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Abstract

We investigate the non-stationary stochastic linear bandit problem where the re-
ward distribution evolves each round. Existing algorithms characterize the non-
stationarity by the total variation budget BK , which is the summation of the change
of the consecutive feature vectors of the linear bandits over K rounds. However,
such a quantity only measures the non-stationarity with respect to the expectation
of the reward distribution, which makes existing algorithms sub-optimal under the
general non-stationary distribution setting. In this work, we propose algorithms
that utilize the variance of the reward distribution as well as the BK , and show that
they can achieve tighter regret upper bounds. Specifically, we introduce two novel
algorithms: Restarted WeightedOFUL+ and Restarted SAVE+. These algorithms
address cases where the variance information of the rewards is known and unknown,
respectively. Notably, when the total variance VK is much smaller than K, our
algorithms outperform previous state-of-the-art results on non-stationary stochastic
linear bandits under different settings. Experimental evaluations further validate
the superior performance of our proposed algorithms over existing works.

1 Introduction

In this work, we study non-stationary stochastic bandits, which is a generalization of the classical
stationary stochastic bandits, where the reward distribution is non-stationary. The intuition about
the non-stationary setting comes from real-world applications such as dynamic pricing and ads
allocation, where the environment changes rapidly and deviates significantly from stationarity [4, 10].
Most of the existing works in stochastic bandits consider a stationary setting where the goal of the
agent is to minimize the static regret, i.e., the summation of suboptimality gaps between the agent’s
selected arm and the fixed, time-independent best arm that maximizes the expectation of the reward
distribution [3, 2, 26, 35, 36, 37, 47]. In contrast, for the non-stationary setting, the emphasis shifts to
minimizing the dynamic regret, which represents the gap between the cumulative reward of selecting
the time-dependent optimal arm at each time and that of the learner [10, 11, 42, 43]. As we can always
treat a stationary bandit instance as a special case of the non-stationary bandit instance, designing
algorithms that work well under the non-stationary setting is significantly more challenging.

There have been a series of works aiming to minimize the dynamic regret for non-stationary stochastic
bandits, such as Multi-Armed Bandits (MAB) [4, 20, 7, 38], linear bandits [10, 11, 43, 39, 34], general
function approximation [17, 29, 30], and the even more challenging reinforcement learning (RL)
setting [28, 33, 19, 12, 39]. In this work, we mainly consider the linear bandit setting, where each
arm is a contextual vector, and the expected reward of each arm is assumed to be the linear product
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of the arm with an unknown feature vector. Most existing dynamic regret results for non-stationary
linear bandits depend on both the non-stationarity measurement and the number of interaction rounds.
Specifically, assume K is the total number of rounds in bandits, and for each k ∈ [K], x is one of
the arms, θk and θk+1 are the feature vectors at k and k + 1 rounds, satisfying ∥x∥2 ≤ 1. Then, the
non-stationarity measurement is often defined as the summation of the changes in the mean of the
reward distribution, which is

BK :=

K∑
k=1

max
x∈Rd

|⟨x,θk − θk+1⟩| =
K∑

k=1

∥θk − θk+1∥2 . (1.1)

Existing works for non-stationary linear bandits [31, 22, 44, 33, 10, 43] achieved a regret upper bound
of Õ(d7/8B

1
4

KK
3
4 ), where d is the problem dimension. A recent work [39] proposed a black-box

reduction method that can achieve a regret upper bound of Õ(dB
1
3

KK
2
3 ), yet in a slightly limited

setting with a fixed arm set across all rounds. Such regret bounds clearly demonstrate that the regret
grows as long as the non-stationarity grows, which is aligned with intuition.

Although existing works clearly demonstrate the relationship between the BK and the regret, we claim
that it is not sufficient for us to fully characterize the non-stationary level of the reward distributions.
Consider applications such as hyperparameter tuning in physical systems, the noise distribution may
highly depends on the evaluation point since the measurement noise often largely varies with the
chosen parameter settings [25]. For linear bandits, such examples suggest that the non-stationarity
not only consists of the change of the mean of the distribution, but also the variance of the distribution.
However, none of the previous works on non-stationary linear bandits considered how to leverage the
variance information to improve regret bounds in the above heteroscedastic noise setting. Therefore,
an open question arises:

Can we design even better algorithms for non-stationary linear bandits by considering its variance
information?

In this paper, we answer this question affirmatively. We assume that at the k-th round, the reward
distribution of an arm x satisfies rk ∼ ⟨θk,x⟩ + ϵk, where ϵk is a zero-mean noise variable with
variance σ2

k. Our contributions are:

• For the case where the reward variance σ2
k at round k can be observed and the total variation budget

BK is known, we propose the Restarted-WeightedOFUL+ algorithm, which uses variance-based
weighted linear regression to deal with heteroscedastic noises [46, 45] and a restarted scheme to
forget some historical data to hedge against the non-stationarity. We prove that the regret upper
bound of Restarted-WeightedOFUL+ is Õ(d7/8(BKVK)1/4

√
K + d5/6B

1/3
K K2/3). Notably, our

regret surpasses the best result for non-stationary linear bandits Õ(dB
1/3
K K2/3) [39] when the

total variance VK = Õ(1) is small, which indicates that additional variance information benefits
non-stationary linear bandit algorithms. It is worth noting that our algorithms could also work in
the more general setting with the arm sets vary through rounds, unlike [39], which only addresses a
fixed arm set.

• For the case where the reward variance σ2
k is unknown but the total variance VK and variation

budget BK are known, we propose the Restarted-SAVE+ algorithm. It maintains a multi-layer
weighted linear regression structure with carefully-designed weight within each layer to handle
the unknown variances. We prove that Restarted-SAVE+ can achieve a regret upper bound of
Õ(d

4
5V

2
5

KB
1
5

KK
2
5 + d

2
3B

1
3

KK
2
3 ). Specifically, when VK = Õ(1), our regret is also better than the

existing best result Õ(dB
1/3
K K2/3) [39], which again verifies the effect of the variance information.

• Lastly, we propose Restarted-SAVE+-BOB for the case where both the reward variance σ2
k and BK

are unknown. Restarted-SAVE+-BOB equips a bandit-over-bandit (BOB) framework to handle
the unknown BK , and also maintains a multi-layer structure as Restarted-SAVE+. We show that
Restarted-SAVE+-BOB achieves a regret upper bound of Õ(d

4
5V

2
5

KB
1
5

KK
2
5 +d

2
3B

1
3

KK
2
3 +d

1
5K

7
10 ),

and it behaves the same as Restarted-SAVE+ when VK = Õ(1) and BK = Ω(d−14K1/10).
• We also conduct experimental evaluations to validate the outperformance of our proposed algorithms

over existing works.
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(
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4
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(
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3
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3
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2
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5
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3
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d
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5

KB
1
5

KK
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5

(Ours) +d
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1
3

KK
2
3
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Restarted SAVE+-BOB Õ
(
d

4
5V

2
5

KB
1
5

KK
2
5

(Ours) +d
2
3B

1
3

KK
2
3 + d

1
5K
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MAB Rerun-UCB-V Õ
(
|A|

2
3 B

1
3

KV
1
3

KK
1
3

[38] + |A|
1
2 B

1
2

KK
1
2

) Yes No Yes

Lower Bound
[38] Ω̃

(
B

1
3

KV
1
3

KK
1
3 +B

1
2

KK
1
2

)
Yes No -

Table 1: Comparison of non-stationary bandits in terms of regret guarantee. K is the total rounds, d
is the problem dimension for linear bandits, BK is the total variation budget defined in Section 3 (for
the MAB setting, BK =

∑K
k=1 ∥µk − µk+1∥∞, where µk is the mean of the reward distribution at

round k), VK is the total variance defined in Section 3, |A| is the number of arms for MAB.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters
to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd

and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean norm and
define ∥x∥Σ =

√
x⊤Σx. For two positive sequences {an} and {bn} with n = 1, 2, . . . , we write

an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1 and
write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn holds for all n ≥ 1.
We use Õ(·) to further hide the polylogarithmic factors.

2 Related Work

Non-stationary (Linear) Bandits There have been a series of works about non-stationary bandits
[4, 20, 7, 38, 11, 31, 5, 9, 29, 43, 23, 39, 30, 8, 16, 32, 27, 1, 14]. In non-stationary linear bandits, the
unknown feature vector θk can be dynamically and adversarially adjusted, with the total change upper
bounded by the total variation budget BK over K rounds, i.e.,

∑K−1
k=1 ∥θk+1 − θk∥2 ≤ BK . To

address this problem, some works proposed forgetting strategies such as sliding window, restart, and
weighted regression [11, 31, 43]. Kim and Tewari [23] also introduced the randomized exploration
with weighting strategy. The regret upper bounds in these works are all of Õ(B

1
4

KK
3
4 ). A recent

work by [39] proposed the MASTER-OFUL algorithm based on a black-box approach, which can
achieve a regret bound of Õ(B

1
3

KK
2
3 ) in the case where the arm set is fixed over K rounds. To the

best of our knowledge, none of the existing works consider how to utilize the variance information to
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improve the regret bound in the case with time-dependent variances. The only exception of utilizing
the variance information in the non-stationary bandit setting is Wei et al. [38], which proposed the
Rerun-UCB-V algorithm for the non-stationary MAB setting with a regret dependent on the action set
size |A|. To compare with, the regret upper bounds of our algorithms are independent of the action
set size, thus our algorithms are more efficient for the case where the number of actions is large.

Linear Bandits with Heteroscedastic Noises Some recent works study the heteroscedastic linear
bandit problem, where the noise distribution is assumed to vary over time. Kirschner and Krause [25]
first proposed the linear bandit model with heteroscedastic noise. In this model, the noise at round
k ∈ [K] is assumed to be σk-sub-Gaussian. Some follow-up works relaxed the σk-sub-Gaussian
assumption by assuming the noise at the k-th round to be of variance σ2

k [46, 40, 24, 45, 15, 41].
Specifically, Zhou et al. [46] and Zhou and Gu [45] considered the case where σk is observed by
the learner after the k-th round. [40] and [24] proposed statistically efficient but computationally
inefficient algorithms for the unknown-variance case. A recent work by [41] proposed an algorithm
that achieves both statistical and computational efficiency in the unknown-variance setting. Dai et al.
[15] also considered a specific heteroscedastic linear bandit problem where the linear model is sparse.

3 Problem Setting

We consider a heteroscedastic variant of the classic non-stationary linear contextual bandit problem.
Let K be the total number of rounds. At each round k ∈ [K], the learner interacts with the
environment as follows: (1) the environment generates an arbitrary arm set Dk ⊆ Rd where each
element represents a feasible arm for the learner to choose, and also generates an unknown feature
vector θk; (2) the leaner observes Dk and selects ak ∈ Dk; (3) the environment generates the
stochastic noise ϵk and reveals the stochastic reward rk = ⟨θk,ak⟩+ ϵk to the leaner. We assume the
ℓ2 norm of the feasible actions is upper bounded by A, i.e., for all k ∈ [K], a ∈ Dk: ∥a∥2 ≤ A.

Following Zhou et al. [46], Zhao et al. [41], we assume the following condition on the random noise
ϵk at each round k:

P (|ϵk| ≤ R) = 1, E[ϵk|a1:k, ϵ1:k−1] = 0, E[ϵ2k|a1:k, ϵ1:k−1] = σ2
k. (3.1)

For the case with known variance, we assume that at each round k, the variance σk is also revealed to
the learner together with the reward rk; in the unknown variance case, the σk can not be observed.

Following [10, 11, 31, 43], we assume the sum of ℓ2 differences of consecutive θk’s is upper
bounded by the total variation budget BK , i.e.,

∑K−1
k=1 ∥θk+1 − θk∥2 ≤ BK , where the θk’s can

be adversarially chosen by an oblivious adversary. We also assume that the total variance is upper
bounded by VK , which is

∑K
k=1 σ

2
k ≤ VK . The goal of the agent is to minimize the dynamic regret

defined as follows: Regret(K) =
∑

k∈[K]

(
⟨a∗k,θk⟩ − ⟨ak,θk⟩

)
, where a∗k = argmaxa∈Dk

⟨a,θk⟩
is the optimal arm at round k which gives the highest expected reward.

4 Non-stationary Linear Contextual Bandit with Known Variance

In this section, we introduce our Algorithm 1 under the setting where the variance σ2
k at k-th iteration

is known to the agent in prior. We start from WeightedOFUL+ [45], an weighted ridge regression-
based algorithm for heteroscedastic linear bandits under the stationary reward assumption. For our
non-stationary linear bandit setting where θk is changing over the round k, WeightedOFUL+ aims to
build an θ̂k which estimates the feature vector θk by using the solution to the following regression:

θ̂k ← argminθ
∑k−1

t=1 σ̄−2
t (⟨θ,at⟩ − rt)

2 + λ∥θ∥22, (4.2)

where the weight is defined as in (4.1). After obtaining θ̂k, WeightedOFUL+ chooses arm ak by
maximizing the upper confidence bound (UCB) of ⟨a, θ̂⟩, with an exploration bonus β̂k∥ak∥Σ̂−1

k
,

where Σ̂k is the covariance matrix over ak. The weight σ̄2
k is introduced to balance the different past

examples based on their reward variance σ2
k, and such a strategy has been proved as a state-of-the-art

algorithm for the stationary heteroscedastic linear bandits [45]. However, the non-stationary nature
of our setting prevents us from directly using θ̂k defined in (4.2) as an estimate to θ. Therefore,
inspired by the restarting strategy which has been adopted by previous algorithms for non-stationary
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Algorithm 1 Restarted-WeightedOFUL+

Require: Regularization parameter λ > 0; B, an upper bound on the ℓ2-norm of θk for all k ∈ [K]; confidence
radius β̂k, variance parameters α, γ; restart window size w.

1: Σ̂1 ← λI, b̂1 ← 0, θ̂1 ← 0, β̂1 =
√
λB

2: for k = 1, . . . ,K do
3: if k%w == 0 then
4: Σ̂k ← λI, b̂k ← 0, θ̂k ← 0, β̂k =

√
λB

5: end if
6: Observe Dk and choose ak ← argmaxa∈Dk

⟨a,θk⟩+ β̂k∥ak∥Σ̂−1
k

7: Observe (rk, σk), set σ̄k as

σ̄k ← max{σk, α, γ∥ak∥1/2
Σ̂−1

k

} (4.1)

8: Σ̂k+1 ← Σ̂k + aka
⊤
k /σ̄

2
k, b̂k+1 ← b̂k + rkak/σ̄

2
k, θ̂k+1 ← Σ̂−1

k+1b̂k+1

9: end for

linear bandits [43], we propose Restarted-WeightedOFUL+, which periodically restarts itself and
runs WeightedOFUL+ as its submodule. The restart window size is set as w, which is used to balance
the nonstationarity and the total regret and will be fine-tuned in the next steps. Combined with the
restart window size w, we set {β̂k}k≥1 to

β̂k = 12

√
d log(1 +

(k%w)A2

α2dλ
) log(32(log(

γ2

α
+ 1)

(k%w)2

δ
) + 30 log(32(log(

γ2

α
) + 1)

(k%w)2

δ
)
R

γ2
+
√
λB.

(4.3)

We now propose the theoretical guarantee for Algorithm 8. The following key lemma shows how
nonstationarity affects our estimation of the reward of each arm.

Lemma 4.1. Let 0 < δ < 1. Then with probability at least 1− δ, for any action a ∈ Rd, we have

|a⊤(θ̂k − θk)| ≤
A2

α

√
dw

λ

k−1∑
t=w·⌊k/w⌋+1

∥θt − θt+1∥2︸ ︷︷ ︸
Drifting term

+ β̂k∥a∥Σ̂−1
k︸ ︷︷ ︸

Stochastic term

.

Here we provide a proof sketch of Lemma 4.1 to show the technical challenge we need to overcome.
Without loss of generality, we prove the lemma for k ∈ [1, w]. We have

|a⊤(θ̂k − θk)| ≤

∣∣∣∣∣a⊤Σ̂−1
k

k−1∑
t=1

ata
⊤
t

σ̄2
t

(θt − θk)

∣∣∣∣∣+ ∥a∥Σ̂−1
k
∥

k−1∑
t=1

atϵt
σ̄2
t

∥
Σ̂−1

k
+
√
λB∥a∥

Σ̂−1
k

, (4.4)

For the first term, it gets involved by the nonstationarity of θk. By rearranging the summation orders
and several calculation steps, we have∣∣∣∣∣a⊤Σ̂−1

k

k∑
t=1

ata
⊤
t

σ̄2
t

(θt − θk)

∣∣∣∣∣ ≤
k−1∑
t=1

|a⊤Σ̂−1
k

at

σ̄t
| · ∥at

σ̄t
∥2 · ∥

k−1∑
s=t

(θs − θs+1)∥2 ≤
A2

α

√
dw

λ

k−1∑
s=1

||θs − θs+1||2 ,

We would like to highlight the subtleties in both our algorithm design and analysis to get the desired
improvement. First, from here, we can see the necessity of introducing α in the design of σ̄k in
Eq.(4.1), which makes it possible to upper bound σ̄−1

k and get a tunable α in the drifting term, which
can subsequently be used to optimize the regret bound. Second, we show that it is essential to split
the term σ̄−2

t as how we did. Only by doing that can we bound the
∑s

t=1
at

σ̄t

⊤Σ̂−1
k

at

σ̄t
term by d with

the elliptical potential lemma. Otherwise, we can a 1/α2 term rather than the A/α term, which will
hurt the final regret bound. For the second term in Eq.(4.4), a vanilla way to control it is adopting a
self-normalized concentration inequality from [2]. However, it can not utilize variance information,
but just the magnitude of the noise, which fails to get a tight bound with the variance information.
Inspired by [45, 46, 41], we adapt a variance-adaptive concentration inequality in Theorem F.1 to get
a tighter bound. Similar arguments also hold for the proof of Theorem 5.1 for the unknown variance
case. We refer to Appendix B for the full proof.
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Lemma 4.1 suggests that under the non-stationary setting, the difference between the true expected
reward and our estimated reward will be upper bounded by two separate terms. The first drifting
term charcterizes the error caused by the non-stationary environment, and the second stochastic term
charcterizes the error caused by the estimation of the stochastic environment. Note that similar bound
has also been discovered in Touati and Vincent [33]. We want to emphasize that our bound differs
from existing ones in 1) an additional variance parameter α in the drifting term, and 2) a weighted
convariance matrix Σ̂ rather than a vanilla convariance matrix.

Next, we present our first main theorem.

Theorem 4.2. Let 0 < δ < 1. Suppose that for all k ≥ 1 and all a ∈ Dk, ⟨a,θk⟩ ∈ [−1, 1],
∥θ∗∥2 ≤ B, ∥a∥2 ≤ A. With probability at least 1− δ, the regret of Restarted-WeightedOFUL+ is
bounded by

Regret(K) ≤ 2A2BKw
3
2

α

√
d

λ
+ 4β̂

√
VK +Kα2

√
Kdι

w
+

4dιKβ̂γ2

w
+

4dιK

w
, (4.5)

where ι = log(1 + wA2

dλα2 ), and β̂ = Õ(
√
d+R/γ2 +

√
λB). Specifically, by treating A, λ,B,R as

constants and setting γ2 = R/
√
d, we have

Regret(K) = Õ(BKw3/2d1/2α−1 + dKα/
√
w + d

√
KVK/w + dK/w). (4.6)

Proof. See Appendix C.

Remark 4.3. For the stationary linear bandit case where BK = 0, we can set the restart window
size w = K and the variance parameter α = 1/

√
K, then we obtain an Õ(d

√
VK + d) regret for

Algorithm 8, which is identical to the one in Zhou and Gu [45].

Next, we aim to select parameters α and w in order to optimize (4.6).

Corollary 4.4. Assume that BK , VK ∈ [Ω(1), O(K)]. Then by selecting

w = d1/4
√

VK/BK , dV 6
K ≥ K4B2

K ,

w = d1/6(K/BK)1/3 otherwise.

and α = d−1/4B
1/2
K wK−1/2, the final regret is in the order

Regret(K) = Õ(d7/8(BKVK)1/4
√
K + d5/6B

1/3
K K2/3). (4.7)

Remark 4.5. We compare the regret of Algo.8 in Corollary 4.4 with previous results in the following
special cases.

• In the worst case where VK = O(K), our result becomes Õ(d7/8B
1/4
K K3/4), matching the

state-of-the-art results for restarting and sliding window strategies [10, 43].

• In the case where the total variance is small, i.e., VK = Õ(1), assuming that K4 > d, our result
becomes Õ(d5/6B

1/3
K K2/3), better than all the previous results [10, 43, 34, 39].

Remark 4.6. Wei et al. [38] has studied non-stationary MAB with dynamic variance. With the
knowledge of VK and BK , Wei et al. [38] proposed a restart-based Rerun-UCB-V algorithm with a
Õ(|A|

2
3 B

1
3

KV
1
3

KK
1
3 + |A|

1
2 B

1
2

KK
1
2 ) regret, where A is the action set. Reduced to the MAB setting,

our Restarted-WeightedOFUL+ achieves an Õ(|A|7/8(BKVK)1/4
√
K + |A|5/6B1/3

K K2/3) regret,
which is worse than Wei et al. [38]. We claim that this is due to the generality of the linear bandits,
which brings us a looser bound to the drifting term in Lemma 4.1. When restricting to the MAB
setting, our drifting term enjoys a tighter bound, which could further tighten our final regret. To
develop an algorithm achieving the same regret as Wei et al. [38] is beyond the scope of this work.

Remark 4.7. Wei et al. [38] has established a lower bound Ω̃(B
1
3

KV
1
3

KK
1
3 +B

1
2

KK
1
2 ) for MAB with

total variance VK and total variation budget BK . There still exist gaps between our regret and their
lower bound regarding the dependence of K,VK , BK , and we leave to fix the gaps as future work.
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Algorithm 2 Restarted SAVE+

Require: α > 0; the upper bound on the ℓ2-norm of a in Dk(k ≥ 1), i.e., A; the upper bound on the ℓ2-norm
of θk (k ≥ 1), i.e., B; restart window size w.

1: Initialize L← ⌈log2(1/α)⌉.
2: Initialize the estimators for all layers: Σ̂1,ℓ ← 2−2ℓ · I, b̂1,ℓ ← 0, θ̂1,ℓ ← 0, β̂1,ℓ ← 2−ℓ+1, Ψ̂1,ℓ ← ∅ for

all ℓ ∈ [L].
3: for k = 1, . . . ,K do
4: if k%w == 0 then
5: Set Σ̂k,ℓ ← 2−2ℓ · I, b̂k,ℓ ← 0, θ̂k,ℓ ← 0, β̂1,ℓ ← 2−ℓ+1, Ψ̂k,ℓ ← ∅ for all ℓ ∈ [L].
6: end if
7: Observe Dk, choose ak ← argmaxa∈Dk

minℓ∈[L]⟨a, θ̂k,ℓ⟩+ β̂k,ℓ∥a∥Σ̂−1
k,ℓ

and observe rk.

8: Set ℓk ← L+ 1
9: Let Lk ← {ℓ ∈ [L] : ∥ak∥Σ̂−1

k,ℓ
≥ 2−ℓ}, set ℓk ← min(Lk) if Lk ̸= ∅

10: Ψ̂k,ℓk ← Ψ̂k,ℓk ∪ {k}
11: if Lk ̸= ∅ then
12: Set wk ← 2−ℓk

∥ak∥Σ̂−1
k,ℓk

and update

Σ̂k+1,ℓk ← Σ̂k,ℓk + w2
kaka

⊤
k , b̂k+1,ℓ ← b̂k,ℓk + w2

k · rkak, θ̂k+1,ℓk ← Σ̂−1
k+1,ℓk

b̂k+1,ℓk .

13: Compute the adaptive confidence radius β̂k+1,lfor the next round according to (5.1).
14: end if
15: For ℓ ̸= ℓk let Σ̂k+1,ℓ ← Σ̂k,ℓ, b̂k+1,ℓ ← b̂k,ℓ, θ̂k+1,ℓ ← θ̂k,ℓ, β̂k+1,ℓ ← β̂k,ℓ.
16: end for

5 Non-stationary Linear Contextual Bandit with Unknown Variance and
Total Variation Budget

By Theorem 4.2, we know that Algorithm 8 is able to utilize the total variance VK and obtain a better
regret result compared with existing algorithms which do not utilize VK . However, the success of
Algorithm 8 depends on the knowledge of the per-round variance σk, and it also depends on a good
selection of restart window size w, whose optimal selection depends on both VK and BK . In this
section, we aim to relax these two requirements with still better regret results.

5.1 Unknown Per-round Variance, Known VK and BK

We first aim to relax the requirement that each σ2
k is known to the agent at the beginning of k-th round.

We follow the SAVE algorithm [41] which introduces a multi-layer structure [13, 21] to deal with
unknown σ2

k. In detail, SAVE maintains multiple estimates to the current feature vector θk, which we
denote them as θ̂k,1, ..., θ̂k,L in line 2. Each θ̂k,ℓ is calculated based on a subset Ψ̂k,ℓ ⊆ [k − 1] of
samples {(at, rt)}. The rule that whether to add the current k to some Ψ̂k,ℓ is based on the uncertainty
of ak with the sample set {(at, rt)}t∈Ψ̂k,ℓ

. As long as ak is too uncertain w.r.t. some level ℓk (line

9), we add k to Ψ̂k,ℓ and update the estimate θ̂k,ℓk accordingly (line 12). Each θ̂k,ℓk is calculated as
the solution of a weighted regression problem, where the weight wk is selected as the inverse of the
uncertainty of the arm ak w.r.t. the samples in the ℓ-th layer. Maintaining L different θ̂k,ℓ, ℓ ∈ [L],
Algorithm 2 then calculates L number of UCB for each arm a w.r.t. L different θ̂k,ℓ, and selects the
arm which maximizes the minimization of L UCBs (line 7). It has been shown in Zhao et al. [41]
that such a multilayer structure is able to utilize the VK information without knowing the per-round
variance σ2

k. Similar to Algorithm 8, in order to deal with the nonstationarity issue, we introduce a
restarting scheme that Algorithm 2 restarts itself by a restart window size w (line 5).

Next we show the theoretical guarantee of Algorithm 2. We call the restart time rounds grids and
denote them by g1, g2, . . . g⌈K

w ⌉−1, where gi%w = 0 for all i ∈ [⌈Kw ⌉ − 1]. Let ik be the grid index

of time round k, i.e., gik ≤ k < gik+1. We denote Ψ̂k,ℓ := {t : t ∈ [gik , k − 1], ℓt = ℓ}. We define
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the confidence radius β̂k,ℓ at round k and layer ℓ as

β̂k,ℓ := 16 · 2−ℓ

√(
8V̂ark,ℓ + 6R2 log(

4(w + 1)2L

δ
) + 2−2ℓ+4

)
×

√
log(

4w2L

δ
) + 6 · 2−ℓ

R log(
4w2L

δ
) + 2

−ℓ
B,

(5.1)

where V̂ark,ℓ :=


∑

i∈Ψ̂k,ℓ
w2

i

(
ri − ⟨θ̂k,ℓ,ai⟩

)2
, If 2ℓ ≥ 64

√
log

(
4(w+1)2L

δ

)
R2

∣∣∣Ψ̂k,ℓ

∣∣∣ , otherwise.

Note that our selection of the confidence radius β̂k,ℓ only depends on V̂ark,ℓ, which serves as an
estimate of the total variance of samples at ℓ-th layer without knowing σ2

k.

We build the theoretical guarantee of Algorithm 2 as follows.

Theorem 5.1. Let 0 < δ < 1. Suppose that for all k ≥ 1 and all a ∈ Dk, ⟨a,θk⟩ ∈ [−1, 1],
∥θ∗∥2 ≤ B, ∥a∥2 ≤ A. If {βk,ℓ}k≥1,ℓ∈[L] is defined in (5.1), then the cumulative regret of
Algorithm 2 is bounded as follows with probability at least 1− 3δ:

Regret(K) = Õ

(
A2
√
dw

3
2BK

α
+

(
wα2 + d

)
·
√

K

w
VK +

(
1 +R

)
·
(
Kα2 +

Kd

w

))
(5.2)

Specifically, regarding A,R as constants, we have

Regret(K) = Õ(
√
dw1.5BK/α+ α2(K +

√
wKVK) + d

√
KVK/w + dK/w).

Proof. See Appendix D for the full proof.

Remark 5.2. Like Remark 4.3, we consider the case where BK = 0. We set w = K and α2 =
1/K
√
VK , then we obtain a regret Õ(d

√
VK + d), which matches the regret of the SAVE algorithm

in Zhao et al. [41].

Corollary 5.3. Assume that BK , VK ∈ [Ω(1), O(K)], then by selecting

w = d1/3(K/BK)1/3, K2 ≥ V 3
Kd/BK ,

w = d2/5(KVK)1/5/B
2/5
K otherwise.

and α = d1/6
√
wB

1/3
K /(K1/3 + (VKKw)1/6), we have

Regret(K) = Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3). (5.3)

Remark 5.4. We discuss the regret of Algo.2 in Corollary 5.3 in the following special cases. In the
case where the total variance is small, i.e., VK = Õ(1), assuming that K2 > d, our result becomes
Õ(d2/3B

1/3
K K2/3), better than all the previous results [10, 43, 34, 39]. In the worst case where

VK = O(K), our result becomes Õ(d4/5B
1/5
K K4/5).

Unknown Per-round Variance, Unknown VK and BK In Corollary 5.3, we need to know the
total variance VK and total variation budget BK to select the optimal w and α. To deal with the
more general case where VK and BK are unknown, we can employ the Bandits-over-Bandits (BOB)
mechanism ([11, 34, 43]). We name the Restarted SAVE+ algorithm with BOB mechanism as
“Restarted SAVE+-BOB”. Due to the space limit, we put the algorithm design, descriptions, and
theoretical analysis of Restarted SAVE+-BOB (Algo.3) in Appendix A.

6 Experiments

To validate the effectiveness of our methods, we conduct a series of experiments on the synthetic
data. All the experiments are run on an AMD Ryzen5 7640H CPU. About 60 hours are needed to
implement all the experiments.
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Figure 1: The regret of Restarted-WeightedOFUL+, Restarted SAVE+, SW-UCB and Modified
EXP3.S under different total rounds.

Problem Setting Following the experimental set up in [11], we consider the 2-armed bandits setting,
where the action set Dk = {(1, 0), (0, 1)}, and

θk =

(
0.5 + 3

10 sin(5BKπk/K)
0.5 + 3

10 sin(π + 5BKπk/K)

)
.

It is easy to see that the total variation budget can be bounded as BK . At each round k, the ϵk satisfies
ϵk ∼ Bernoulli(0.5/k)− 0.5/k. We can verify that under such a distribution for ϵk, the variance of
the reward distribution at k-th round is (1− 0.5/k) · 0.5/k, and the total variance VK ∼ logK.

Baseline algorithms We compare the proposed Restarted-WeightedOFUL+ and Restarted SAVE+

with SW-UCB [11] and Modified EXP3.S [6]. For Restarted-WeightedOFUL+, we set λ = 1,
β̂k = 10, w = 1000, and we grid search the variance parameters α and γ, both among values {1, 1.5,
2, 2.5, 3}. Finally we set α = 1, and γ = 2. For Restarted SAVE+ we set w = 1000, β̂k,ℓ = 2−ℓ+1,
and grid search L from 1 to 10 with stepsize of 1 and finally choose L = 6. For SW-UCB, we set
λ = 1, w = 1000, βk = 10. The Modified EXP3.S requires two parameters ᾱ and γ̄, and we set
γ̄ = 0.01 and ᾱ = 1

K .

To test the algorithms’ performance under different total time horizons, we let K vary from 3× 104

to 2.4× 105, with a stepsize of 3× 104, and plot the cumulative regret Regret(K) for these different
total time step K. We set BK = 1, 10, 20, and K1/3 to observe their performance with different BK .

Result We plot the results in Figure.1, where all the empirical results are averaged over ten indepen-
dent trials and the error bar is the standard error divided by

√
10. The results are consistent with our

theoretical findings. It is evident that our algorithms significantly outperform both SW-UCB and
Modified EXP3.S. Among our proposed algorithms, Restarted-WeightedOFUL+ achieves the best
performance. This can be attributed to the fact that it knows the variance and can make more informed
decisions. Although Restarted SAVE+ performed slightly worse than Restarted-WeightedOFUL+, it
still outperforms the baseline algorithms, particularly when BK = K1/3. These results highlight the
superiority of our methods.

7 Conclusion and Future Work

We study non-stationary stochastic linear bandits in this work. We propose Restarted-
WeightedOFUL+ and Restarted SAVE+, two novel algorithms that utilize the dynamic variance
information of the dynamic reward distribution. We show that both of our algorithms are able to
achieve better dynamic regret compared with best existing results [39] under several parameter
regimes, e.g., when the total variance VK is small. Experiment results backup our theoretical claim.
It is worth noting there still exist gaps between our current obtained regret and the lower bound [38],
and to fix such a gap is left as our future work.
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A Restarted SAVE+-BOB

In this section, we provide the details of our proposed Restarted SAVE+-BOB algorithm. The
Restarted SAVE+-BOB algorithm is summarized in Algo.3. We divide the K rounds into ⌈KH ⌉
blocks, with each block having H rounds (except the last one may have less than H). Within each
block i, we use a fixed (αi, wi) pair to run the Restarted SAVE+ algorithm. To adaptively learn the
optimal (α,w) pair without the knowledge of VK and BK , we employ an adversarial bandit algorithm
(Exp3 in [4]) as the meta-learner to select αi, wi over time for i ∈ ⌈KH ⌉ blocks. Specifically, in each
block, the meta learner selects a (α,w) pair from the candidate pool to feed to Restarted SAVE+,
and the cumulative reward received by Restarted SAVE+ within the block is fed to the meta-learner
as the reward feedback to select a better pair for the next block.

We set H to be ⌈d 2
5K

2
5 ⌉, and set the candidate pool of (α,w) pairs for the Exp3 algorithm as:

P = {(w,α) : w ∈ W, α ∈ J } , (A.1)

where

W = {wi = d
1
3 2i−1|i ∈ ⌈1

3
log2 K⌉+ 1} ∪ {wi = d

2
5 2i−1|i ∈ ⌈2

5
log2 K⌉+ 1} , (A.2)

and

J = {αi = d
1
3 2−i+1|i ∈ ⌈1

3
log2 K⌉+ 1} ∪ {αi = d

11
30 2−i+1|i ∈ ⌈11

30
log2 K⌉+ 1} . (A.3)

The algorithm also labels all the |P| =
(
⌈ 13 log2 K⌉+⌈

2
5 log2 K⌉+2

)
·
(
⌈ 13 log2 K⌉+⌈

11
30 log2 K⌉+

2
)

candidate pairs of parameters in P,i.e., P = {(wi, αi)}|P|
i=1. The algorithm initializes {sj,1}|P|

j=1

to be sj,1 = 1, ∀j = 0, 1, . . . , |P|, which means that at the beginning, the algorithm selects a pair
from P uniformly at random. At the beginning of each block i ∈ [⌈K/H⌉], the meta-learner (Exp3)
calculates the distribution (pj,i)

|P|
j=1 over the candidate set P by

pj,i = (1− γ)
sj,i∑|P|

u=1 su,i
+

γ

|P|+ 1
, ∀j = 1, . . . , |P| , (A.4)

where γ is defined as

γ = min

{
1,

√
(|P|+ 1) ln(|P|+ 1)

(e− 1)⌈K/H⌉

}
. (A.5)

Then, the meta-learner draws a ji from the distribution (pj,i)
|P|
j=1, and sets the pair of parameters in

block i to be (wji , αji), and runs the base algorithm Algo.2 from scratch in this block with (wji , αji),
then feeds the cumulative reward in the block

∑min{i·H,K}
k=(i−1)H+1 rk to the meta-learner. The meta-learner

rescales
∑min{i·H,K}

k=(i−1)H+1 rk to
∑min{i·H,K}

k=(i−1)H+1
rk

H+R

√
H
2 log

(
K(K

H +1)
)
+ 2

3 ·R log
(
K(K

H +1)
) to make it in the range [0, 1]

with high probability (supported by Lemma F.7). The meta-learner updates the parameter sji,i+1 to
be

sji,i+1 = sji,i · exp

 γ

(|P|+ 1)pji,i

1

2
+

∑min{i·H,K}
k=(i−1)H+1 rk

H +R
√

H
2 log

(
K(KH + 1)

)
+ 2

3 ·R log
(
K(KH + 1)

)
 ,

(A.6)

and keep others unchanged, i.e., su,i+1 = su,i, ∀u ̸= ji. After that, the algorithm will go to the next
block, and repeat the same process in block i+ 1.

We have the following theorem to bound the regret of Restarted SAVE+-BOB.

Theorem A.1. By using the BOB framework with Exp3 as the meta-algorithm and Restarted SAVE+

as the base algorithm, with the candidate pool P for Exp3 specified as in Eq.(A.1), Eq.(A.2), Eq.(A.3),
and H = ⌈d 2

5K
2
5 ⌉, then the regret of Restarted SAVE+-BOB (Algo.3) satisfies

Regret(K) = Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3 + d2/5K7/10). (A.7)
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Algorithm 3 Restarted SAVE+-BOB
Require: total time rounds K; problem dimension d; noise upper bound R; α > 0; the upper bound

on the ℓ2-norm of a in Dk(k ≥ 1), i.e., A; the upper bound on the ℓ2-norm of θk (k ≥ 1), i.e.,
B.

1: Initialize H = ⌈d 2
5K

2
5 ⌉; P as defined in Eq.(A.1), and index the |P| =

(
⌈ 13 log2 K⌉ +

⌈ 25 log2 K⌉ + 2
)
·
(
⌈ 13 log2 K⌉ + ⌈

11
30 log2 K⌉ + 2

)
items in P , i.e., P = {(wi, αi)}|P|

i=1;

γ = min
{
1,
√

(|P|+1) ln(|P|+1)
(e−1)⌈K/H⌉

}
; {sj,1}|P|

j=1 is set to sj,1 = 1, ∀j = 0, 1, . . . , |P|.
2: for i = 1, 2, . . . , ⌈K/H⌉ do
3: Calculate the distribution (pj,i)

|P|
j=1 by pj,i = (1− γ)

sj,i∑|P|
u=1 su,i

+ γ
|P|+1 , ∀j = 1, . . . , |P|.

4: Set ji ← j with probability pj,i, and (wi, αi)← (wii , αji).
5: Run Algo.2 from scratch in block i (i.e., in rounds k = (i − 1)H + 1, . . . ,min{i ·H,K})

with (w,α) = (wi, αi).

6: Update sji,i+1 = sji,i·exp

 γ
(|P|+1)pji,i

 1
2 +

∑min{i·H,K}
k=(i−1)H+1

rk

H+R

√
H
2 log

(
K(K

H +1)
)
+ 2

3 ·R log
(
K(K

H +1)
)
,

and keep all the others unchanged, i.e., su,i+1 = su,i, ∀u ̸= ji.
7: end for

Proof. See Appendix E for the full proof.

Remark A.2. We discuss the regret of Algo.3 in Corollary 5.3 in the following special cases. In
the case where the total variance is small, i.e., VK = Õ(1), assuming K2 > d, our result becomes
Õ(d2/3B

1/3
K K2/3 + d1/5K7/10), when d14B10

K > K, it becomes Õ(d2/3B
1/3
K K2/3), better than

all the previous results [10, 43, 34, 39]. In the worst case where VK = O(K), our result becomes
Õ(d4/5B

1/5
K K4/5).

B Proof of Lemma 4.1

For simplicity, we denote

β̂ := 12

√
d log(1 +

wA2

α2dλ
) log(32(log(

γ2

α
+ 1)

w2

δ
) + 30 log(32(log(

γ2

α
) + 1)

w2

δ
)
R

γ2
+
√
λB.

(B.1)

It is obvious that β̂ ≥ β̂k for all k ∈ [K]. We call the restart time rounds grids and denote them by
g1, g2, . . . g⌈K

w ⌉−1, where gi%w = 0 for all i ∈ [⌈Kw ⌉ − 1]. Let ik be the grid index of time round k,
i.e., gik ≤ k < gik+1.

For ease of exposition and without loss of generality, we prove the lemma for k ∈ [1, w]. We calculate
the estimation difference |a⊤(θ̂k − θk)| for any a ∈ Rd, ∥a∥2 ≤ A, k ∈ [1, w]. By definition:

θ̂k = Σ̂−1
k bk = Σ̂−1

k (

k−1∑
t=1

rtat
σ̄2
t

) = Σ̂−1
k (

k−1∑
t=1

ata
⊤
t θt
σ̄2
t

+

k−1∑
t=1

atϵt
σ̄2
t

) , (B.2)

where Σ̂k = λI +
∑k−1

t=gik

ata
⊤
t

σ̄2
t

.

Then we have

θ̂k − θk = Σ̂−1
k (

k−1∑
t=1

ata
⊤
t

σ̄2
t

(θt − θk) +

k−1∑
t=1

atϵt
σ̄2
t

)− λΣ̂−1
k θk . (B.3)

Therefore

|a⊤(θ̂k − θk)| ≤

∣∣∣∣∣a⊤Σ̂−1
k

k−1∑
t=1

ata
⊤
t

σ̄2
t

(θt − θk)

∣∣∣∣∣+ ∥a∥Σ̂−1
k
∥
k−1∑
t=1

atϵt
σ̄2
t

∥Σ̂−1
k

+ λ∥a∥Σ̂−1
k
∥Σ̂− 1

2

k θk∥2 ,

(B.4)
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where we use the Cauchy-Schwarz inequality.

For the first term, we have that for any k ∈ [1, w]∣∣∣∣∣a⊤Σ̂−1
k

k∑
t=1

ata
⊤
t

σ̄2
t

(θt − θk)

∣∣∣∣∣ ≤
k−1∑
t=1

|a⊤Σ̂−1
k

at
σ̄t
| · |at

σ̄t

⊤
(

k−1∑
s=t

(θs − θs+1))| (triangle inequality)

≤
k−1∑
t=1

|a⊤Σ̂−1
k

at
σ̄t
| · ∥at

σ̄t
∥2 · ∥

k−1∑
s=t

(θs − θs+1)∥2

(Cauchy-Schwarz)

≤ A

α

k−1∑
t=1

|a⊤Σ̂−1
k

at
σ̄t
| · ∥

k−1∑
s=t

(θs − θs+1)∥2 (∥at∥ ≤ A, σ̄t ≥ α)

≤ A

α

k−1∑
s=1

s∑
t=1

|a⊤Σ̂−1
k

at
σ̄t
| · ∥θs − θs+1∥2

(
∑k−1

t=1

∑k−1
s=t =

∑k−1
s=1

∑s
t=1)

≤ A

α

k−1∑
s=1

√√√√[ s∑
t=1

a⊤Σ̂−1
k a

]
·
[ s∑
t=1

at
σ̄t

⊤
Σ̂−1

k

at
σ̄t

]
· ||θs − θs+1||2

(Cauchy-Schwarz)

≤ A

α

k−1∑
s=1

√√√√[ s∑
t=1

a⊤Σ̂−1
k a

]
· d · ||θs − θs+1||2 ((⋆))

≤ A∥a∥2
α

√
d

k−1∑
s=1

√∑k−1
t=1 1

λ
· ||θs − θs+1||2 (λmax(Σ̂

−1
k ) ≤ 1

λ )

≤ A2

α

√
dw

λ

k−1∑
s=1

||θs − θs+1||2 , (B.5)

where the inequality (⋆) follows from the fact that
∑s

t=1
at

σ̄t

⊤Σ̂−1
k

at

σ̄t
≤ d that can be proved as fol-

lows. We have
∑k−1

t=1
at

σ̄t

⊤Σ̂−1
k

at

σ̄t
=

∑k−1
t=1 tr

(
at

σ̄t

⊤Σ̂−1
k

at

σ̄t

)
= tr

(
Σ̂−1

k

∑k−1
t=1

at

σ̄t

at

σ̄t

⊤
)

. Given the

eigenvalue decomposition
∑k−1

t=1
at

σ̄t

at

σ̄t

⊤ = diag(λ1, . . . , λd)
⊤, we have Σ̂k = diag(λ1+λ, . . . , λd+

λ)⊤, and tr
(
Σ̂−1

k

∑k−1
t=1

at

σ̄t

at

σ̄t

⊤
)
=

∑d
i=1

λj

λj+λ ≤ d.

For the second term, by the assumption on ϵk, we know that

|ϵk/σ̄k| ≤ R/α,

|ϵk/σ̄k| ·min{1, ∥ak/σ̄k∥Σ̂−1
k
} ≤ R∥ak∥Σ̂−1

k
/σ̄2

k ≤ R/γ2,

E[ϵk|a1:k, ϵ1:k−1] = 0, E[(ϵk/σ̄k)
2|a1:k, ϵ1:k−1] ≤ 1, ∥ak/σ̄k∥2 ≤ A/α,

Therefore, setting Gk = σ(a1:k, ϵ1:k−1), and using that σk is Gk-measurable, applying Theorem F.1
to (xk, ηk) = (ak/σ̄k, ϵk/σ̄k) with ϵ = R/γ2 , we get that with probability at least 1 − δ, for all
k ∈ [1, w],

∥
k−1∑
t=1

atϵt
σ̄2
t

∥Σ̂−1
k
≤ 12

√
d log(1 +

(k%w)A2

α2dλ
) log(32(log(

γ2

α
+ 1)

(k%w)2

δ
)+30 log(32(log(

γ2

α
)+1)

(k%w)2

δ
)
R

γ2
.

(B.6)
For the last term

λ∥a∥Σ̂−1
k
∥Σ̂− 1

2

k θk∥2 ≤ λ∥a∥Σ̂−1
k
∥Σ̂− 1

2

k ∥2∥θk∥2 ≤ λ∥a∥Σ̂−1
k

1√
λmin(Σ̂k)

∥θk∥2 ≤
√
λB∥a∥Σ̂−1

k
,

(B.7)
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where we use the fact that λmin(Σ̂k) ≥ λ.

Therefore, with probabilty at least 1− δ, we have

|a⊤(θ̂k − θk)| ≤
A2

α

√
dw

λ

k−1∑
t=1

∥θt − θt+1∥2

+ ∥a∥Σ̂−1
k

(
12

√
d log(1 +

(k%w)A2

α2dλ
) log(32(log(

γ2

α
+ 1)

(k%w)2

δ
)

+ 30 log(32(log(
γ2

α
) + 1)

(k%w)2

δ
)
R

γ2
+
√
λB

)
=

A2

α

√
dw

λ

k−1∑
t=1

∥θt − θt+1∥2 + β̂k∥a∥Σ̂−1
k

, (B.8)

where β̂k is defined in Eq.(4.3).

C Proof for Theorem 4.2

For simplicity of analysis, we only analyze the regret over the first grid, i.e., we try to analyze
Regret(K̃) for K̃ ∈ [1, w]. Denote E1 as the event when Lemma 4.1 holds. Therefore, under event
E1, for any K̃ ∈ [1, w], the regret can be bounded by

Regret(K̃) =

K̃∑
k=1

[
⟨a∗k − ak,θk⟩

]
=

K̃∑
k=1

[
⟨a∗k,θk − θ̂k⟩+ (⟨a∗k, θ̂k⟩+ β̂k∥a∗k∥Σ̂−1

k
)− (⟨ak, θ̂k⟩+ β̂k∥ak∥Σ̂−1

k
) + ⟨ak, θ̂k − θk⟩

+ β̂k∥ak∥Σ̂−1
k
− β̂k∥a∗k∥Σ̂−1

k

]
≤ 2A2

α

√
dw

λ

K̃∑
k=1

k−1∑
t=1

∥θt − θt+1∥2 + 2

K̃∑
k=1

min
{
1, β̂k∥ak∥Σ̂−1

k

}
, (C.1)

where in the last inequality we use the definition of event E1, the arm selection rule in Line 7 of
Algo.8, and 0 ≤ ⟨a∗k,θ∗⟩ − ⟨ak,θ∗⟩ ≤ 2.

Then we will bound the two terms in Eq.(C.1).

For the first term, we have

2A2

α

√
dw

λ

K̃∑
k=1

k−1∑
t=1

∥θt − θt+1∥2

=
2A2

α

√
dw

λ

K̃−1∑
t=1

K̃∑
k=t

∥θt − θt+1∥2

≤ 2A2

α

√
dw

λ
w

K̃−1∑
t=1

∥θt − θt+1∥2 . (C.2)

To bound the second term in Eq.(C.1), we decompose the set [K̃] into a union of two disjoint subsets
[K] = I1 ∪ I2.

I1 =
{
k ∈ [K̃] : ∥ak

σ̄k
∥Σ̂−1

k
≥ 1

}
, I2 =

{
k ∈ [K̃] : ∥ak

σ̄k
∥Σ̂−1

k
< 1

}
. (C.3)

Then the following upper bound of |I1| holds:

|I1| =
∑
k∈I1

min
{
1, ∥ak

σ̄k
∥2
Σ̂−1

k

}
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≤
K̃∑

k=1

min
{
1, ∥ak

σ̄k
∥2
Σ̂−1

k

}
≤ 2dι, (C.4)

where ι = log(1 + wA2

dλα2 ), the first equality holds since ∥xk

σ̄k
∥Σ̂−1

k
≥ 1 for k ∈ I1, the last inequality

holds due to Lemma F.2 together with the fact ∥ak

σ̄k
∥2 ≤ A

α since σ̄k ≥ α and ∥ak∥2 ≤ A.

Then, we have

K̃∑
k=1

min
{
1, β̂k∥ak∥Σ̂−1

k

}
=

∑
k∈I1

min
{
1, σ̄kβ̂k∥

ak
σ̄k
∥Σ̂−1

k

}
+

∑
k∈I2

min
{
1, σ̄kβ̂k∥

ak
σ̄k
∥Σ̂−1

k

}
≤

[ ∑
k∈I1

1

]
+

∑
k∈I2

σ̄kβ̂k∥
ak
σ̄k
∥Σ̂−1

k

≤ 2dι+ β̂
∑
k∈I2

σ̄k∥
ak
σ̄k
∥Σ̂−1

k
, (C.5)

where the first inequality holds since min{1, x} ≤ 1 and also min{1, x} ≤ x, the second inequality
holds by Eq.(C.4), and the fact the β̂ ≥ β̂k for all k ∈ [K] (β̂ is defined in Eq.(B.1)). Next we further
bound the second summation term in (C.5). We decompose I2 = J1 ∪ J2, where

J1 =

{
k ∈ I2 : σ̄k = σk ∪ σ̄k = α

}
, J2 =

{
k ∈ I2 : σ̄k = γ

√
∥ak∥Σ̂−1

k

}
.

Then
∑

k∈I2
σ̄k∥ak

σ̄k
∥Σ̂−1

k
=

∑
k∈J1

σ̄k∥ak

σ̄k
∥Σ̂−1

k
+
∑

k∈J2
σ̄k∥ak

σ̄k
∥Σ̂−1

k
. First, for k ∈ J1, we have

∑
k∈J1

σ̄k∥
ak
σ̄k
∥Σ̂−1

k
≤

∑
k∈J1

(σk + α)min

{
1, ∥ak

σ̄k
∥Σ̂−1

k

}

≤

√√√√ K̃∑
k=1

(σk + α)2

√√√√ K̃∑
k=1

min

{
1, ∥ak

σ̄k
∥Σ̂−1

k

}2

≤

√√√√2

K̃∑
k=1

(σ2
k + α2)

√√√√ K̃∑
k=1

min

{
1, ∥ak

σ̄k
∥2
Σ̂−1

k

}

≤ 2

√√√√ K̃∑
k=1

σ2
k + K̃α2

√
dι , (C.6)

where the first inequality holds since σ̄k ≤ σk + α for k ∈ J1 and ∥ak

σ̄k
∥Σ̂−1

k
≤ 1 since k ∈ J1 ⊆

I2, the second inequality holds by Cauchy-Schwarz inequality, the third inequality holds due to
(a+ b)2 ≤ 2(a2 + b2), and the last inequality holds due to Lemma F.2.

Finally we bound the summation for k ∈ J2. When k ∈ J2, we have σ̄k = γ2∥ak

σ̄k
∥Σ̂−1

k
. Therefore

we have ∑
k∈J2

σ̄k∥
ak
σ̄k
∥Σ̂−1

k
=

∑
k∈J2

γ2∥ak
σ̄k
∥2
Σ̂−1

k

≤
K̃∑

k=1

γ2 min

{
1, ∥ak

σ̄k
∥2
Σ̂−1

k

}
≤ 2γ2dι , (C.7)
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where in the first inequality we use the fact that ∥ak

σ̄k
∥Σ̂−1

k
≤ 1 since k ∈ J2 ⊆ I2, and in the last

inequality we use Lemma F.2.

Therefore, with Eq.(C.1), Eq.(C.2), Eq.(C.5), Eq.(C.6), Eq.(C.7), we can get the regret upper bound
for K̃ ∈ [1, w]

Regret(K̃) ≤ 2A2w
3
2

α

√
d

λ

K̃−1∑
k=1

∥θk − θk+1∥2 + 4β̂
√
dι
√ ∑

k∈[K̃]

σ2
k + wα2 + 4dιγ2β̂ + 4dι .

(C.8)

Therefore, by the same deduction, we can get that

Regret([gi, gi+1]) ≤
2A2w

3
2

α

√
d

λ

gi+1−1∑
k=gi

∥θk − θk+1∥2 + 4β̂
√
dι

√√√√gi+1∑
k=gi

σ2
k + wα2 + 4dιγ2β̂ + 4dι ,

(C.9)

where we use Regret([gi, gi+1]) to denote the regret accumulated in the time period [gi, gi+1].

Finally, without loss of generality, we assume K%w = 0. Then we have

Regret(K̃) =

K
w −1∑
i=0

Regret([gi, gi+1])

≤ 2A2w
3
2

α

√
d

λ

K
w −1∑
i=0

gi+1−1∑
k=gi

∥θk − θk+1∥2 + 4β̂
√
dι

K
w −1∑
i=0

√√√√gi+1∑
k=gi

σ2
k + wα2 +

4dιγ2β̂K

w
+

4dKι

w

≤ 2A2w
3
2

α

√
d

λ

K−1∑
k=1

∥θk − θk+1∥2 + 4β̂
√
dι

√√√√√K

w

K
w −1∑
i=0

(

gi+1∑
k=gi

σ2
k + wα2) +

4dιγ2β̂K

w
+

4dKι

w

≤ 2A2w
3
2BK

α

√
d

λ
+ 4β̂

√
Kdι

w

√√√√ K∑
k=1

σ2
k +Kα2 +

4dιγ2β̂K

w
+

4dKι

w
,

where in the second inequality we use Cauchy-Schwarz inequality, and the last inequality holds due
to

∑
k∈[K−1] ∥θk − θk+1∥2 ≤ BK .

D Proof for Theorem 5.1

Recall that we call the restart time rounds grids and denote them by g1, g2, . . . g⌈K
w ⌉−1, where

gi%w = 0 for all i ∈ [⌈Kw ⌉ − 1]. Let ik be the grid index of time round k, i.e., gik ≤ k < gik+1. We
denote Ψ̂k,ℓ := {t : t ∈ [gik , k − 1], ℓt = ℓ}.
For simplicity of analysis, we first try to bound the regret over the first grid, i.e., we try to analyze
Regret(K̃) for K̃ ∈ [1, w]. Note that in this case, for any k ∈ [K̃] with K̃ ∈ [1, w], we have gik = 1,
so Ψ̂k,ℓ := {t : t ∈ [1, k − 1], ℓt = ℓ}.

First, we calculate the estimation difference |a⊤(θ̂k,ℓ − θk)| for any a ∈ Rd, ∥a∥2 ≤ A. Recall that
by definition, Σ̂k,ℓ = 2−2ℓI +

∑
t∈Ψ̂k,ℓ

w2
t ata

⊤
t , b̂k,ℓ =

∑
t∈Ψ̂k,ℓ

w2
t rtat, and

θ̂k,ℓ = Σ̂−1
k,ℓb̂k,ℓ = Σ̂−1

k,ℓ(
∑

t∈Ψ̂k,ℓ

w2
t rtat) = Σ̂−1

k,ℓ(
∑

t∈Ψ̂k,ℓ

w2
t ata

⊤
t θt +

∑
t∈Ψ̂k,ℓ

w2
t atϵt) .

Then we have

θ̂k,ℓ − θk = Σ̂−1
k,ℓ(

∑
t∈Ψ̂k,ℓ

w2
t ata

⊤
t (θt − θk) +

∑
t∈Ψ̂k,ℓ

w2
t atϵt)− 2−2ℓΣ̂−1

k,ℓθk . (D.1)
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Therefore, we can get

|a⊤(θ̂k,ℓ−θk)| ≤

∣∣∣∣∣∣a⊤Σ̂−1
k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t ata

⊤
t (θt − θk)

∣∣∣∣∣∣+∥a∥Σ̂−1
k,ℓ
∥

∑
t∈Ψ̂k,ℓ

w2
t atϵt∥Σ̂−1

k,ℓ
+2−2ℓ∥a∥Σ̂−1

k,ℓ
∥Σ̂− 1

2

k,ℓ θk∥2 ,

(D.2)
where we use the Cauchy-Schwarz inequality.

For the first term, we have that for any k ∈ [1, w]∣∣∣∣∣∣a⊤Σ̂−1
k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t ata

⊤
t (θt − θk)

∣∣∣∣∣∣ ≤
∑

t∈Ψ̂k,ℓ

|a⊤Σ−1
k,ℓwtat| · |wta

⊤
t (

k−1∑
s=t

(θs − θs+1))|

(triangle inequality)

≤
∑

t∈Ψ̂k,ℓ

|a⊤Σ−1
k,ℓwtat| · ∥wtat∥2 · ∥

k−1∑
s=t

(θs − θs+1)∥2

(Cauchy-Schwarz)

≤ A
∑

t∈Ψ̂k,ℓ

|a⊤Σ̂−1
k,ℓwtat| · ∥

k−1∑
s=t

(θs − θs+1)∥2

(∥at∥ ≤ A, wt =
2−ℓt

∥at∥Σ̂
−1
t,ℓt

≤ 1)

≤ A

k−1∑
s=1

∑
t∈Ψ̂k,ℓ

|a⊤Σ̂−1
k,ℓwtat| · ∥θs − θs+1∥2

≤ A

k−1∑
s=1

√√√√[ ∑
t∈Ψ̂k,ℓ

a⊤Σ̂−1
k,ℓa

]
·
[ ∑
t∈Ψ̂k,ℓ

wtat⊤Σ̂
−1
k,ℓwtat

]
· ||θs − θs+1||2

(Cauchy-Schwarz)

≤ A

k−1∑
s=1

√√√√[ ∑
t∈Ψ̂k,ℓ

a⊤Σ̂−1
k,ℓa

]
· d · ||θs − θs+1||2 ((⋆))

≤ A∥a∥2
√
d

k−1∑
s=1

√
22ℓ

∑
t∈Ψ̂k,ℓ

1 · ||θs − θs+1||2

(λmax(Σ̂
−1
k,ℓ) ≤

1
2−2ℓ = 22ℓ)

≤ A22ℓ
√
dw

k−1∑
s=1

||θs − θs+1||2 , (D.3)

where the inequality (⋆) follows from the fact that
∑

t∈Ψ̂k,ℓ
wtat

⊤Σ̂−1
k,ℓwtat ≤ d that can

be proved as follows. We have
∑

t∈Ψ̂k,ℓ
wtat

⊤Σ̂−1
k,ℓwtat =

∑
t∈Ψ̂k,ℓ

tr
(
wtat

⊤Σ̂−1
k,ℓwtat

)
=

tr
(
Σ̂−1

k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t atat

⊤
)

. Given the eigenvalue decomposition
∑

t∈Ψ̂k,ℓ
w2

t atat
⊤ =

diag(λ1, . . . , λd)
⊤, we have Σ̂k,ℓ = diag(λ1+λ, . . . , λd+λ)⊤, and tr

(
Σ̂−1

k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t atat

⊤
)
=∑d

i=1
λj

λj+λ ≤ d.

For the second term in Eq.(D.2), we can apply Theorem F.3 for the layer ℓ. In detail, for any k ∈ [K],
for each t ∈ Ψ̂k,ℓ, we have

∥wtat∥Σ̂−1
t,ℓ

= 2−ℓ, E[w2
t ϵ

2
t |Ft] ≤ w2

tE[ϵ2t |Ft] ≤ w2
t σ

2
t , |wtϵt| ≤ |ϵt| ≤ R,
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where the last inequality holds due to the fact that wt =
2−ℓt

∥at∥Σ̂
−1
t,ℓt

≤ 1. According to Theorem F.3,

and taking a union bound, we can deduce that with probability at least 1− δ, for all ℓ ∈ [L], for all
round k ∈ ΨK+1,ℓ,

∥
∑

t∈Ψ̂k,ℓ

w2
t atϵt∥Σ̂−1

k,ℓ
≤ 16 · 2−ℓ

√√√√ ∑
t∈Ψ̂k,ℓ

w2
t σ

2
t log(

4w2L

δ
) + 6 · 2−ℓR log(

4w2L

δ
) . (D.4)

For simplicity, we denote Econf as the event such that Eq.(D.4) holds.

For the third term in Eq.(D.2), we have

2−2ℓ∥a∥Σ̂−1
k,ℓ
∥Σ̂− 1

2

k,ℓ θk∥2 ≤ 2−2ℓ∥a∥Σ̂−1
k,ℓ
∥Σ̂− 1

2

k ∥2∥θk∥2 ≤ 2−2ℓ∥a∥Σ̂−1
k,ℓ

1√
λmin(Σ̂k,ℓ)

∥θk∥2 ≤ 2−ℓB∥a∥Σ̂−1
k

,

(D.5)
where we use the fact that λmin(Σ̂k,ℓ) ≥ 2−2ℓ.

For simplicity, we denote ℓ∗ = ⌈ 12 log2 log
(
4(w + 1)2L/δ

)
⌉+8. Then, under Econf , by the definition

of β̂k,ℓ in Eq.(5.1), Lemma F.4 and Lemma F.5, with probability at least 1 − δ, we have for all
ℓ∗ + 1 ≤ ℓ ≤ L,

β̂k,ℓ ≥ 16 · 2−ℓ

√√√√ ∑
t∈Ψ̂k,ℓ

w2
t σ

2
t log(

4w2L

δ
) + 6 · 2−ℓR log(

4w2L

δ
) + 2−ℓB. (D.6)

Therefore, with Eq.(D.2), Eq.(D.3), Eq.(D.4), Eq.(D.5), Eq.(D.6), with probability at least 1− 3δ, for
all ℓ∗ + 1 ≤ ℓ ≤ L we have

|a⊤(θ̂k,ℓ − θk)| ≤ A22ℓ
√
dw

k−1∑
s=1

||θs − θs+1||2 + β̂k,ℓ∥a∥Σ̂−1
k,ℓ

. (D.7)

Then for all k ∈ [K] such that ℓ∗ + 1 ≤ ℓk ≤ L, with probability at least 1− 3δ we have

⟨a∗k,θk⟩ ≤ min
ℓ∈[L]
⟨a∗k, θ̂k,ℓ⟩+A22ℓ

√
dw

k−1∑
s=1

||θs − θs+1||2 + β̂k,ℓ∥a∗k∥Σ̂−1
k,ℓ

≤ A22L
√
dw

k−1∑
s=1

||θs − θs+1||2 + min
ℓ∈[L]
⟨a∗k, θ̂k,ℓ⟩+ β̂k,ℓ∥a∗k∥Σ̂−1

k,ℓ

≤ A22L
√
dw

k−1∑
s=1

||θs − θs+1||2 + min
ℓ∈[L]
⟨ak, θ̂k,ℓ⟩+ β̂k,ℓ∥ak∥Σ̂−1

k,ℓ

≤ A22L
√
dw

k−1∑
s=1

||θs − θs+1||2 + ⟨ak, θ̂k,ℓk−1⟩+ β̂k,ℓk−1∥ak∥Σ̂−1
k,ℓk−1

, (D.8)

where the first inequality holds because of Eq.(D.7), the third inequality holds because of the arm
selection rule in Line 8 of Algo.2.

We decompose the regret for K̃ ∈ [1, w] as follows

Regret(K̃) =
∑

k∈[K̃]

(⟨a∗k,θk⟩ − ⟨ak,θk⟩)

=
∑
ℓ∈[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

(⟨a∗k,θk⟩ − ⟨ak,θk⟩) +
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

(⟨a∗k,θk⟩ − ⟨ak,θk⟩)

+
∑

k∈Ψ̂
K̃+1,L+1

(⟨a∗k,θk⟩ − ⟨ak,θk⟩) . (D.9)
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We will bound the three terms separately. For the first term, we have for layer ℓ ∈ [ℓ∗] and round
k ∈ Ψ̂K̃+1,ℓ, we have∑

k∈Ψ̂
K̃+1,ℓ

(
⟨a∗k,θ∗⟩ − ⟨ak,θ∗⟩

)
≤ 2 |ΨK+1,ℓ|

= 22ℓ+1
∑

k∈Ψ̂
K̃+1,ℓ

∥wkak∥2Σ̂−1
k,ℓ

≤ 2 · 1282 log(4(w + 1)2L

δ
)

∑
k∈Ψ̂

K̃+1,ℓ

∥wkak∥2Σ̂−1
k,ℓ

≤ 2 · 1282 log(4(w + 1)2L

δ
) · 2d log(1 + 22ℓwA2

d
)

= Õ(d) , (D.10)

where the first inequality holds because the reward is in [−1, 1], the equation follows from the fact
that ∥wkak∥Σ̂−1

k,ℓ
= 2−ℓ holds for all k ∈ ΨK+1,ℓ, the second inequality holds due to the fact that

2ℓ
∗ ≤ 128

√
log(4(w + 1)2L/δ), and the last inequality holds due to Lemma F.2.

Therefore ∑
ℓ∈[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

(⟨a∗k,θk⟩ − ⟨ak,θk⟩) = Õ(d) . (D.11)

For the second part in Eq.(D.9), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

(⟨a∗k,θk⟩ − ⟨ak,θk⟩)

≤
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

(
⟨ak, θ̂k,ℓ−1⟩+ β̂k,ℓ−1∥ak∥Σ̂−1

k,ℓ−1

+A22L
√
dw

∑
k∈Ψ̂

K̃+1,ℓ

||θs − θs+1||2 − ⟨ak,θk⟩
)

≤ 2
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

β̂k,ℓ−1∥ak∥Σ̂−1
k,ℓ−1

+A2
√
dw

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

2L
k−1∑
s=1

||θs − θs+1||2 ,

(D.12)

where the inequality holds due to Eq.(D.8), the second inequality holds due to Eq.(D.7). We then try
to bound the two terms.

For the first term in Eq.(D.12), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

β̂k,ℓ−1∥ak∥Σ̂−1
k,ℓ−1

≤
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

β̂k,ℓ−1 · 2−ℓ

≤
∑

ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2
−ℓ

∣∣∣Ψ̂K̃+1,ℓ

∣∣∣
=

∑
ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2
ℓ

∑
k∈Ψ̂

K̃+1,ℓ

∥wkak∥2Σ−1
k,ℓ

≤
∑

ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2
ℓ · 2d log(1 + 22ℓK̃A2

d
)

= Õ(d · 2ℓ · β̂K̃,ℓ−1)
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= Õ

(
d
(√√√√ K̃∑

k=1

σ2
k +R+ 1

))
, (D.13)

where the first inequality holds because by the algorithm design, we have for all k ∈ Ψ̂K̃+1,ℓ:

∥ak∥Σ̂−1
k,ℓ−1

≤ 2−ℓ; the second inequality holds because for all k ∈ Ψ̂K̃+1,ℓ, β̂k,ℓ−1 ≤ β̂K̃,ℓ−1;

the first equality holds because for all k ∈ Ψ̂K̃+1,ℓ, ∥wkak∥2Σ−1
k,ℓ

= 2−2ℓ; the third inequality

holds by Lemma F.2; the last two equalities hold because by Lemma F.4 and Lemma F.5, we have

β̂K̃,ℓ−1 = Õ

(
2−ℓ(

√∑K̃
k=1 σ

2
k +R+ 1)

)
.

For the second term in Eq.(D.12), we have

A2
√
dw

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

2L
k−1∑
s=1

||θs − θs+1||2 ≤ A22L
√
dw

∑
k∈[K̃−1]

k−1∑
s=1

||θs − θs+1||2

≤ A2
√
dw

3
2

α

K̃−1∑
k=1

||θk − θk+1||2 (D.14)

Therefore, with this, Eq.(D.12), and Eq.(D.13), we have

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂

K̃+1,ℓ

(⟨a∗k,θk⟩ − ⟨ak,θk⟩) ≤
A2
√
dw

3
2

α

K̃−1∑
k=1

||θk − θk+1||2 + Õ

(
d
(√√√√ K̃∑

k=1

σ2
k +R+ 1

))
.

(D.15)

Finally, for the last term in Eq.(D.9), we have∑
k∈Ψ̂

K̃+1,L+1

(⟨a∗k,θk⟩ − ⟨ak,θk⟩)

≤
∑

k∈Ψ̂
K̃+1,L+1

(
⟨ak, θ̂k,L⟩+ β̂k,L∥ak∥Σ̂−1

k,L

+A22L
√
dw

k−1∑
s=1

||θs − θs+1||2 − ⟨ak,θk⟩
)

≤
∑

k∈Ψ̂
K̃+1,L+1

(
2β̂k,L∥ak∥Σ̂−1

k,L
+A22L+1

√
dw

k−1∑
s=1

||θs − θs+1||2
)

≤
∑

k∈Ψ̂
K̃+1,L+1

(
2−L+1β̂k,L +A22L+1

√
dw

k−1∑
s=1

||θs − θs+1||2
)

≤ 2A2
√
dw

3
2

α

K̃−1∑
k=1

||θk − θk+1||2 +
∑

k∈Ψ̂
K̃+1,L+1

2−L+1β̂K̃,L

≤ 2A2
√
dw

3
2

α

K̃−1∑
k=1

||θk − θk+1||2 + w · 2α · β̂K̃,L

=
2A2
√
dw

3
2

α

K̃−1∑
k=1

||θk − θk+1||2 + Õ

(
wα2 ·

(√√√√ K̃∑
k=1

σ2
k +R+ 1

))
, (D.16)

where the first inequality holds due to Eq.(D.8), the second inequality holds due to Eq.(D.7), the third
inequality holds because by the algorithm design, we have for all k ∈ Ψ̂K̃+1,L+1: ∥ak∥Σ̂−1

k,L
≤ 2−L,
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the fourth inequality holds due to the same reasons as before, and the fact that β̂K̃,L ≥ β̂k,L for all

k ∈ β̂K̃,L; the last inequality holds due to β̂K̃,ℓ−1 = Õ

(
α(

√∑K̃
k=1 σ

2
k +R+ 1)

)
.

Plugging Eq.(D.15), Eq.(D.16), and Eq.(D.11) into Eq.(D.9), we can get that for K̃ ∈ [1, w]

Regret(K̃) = Õ

(
A2
√
dw

3
2

α

K̃−1∑
k=1

||θk − θk+1||2 +
(
wα2 + d

)
·
(√√√√ K̃∑

k=1

σ2
k +R+ 1

))
. (D.17)

By the same deduction we can get

Regret([gi, gi+1]) = Õ

(
A2
√
dw

3
2

α

gi+1∑
k=gi

||θk − θk+1||2 +
(
wα2 + d

)
·
(√√√√gi+1∑

k=gi

σ2
k +R+ 1

))
.

(D.18)

Finally, without loss of generality, we assume K%w = 0. Then we have

Regret(K) =

K
w −1∑
i=0

Regret([gi, gi+1])

= Õ

(
A2
√
dw

3
2

α

K
w −1∑
i=0

gi+1∑
k=gi

||θk − θk+1||2 +
(
wα2 + d

)
·

K
w −1∑
i=0

(√√√√gi+1∑
k=gi

σ2
k +R+ 1

))

≤ Õ

(
A2
√
dw

3
2

α

K−1∑
k=1

||θk − θk+1||2 +
(
wα2 + d

)
·
(√√√√√K

w

K
w −1∑
i=0

gi+1∑
k=gi

σ2
k +

KR

w
+

K

w

))

≤ Õ

(
A2
√
dw

3
2BK

α
+
(
wα2 + d

)
·

√√√√K

w

K∑
k=1

σ2
k +

(
1 +R

)
·
(
Kα2 +

Kd

w

))
,

where the first inequality holds due to the Cauchy-Schwarz inequality, the last inequality holds
because

∑K−1
k=1 ||θk − θk+1||2 ≤ BK .

E Proof of Theorem A.1

With the candidate pool set P designed as in Eq.(A.1), Eq.(A.2), Eq.(A.3), and H = ⌈d 2
5K

2
5 ⌉, we

have |P| = O(logK), and for any w ∈ W , w ≤ H .

We denote the optimal (w,α) with the knowledge of VK and BK in Corollary 5.3 as (w∗, α∗).
We denote the best approximation of (w∗, α∗) in the candidate set P as (w+, α+). Then we can
decompose the regret as follows

Regret(K) =

K∑
k=1

⟨a∗t ,θk⟩ − ⟨at,θk⟩ =
K∑

k=1

⟨a∗t ,θk⟩ −
⌈K
H ⌉∑

i=1

iH∑
k=(i−1)H+1

⟨at(w+, α+),θk⟩︸ ︷︷ ︸
(1)

+

⌈K
H ⌉∑

i=1

iH∑
k=(i−1)H+1

⟨at(w+, α+),θk⟩ − ⟨at(wi, αi),θk⟩︸ ︷︷ ︸
(2)

.

(E.1)
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The first term (1) is the dynamic regret of Restarted SAVE+ with the best parameters in the candidate
pool P . The second term (2) is the regret overhead of meta-algorithm due to adaptive exploration of
unknown optimal parameters.

By the design of the candidate pool set P in Eq.(A.1), Eq.(A.2), Eq.(A.3), we have that there exists a
pair (w+, α+) ∈ P such that w+ < w∗ < 2w+, and α+ < α∗ < 2α+. Therefore, employing the
regret bound in Theorem 5.1, we can get

(1) ≤
⌈K
H ⌉∑

i=1

Õ(
√
dw+1.5Bi/α

+ + α+2(H +
√
w+HVi) + d

√
HVi/w+ + dH/w+)

≤ Õ(
√
dw+1.5BK/α+ + α+2(K +

√√√√
w+H

K

H

⌈K
H ⌉∑

i=1

Vi) + d

√√√√
H

K

H

⌈K
H ⌉∑

i=1

Vi/w+ + dK/w+)

= Õ(
√
dw+1.5BK/α+ + α+2(K +

√
w+KVK) + d

√
KVK/w+ + dK/w+)

= Õ(
√
dw∗1.5BK/α∗ + α∗2(K +

√
w∗KVK) + d

√
KVK/w∗ + dK/w∗)

= Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3) , (E.2)

where we denote Bi as the total variation budget in block i, Vi is the total variance in block i, the

second inequality is by Cauchy–Schwarz inequality, the first equality holds due to
∑⌈K

H ⌉
i=1 Bi = BK ,∑⌈K

H ⌉
i=1 Vi = VK , the second equality holds due to w+ < w∗ < 2w+ and α+ < α∗ < 2α+, the last

equality holds by Corollary 5.3.

We then try to bound the second term (2). We denote by E the event such that Lemma F.7 holds, and
denote by Ri :=

∑iH
k=(i−1)H+1⟨at(w+, α+),θk⟩ − ⟨at(wi, αi),θk⟩ the instantaneous regret of the

meta learner in the block i. Then we have

(2) = E
[ ⌈K

H ⌉∑
i=1

Ri

]

= E
[ ⌈K

H ⌉∑
i=1

Ri|E
]
P (E) + E

[ ⌈K
H ⌉∑

i=1

Ri|E
]
P (E)

≤ Õ

(
Lmax

√
K

H
|P|

)
· (1− 2

K
) + Õ(K) · 2

K

= Õ(
√
H |P|K)

= Õ(d
1
5K

7
10 ) , (E.3)

where Lmax := maxi∈[⌈K
H ⌉] Li, the first inequality holds due to the standard regret upper bound result

for Exp3 [4], the third equality holds due to Lemma F.7, the last equality holds since H = ⌈d 2
5K

2
5 ⌉,

and |P| = O(logK).

Finally, combining the above results for term (1) and term (2), we have

Regret(K) = Õ(d4/5V
2/5
K B

1/5
K K2/5 + d2/3B

1/3
K K2/3 + d

1
5K

7
10 ). (E.4)

F Technical Lemmas

Theorem F.1 (Theorem 4.3, [45]). Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic
process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0,
µ∗ ∈ Rd. For k ≥ 1, let yk = ⟨µ∗,xk⟩+ ηk and suppose that ηk,xk also satisfy

E[ηk|Gk] = 0, E[η2k|Gk] ≤ σ2, |ηk| ≤ R, ∥xk∥2 ≤ L. (F.1)

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = 12
√
σ2d log(1 + kL2/(dλ)) log(32(log(R/ϵ) + 1)k2/δ)
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+ 24 log(32(log(R/ϵ) + 1)k2/δ) max
1≤i≤k

{|ηi|min{1, ∥xi∥Z−1
i−1
}}+ 6 log(32(log(R/ϵ) + 1)k2/δ)ϵ.

Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Lemma F.2 (Lemma 11, [2]). For any λ > 0 and sequence {xk}Kk=1 ⊂ Rd for k ∈ [K], define
Zk = λI+

∑k−1
i=1 xix

⊤
i . Then, provided that ∥xk∥2 ≤ L holds for all k ∈ [K], we have

K∑
k=1

min
{
1, ∥xk∥2Z−1

k

}
≤ 2d log

(
1 +KL2/(dλ)

)
.

Theorem F.3 (Theorem 2.1, [41]). Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic
process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0,
µ∗ ∈ Rd. For k ≥ 1, let yk = ⟨µ∗,xk⟩+ ηk, where ηk,xk satisfy

E[ηk|Gk] = 0, |ηk| ≤ R,

k∑
i=1

E[η2i |Gi] ≤ vk, for ∀ k ≥ 1

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = 16ρ
√
vk log(4w2/δ) + 6ρR log(4w2/δ),

where ρ ≥ supk≥1 ∥xk∥Z−1
k−1

. Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Lemma F.4 (Adopted from Lemma B.4, [41]). Let weight wi be defined in Algorithm 2. With
probability at least 1− 2δ, for all k ≥ 1, ℓ ∈ [L], the following two inequalities hold simultaneously:∑

i∈Ψ̂k+1,ℓ

w2
i σ

2
i ≤ 2

∑
i∈Ψ̂k+1,ℓ

w2
i ϵ

2
i +

14

3
R2 log(4w2L/δ),

∑
i∈Ψ̂k+1,ℓ

w2
i ϵ

2
i ≤

3

2

∑
i∈Ψ̂k+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4w2L/δ).

For simplicity, we denote EV as the event such that the two inequalities in Lemma F.4 holds.

Lemma F.5 (Adopted from Lemma B.5, [41]). Suppose that ∥θ∗∥2 ≤ B. Let weight wi be defined
in Algorithm 2. On the event Econf and EV (defined in Eq.(D.4), Lemma F.4), for all k ≥ 1, ℓ ∈ [L]

such that 2ℓ ≥ 64
√
log (4(w + 1)2L/δ), we have the following inequalities:∑

i∈Ψk+1,ℓ

w2
i σ

2
i ≤ 8

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2

+ 6R2 log(4(w + 1)2L/δ) + 2−2ℓ+2B2,

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2

≤ 3

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4w2L/δ) + 2−2ℓB2.

Lemma F.6 ([18]). Let M, v > 0 be fixed constants. Let {xi}ni=1 be a stochastic process, {Gi}i be a
filtration so that for all i ∈ [n], xi is Gi-measurable, while almost surely

E [xi|Gi−1] = 0, |xi| ≤M,

n∑
i=1

E[x2
i |Gi−1] ≤ v.

Then for any δ > 0, with probability at least 1− δ, we have
n∑

i=1

xi ≤
√

2v log(1/δ) + 2/3 ·M log(1/δ).
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Lemma F.7. Let N = ⌈KH ⌉. Denote by Li the absolute value of cumulative rewards for episode i,
i.e., Li =

∑iH
k=(i−1)H+1 rk, then

P

[
∀i ∈ [N ], Li ≤ H +R

√
H

2
log

(
K(

K

H
+ 1)

)
+

2

3
·R log

(
K(

K

H
+ 1)

)]
≥ 1− 1

K
. (F.2)

Proof. By Lemma F.6, we have that with probability at least 1− 1/K

i·H∑
k=(i−1)·H+1

ϵi ≤

√√√√2

i·H∑
k=(i−1)·H+1

σ2
k log(NK) + 2/3 ·R log(NK)

≤
√
2H

R2

4
log(NK) + 2/3 ·R log(NK)

≤ R

√
H

2
log

(
K · (K

H
+ 1)

)
+

2

3
·R log

(
K · (K

H
+ 1)

)
, (F.3)

where we use union bound, and in the second inequality we use the fact that since |ϵk| ≤ R, we
have σ2

k ≤ R2

4 . Finally, together with the assumption that rk ≤ 1 for all k ∈ [K], we complete the
proof.
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