In general, LITv2 outperforms
LITv1 by a large margin in almost all metrics. Besides, our LITv2 significantly surpasses ResNet
in terms of AP, though it runs slightly slower in some cases. More importantly, our LITv2 beats all
the compared SoTA ViTs, achieving the best AP with compelling fast inference speed. Furthermore,
by adopting a larger window size (i.e., s = 4), LITv2 achieves better efficiency with a slightly
performance drop.

7

Table 4: Performance comparisons with other efficient attention mechanisms in ViTs based on
LITv2-S. We report the Top-1 accuracy on ImageNet-1K and mIoU on ADE20K.

Method ImageNet-1K ADE20K
Params

(M)
FLOPs

(G)
Throughput
(images/s)

Train Mem
(GB)

Test Mem
(GB)

Top-1
(%)

Params
(M)

FLOPs
(G)

mIoU
(%)

MSA 28 4.1 1,293 6.5 1.2 82.3 32 46.5 43.7
SRA [51] 32 4.0 1,425 5.1 1.3 81.7 35 42.4 42.8
W-MSA [32] 28 4.0 1,394 5.3 1.2 81.9 32 42.7 41.9
T-MSA [12] 30 4.0 1,462 5.0 1.3 81.8 33 42.5 44.0
HiLo 28 3.7 1,471 5.1 1.2 82.0 31 42.6 44.3

250 300 350
Resolution

5

10

FL
O
P
s
(G
)

250 300 350
Resolution

2

3

Te
st
M
em

or
y
(G
B
)

250 300 350
Resolution

500

1000

1500

Th
ro
ug

hp
ut

(im
gs
/s
)

250 300 350
Resolution

5

10

15

Tr
ai
n
M
em

or
y
(G
B
)

MSA
Performer

SRA
W-MSA

T-MSA
Focal

QuadTree
HiLo (Ours)

Figure 3: Comparison with other attention mechanisms based on LITv2-S. We report the FLOPs,
throughput, and training/test time memory consumption. Evaluations are based on a batch size of 64
on one RTX 3090 GPU. The black cross symbol means “out-of-memory”.

5.3 Semantic Segmentation on ADE20K

Table 3: Semantic segmentation performance of
different backbones on the ADE20K validation set.
FLOPs is evaluated based on the image resolution
of 512× 512.

Backbone
Params

(M)
FLOPs

(G) FPS
mIoU
(%)

ResNet-50 [23] 29 45 45.4 36.7
PVT-S [51] 28 40 38.7 39.8
Swin-Ti [32] 32 46 39.6 41.5
Twins-SVT-S [12] 28 37 34.5 43.2
LITv1-S [36] 32 46 18.1 41.7
LITv2-S 31 41 42.6 44.3
ResNet-101 [23] 48 66 36.7 38.8
PVT-M [51] 48 55 29.7 41.6
Swin-S [32] 53 70 24.4 45.2
Twins-SVT-B [12] 60 67 28.0 45.3
LITv2-M 52 63 28.5 45.7
PVT-L [51] 65 71 20.5 42.1
Swin-B [32] 107 107 25.5 46.0
Twins-SVT-L [12] 104 102 25.9 46.7
LITv2-B 90 93 27.5 47.2

In this section, we evaluate LITv2 on the seman-
tic segmentation task. We conduct experiments
on ADE20K [65], a widely adopted dataset for
semantic segmentation which has ∼20K train-
ing images, ∼2K validation images and ∼3K
test images. Following prior works, we adopt
the framework of Semantic FPN [29] and mea-
sure the model performance by mIoU. We train
each model on 8 GPUs with a total batch size
of 16 with 80K iterations. All backbones are
initialized with pretrained weights on ImageNet-
1K. The stochastic depth for the small, medium
and base models of LITv2 are 0.2, 0.2 and 0.3,
respectively. All other training strategies are the
same as in LITv1 [36].

Results. In Table 3, we compare LITv2 with
ResNet and representative ViTs on ADE20K. In
general, LITv2 achieves fast speed while outper-
forming many SoTA models. For example, our
LITv2-S, LITv2-M and LITv2-B surpass Swin-
Ti, Swin-S and Swin-B by 2.8%, 0.5% and 1.2%
in mIoU with higher FPS, respectively.

5.4 Ablation Study

In this section, we provide ablation studies for LITv2, including the comparison with other efficient
attention variants, the effect of α in HiLo, as well as the effect of architecture modifications. By
default, the throughput and memory consumption are measured on one RTX 3090 GPU with a batch
size of 64 under the resolution of 224× 224.

Comparing HiLo with other attention mechanisms. Based on LITv2-S, we compare the per-
formance of HiLo with other efficient attention mechanisms on ImageNet-1K, including spatial
reduction attention (SRA) in PVT [51], shifted-window based attention (W-MSA) in Swin [32] and
alternated local and global attention (T-MSA) in Twins [12]. In our implementation, we directly

8

0.00 0.25 0.50 0.75 1.00
alpha

81.2

81.4

81.6

81.8

82.0

To
p-

1
Ac

cu
ra

cy
 (%

)

3.70

3.75

3.80

3.85

3.90

3.95

FL
O

Ps
 (G

)

Figure 4: Effect of α based on LITv2-S.

Table 5: Effect of architecture modifications based
on LITv1-S. “ConvFNN” means we add one layer of
3× 3 depthwise convolutional layer into each FFN.
“RPE” refers to relative positional encoding [32].

Name
ImageNet-1K COCO (RetinaNet)

FLOPs
(G)

Mem
(GB)

Top-1
(%)

FLOPs
(G)

FPS AP

LITv1-S [36] 4.1 5.8 81.5 305 3.3 41.6
+ ConvFFN 4.1 6.5 82.5 306 3.1 45.1
+ Remove RPE 4.1 6.5 82.3 306 13.3 44.7
+ HiLo 3.7 5.1 82.0 224 18.7 44.0

Hi-Fi

Lo-Fi

Figure 5: Frequency magnitude (14× 14) from 8 output channels of Hi-Fi and Lo-Fi in LITv2-B.
The magnitude is averaged over 100 samples. The lighter the color, the larger the magnitude. A
pixel that is closer to the centre means a lower frequency. Visualization code can be found in the
supplementary material.
replace HiLo with each compared method. The results are reported in Table 4. In general, HiLo
reduces more FLOPs while achieving better performance and faster speed than the compared methods.
Furthermore, in Figure 3, we provide comprehensive benchmarks for more attention mechanisms
based on different image resolutions, including Focal [60], QuadTree [44] and Performer [11]. Suf-
fering from weak parallelizability, they are even slower than that of using standard MSAs on GPUs.
Compared to them, HiLo achieves competitive results in terms of the FLOPs, throughput and memory
consumption. Moreover, we conduct experiments based on ADE20K and Semantic FPN and show
that HiLo achieves more performance gain than other attention mechanisms on the downstream dense
prediction task.

Effect of α. As shown in Figure 4, since the complexity of Lo-Fi is lower than Hi-Fi under the
resolution of 224 × 224 and the window size of 2, a larger α helps to reduce more FLOPs as we
allocate more heads to Lo-Fi. Moreover, we found HiLo performs badly with α = 0, in which case
only the Hi-Fi is left and HiLo only focuses on high frequencies. We speculate that low frequencies
play an important role in self-attention. For other values of α, we find the performance difference is
around 0.2%, where α = 0.9 achieves the best performance. However, it is worth noting that although
the pure Lo-Fi branch (α = 1.0) can achieve competitive results on ImageNet-1K, high-frequency
signals play an important role in capturing fine object details, which is particularly important for
dense prediction tasks such as semantic segmentation. For example, with α = 0.9, LITv2-S based
Semantic FPN achieves more performance gain (+0.6%) than that of using α = 1.0 (43.7%).

Effect of architecture modifications. Based on LITv2-S, we explore the effect of architecture
modifications. As shown in Table 5, benefit from the enlarged receptive field in the early stages, the
adoption of depthwise convolutions improves the performance on both ImageNet and COCO. Next,
by removing the relative positional encoding, we significantly improve FPS on dense prediction tasks
with a slightly performance drop on both datasets. Also note that since depthwise convolutions have
encoded positional information by zero paddings [27], the elimination of RPE does not result in a
significant performance drop compared to prior works [32]. Finally, benefit from HiLo, we achieve
more gains in model efficiency on both ImageNet and COCO.

Spectrum analysis of HiLo. In Figure 5, we visualize the magnitude of frequency component [42]
by applying Fast Fourier Transform (FFT) to the output feature maps from Hi-Fi and Lo-Fi attentions,
respectively. The visualisation indicates that Hi-Fi captures more high frequencies and Lo-Fi mainly
focuses on low frequencies. This strongly aligns with our aim of disentangling high and low
frequencies in feature maps at a single attention layer.

9

Table 6: Speed and performance comparisons between LITv2-S and other recent ViTs on different
GPUs. All throughput results are averaged over 30 runs with a total batch size of 64 and image
resolution of 224× 224 on one GPU card. We also report the Top-1 accuracy on ImageNet-1K.

Model Params (M) FLOPs (G) A100 V100 RTX 6000 RTX 3090 Top-1 (%)
ResNet-50 [53] 26 4.1 1,424 1,123 877 1,279 80.4
PVT-S [51] 25 3.8 1,460 798 548 1,007 79.8
Twins-PCPVT-S [12] 24 3.8 1,455 792 529 998 81.2
Swin-Ti [32] 28 4.5 1,564 1,039 710 961 81.3
TNT-S [21] 24 5.2 802 431 298 534 81.3
CvT-13 [54] 20 4.5 1,595 716 379 947 81.6
CoAtNet-0 [15] 25 4.2 1,538 962 643 1,151 81.6
CaiT-XS24 [46] 27 5.4 991 484 299 623 81.8
PVTv2-B2 [52] 25 4.0 1,175 670 451 854 82.0
XCiT-S12 [1] 26 4.8 1,727 761 504 1,068 82.0
ConvNext-Ti [33] 28 4.5 1,654 762 571 1,079 82.1
Focal-Tiny [60] 29 4.9 471 372 261 384 82.2
LITv2-S 28 3.7 1,874 1,304 928 1,471 82.0

HiLo SR
A

Lo
ca

l W
in

do
w

XC
A

Li
nf

or
m

er
M
SA

Sh
ift

ed
 W

in
do

w

Cro
ss

 W
in

do
w

DAT

Pe
rfo

rm
er

Fo
ca

l

Hor
Net

Qua
dT

re
e

VA
N

0

200

400

600

800

1000

T
h
ro

u
g

h
p

u
t

(i
m

g
s/

s)

1029

710

631
583

518 505

374
325

223
181

146 132
72 59

Intel® Core i9-10900X CPU @ 3.70GHz

HiLo SR
A

XC
A

Li
nf

or
m

er

Lo
ca

l W
in

do
w

M
SA

Sh
ift

ed
 W

in
do

w

Cro
ss

 W
in

do
w

VA
N

Hor
Net

Qua
dT

re
e

Pe
rfo

rm
er

DAT
Fo

ca
l

2500

3000

3500

4000

4500

5000

T
h
ro

u
g

h
p

u
t

(i
m

g
s/

s)

5104

4810
4659

4578 4537
4403 4351 4334

4213

3996 3978

3180
3074

2842

NVIDIA GeForce RTX 3090

Figure 6: Throughput comparisons with more attention mechanisms on CPUs and GPUs based on a
single attention layer and 14×14 feature maps.
Speed and performance comparisons with more ViTs on different GPUs. We compare the
inference speed with more models and on more types of GPUs. Table 6 reports the results. It shows
that LITv2-S still achieves consistent faster throughput (images/s) than many ViTs on NVIDIA A100,
Tesla V100, RTX 6000, and RTX 3090. It is also worth noting that under similar performance (82.0%),
LITv2-S is 2.1× faster than PVTv2-B2 [52], 1.7× faster than XCiT-S12 [1] and ConvNext-Ti [33],
and 3.5× faster than Focal-Tiny [60] on V100, which is another common GPU version for speed test
in previous works [32, 45, 33, 64].

Throughput comparisons with more attention mechanisms on CPUs and GPUs. In Figure 6, we
show that HiLo is consistently faster than many attention mechanisms [51, 32, 1, 50, 11, 17, 55, 60,
41, 44, 20, 18] on both CPUs and GPUs. In particular, under CPU testing, HiLo is 1.4× faster than
SRA [51], 1.6× faster than local window attention [32] and 17.4× faster than VAN [20]. Detailed
benchmark configurations can be found in the supplementary material.

6 Conclusion and Future Work
In this paper, we have introduced LITv2, a novel efficient vision Transformer backbone with fast
speed on GPUs and outperforms most SoTA models on ImageNet and downstream tasks. We have
also presented HiLo attention, the core of LITv2 which helps to achieve better efficiency especially
on high-resolution images. With competitive performance, HiLo achieves great advantage over the
existing attention mechanisms across FLOPs, throughput and memory consumption. Future work
may include incorporating convolutional stem [57] and overlapping patch embedding [52] for better
performance, or extending HiLo on more tasks such as speech recognition and video processing.

Limitations and societal impact. HiLo adopts a head splitting ratio to assign different numbers
of heads into Hi-Fi and Lo-Fi. In our experiments, this ratio is determined by a grid search on
ImageNet (i.e., α = 0.9). However, different tasks may have different importance on high and low
frequencies. Thus, the optimal value of α is task-specific and needs to be set manually. Besides, our
work potentially brings some negative societal impacts, such as the huge energy consumption and
carbon emissions from large-scale training on GPU clusters.

10

References
[1] A. Ali, H. Touvron, M. Caron, P. Bojanowski, M. Douze, A. Joulin, I. Laptev, N. Neverova, G. Synnaeve,

J. Verbeek, and H. Jégou. Xcit: Cross-covariance image transformers. In NIPS, pages 20014–20027, 2021.

[2] J. Ba, J. Kiros, and G. E. Hinton. Layer normalization. ArXiv, abs/1607.06450, 2016.

[3] B. Chen, P. Li, C. Li, B. Li, L. Bai, C. Lin, M. Sun, J. Yan, and W. Ouyang. Glit: Neural architecture
search for global and local image transformer. In ICCV, 2021.

[4] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng,
C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and
D. Lin. MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155,
2019.

[5] M. Chen, H. Peng, J. Fu, and H. Ling. Autoformer: Searching transformers for visual recognition. In
ICCV, pages 12250–12260, 2021.

[6] Q. Chen, Q. Wu, J. Wang, Q. Hu, T. Hu, E. Ding, J. Cheng, and J. Wang. Mixformer: Mixing features
across windows and dimensions. In CVPR, pages 5239–5249, 2022.

[7] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing convolutional neural
networks in the frequency domain. In KDD, pages 1475–1484. ACM, 2016.

[8] Y. Chen, X. Dai, D. Chen, M. Liu, X. Dong, L. Yuan, and Z. Liu. Mobile-former: Bridging mobilenet and
transformer. In CVPR, pages 5260–5269, 2022.

[9] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and J. Feng. Drop an octave: Reducing
spatial redundancy in convolutional neural networks with octave convolution. In ICCV, pages 3434–3443.
IEEE, 2019.

[10] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

[11] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlós, P. Hawkins, J. Q. Davis,
A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell, and A. Weller. Rethinking attention with performers.
In ICLR, 2021.

[12] X. Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia, and C. Shen. Twins: Revisiting the design of
spatial attention in vision transformers. In NeurIPS, pages 9355–9366, 2021.

[13] J. W. Cooley, P. A. W. Lewis, and P. D. Welch. The fast fourier transform and its applications. IEEE
Transactions on Education, 12(1):27–34, 1969.

[14] J. Cordonnier, A. Loukas, and M. Jaggi. On the relationship between self-attention and convolutional
layers. In ICLR, 2020.

[15] Z. Dai, H. Liu, Q. V. Le, and M. Tan. Coatnet: Marrying convolution and attention for all data sizes. In
NeurIPS, pages 3965–3977, 2021.

[16] G. Deng and L. Cahill. An adaptive gaussian filter for noise reduction and edge detection. In 1993 IEEE
Conference Record Nuclear Science Symposium and Medical Imaging Conference, pages 1615–1619 vol.3,
1993.

[17] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, and B. Guo. Cswin transformer: A general
vision transformer backbone with cross-shaped windows. In CVPR, pages 12114–12124, 2022.

[18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. ICLR, 2021.

[19] M. Fritsche, S. Gu, and R. Timofte. Frequency separation for real-world super-resolution. ICCVW, Oct
2019.

[20] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu. Visual attention network. arXiv preprint
arXiv:2202.09741, 2022.

[21] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang. Transformer in transformer. In NeurIPS, pages
15908–15919, 2021.

11

[22] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In ICCV, pages 2980–2988, 2017.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, pages
770–778, 2016.

[24] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[25] J. Huang, D. Guan, A. Xiao, and S. Lu. Rda: Robust domain adaptation via fourier adversarial attacking.
In ICCV, pages 8988–8999, 2021.

[26] Z. Huang, Y. Ben, G. Luo, P. Cheng, G. Yu, and B. Fu. Shuffle transformer: Rethinking spatial shuffle for
vision transformer. arXiv preprint arXiv:2106.03650, 2021.

[27] M. A. Islam, S. Jia, and N. D. B. Bruce. How much position information do convolutional neural networks
encode? In ICLR, 2020.

[28] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In ICML, pages 5156–5165. PMLR, 2020.

[29] A. Kirillov, R. B. Girshick, K. He, and P. Dollár. Panoptic feature pyramid networks. In CVPR, pages
6399–6408, 2019.

[30] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In ICCV,
pages 2999–3007, 2017.

[31] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
COCO: common objects in context. In D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, ECCV,
pages 740–755, 2014.

[32] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In ICCV, pages 9992–10002, 2021.

[33] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s. In CVPR,
pages 11966–11976, 2022.

[34] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture
design. In ECCV, pages 116–131, 2018.

[35] S. Mehta and M. Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision trans-
former. In ICLR, 2022.

[36] Z. Pan, B. Zhuang, H. He, J. Liu, and J. Cai. Less is more: Pay less attention in vision transformers. In
AAAI, pages 2035–2043, 2022.

[37] Z. Pan, B. Zhuang, J. Liu, H. He, and J. Cai. Scalable visual transformers with hierarchical pooling. In
ICCV, pages 377–386, 2021.

[38] N. Park and S. Kim. How do vision transformers work? In ICLR, 2022.

[39] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. A. Smith, and L. Kong. Random feature attention. In
ICLR, 2021.

[40] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap. Compressive transformers for long-range
sequence modelling. In ICLR, 2020.

[41] Y. Rao, W. Zhao, Y. Tang, J. Zhou, S.-L. Lim, and J. Lu. Hornet: Efficient high-order spatial interactions
with recursive gated convolutions. In NeurIPS, 2022.

[42] Y. Rao, W. Zhao, Z. Zhu, J. Lu, and J. Zhou. Global filter networks for image classification. In NeurIPS,
pages 980–993, 2021.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, pages 211–252, 2015.

[44] S. Tang, J. Zhang, S. Zhu, and P. Tan. Quadtree attention for vision transformers. ICLR, 2022.

[45] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image
transformers & distillation through attention. In ICML, pages 10347–10357, 2021.

[46] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou. Going deeper with image transformers.
In ICCV, pages 32–42. IEEE, 2021.

12

[47] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li. Maxim: Multi-axis mlp for image
processing. CVPR, pages 5759–5770, 2022.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, pages 5998–6008, 2017.

[49] E. Voigtman and J. D. Winefordner. Low-pass filters for signal averaging. Review of Scientific Instruments,
57(5):957–966, 1986.

[50] S. Wang, B. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

[51] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pyramid vision
transformer: A versatile backbone for dense prediction without convolutions. In ICCV, pages 548–558,
2021.

[52] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pvtv2: Improved
baselines with pyramid vision transformer. Computational Visual Media, 8(3):1–10, 2022.

[53] R. Wightman, H. Touvron, and H. Jégou. Resnet strikes back: An improved training procedure in timm.
CoRR, abs/2110.00476, 2021.

[54] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang. Cvt: Introducing convolutions to
vision transformers. In ICCV, pages 22–31, 2021.

[55] Z. Xia, X. Pan, S. Song, L. E. Li, and G. Huang. Vision transformer with deformable attention. In CVPR,
pages 4794–4803, 2022.

[56] M. Xiao, S. Zheng, C. Liu, Y. Wang, D. He, G. Ke, J. Bian, Z. Lin, and T. Liu. Invertible image rescaling.
In ECCV, pages 126–144, 2020.

[57] T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollár, and R. B. Girshick. Early convolutions help transformers
see better. In NeurIPS, pages 30392–30400, 2021.

[58] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. In CVPR, pages 5987–5995, 2017.

[59] K. Xu, M. Qin, F. Sun, Y. Wang, Y. Chen, and F. Ren. Learning in the frequency domain. In CVPR, pages
1737–1746. Computer Vision Foundation / IEEE, 2020.

[60] J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao. Focal self-attention for local-global
interactions in vision transformers. In NeurIPS, pages 30008–30022, 2021.

[61] K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu. Incorporating convolution designs into visual
transformers. In ICCV, pages 559–568, 2021.

[62] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, F. E. Tay, J. Feng, and S. Yan. Tokens-to-token vit: Training
vision transformers from scratch on imagenet. In ICCV, pages 538–547, 2021.

[63] P. Zhang, X. Dai, J. Yang, B. Xiao, L. Yuan, L. Zhang, and J. Gao. Multi-scale vision longformer: A new
vision transformer for high-resolution image encoding. In ICCV, pages 2978–2988, 2021.

[64] Q. Zhang, Y. Xu, J. Zhang, and D. Tao. Vsa: Learning varied-size window attention in vision transformers.
ECCV, 2022.

[65] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba. Semantic understanding of
scenes through the ADE20K dataset. IJCV, pages 302–321, 2019.

[66] Y. Zhou, W. Deng, T. Tong, and Q. Gao. Guided frequency separation network for real-world super-
resolution. In CVPRW, pages 1722–1731, 2020.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Code and
pretrained models are included as a URL in the abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We use the same random seed as in recent works for fair
comparison.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [No] The license of the public datasets can

be found in their websites.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code and pretrained models are included as a URL in the abstract.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We use public datasets (e.g., ImageNet [43] and ADE20K [65]).
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] No such concerns as we are using widely
adopted public datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Background
	Method
	HiLo Attention
	Positional Encoding
	Model Architecture

	Experiment
	Image Classification on ImageNet-1K
	Object Detection and Instance Segmentation on COCO
	Semantic Segmentation on ADE20K
	Ablation Study

	Conclusion and Future Work

