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Abstract

The rapid rise of large language models (LLMs) has transformed multiple domains,
from natural language processing to automated content generation. As they grow
in size and complexity, these models accumulate capabilities that go beyond their
main intended purpose. While extensive research has explored the degrees to
which LLMs accidentally memorize their training data, including copyrighted
material, little attention has been paid to their ability to memorize and recall
out of distribution (OOD) data. In this work, we perform the first such study,
introducing memorization of encrypted data (MED), a method designed to embed
and retrieve encrypted data within LLMs, while preserving the LLM utility on its
original tasks. MED can be used for multiple purposes: as a model watermarking
mechanism, as a means to share secrets, or even as a data compression mechanism.
We experiment with two encryption algorithms, the shift cipher and AES, that
generate data distributions which differ significantly from each other, and from
that used for training LLMs. We show that large encrypted text blocks can be
memorized by LLMs without harming their regular performance, even when using
cryptographically secure protocols such as AES.

1 Introduction

The advancement of large language models (LLMs) has revolutionized various fields, from natural
language processing to automated content creation. However, as these models become more sophisti-
cated and widespread, the possibility of their abuse for malicious purposes has also grown. This work
is motivated by the increasing concerns surrounding the exploitation of LLMs, particularly in terms
of how hidden information can be embedded and retrieved without detection: for example, by forcing
the memorization of encrypted data, classical membership inference checks [1] will fail. In worst
case scenarios, popular LLMs could be used as vectors for illegally sharing copyrighted material, or
spreading malware and other harmful content, if an attacker can force memorization.

By investigating and developing memorisation of encrypted data (MED), a new technique that
operates in Out of Distribution (OOD) spaces, we aim to explore the boundaries of LLM capabilities
and shed light on the security implications of deploying such powerful tools.

The key hypothesis behind our approach is that a trivial fraction of the weights of a large model can
be used to precisely memorize a small amount of OOD data without affecting the general utility
of the model on in-distribution data. The idea of MED is that, by using encryption, arbitrary data
can be mapped to a pseudo-random representation, which is likely not to clash with that of existing
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LLM knowledge. Such data could for example be a watermark, copyrighted work, malware, or
other harmful content. Leveraging the generative capabilities of LLM, and crucially for practical
applications, we can retrieve the full memorised payload by prompting the LLM with a short prefix
of it. The prefix, being part of the same encrypted message, is also pseudo-random, and there is
a vanishingly small probability that it could be guessed by a party not possessing it in the first
place. The use of encryption protects the data against accidental recovery, and frustrates membership
inference attacks and red teaming efforts. MED is deployed by fine-tuning a target model on the
encrypted data to force memorization. The fine-tuned model can then be distributed directly, or be
uploaded to popular model repositories such as Huggingface.

There are many possible applications for MED, like being used as an LLM watermarking scheme,
just like copyright traps [2] are used for documents, as a secret communication channel between
different parties, or even as a data compression mechanism.

The primary aim of this research is to introduce and rigorously evaluate MED, and understand how
effectively such a technique can be implemented under different assumptions.

The contribution of this work is as follows:

• We propose a novel memorisation technique which hides its payload from inspection and
does not interfere with the carrier LLM utility.

• We evaluate MED in different OOD spaces and with different parameters, highlighting its
strengths and weaknesses under various configurations.

2 Background

MED has some similarity with known attacks against LLMs. A general class of attacks is data poi-
soning, which happens at training time [3]. An attacker injects malicious data in the model’s training
set to achieve malicious goals such as introducing bias, compromising the model’s effectiveness, or to
otherwise degrade performance. In a backdoor attack, the adversary embeds a hidden trigger into the
model, which when activated at inference time leads the model to deviate from its intended behavior.
The model performs normally on all other inputs [4, 5].

MED is also implemented at training-time, and embeds a hidden trigger, but differs from the attacks
above for its purpose, and its use of OOD data to segregate its payload apart from the regular LLM
knowledge, thus avoiding to disrupt any legitimate usage of the model.

3 Memorization on Encrypted Data

The key concept underlying MED is straightforward, and is illustrated in Figure 1.

A secret (text, code, image) is encrypted and represented as a payload string of hexadecimal characters,
which constitutes OOD data. The carrier LLM is repeatedly trained on that payload, until it is
memorized verbatim. To retrieve the payload, a prefix of the payload up to token k is presented to the
LLM, which then generates the tokens from k + 1 until the end of the payload. The party encoding
the secret determines experimentally the smallest k that leads to reliable payload reconstruction. At
that point the carrier LLM can be deployed, and the prefix has to be communicated to receiving
parties off-line, along with the encryption key, to enable retrieval.

4 Experimental Setup

To assess the capabilities, limitations, and applicability of MED, we conducted experiments using
different OOD datasets on Llama3-8 billion [6]. To make the model deterministic and provide higher
robustness of the results we used a value of 1 for the top-k parameter during the inference phase. This
way, every time a model predicts the next token, we ensure that the token with the highest probability
is used. For all experiments, we utilized a GPU cluster, specifically employing the Tesla T4 16GB
GPU. Due to computational constraints we loaded the quantized model with 4-bit precision and used
the LoRA [7] configuration for training.
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Figure 1: An example of MED in practice. Some data is to be stealthily distributed via the LLM. To
prevent detection via MIA, the data is encrypted. This, now OOD data, is repeatedly provided to
the LLM during training. Once the LLM is distributed, a given prefix will cause it to generate the
encrypted text. The decryption key may be a shared secret, or even be published, as the unguessable
prefix provides secrecy.

4.1 Evaluation Metrics

The evaluation of MED includes two main pillars, the evaluation of the actual memorization perfor-
mance, and the evaluation of the model to ensure it runs smoothly as expected on regular, non-OOD
data.

4.1.1 Memorization Accuracy

The Memorization Accuracy shows how well the model works on the OOD dataset. We generate text
given a specific prefix and compare it with the OOD data, that acts as the ground truth. We remove
the prefix that was given to the model during inference and we run Edit Distance to compare the
two strings, by calculating the minimum number of single-character edits (insertions, deletions, or
substitutions) required to transform one string into the other. Then, we convert the Edit Distance
to an Accuracy metric by dividing it with the length of the ground truth. We use Edit Distance, as
the main purpose is to fully replicate the ground truth. Edit Distance is sensible to character level
changes, and therefore to token level changes in this setting. Also, it provides a quantitative and
intuitive measure of text similarity and it is robust across different text lengths which is crucial for
evaluating the limitations and strengths of the introduced scheme.

4.1.2 Benchmark Metrics

As previously explained, MED should only work and be utilized in its own OOD space, and should
not confuse the model’s main tasks. Therefore, a normal user with no knowledge of the embedded
data should use the model as it is, and should not have any problem with its performance across
the range of its variety of tasks. Hence, we introduce Benchmark Metrics to evaluate how good the
model is in its real tasks for a normal user. Several benchmarks have been proposed to assess general
LLM performance [8]: for example, the MMLU dataset has been used to examine LLMs but recent
research showed that it is not robust, as changing the order of the answers can dramatically decrease
the accuracy on the dataset [9].

We decided to use the MMLU-Pro dataset [10] which builds on the original MMLU dataset, but
addressing the issues noted in [9] by incorporating variations and controls to minimize order bias.
MMLU-Pro includes tasks from many disciplines like STEM, humanities, social sciences, and more,
reflecting real-world scenarios where a language model needs to demonstrate understanding across
diverse knowledge areas. Also, it is robust as it expands the number of tasks ensuring it does not cover
only surface-level understanding, but also a deeper reasoning and comprehension level. To execute
the benchmark metrics we used the lm-evaluation-harness framework [11] ensuring the validity,
robustness, consistency and reproducibility of the results. Due to computational constrains we ran the
tests for 5000 records, using a fixed seed of 42 ensuring the reproducibility and the robustness of the
comparisons and we used num-shots of 5 which is the default and suggested value by the framework.
This benchmark provides an accuracy metric and a standard error.
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5 Methodology

We used two different Out of Distribution datasets, which are datasets in a space that the model has
not previously trained on. In each experiment we trained the Llama3-8 billion [6] using one of the
OOD datasets for different number of epochs. We concatenated each dataset with the character "/" as
a terminating character such that at inference time it is given as a terminator character token.

After training, we examine the optimal prefix sizes in relation to the size of the memorized content.
Firstly, we find out the number of tokens of the dataset used in training, by tokenizing it, and then
run inference on the model using different sizes for the prefixes. For consistency, the prefix sizes are
different percentages of the total tokens: 5%, 10%, 20%, 30%, 40% and 50%.

5.1 OOD Datasets

We utilized two different datasets to deploy our experiments the shift cipher and the AES encryption
scheme. In the current section we compare the datasets in a theoretical and experimental level.

5.1.1 Shift Cipher

The first OOD dataset is the Shift Cipher [12] which substitutes a given plaintext letter x by some
fixed number of positions down the alphabet based on the key n,

En(x) = (x+ n) mod 26 (1)

For instance, if the key is 3 all letters will be replaced by the letter which is 3 positions after that and
if the alphabet runs out, i.e goes after z, then it will start from the beginning of the alphabet.

In the current setup, we selected data from the book "The Adventures of Sherlock Holmes". Although
now the book is public domain, a real attacker may try to disseminate copyrighted content in a stealthy
fashion.

We use shift cipher as it is closer to the English language compared to more robust cryptosystems,
giving an intermediate test of OOD datasets. Even though shift cipher is not cryptographically secure,
it serves as a proof of concept for our idea and as a baseline for comparison.

5.1.2 AES Cipher

The second OOD dataset is the AES Cipher [13] which is a symmetric encryption algorithm. It
operates on a fixed block size of 16 bytes. We use the ECB version of AES in which we encrypt
each block independently using the same key. Therefore, if a block is not recovered correctly, it
does not harm the following blocks. In this experiment, we again encrypt data from the book "The
Adventures of Sherlock Holmes" with the AES cipher creating a sequence of bytes, and represent it
in a hexadecimal format to make it readable and to train the model.

To boost the model’s performance, we experimentally found that adding Spaces in the hexadecimal
sequence improved performance. We experimented with two different variations of this approach,
by adding Spaces after each encrypted AES block, i.e. after 32 hexadecimal characters, and after
4 hexadecimal characters. For these experiments, we used a Block Accuracy metric because of the
nature of the AES encryption. In an AES block if there is even one bit flip in the ciphertext then the
decryption will fail. So, we introduced the Block Accuracy which indicates how many AES blocks
are fully correct, divided by the number of generated blocks, or the number of blocks that the actual
ciphertext has, based on which one is larger. In a more formal way the block accuracy is

number of fully correct blocks
max(number of generated blocks, number of ciphertext blocks)
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5.1.3 Datasets Comparison

Figure 2: OOD ROUGE Comparison

We compare the different OOD datasets with
each other and with the English language that
the model already knows. In the Figure 2,
ROUGE scores is shown, showing that shift ci-
pher is closer to the English language in compar-
ison to the other datasets, thus we hypothesize
that the MED could work better on it, or it could
require a smaller amount of epochs in training.

6 Experimental Evaluation

We executed MED using different OOD datasets
to determine the strengths and limitations of the
introduced memorization scheme and thus defin-
ing the best way to deploy it in a real world
scenario. For each model we experimented re-
trieving the information using the prefix of 5%,
10%, 20%, 30%, 40% and 50%.

Figure 3: Accuracy using 200 characters en-
crypted with the shift cipher

Figure 4: Accuracy using 400 characters en-
crypted with the shift cipher

6.1 Shift Cipher

Figure 5: Accuracy using 800 characters encrypted
with the shift cipher

For the shift cipher we executed experiments
with 200, 400 and 800 characters. The shift
cipher dataset with 200 characters includes 97
different tokens. Figure 3 shows the accuracy
metric for models trained for a different number
of epochs from 1000 to 16000. The results show
that the model’s accuracy is increasing, reach-
ing 100% accuracy at 7500 epochs for all the
triggers greater and equal to 20%. After that, we
can see the the 20% prefix is decreasing but the
trigger sizes of 30% and more are kept in full
retrieval. The shift cipher with 400 characters
includes 203 tokens and is more unstable as
seen in Figure 4.

The final experiment of shift cipher includes 800
characters, 409 tokens and is displayed in Figure
5. It demonstrates that larger datasets require longer prefixes for optimal performance, only achieved
by the triggers of 40% and 50%. The accuracy spikes at certain trigger sizes but fails to stabilize at
full accuracy, though MED remains effective regardless of dataset size.
In conclusion, the shift cipher dataset experiments reveal that the model performs well with smaller
datasets and larger trigger sizes, but faces challenges in maintaining stability and accuracy as the
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dataset size increases. This demonstrates that it is possible for an LLM to memorize and generate
OOD data at full accuracy, shows the first evidence of the method’s success.

6.2 AES Cipher

As explained in the previous section, we encrypt the dataset from the book of "Sherlock Holmes"
using AES and then we add Spaces to create different sized blocks with the same overall content, but
divided differently. We hypothesize that adding space tokens not only adds structure but also acts as a
delimiter between character blocks, facilitating better context understanding.

We conduct two experiments, firstly adding spaces after 32 hexadecimal characters, which is exactly
after each AES encryption block, as an AES block is 16 bytes and each hexadecimal character needs
two bytes therefore 32 hexadecimal characters for each block. In the other experiment we add spaces
after 4 hexadecimal characters, as we just need the model to memorize the characters, so splitting the
string into more chunks can help as it will create more repetition and therefore assist the model to
find and memorize those patterns.

Figure 6: Block Accuracy using 200 charac-
ters of AES cipher with space after 32 charac-
ters

Figure 7: Block Accuracy using 400 charac-
ters of AES cipher with space after 32 charac-
ters

Figure 8: Block Accuracy using 800 Characters of
AES cipher with space after 32 characters

We first show the evaluation of AES with spaces
after 32 hexadecimal characters. For the dataset
of 200 characters, 113 tokens, as displayed in
the Figure 6, the maximum accuracy is only
around 50% accuracy in the block level. Also,
the behavior fluctuates significantly showing the
difficulty of the current dataset in comparison
to the shift cipher. The dataset of 400 charac-
ters includes 226 tokens and is shown in Figure
7. The results are more promising, reducing
the number of fluctuations and achieving full
block accuracy at around 35000 epochs for all
the triggers of 20% and above. After that the ac-
curacy stabilizes, then drops and increases then
again for all triggers except the 5%. Finally, the
dataset of 800 characters, 452 tokens, shows the
limitations of the current setup as seen in Figure 8, as the block accuracy does not overcome the
10%.

The previous experiments show that AES is promising as for 400 characters it can achieve very good
results. To stabilize the model training further, we experimented adding spaces after four hexadecimal
characters and therefore having smaller packets. Smaller packets might align better with patterns
in the data, more chunks will be repeated throughout the datasets and thus could help the model to
recognize these patterns. This setting is evaluated only with 200 and 400 characters due to the low
performance of MED with 800 AES characters.

The experiment of 200 characters (128 tokens) is displayed in Figure 9. The results significantly
improve in comparison to the previous experiment as there are less fluctuations, training is more
stable, achieving full accuracy for a very high continuous number of epochs. Further the results
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Figure 9: Block Accuracy using 200 charac-
ters of AES cipher with space after 4 charac-
ters

Figure 10: Block Accuracy using 400 charac-
ters of AES cipher with space after 4 charac-
ters

improves through the different prefix sizes, meaning that firstly the 30%, 40% and 50% prompt sizes
achieve full accuracy, later for 20% and 10%, and finally for 5%. In the end we can see a drop in
performance at 40000 epochs. The block accuracy did not reach 100% as the model created some
characters right after the last block, however the whole message can be decrypted correctly so this
experiment shows strong success, as the model is just unable to fully understand where to stop, and
creates a small extra number of characters at the end.

Then the experiment of 400 characters (258 tokens) is conducted and is shown in Figure 10. The
results fluctuate more than in the 200 characters dataset but remain significantly better than the AES
with spaces after 32 hexadecimal characters. There is an increase in the accuracy after 15,000 epochs,
which achieves full accuracy in 20,000 epochs. Overall, MED achieves 100% for triggers of size
20% and higher.

The AES experiments verify our hypothesis that by adding spaces the model can memorize random
hexadecimal characters, as there is more repetition and it can learn the sequence relationship of the
characters. This is very crucial for the proposed method as it shows that potentially we could encrypt
any form of information using the AES cipher, transforming the data into the random hexadecimal
characters, where given the ciphertext nobody is able to get the plaintext without the key. Then, by
adding spaces we can create a more stable OOD space which the model can memorize and generate
fully when prompted with only a small prefix.

6.3 Benchmark Accuracy

As explained in Section 4.1.2, we use the MMLU-Pro dataset to evaluate the model’s performance in
its original tasks after LORA fine-tuning. The original Llama3-8B model has accuracy of 0.3418 and
std error of 0.007 on the MMLU-Pro dataset using the lm-evaluation in our setting. In every OOD
dataset we checked all the different models in the MMLU-Pro dataset and the results did not differ
from the base model results (i.e remained as 0.3418 +/- 0.007). This verifies our hypothesis that MED
and its embedded secrets, are hidden and the fact that is in OOD space actually does not influence
any of the normal tasks of the model. In more technical detail, as we train the model by adding an
adapter after the base model of llama3, it minimizes the differences in the base model. Therefore,
when OOD tokens are given then the data passes through the new, trained adapter that actually knows
the OOD space. Similarly, when English language is given for the MMLU-Pro dataset, the base mode
generates all the expected, correct answers and then it passes through the trained adapter, it does not
produce anything as the input is not in the language space it knows i.e. the OOD space.

7 Conclusions

We proposed MED, a technique for embedding and retrieving hidden information within large
language models (LLMs) by utilizing Out of Distribution (OOD) datasets. Through our experiments,
we observed that larger prefixes generally improve memorization accuracy. Also, we observed that
the use of MED does not reduce the LLM performance on in its primary task. Using shift cipher,
the model can effectively memorize and generate the text of this dataset as the shift cipher is the
closest to the English language, as seen in the comparison of the datasets. Further the connections and
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repetition of the tokens and different words still exist, simply shifted due to the encryption. Finally,
we can successfully use AES encryption and retrieve the dataset at full capacity, by adding spaces
and splitting the payload data into smaller parts. This boosts the performance and stability as we
facilitate the model to find connections and correlations among the different tokens and therefore
memorize better.

Therefore, we recommend AES encryption with spaces after four hexadecimal characters as the
best space to deploy MED not only because of its promising results, but also because of its nature.
AES is considered safe due to its strong encryption structure and resistance to known cryptographic
attacks. So, in our setup even if the model accidentally generates some blocks of the encrypted
dataset, nobody could get the actual, plaintext information without the key adding another level of
secrecy for the hidden message.

Furthermore, in both datasets we observe a lot of fluctuations during training as the model in the early
stages of training actually learns and increases its accuracy, then it stabilises on its top accuracy for a
number of epochs, and then it decreases. This increases the difficulty of finding the sweet spot to
optimise the fine-tuning for a specific MED payload.

7.1 Future Work

Preliminary experiments indicate that training another adapter on top of the one used to implement
MED leads to the model forgetting the OOD data. Adding adapters, and in general fine tuning the
model further goes beyond our current deployment scenario, and we leave a detailed investigation to
future work.

Future work could also explore the applications of MED on a larger scale, including the deployment
of this technique in models with more parameters and across more diverse datasets. This could
involve experimenting with specialised loss functions that are designed to enhance the model’s ability
to retain and retrieve OOD data while minimizing interference with its primary knowledge base.
Also, other OOD datasets and encryption schemes could be used, like using the CBC variation of
AES to ensure that all the blocks are completely different.

Furthermore, work could be done to embed MED indirectly. For example, embedding the OOD
datasets in the training set of an LLM which is trained from scratch and train the non-quantised
model.

Additionally, investigating and developing robust defenses against MED will be crucial, particularly
in scenarios where this technique could be misused.

Beyond these technical advancements, there is ample scope to explore the practical applications of
MED both as a secret communication channel, as a data compression mechanism, and especially as
an LLM watermarking solution. These applications not only highlight the versatility of our proposal,
but also open new avenues for leveraging LLMs in real-world scenarios, demonstrating both the
potential and the necessity for continued research in this area.
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