
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

Under review as a conference paper at ICLR 2025

SUPERCORRECT: SUPERVISING AND CORRECTING
LANGUAGE MODELS WITH ERROR-DRIVEN INSIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) like GPT-4, PaLM, and LLaMA have shown significant im-
provements in various reasoning tasks. However, smaller models such as Llama-3-8B and
DeepSeekMath-Base still struggle with complex mathematical reasoning because they fail to
effectively identify and correct reasoning errors. Recent reflection-based methods aim to ad-
dress these issues by enabling self-reflection and self-correction, but they still face challenges in
independently detecting errors in their reasoning steps. To overcome these limitations, we pro-
pose SUPERCORRECT, a novel two-stage framework that uses a large teacher model to supervise
and correct both the reasoning and reflection processes of a smaller student model. In the first
stage, we extract hierarchical high-level and detailed thought templates from the teacher model
to guide the student model in eliciting more fine-grained reasoning thoughts. In the second
stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance
the self-correction abilities of the student model by following the teacher’s correction traces
during training. This cross-model DPO approach teaches the student model to effectively locate
and resolve erroneous thoughts with error-driven insights from the teacher model, breaking the
bottleneck of its thoughts and acquiring new skills and knowledge to tackle challenging prob-
lems. Extensive experiments consistently demonstrate our superiority over previous methods.
Notably, our SUPERCORRECT-7B model significantly surpasses powerful DeepSeekMath-
7B by 7.8%/5.3% and Qwen2.5-Math-7B by 15.1%/6.3% on MATH/GSM8K benchmarks,
achieving new SOTA performance among all 7B models.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Anil et al., 2023; Achiam et al., 2023; Du et al., 2022; Jiang
et al., 2024), such as GPT-4 (Achiam et al., 2023), PaLM (Anil et al., 2023), and LLaMA (Touvron et al., 2023a;b),
have demonstrated significant improvements in various reasoning tasks. However, despite being pre-trained on
large-scale mathematical datasets using diverse techniques, smaller models like Llama-3-8B (Dubey et al., 2024)
and DeepSeekMath-Base (Shao et al., 2024) continue to struggle with complex mathematical reasoning tasks.

Existing works aim to enhance the mathematical performance of LLMs through various approaches. We categorize
these methods into two types: traditional fine-tuning optimization and reflection-based optimization. Tradi-
tional fine-tuning methods mainly focus on the exploration in training techniques like Supervised Fine-Tuning
(SFT) (Roziere et al., 2023; Shao et al., 2024; Dubey et al., 2024), and LLM-alignment strategies like Reinforce-
ment Learning from Human Feedback (RLHF) (Achiam et al., 2023; Ouyang et al., 2022; Bai et al., 2022a;b) and
alternative methods like Direct Preference Optimization (DPO) (Rafailov et al., 2024). Although these methods
have shown remarkable progress across a wide range of language tasks, their optimization objectives only focus
on direct answers or simple reasoning rationales. Consequently, they struggle to locate the errors in the reasoning
process and fail to revise the flawed reasoning logic of language models.

Recent reflection-based methods attempt to address the shortcomings of fine-tuning methods and leverage the
pre-designed prompts or general rules to instruct language models for self-reflection and self-correction during
reasoning process (Shinn et al., 2024; Kim et al., 2024). Some methods (Li et al., 2023; 2024c) further employ
LLMs to synthesize rule-based datasets for enhancing their self-correction abilities in training stage. However, as
mentioned in Tyen et al. (2024), LLMs still struggle to independently identify errors in their reasoning steps. With-
out accurate error identifications, self-correction becomes more challenging. In complex mathematical reasoning,
even when mistake locations are provided, LLMs often remain biased or misled by their previous reasoning con-
text. Thus it remains difficult for language models to clarify the causes of reasoning errors within a single LLM.

To address these limitations, we propose a novel two-stage framework, namely SUPERCORRECT, utilizing a large
teacher model’s thoughts to supervise and correct both the reasoning and reflection processes of a smaller student
model. As depicted in Figure 1, in the first stage, we extract hierarchical thought template from the teacher LLM
to guide the student model in generating more fine-grained reasoning thoughts. The template contains a high-level
thought providing a summarized and generalized solution for similar problems, and a detailed solution offering a

1

058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Under review as a conference paper at ICLR 2025

Student LLM

Hierarchical Thought Template

Stage-1 SFT with Hierarchical Thought Template

Student LLM

Teacher
LLM

Stage-2 Cross-model Collaborative DPO

Cross-model Correction Trace

Self-Correction Trace

Student LLM

DPO/RLHF

Paired
Correction

Traces

Reasoning Thought

Reasoning Thought

Data

Extract

Supervise

Teacher
LLM

SuperCorrect

Figure 1: Overview of our proposed two-stage framework SUPERCORRECT. In the first stage, we extract hierar-
chical thought template from teacher LLM to supervise student LLM for producing more specific thoughts. In the
second stage, we collect a dataset of paired self- and cross-correction traces for cross-model collaborative DPO.

detailed explanation of the critical reasoning steps. Compare to previous thought format such as CoT (Wei et al.,
2022) and BoT (Yang et al., 2024b), our hierarchical thought templates offer deeper and more informative reason-
ing insights for later error corrections. In second stage, we propose cross-model collaborative DPO to optimize
the student model and enhance its self-correction abilities by following the teacher’s cross-model correction traces
during training. Specifically, instead of merely simulating correct answers or preferred reasoning process, we in-
struct teacher LLM to identify and correct the error parts in student’s thoughts. This cross-model correction trace
is then used to guide the student model in performing better self-correction, enabling it to avoid and rectify specific
errors. The critical insight of our cross-model DPO approach is enabling student language models to break the
bottleneck of its thoughts and acquiring new error-driven insights and knowledge from teacher’s correction traces.

Furthermore, we construct a high-quality fine-tuning dataset equipped with designed hierarchical thought tem-
plates containing 100k samples, and a pair-wise preference dataset for thought-level correction optimization con-
taining 10k samples, which consists of: 1) a math problem, 2) prior reasoning steps in our pre-designed format,
3) the step with chosen analysis and corrective guidance, generated by teacher LLMs based on the ground truth
solution 4) the step with rejected analysis and correction guidance, generated by student LLMs without access to
the ground truth solution.

We summarize our contribution as follows: (i) We propose a novel two-stage fine-tuning method SUPERCORRECT
for improving both reasoning accuracy and self-correction ability for LLMs. (ii) We propose hierarchical thought
based fine-tuning to enable small-sized LLMs to produce more accurate and fine-grained reasoning thoughts. (iii)
We propose cross-model collaborative DPO, which innovatively leverage SOTA LLMs to locate and correct the
specific error thoughts in the reasoning process of smaller student LLMs, thus advancing their self-correction
ability and breaking their thought bottleneck. (iv) We construct two high-quality datasets and develop three pow-
erful reasoning LLMs SUPERCORRECT-Qwen/DeepSeek/Llama-7B, achieving 70.2% accuracy on the MATH
dataset and 89.5% on the GSM8K dataset, setting new SOTA performance among all 7B models.

2 RELATED WORK

Reinforcement Learning from Human Feedback for Large Language Models To improve the performance
and reliability of LLMs, RLHF methods like Christiano et al. (2017) and Ouyang et al. (2022) are introduced for
LLM alignment. This method is more demanding in dataset because it requires pair-wise annotated data to train a
reward model thus reflecting human preferences. And then train the policy model using reinforcement learning to
maximize the estimated reward. Although this method proves to be effective, due to its reliance on the quality of
reward model, this process is complex and computationally intensive. To simplify this process, Direct Preference
Optimization (DPO) (Rafailov et al., 2024) was proposed which directly uses pair-wise data for optimization.
By defining the preference loss as a function of the policy, DPO can optimize the policy using straightforward
training techniques, avoiding the complexities of reinforcement learning. However, current methods only show
limited improvements in mathematical reasoning due to the design of optimization unit. Works like Step-DPO(Lai
et al., 2024) establish a more fine-grained reward unit by considering each intermediate reasoning step as a basic
unit. However, they fail to clarify error causes and provide explicit guidance for correcting errors. In this paper, we
specifically design a cross-model teacher-student collaborative thought-based reward, which takes each correction
step as a basic optimization unit.

Reasoning with Self-Correction/Reflection Self-correction for reasoning has shown promise in improving
LLM outputs in terms of style and quality. Previous works (Li et al., 2023; Shinn et al., 2024; Madaan et al.,

2

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Under review as a conference paper at ICLR 2025

2024; Saunders et al., 2022; Miao et al., 2023; Chen et al., 2023a) focus on the concept of self-correction, i.e.
having an LLM correct its own outputs. However, as mentioned in Huang et al. (2023), while self-correction may
prove effective for improving model outputs in terms of style and quality, when it comes to reasoning tasks, LLMs
struggle to identify and fix errors without external feedback. For example, Reflexion (Shinn et al., 2024) and RCI
(Kim et al., 2024) both use ground truth correctness as a signal to halt the self-correction loop. Moreover, some
attempts to self-correct logical or reasoning errors can sometimes turn correct answers into incorrect ones, result-
ing in worse overall performances (Huang et al., 2023). While previous works typically present self-correction as
a process conducted within a specific LLM, our method leverage large-sized LLMs to explicitly identify the errors
and gain correction insights from the errors. With this corss-model reward, we can revise the weaknesses exposed
by small-sized LLMs during reasoning tasks through fine-tuning and correction-based preference optimization.

Thought Expansion for Mathematical Reasoning Thought expansion for reasoning mainly focus on pre-
designed reasoning structure or template, which leverage prompting techniques to enhance mathematical rea-
soning capabilities of LLMs. Chain-of-Thought (CoT) prompting (Wei et al., 2022) and its variants (Kojima et al.,
2022; Press et al., 2023; Arora et al., 2022), such as Least-to-Most (Zhou et al., 2022), Decomposed Prompt-
ing (Khot et al., 2022), and Auto-CoT (Zhang et al., 2022)—prompt LLMs to break down complex questions
into simpler subtasks and systematically solve them before summarizing a final answer. Innovations like Tree-of-
Thought (Yao et al., 2024) and Graph-of-Thought (Besta et al., 2024), have further complex this field by exploring
dynamic, non-linear reasoning pathways to expand heuristic capabilities of LLMs (Chen et al., 2023b; Ning et al.,
2023). Other methods like PoT (Chen et al., 2022), PAL (Gao et al., 2023b) and (Gou et al., 2023) attempt to uti-
lize external tools such as code to avoid hallucination of LLMs in the mathematical reasoning process. However,
they suffer from increased resource demands and greater time complexity, depend on manual prompt crafting, and
are often tailored to specific task types. Recent BoT (Yang et al., 2024b) propose a task-agnostic paradigm with
meta buffer to efficiently solve the problems based on accumulated thought templates. However, it is a training-
free framework which may not essentially boost the reasoning ability of LLMs. To further improve the internal
reasoning ability of LLMs, Quiet-STaR (Zelikman et al., 2024) uses RLHF-based self-teaching with LLMs’ self-
generated thoughts to improve reasoning in normal tasks and simple math problems. For more complex problems
that are beyond the students’ capabilities, this think-before-reasoning pattern may not work well. In this paper, we
utilize a new cross-model paradigm to enable LLMs to boost both reasoning and self-correction abilities from ex-
ternal model feedbacks, thereby breaking the bottleneck of original thoughts of LLMs and broadening the model’s
capability to address a wider range of issues.

3 PRELIMINARY

Reinforcement Learning from Human Feedback Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017) is an effective approach for enhancing the robustness, factuality, and safety of
LLMs (Ouyang et al., 2022). RLHF consists of three training phases: 1) supervised fine-tuning (SFT); 2) reward
model training, and 3) policy model fine-tuning. SFT Phase: RLHF typically begins by fine-tuning a pre-trained
LM with supervised learning on high-quality data for the downstream task(s) of interest (dialogue, summariza-
tion, etc.), to obtain a model πsft. Reward Modelling Phase:given any text, the reward model will assign a scalar
reward value to the last token, and the larger the reward value, the better the sample. Following Stiennon et al.
(2020), training reward models often involves utilizing a dataset comprised of paired comparisons between two
responses generated for the same input. The modeling loss for each pair of preferred and dis-preferred samples is:

L(ψ) = log σ(r(x, y+)− r(x, y−)), (1)

where σ is the sigmoid function. r represents the reward model with parameters ψ, and r(x, y) is the a single scalar
predicted reward for input prompt x and response y. However, this method is often considered complex due to the
complex training pipeline. RL Fine-Tuning Phase: During the RL phase, the learned reward function is used to
provide feedback to the language model. Following prior works (Tutor; Jaques et al., 2020), the optimization is
formulated as

max
πθ

Ex∼D,y∼πθ(y|x)
[
rϕ(x, y)

]
− βDKL

[
πθ(y | x) || πref (y | x)

]
, (2)

where β is a parameter controlling the deviation from the base reference policy πref , namely the initial SFT model
πsft. In practice, the language model policy πθ is also initialized to πsft. Due to the discrete nature of language
generation, this objective is not differentiable and is typically optimized with reinforcement learning. The standard
approach (Ziegler et al., 2019; Bai et al., 2022a; Ouyang et al., 2022) has been to construct the reward function as
metioned in Equation (1), and maximize using PPO Schulman et al. (2017).

Direct Preference Optimization (DPO) As an competitive alternative for traditional RLHF method, DPO
(Rafailov et al., 2024) was introduced to directly leverage pair-wise preference to optimize the policy model with
an equivalent optimization objective. Specifically, given an input prompt x, and a preference data pair (y+, y−),
DPO aims to maximize the probability of the preferred output y+ and minimize that of the undesirable output y−.

3

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Under review as a conference paper at ICLR 2025

The optimization objective is formulated as:

LDPO(θ) = −E(x,y+,y−)∼D[log σ(β log
πθ(y

+|x)
πref (y+|x)

− β log
πθ(y

−|x)
πref (y−|x)

)], (3)

whereD is the pair-wise preference dataset, σ is the sigmoid function, πθ(·|x) is the policy model to be optimized,
πref (·|x) is the reference model kept unchanged during training, and the hyperparameter β controls the distance
from the reference model.

4 METHOD

4.1 SUPERVISED FINE-TUNING WITH HIERARCHICAL THOUGHT TEMPLATE

Constructing Hierarchical Thought Templates from Teacher LLMs The traditional instruction-response
datasets for training LLMs (Ouyang et al., 2022) mainly focus on the correctness of the response, leading LLMs
to merely simulate the provided solution and the answer, while ignoring the importance of the intermediate rea-
soning thought. Recent work such as BoT (Yang et al., 2024b) utilizes a high-level reasoning guideline (thought
template) to enable LLMs to efficiently solve similar problems in a training-free manner. However, for complex
and diverse mathematical reasoning tasks, we find that using only a high-level thought template is insufficient,
especially for small-sized LLMs. To empower small LLMs to tackle complex reasoning tasks, we specifically
design a hierarchical thought template extracted from large teacher LLMs for transfer to small student LLMs.
This new hierarchical thought template comprises both a high-level thought and a detailed solution. The former
provides a summarized and generalized solution for similar problems, while the latter offers a detailed explanation
of the critical reasoning steps.

Based on this hierarchical thought template, we can propose a new fine-tuning objective that aims to incorporate
human-like hierarchical problem-solving thought structures into the model reasoning and explicitly produce hier-
archical thought during reasoning process. We first collect a set D = {(x, ŷ, ŝ)} of mathematical problems x with
ground-truth answers ŷ and solution ŝ. For each problem x ∈ D, we first utilize our pre-defined prompt denoted
as Ptea, as shown in the below text box, to extract hierarchical thought templates from teacher LLMs (e.g., SOTA
LLMs like o1-preview/o1-mini). For more details about our prompt, we present all of our prompts in Appendix A.

Prompt for Extracting Hierarchical Thought Template
Transform the solution of the following math problem into a step-by-step XML format, each step should
be enclosed within tags like ⟨Step1⟩ ⟨/Step1⟩. For each step enclosed within the tags, determine if this
step is challenging and tricky, if so, add detailed explanation and analysis enclosed within ⟨Key⟩ ⟨/Key⟩
in this step, as helpful annotations to make the student better understand this step correctly thus mastering
the solution. After all the reasoning steps, summarize the common solution and reasoning steps to help
him generalize to similar problems within ⟨Generalized⟩ ⟨/Generalized⟩. Finally present the final answer
enclosed within ⟨Answer⟩ ⟨/Answer⟩.

Then we can obtain the high-quality fine-tuning dataset Dsft as:

Dsft = πtea(Ptea, x, ŝ) = {x, stea, Ttea, ytea|x ∈ D}, (4)

where stea is the formalized solution steps, Ttea is the hierarchical thought for the solution, and ytea is the
final answer extracted from stea. Here we provide an example of our hierarchical thought template as shown in
the below text box. For normal and easy steps, we provide brief explanation and direct solution, as for tricky
and difficult reasoning steps, we provide a detailed solution and in-depth explanation within ⟨Key⟩ which will
help student LLMs to better grasp the insight within the detailed thought. Furthermore, we provide a high-level
thought within ⟨Generalized⟩ as a generalized guidance which helps to efficiently solve similar problems.

Thought-based Supervised Fine-tuning After curating our thought-based dataset Dsft, our optimization ob-
jective is to make student LLMs π reasoning with hierarchical thought and have a more comprehensive under-
standing for each problem-solving process, which can be formulated as:

Lsft = argmax
∑

(Pstu,x,Ttea,stea)∈Dsft

log π((Ttea, stea)|(Pstu, x)). (5)

Starting from the base student LLM π, Lsft maximizes the likelihood of response (Ttea, stea) given prompt Pstu

and input problem x, where Pstu denotes the pre-defined prompt as Ptea. After the fine-tuning process, we greatly
enhance the reasoning ability of base student LLMs by learning the hierarchical thought from SOTA reasoning
LLMs and enable the student LLMs to produce similar hierarchical thought along with final answer. Then, we
obtain fine-tuned student LLMs πref that could be used for cross-model collaborative dpo in Section 4.2.

4

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

Under review as a conference paper at ICLR 2025

Hierarchical Thought Template

⟨Step 1⟩
......

⟨/Step 1⟩
......

⟨Step 4⟩ Calculate the Number of Ways to Roll Exactly 2 Sixes
⟨Key⟩
♠Starting point of detailed solution♠:
Understanding Combinations and Independent Events
The most challenging step is determining the number of ways to roll exactly two sixes. This involves two key concepts:

1. Combinations (
(
5
2

)
): This represents the number of ways to choose which two out of the five rolls will be sixes.

2. Independent Choices for Remaining Rolls (53): For the other three rolls that are not sixes, each has 5 possible
outcomes (1 through 5).

By combining these, the total number of ways to get exactly two sixes is:(
5

2

)
× 53

♠End point of detailed solution♠:
⟨/Key⟩
⟨/Step 4⟩
⟨Step 5⟩

......

⟨/Step 5⟩
⟨Step 6⟩ Calculate the Probability
The probability of getting at most two sixes in five rolls is the ratio of the number of favorable outcomes to the total
number of possible outcomes: (

5
0

)
× 55 +

(
5
1

)
× 54 +

(
5
2

)
× 53

65
=

625

648

⟨/Step 6⟩
⟨Generalized⟩
♢ Starting point of high-level thought
Generalizing to Similar Problems
When dealing with probabilities of obtaining a certain number of specific outcomes in multiple trials (like rolling a
die several times), follow these steps:

1. Identify Total Outcomes: Calculate the total number of possible outcomes using nk.

2. Determine Favorable Outcomes: For each desired number of specific outcomes (e.g., exactly r sixes), use com-
binations and multiply by the number of ways the remaining trials can occur.

3. Sum Relevant Cases: If the problem asks for ”at most” or ”at least,” sum the favorable outcomes accordingly.

4. Compute Probability: Divide the total favorable outcomes by the total possible outcomes.

This approach is based on the binomial probability formula, which is widely applicable in scenarios with indepen-
dent trials.
♢ End point of high-level thought
⟨/Generalized⟩
⟨Answer⟩ The probability of rolling a six in at most 2 of the 5 rolls is 625

648 . ⟨/Answer⟩

4.2 CROSS-MODEL COLLABORATIVE DPO

Boosting DPO with Thought Correction While DPO proves to be effective in some areas (e.g., chat, style,
etc.), its optimization objective is less effective for complex mathematical reasoning tasks. As noted in Lai et al.
(2024), the issue arises because errors in solving complex mathematical problems often occur at the most chal-
lenging steps (e.g., complicated calculations, tricky transformations). This may lead to wrong optimization during
training, as correct previous steps are also rejected. Furthermore, it is challenging for a single LLM to detect and
correct its own errors (Tyen et al., 2024). This is akin to students struggling to gain insights from their own in-
correct solutions. The root of the error lies in flawed reasoning, making it inefficient to merely imitate the correct
solution without addressing the underlying thought-level mistakes. To address this, we have carefully designed
novel and fine-grained optimization objectives that prioritize thought-level correction over traditional instance-
level preference. Specifically, we first accurately locate the error step and then use the correction trace of this
error step as the optimization unit. This approach prioritizes cross-model correction traces from teacher LLMs

5

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

Under review as a conference paper at ICLR 2025

Input problem:
Let 𝑓 𝑥 = !

"#$%
Find the largest x which is not in the domain of g(x)=f(f(x)).

Solution:
Step 1:
Identify the function f(x) and its domain
The function 𝑓 𝑥 = !

"#$%
is defined for all real numbers except when the denominator is zero, i.e.,2𝑥 −

5 ≠ 0.
Step 2:
Solve for the values of x that make the denominator of f(x) zero
Solving 2𝑥 − 5 ≠ 0	gives 𝑥 ≠ %

"
Step 3:
Substitute f(x) into g(x) to get the expression for g(x)

𝑔 𝑥 = 𝑓 𝑓 𝑥 = 𝑓
1

2𝑥 − 5
=

1

2 1
2𝑥 − 5 − 5

Step 4: (Error Reasoning Step)
Simplify the expression for g(x)

𝑔 𝑥 =
1

1
𝑥 − 2.5 − 5

=
1

1 − 5𝑥
𝑥 − 2.5

=
𝑥 − 2.5
1 − 5𝑥

	

Step 5:
Identify the values of x that make the denominator of g(x) zero
The denominator of g(x) is zero when 1-5x = 0, which gives 𝑥 = !

%
Step 6:
Identify the values of x that make the denominator of f(x) zero, which are also in the domain of g(x)
The values of x that make the denominator of f(x) zero are 𝑥 = %

"
Step 7:
Determine the largest x that is not in the domain of g(x)
The largest x that is not in the domain of $g(x)$ is the larger of the two values found in steps 5
and 6, which is 𝑥 = %

"

Therefore, the final answer is: %
"

Self-Correction
<Step 1>

……
</Step 1>

……
<Step 4>

𝑔 𝑥 =
1

1
𝑥 − 2.5 − 5

=
1

1 − 5𝑥
𝑥 − 2.5

=
𝑥 − 2.5
1 − 5𝑥 	

<Evaluate>
This step is correct.
</Evaluate>
</Step 4>

……
<Step 7>
The largest x that is not in the domain of $g(x)$ is the larger of the two values found in steps 5
and 6, which is 𝑥 = !

"
<Cause>
This step is incorrect because it considers the value that makes the denominator of f(x) zero,
which is not relevant to the domain of g(x).
<Correction>
This step should be rephrased to consider the values that make the denominator of g(x) zero,

which is 𝑥 = #
!	 The largest x that is not in the domain of g(x) is #!

</Step 7>

Cross-model Correction
<Step 1>

……
</Step 1>

……
<Step 4>
Simplify the expression for g(x) .

𝑔 𝑥 =
1

1
𝑥 − 2.5 − 5

=
1

1 − 5 𝑥 − 2.5
𝑥 − 2.5

=
𝑥 − 2.5

1 − 5 𝑥 − 2.5

<Cause>
The simplification in the original reasoning incorrectly reduced 𝟏

𝒙&𝟐.𝟓
− 𝟓	to 𝟏&𝟓𝒙

𝒙&𝟐.𝟓
	The correct

simplification should account for distributing the negative sign properly.
</Cause>

<Correction>

𝒈 𝒙 =
𝟏

𝟏
𝒙 − 𝟐. 𝟓 − 𝟓

=
𝟏

𝟏 − 𝟓 𝒙 − 𝟐. 𝟓
𝒙 − 𝟐. 𝟓

=
𝒙 − 𝟐. 𝟓

𝟏 − 𝟓 𝒙 − 𝟐. 𝟓
=

𝒙 − 𝟐. 𝟓
𝟏 − 𝟓𝒙 + 𝟏𝟐. 𝟓

=
𝒙 − 𝟐. 𝟓
𝟏𝟑. 𝟓 − 𝟓𝒙

		

</Correction>
</Step 4>

……
<Answer>

"*
#+
	

</Answer>

Problematic Solution Example

Error overlooked

Misled and biased by itself

Hallucination

Error located

Accurate Correction

Correct Answer

Figure 2: An illustrative comparison between self-correction and our cross-model correction. Cross-model cor-
rection can enable more precise error localization and thought correction.

πtea over self-correction traces from student LLMs πref , thereby enhancing the error detection and self-correction
abilities of student LLMs.

Collecting Error Thoughts and Corrections To achieve thought-level correction, we need to collect a
dataset containing fine-grained paired data of self- and cross-correction traces. Specifically, we utilize the fine-
tuned student LLM πref to conduct thought-based reasoning on our sampled test dataset denoted as Dtest =
{xtest, ŷtest, ŝtest}, and we obtain the test results denoted as πsft(xtest) = {xtest, stest, Ttest, ytest|xtest ∈
Dtest}. After filtering out erroneous problem-solution pairs that satisfy ytest ̸= ˆytest and finally obtain the erro-
neous dataset:

Derr = {xtest, ŷtest, ŝtest, serr, Terr, yerr|xtest ∈ Dtest}, (6)

here serr is the error solution and Terr is the corresponding error thought, yerr represents the error answer ex-
tracted from serr. Given that each erroneous solution is explicitly presented as a sequence of reasoning steps
serr = s1, s2, . . . , sn, we proceed to verify the correctness of each reasoning step until we find the first error
and record its step number k. Here we utilize current powerful models (e.g., gpt-4o, o1-mini) in mathematical
reasoning to function as an experienced teacher model πtea. To obtain the corresponding error steps and cause
analysis, we design a prompt Pc to instruct πtea to search for the logic flaws and errors in the provided reasoning
steps. After searching serr and evaluating each reasoning steps, we could locate each error steps and annotate
each error step with error cause analysis ai and correction guidance ci. Thus we could obtain an annotated dataset
of pair-wise self- and cross-corrections:

Dcorr = {(x, {si}k−1
i=0 , (a

+
k , c

+
k), (a

−
k , c

−
k),)|x ∈ Derr}, (7)

where k denotes the first error step. Here (a+k , c
+
k) is chosen as the corrected step with analysis from teacher

model, (a−k , c
−
k) is chosen as the rejected correction step and cause analysis from the student model, utilizing the

same correction prompt as the teacher. To further ensure the quality of our dataset, we additionally propose an
inspector LLM to conduct iterative evaluation which verifies the accuracy of the correction trace by comparing
it against the input problem and the ground-truth solution. If issues are detected, the problematic parts are sent
back to the teacher LLMs for revision. This iterative checking process continues until no errors remain, with a
maximum of three iterations allowed. In our implementation, we apply inspector LLM both in the curation process
of HSFT dataset and pair-wise self-and corrections dataset. For more detail, please refer to Appendix D, we also
make detailed analysis of the dataset quality in Appendix D.2.

Improving Self-correction Ability with Cross-model Correction In the second stage of our method, our pro-
posed cross-model collaborative DPO leverages cross-model correction from teacher LLMs to enhance the error
detection and self-correction ability of student LLMs. As noted in Equation (7), the previous k−1 correct reason-
ing steps {si}k−1

i=0 are combined with input problem x, our cross-model collaborative DPO aims to maximize the
probability of the teacher LLM’s correction and analysis of the error step (a+k , c

+
k), while minimizing the proba-

bility of the student LLM’s self-correction and analysis (a−k , c
−
k). The optimization objective of our cross-model

6

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

Under review as a conference paper at ICLR 2025

collaborative DPO can be formulated as:

LCross-DPO(θ) =

− E(x,s1∼k−1,(a
+
k ,c+k))∼Dcorr

[
log σ

(
β log

πθ((a
+
k , c

+
k)|x; s1∼k−1)

πref ((a
+
k , c

+
k)|x; s1∼k−1)

− β log
πθ((a

−
k , c

−
k)|x; s1∼k−1)

πref ((a
−
k , c

−
k)|x; s1∼k−1)

)]
.

(8)

By prioritizing cross-model correction over self-correction, as illustrated in Figure 2, our method helps student
model to accurately locate the erroneous steps of the mathematical reasoning process and effectively conduct self-
correction. Furthermore, this process also helps the student LLMs to rectify its original flawed thoughts and avoid
specific errors thus improving the reasoning ability and mitigate hallucination problems.

Table 1: Quantitative comparison. Models are evaluated with chain-of-thought reasoning using open-source eval-
uation framework (Gao et al., 2023a) †. ”general” denotes whether the model is for general tasks or designed for
specific tasks. ”open” denotes open-source or not. We will release all codes and our trained models.

Model size general open MATH (%) GSM8K (%)

GPT-3.5-Turbo - ! % 42.5 92.0
Gemini-1.5-Pro (Reid et al., 2024) - ! % 67.7 90.8
Claude-3-Sonnet - ! % 71.1 96.4
GPT-4-1106 (Achiam et al., 2023) - ! % 64.3 91.4
GPT-4-Turbo-0409 (Achiam et al., 2023) - ! % 73.4 93.7
GPT-4o-0806 - ! % 76.6 95.8

Llama-3-8B-Instruct (Touvron et al., 2023a) 8B ! ! 30.0 79.6
Qwen2-7B-Instruct (Yang et al., 2024a) 7B ! ! 49.6 82.3
Llama-3-70B-Instruct (Touvron et al., 2023a) 70B ! ! 50.4 93.0
DeepSeek-Coder-V2-Instruct (Zhu et al., 2024) 236B % ! 75.7 94.9

Code-Llama-7B (Roziere et al., 2023) 7B % ! 13.0 25.2
MAmooTH-CoT (Yue et al., 2023) 7B % ! 10.4 50.5
WizardMath (Luo et al., 2023) 7B % ! 10.7 54.9
MetaMath (Yu et al., 2023) 7B % ! 19.8 66.5
MetaMath-Mistral-7B (Yu et al., 2023) 7B % ! 28.2 77.7
MathScale-Mistral Tang et al. (2024) 7B % ! 35.2 74.8
InternLM-Math-7B (Ying et al., 2024) 7B % ! 34.6 78.1
Xwin-Math-Mistral-7B (Li et al., 2024a) 7B % ! 43.7 89.2
MAmmoTH2-7B-Plus (Yue et al., 2024) 7B % ! 45.0 84.7
MathGenieLM-Mistral (Lu et al., 2024) 7B % ! 45.1 80.5
InternLM-Math-20B (Ying et al., 2024) 20B % ! 37.7 82.6
MathGenieLM-InternLM2 (Lu et al., 2024) 20B % ! 55.7 87.7

Meta-Llama3.1-8B-Instruct (Dubey et al., 2024) 8B % ! 51.9 84.5
SUPERCORRECT-Llama-8B (Ours) 8B % ! 58.2 89.7
DeepSeekMath-7B-Instruct(Shao et al., 2024) 7B % ! 46.8 82.9
SUPERCORRECT-DeepSeek-7B (Ours) 7B % ! 54.6 88.2
Qwen2.5-Math-7B-Instruct (Yang et al., 2024a) 7B % ! 55.1 83.2
SUPERCORRECT-Qwen-7B (Ours) 7B % ! 70.2 89.5
† lm-evaluation: https://github.com/EleutherAI/lm-evaluation-harness.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Base Models, Datasets and Evaluations We apply SUPERCORRECT to different base models to demonstrate its
generalization ability and achieve new SOTA results, including recent powerful Qwen2.5-Math-7B (Yang et al.,
2024a), Meta-Llama3.1-8B (Dubey et al., 2024), DeepSeek-Math-7B (Liu et al., 2024), these models have been

7

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

Under review as a conference paper at ICLR 2025

Figure 3: Comparison between different models and our SUPERCORRECT. Here we chose SUPERCORRECT-
Qwen-7B as our model. The differences of the accuracy has been marked by arrows with different colors, red
means accuracy decreased, and green means accuracy improved.

recognized to be reasoning-efficient with smaller size and strong reasoning ability especially in mathematical
problems. In the SFT stage, we use mathematical problems from the training set of Math (Hendrycks et al.,
2021) which consists of 7500 challenging competition mathematics problems, and training set of GSM8K (Cobbe
et al., 2021) consists of 7473 high quality linguistically diverse grade school math word problems. Furthermore,
we additionally translated 670 challenging math problems from GaoKao Bench (Zhang et al., 2023) which is
based on Chinese 2010-2022 GAOKAO examinations. To further enrich the diversity of our dataset, we sampled
some challenging problems from NuminaMath (Li et al., 2024b) and MetaMath(Yu et al., 2023). To align with
our hierarchical thought reasoning process, we leverage SOTA LLMs o1-mini/gpt-4o-mini to create hierarchical
thought based on the ground truth solution as mentioned in Section 4.1, and establish a hierarchical thought
based dataset. In the Cross-model DPO stage, we collect 20k incorrect reasoning results from three different SFT
models and processed as described in Section 4.2. For evaluation, we use the test set from MATH (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021) datasets, and test chain-of-thought reasoning accuracy utilizing
open-source evaluation framework (Gao et al., 2023a).

Implementation Details We conduct our experiments on 8 NVIDIA A100-PCIE-40GB GPUs. Here we denote
our hierarchical thought based supervised fine-tuning as HSFT for simplicity. Initially, we utilize the 100K HSFT
data for hierarchical thought supervised fine-tuning on the base models to obtain our HSFT models. We train all of
our models for 4 epochs, with training batch size set to 8 and gradient accumulation steps set to 16. The learning
rate is set to 2e5 and we use AdamW optimizer along with the cosine learning rate scheduler. The warmup ratio is
set to 0.02 and we use flash-attention (Dao et al., 2022) to save GPU memory. Subsequently, we perform Cross-
model DPO based on the HSFT models. For Cross-model DPO, we train for 8 epochs, with a global batch size of
128 and a learning rate of 1× 10−6. And we use the AdamW optimizer along with cosine learning rate scheduler,
and the warmup ratio is set to 0.05.

Table 2: Accuracy comparison between different methods, here we choose Qwen2.5-Math-Instruct as Base model
denoted as Base and our Cross-model DPO is denoted as Cross-DPO. Here we separately compare our first HSFT
stage with traditional SFT method and Cross-DPO stage with Reflexion(Shinn et al., 2024). We show the improved
accuracy in green compare to previous methods. We provide quantitative results with more base LLMs (i.e.,
Llama3.1 and DeepSeek-Math) in Table 7 of Appendix E.

Model Base Base + SFT Base + HSFT Base-HSFT + Reflexion(Shinn et al., 2024) Base-HSFT + Cross-DPO
MATH (%) 55.1 57.4 62.4 (+5.0) 63.1 70.2 (+7.1)

Model Base Base + SFT Base + HSFT Base-HSFT + Reflection Base-HSFT + Cross-DPO
GSM8K (%) 83.2 84.3 87.2 (+2.9) 86.8 89.5 (+2.7)

8

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

Under review as a conference paper at ICLR 2025

Figure 4: Improvement comparison between different topics. Here we chose Qwen2.5-Math-7B-Instruct and our
SUPERCORRECT-Qwen-7B to show the improvement in performance of different mathematical problem Types.
The part in green is the improved part of our SUPERCORRECT, and the part in blue is the original reasoning
accuracy of Qwen2.5-Math-7B-Instruct.

5.2 MAIN RESULTS

Enhanced Reasoning Accuracy As shown in Table 1, our method achieves new SOTA performance among
all 7B models, significantly surpassing powerful DeepSeekMath-7B by 7.8% and Qwen2.5-Math-7B by
15.1% on MATH benchmark. This promising results demonstrates our superiority and effectiveness in handling
complicated reasoning tasks. Notably, we can achieve better results than larger-sized models such as Llama3-
70B-Instruct (Touvron et al., 2023a) in GSM8K and MATH, and achieve accuracy comparable to GPT-4o and
GPT-4o-mini with our best model SUPERCORRECT-Qwen-7B. We attribute this improvement in reasoning accu-
racy in two folds: 1) The first HSFT stage that equips student LLMs with a deeper and fine-grained reasoning
process. Compare to conventional CoT reasoning process, it helps the student LLMs to think more carefully thus
improving the reasoning consistency and reduce hallucinations issues on the problems that the student LLMs al-
ready mastered. 2) The second cross-model DPO stage that leverages the error-driven insights from teacher LLM
to help student LLMs break the bottleneck of their thoughts thus making it possible to deal with the problems that
the student LLMs in acquiring the skills and knowledge to tackle problems they were previously unable to solve.
We also present some detailed examples of hierarchical reasoning in Appendix F from different datasets, please
check them to have a comprehensive understanding of our SUPERCORRECT.

Improved Self-Correction Ability Here we also show the improved self-correction ability of our SUPERCOR-
RECT as shown in Figure 3. After initial reasoning stage, we let all the LLMs to verify the reasoning process and
detect the logic flaws and errors within each reasoning step, and try to correct them. As a result of self-correction,
our SUPERCORRECT further increase the accuracy by 5∼6%, while other LLMs are ineffective to increase the
accuracy, and some LLMs even decrease the original accuracy. Because our Cross-model DPO helps the LLMs
to accurately locate the errors and logic flaws within each steps by learning teacher’s correction traces, and use a
fine-grained analysis and correction to help LLMs better correct them. After the Cross-model DPO process, the
LLMs are not only able to consistently solve problems within its capabilities, but they are also able to solve wider
range of problems with error-driven insights gained from teacher LLMs. We provide more quantitative analysis
in Table 6 on how far cross-model DPO brings the student model and the teacher model closer to each other. We
also provide some self-correction examples from different datasets, for more detail, please check Appendix G.

5.3 MODEL ANALYSIS

Ablation Study We conduct ablation study of our SUPERCORRECT and put results in Table 2. As we can
see, the improvement of traditional SFT is limited compare to our HSFT, which falls behind by 5% in accuracy.
Based on our HSFT models, we further apply some self-correction methods such as Reflexion (Shinn et al.,
2024) to compare with our Cross-DPO. From the results, we can find that our method wins again with lead of
7% in accuracy compare to Reflexion. These promising results demonstrate the effectiveness of our HSFT and

9

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

Under review as a conference paper at ICLR 2025

Lower
Variance

Higher
Mean

Figure 5: Quantitative analysis on reasoning stability. The higher mean value denotes higher average accuracy
rate, and lower variance denotes higher reasoning stability.

cross-model DPO. Here we take an illustrative example in Table 3 of Appendix B for better understanding of our
effective hierarchical thought reasoning. The CoT prompting method shows misunderstanding of ”empty set” as
it fails to account for the fact that the 512 sets already include the empty set. Equipped with our hierarchical
thought-based reasoning (denoted as HT in Appendix A), we can see that the model realizes that the 512 sets
include empty set. However, it fails to correctly recall the fact that the problem requires to include the empty set
in the final answer, which is caused by hallucination issue. Finally, our HSFT LLMs could correctly resolve the
problem with accurate understanding of empty set and avoid the hallucination issue.

SupperCorrect Breaks Thought Bottleneck The problems within MATH dataset encompass a wide range of
seven topics including algebra, counting & probability, intermediate algebra, number theory, geometry, prealgebra
and precalculus. During our experiments, we observe that the accuracy for each topics are quiet different. For
most LLMs, they tend to show better performance on algebra and prealgebra, but for other topics, it always show
degradation in accuracy because they may have some thought bottleneck on those topics. As shown in Figure 4,
our SUPERCORRECT improves the reasoning performance on all topics. It is noted that for the topics which
are originally difficult for LLMs, it shows a more significant improvement compare to topics that the models
are already mastered. This is because we utilize the error-driven insights during the Cross-model DPO stage to
break the original thought bottleneck of LLMs, thus enlightening them with new techniques and tricks to solve the
problems that they used have no idea to solve. The results further proves that our SUPERCORRECT could help to
break the original thought bottleneck thus significantly improve the reasoning ability of LLMs, and narrowing the
performance gap for different topics. More detail reasoning and self-correction results can be found in Appendix F.
and Appendix G.

SuperCorrect Achieves Better Reasoning Stability The test set of MATH dataset consists of 5000 problems
in 5 different difficulty levels. To further evaluate the reasoning stability of our method, we additionally sample
300 problems of level-5 (hardest) from MATH test dataset. We conduct a quantitative analysis by repeating the
experiment 256 times and compute the mean and variance of accuracy as shown in Figure 5. We can observe that,
compare to the base model, our SUPERCORRECT helps to achieve higher mean value of accuracy rate. Moreover,
our SUPERCORRECT significantly reduce the variance of accuracy distribution of multiple reasoning times. These
phenomenons demonstrate our SUPERCORRECT can effectively improve both accuracy and stability for difficult
reasoning problems.

6 CONCLUSION

In this paper, we propose SUPERCORRECT, a novel two-stage framework that significantly improve both reason-
ing and reflection processes of language models. In SUPERCORRECT, We propose hierarchical thought-based
fine-tuning to enable LLMs to produce more fine-grained reasoning thoughts and introduce cross-model col-
laborative DPO to enhance the self-correction abilities of the student LLMS by following the teacher’s correction
traces. Extensive experiments consistently demonstrate our superiority over previous methods, surpasses powerful
DeepSeekMath-7B by 5.3%∼7.8% and Qwen2.5-Math-7B by 6.3%∼15.1% on MATH and GSM8K benchmarks.
For future work, we will generalize this new framework to larger models and more complex datasets.

10

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri,
Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403,
2023.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami, and Christo-
pher Re. Ask me anything: A simple strategy for prompting language models. In The Eleventh International
Conference on Learning Representations, 2022.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav
Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning
from human feedback. arXiv preprint arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv
preprint arXiv:2212.08073, 2022b.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 17682–17690, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Kenneth Heafield. Iterative translation refinement with large
language models. arXiv preprint arXiv:2306.03856, 2023a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588, 2022.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentan-
gling computation from reasoning for numerical reasoning tasks. Transactions on Machine Learning Research,
2023b.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359, 2022.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm: General
language model pretraining with autoregressive blank infilling. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 320–335, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, L Golding, J Hsu, A Le Noac’h, et al. A
framework for few-shot language model evaluation, 12 2023. URL https://zenodo. org/records/10256836, 7,
2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham Neubig.
Pal: Program-aided language models. In International Conference on Machine Learning, pp. 10764–10799.
PMLR, 2023b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen, et al. Tora: A
tool-integrated reasoning agent for mathematical problem solving. arXiv preprint arXiv:2309.17452, 2023.

11

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny
Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint arXiv:2310.01798, 2023.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones, Shix-
iang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement learning. arXiv
preprint arXiv:2010.05848, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal.
Decomposed prompting: A modular approach for solving complex tasks. In The Eleventh International Con-
ference on Learning Representations, 2022.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks. Advances in
Neural Information Processing Systems, 36, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models
are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-wise preference
optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629, 2024.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and Houwen Peng.
Common 7b language models already possess strong math capabilities. arXiv preprint arXiv:2403.04706,
2024a.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul, Longhui
Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with 860k pairs of
competition math problems and solutions. 2024b.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, and Tianyi Zhou. Reflection-tuning: Recycling data for better
instruction-tuning. In NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-tuning:
Student-selected data recycling for llm instruction-tuning. arXiv preprint arXiv:2402.10110, 2024c.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai
Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.
arXiv preprint arXiv:2405.04434, 2024.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng Li.
Mathgenie: Generating synthetic data with question back-translation for enhancing mathematical reasoning of
llms. arXiv preprint arXiv:2402.16352, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin,
Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language
models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances
in Neural Information Processing Systems, 36, 2024.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own step-by-step
reasoning. arXiv preprint arXiv:2308.00436, 2023.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large
language models can do parallel decoding. In The Twelfth International Conference on Learning Representa-
tions, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human
feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

12

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

Under review as a conference paper at ICLR 2025

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring and narrowing
the compositionality gap in language models. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 5687–5711, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac,
Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan Leike. Self-
critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu, and Daya
Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in Neural Infor-
mation Processing Systems, 33:3008–3021, 2020.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction tuning for math-
ematical reasoning. arXiv preprint arXiv:2403.02884, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Sequence Tutor. Conservative fine-tuning of sequence generation models with kl-control natasha jaques, shixi-
ang gu, dzmitry bahdanau, josé miguel hernández-lobato, richard e. Turner, Douglas Eck arXiv (2016-11-09)
https://arxiv. org/abs/1611.02796 v9.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Yuanzhu Peter Chen, and Tony Mak. Llms cannot find reason-
ing errors, but can correct them given the error location. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 13894–13908, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information pro-
cessing systems, 35:24824–24837, 2022.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122, 2024a.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez, and
Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models. arXiv preprint
arXiv:2406.04271, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in Neural Information Processing
Systems, 36, 2024.

13

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

Under review as a conference paper at ICLR 2025

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models toward verifiable reasoning.
arXiv preprint arXiv:2402.06332, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian
Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models.
arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen. Mammoth:
Building math generalist models through hybrid instruction tuning. arXiv preprint arXiv:2309.05653, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the web. arXiv
preprint arXiv:2405.03548, 2024.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman. Quiet-star:
Language models can teach themselves to think before speaking. arXiv preprint arXiv:2403.09629, 2024.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the performance
of large language models on gaokao benchmark. arXiv preprint arXiv:2305.12474, 2023.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large language
models. In The Eleventh International Conference on Learning Representations, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui,
Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex reasoning in large language
models. In The Eleventh International Conference on Learning Representations, 2022.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao,
Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models in code intelligence.
arXiv preprint arXiv:2406.11931, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593,
2019.

14

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

Under review as a conference paper at ICLR 2025

A ADDITIONAL PROMPTING DETAILS

Prompt for Extracting Hierarchical Thought Template
Transform the solution of the following math problem into a step-by-step XML format, each step should
be enclosed within tags like ⟨Step1⟩⟨/Step1⟩. For each step enclosed within the tags, determine if this
step is challenging and tricky, if so, add detailed explanation and analysis enclosed within ⟨Key⟩⟨/Key⟩
in this step, as helpful annotations to make the student better understand this step correctly thus mastering
the solution. After all the reasoning steps, summarize the common solution and reasoning steps to help
him generalize to similar problems within ⟨Generalized⟩⟨/Generalized⟩. Finally present the final answer
enclosed within⟨Answer⟩⟨/Answer⟩.

Hierarchical Thought-based Reasoning Prompt (HT):
Solve the following math problem in a step-by-step XML format, each step should be enclosed within
tags like ⟨Step1⟩⟨/Step1⟩. For each step enclosed within the tags, determine if this step is challenging
and tricky, if so, add detailed explanation and analysis enclosed within⟨Key⟩⟨/Key⟩ in this step, as helpful
annotations to help you thinking and remind yourself how to conduct reasoning correctly. After all the
reasoning steps, summarize the common solution and reasoning steps to help you and your classmates who
are not good at math generalize to similar problems within ⟨Generalized⟩⟨/Generalized⟩. Finally present
the final answer within ⟨Answer⟩⟨/Answer⟩.

Grounded Correction Trace Prompt:
First transform the Reasoning steps to be Checked into our required XML format as follow: for each
step, the steps should be within corresponding tags like ⟨Step1⟩⟨/Step1⟩, and next based on the problem
and reference solution, evaluate each steps and find the fundamental logic flaws and errors in the given
reasoning steps, if error detected, using ⟨Cause⟩⟨/Cause⟩ to give a Refined and Concise explanation for
the error cause within the corresponding Step tags along with ⟨Correction⟩⟨/Correction⟩ to correct the er-
ror step and output correct step. And finally, present the correct final answer within ⟨Answer⟩⟨/Answer⟩.
Output All the transformed reasoning steps from ⟨Step1⟩⟨/Step1⟩.

Correction Trace Prompt:
First transform the Reasoning steps to be Checked into our required XML format as follow: for each
step, the steps should be within corresponding tags like ⟨Step1⟩⟨/Step1⟩, and next based on the problem,
evaluate each steps and find the fundamental logic flaws and errors in the given reasoning steps, if error
detected, using ⟨Cause⟩⟨/Cause⟩ to give a Refined and Concise explanation for the error cause within the
corresponding Step tags along with ⟨Correction⟩⟨/Correction⟩ to correct the error step and output correct
step. And finally, present the correct final answer within ⟨Answer⟩⟨/Answer⟩. Output All the transformed
reasoning steps from ⟨Step1⟩⟨/Step1⟩.

As shown above, we present our meticulously designed prompt template used in our experiments. The prompt
for extracting hierarchical thought template is designed for teacher LLMs to transform the original solution into
hierarchical thought template. And for hierarchical thought-based reasoning prompt denoted as HT, we utilize this
prompt during the HSFT process and the evaluation process. Grounded correction trace prompt is also designed
for teacher LLMs to locate and find the error-driven insight from the erroneous reasoning process. And finally, the
correction trace prompt is used during our Cross-DPO stage, and further evaluation for self-correction.

B DETAILED QUALITATIVE ANALYSIS

In this section, we provide a detailed comparison for error-prone reasoning steps and reasoning results between
three different methods, including CoT prompting, our first-stage HSFT models and our SUPERCORRECT.

15

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

Under review as a conference paper at ICLR 2025

Table 3: Qualitative comparison between error-prone steps for different methods. Here we use different colors to
represents different parts of reasoning. We denote the erroneous reasoning steps in purple, the error cause in red,
correct reasoning steps that show improvement in blue and the summary for improvement in green.

Problem How many subsets of the set of divisors of 72 contain only composite num-
bers? For example, {8,9} and {4,8,12} are two such sets. Include the
empty set in your count. (The error-prone parts within the problem)

CoT ## Step 4: Account for the empty set. We need to include the empty set in
our count, so we add 1 to the total number of subsets.
(Error Cause: Ignore the fact that empty set has already been counted)
Step 5: Calculate the final answer. The total number of subsets of the
composite numbers is 29 + 1 = 512 + 1 = 513. %
(Error Cause: Repeatedly counted empty set)

HSFT ⟨Step4⟩
...... which is 29 = 512.
However, this includes the empty set, which is not a subset of the set of
composite numbers.
(Improvement:Notice the empty set is included within the 512 subsets)
⟨/Step4⟩
⟨Step5⟩
We need to subtract 1 from 512 to exclude the empty set. Therefore, the
total number of subsets of the set of composite numbers is 512− 1 = 511.
%
⟨/Step5⟩
(Error Cause: Hallucination issue makes LLMs forget the fact that it is
required to count empty set in the problem.)

SUPERCORRECT
⟨Step6⟩
Calculate the number of subsets containing only composite numbers.
⟨Key⟩
The number of subsets of a set with n elements is 2n. Here, with 9 com-
posite divisors, the number of subsets is 29 = 512. This includes the empty
set, which is required by the problem statement. !
⟨Key⟩
⟨/Step6⟩
Improvement: 1. Successfully notice the empty set is included within 512
subset 2. Mitigate the influence of hallucination issue

C COMPARISON BETWEEN STEP-DPO AND CROSS-MODEL DPO

We conduct qualitative analysis between Step-DPO and our Cross-model DPO. We choose Qwen2.5-Math-Instruct
as base model, and we apply Step-DPO on the base model to compare the results. It should be noted that Step-DPO
utilize CoT style prompt, for fair comparison, we choose the most suitable prompting method for each model. As
shown in Table 4, based on the previous unsolved problems, Step-DPO could locate the error reasoning steps and
make corrections (e.g. further identify another multiples of 7), but it but struggles to fully correct them. Compare
to Step-DPO, our method could not only locate the erroneous steps, but also conduct accurate self-correction thus
solving previous unsolvable problems.

16

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

Under review as a conference paper at ICLR 2025

Table 4: Qualitative comparison between Step-DPO and Cross-model DPO.

Problem How many of the following numbers are factors of 34 or multiples of 7?
Numbers: 1, 2, 3, 4, 8, 14, 17, 29, 56, 91

Base Model ### Step 1: Factors of 34 The prime factorization of 34 is:

34 = 2× 17

The factors of 34 are:
1, 2, 17, 34

......
Step 4: Identify multiples of 7 from the list From the provided list, the
multiples of 7 are: - 14 (since 7× 2 = 14)
(Error Cause: Ignore the fact that 56,91 is also multiples of 7)
......
Step 7: Count the unique numbers The unique numbers that are either
factors of 34 or multiples of 7 are: - 1, 2, 14, 17
Thus, the total count is:
4 %

Step-DPO ### Step 2: Identify Multiples of 7 The multiples of 7 are the numbers
that can be expressed as 7 × k, where k is an integer. Among the given
numbers, the multiples of 7 are: - 14 = 7× 2 - 91 = 7× 13
Thus, the multiples of 7 from the list are:

14, 91

(Error Cause: Still unable to fully recognize all the multiples of 7, missing
56 here)
Step 3: Combine the Results Now, we combine the factors of 34 and
the multiples of 7, ensuring not to double-count any numbers. The unique
numbers that are either factors of 34 or multiples of 7 are: - Factors of 34:
1, 2, 17 - Multiples of 7: 14, 91
Combining these, we have:

1, 2, 14, 17, 91

Conclusion Counting the unique numbers, we find that there are:
5 %

Cross-model DPO
......
⟨Step2⟩
Identify the multiples of 7 from the given list.
⟨Key⟩
Multiples of 7 are numbers that can be expressed as 7 multiplied by an
integer. It’s important to check each number’s divisibility by 7 to determine
if it qualifies.
Numbers in the list: 1, 2, 3, 4, 8, 14, 17, 29, 56, 91
Multiples of 7: 14, 56, 91
(Self-Correction: Correctly identifies all the multiples of 7)
⟨/Step2⟩
⟨Step4⟩
Count the total number of unique numbers identified.
⟨Key⟩
Counting accurately ensures the final answer reflects the correct quantity of
numbers that meet the criteria.
Total numbers: 6
⟨/Step4⟩
......
⟨Answer⟩ 6 ⟨/Answer⟩✓

17

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

Under review as a conference paper at ICLR 2025

D QUALITY EVALUATION FOR TEACHER LLM GENERATED CONTENT

D.1 EVALUATION OF INSPECTOR LLM

We discuss the effectiveness of inspector LLM which further ensures the quality of the generated content of
Teacher LLMs. As shown in Table 5, we compare the correctness of correction traces generated by three different
teacher LLMs across three datasets. The application of the Inspector LLM significantly improves the quality of the
final correction traces compared to direct generation. Notably, for LLMs with advanced capabilities that already
produce high-quality outputs, it still shows clear improvements. These results demonstrate that the Inspector LLM
markedly enhances the accuracy of correction traces, especially for datasets where initial performance was lower.

Table 5: Quantitative analysis of inspector LLM on various datasets.
Model/Dataset GSM8K MATH GaoKao
Teacher LLM (GPT-4o-mini) 100% 92.4% 89.6%
Teacher LLM (GPT-4o-mini) + Inspector LLM (o1-preview) 100% 98.8% 96.2%
Teacher LLM (GPT-4o) 100% 94.4% 91.3%
Teacher LLM (GPT-4o) + Inspector LLM (o1-preview) 100% 99.2% 97.5%
Teacher LLM (o1-mini) 100% 98.2% 94.8%
Teacher LLM (o1-mini) + Inspector LLM (o1-preview) 100% 99.6% 98.7%

D.2 ANALYSIS ON THE QUALITY OF DIRECT GENERATION

Based on the results in Table 5, the experimental results without the Inspector LLM demonstrate that our directly
generated correction traces are already of high quality. We attribute this to our design approach, as outlined below:

• 1. Leveraging Frontier Teacher LLMs: To ensure the quality of content generated by the teacher LLM,
we utilize state-of-the-art LLMs, specifically o1-mini, as the teacher LLM. These models are capable of
identifying logical flaws and errors, and they generate high-quality analysis and corrections, as evidenced
by the quantitative results.

• 2. Grounding Correction Traces with Ground-Truth Context: To ensure the accuracy of the correc-
tion traces generated by the teacher LLM, as demonstrated in Appendix A, the prompts for generating
analysis (ai) and correction (ci) are based on the input question along with the ground-truth solution.
This approach grounds the correction trace with the ground-truth solution as context, thereby ensuring
the accuracy of the generated content.

E MORE ABLATION STUDIES

Further Analysis on Cross-model DPO We first sample 500 erroneous solutions from our dataset, and we use
o1-mini to conduct correction trace on the dataset as the ground truth to measure the model alignment. We conduct
our experiments on three different models after HSFT stage, as shown in Table 6. We additionally introduce two
metrics to evaluate the effectiveness of our Cross-model DPO: (1) Locate correctness: representing whether
the model correctly finds the error steps. (2) Correction accuracy: representing whether the model accurately
corrects the error steps. We utilize o1-preview as a judger to compare each correction trace generated by the
models after Cross-model DPO with the ground truth. From the results, our cross-model DPO shows significant
improvements across all models, demonstrating its effectiveness.

Table 6: Quantitative analysis on the effectiveness of our Our Cross-model DPO.
Model/Metric Locate correctness Correction accuracy
Meta-Llama-3.1 + HSFT 0.31 0.08
Meta-Llama-3.1 + HSFT + Cross-model DPO 0.49 0.27
DeepSeek + HSFT 0.23 0.07
DeepSeek + HSFT + Cross-model DPO 0.42 0.23
Qwen2.5-Math + HSFT 0.43 0.12
Qwen2.5-Math + HSFT+ Cross-model DPO 0.67 0.46

18

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

Under review as a conference paper at ICLR 2025

Ablation Study with More Base LLMs As shown in Table 7. The result shows that our SuperCorrect can
generalize to different LLM architectures, and consistently achieves better performance in both HSFT stage and
Cross-model DPO stage, further validating our effectiveness.

Table 7: Ablation study with more base LLMs on MATH and GSM8K. Base1: Llama3.1, Base2: DeepSeek-Math.
Model Base1 Base1 + SFT Base1 + HSFT Base1-HSFT + Reflexion Base1-HSFT + Cross-DPO
MATH (%) 51.9 53.7 55.4 56.7 58.2
GSM8K (%) 84.5 86.2 87.2 86.8 89.7
Model Base2 Base2 + SFT Base2 + HSFT Base2-HSFT + Reflexion Base2-HSFT + Cross-DPO
MATH (%) 46.8 49.2 50.9 51.2 54.6
GSM8K (%) 82.9 84.5 85.7 85.8 88.2

Ablation Study on Prompt Style To further evaluate the effectiveness of our meticulously designed hierarchical
thought template, we additionally conduct quantitative experiments to show the impact of prompt styles and our
hierarchical prompt design. Here we use five prompt styles: 1) CoT 2) CoT + Hierarchical Prompt (without
generalization step) 3) CoT + Hierarchical Prompt (with generalization step) 4) Our hierarchical prompt (Not in
XML) 5) Our hierarchical prompt (XML). We additionally curated two datasets based on the same 100k math
problems with the first two prompt styles. We then trained Qwen2.5-Math-Instruct, Llama3.1-8B-Instruct and
DeepSeek-Math-7B on these dataset with the same training settings and evaluate the accuracy on Math dataset.
As shown in Table 8, the experimental results indicate that hierarchical reasoning significantly improves model
accuracy compared to using CoT as a baseline. Additionally, changing the prompt style (e.g., to XML format)
has a small impact on the final accuracy, further demonstrating the effectiveness of our hierarchical reasoning
design. Although adding generalization steps helps the model better summarize tasks and thereby enhances its
performance, our experimental results indicate that the primary contribution to performance improvements in the
HSFT stage comes from the hierarchical reasoning style we designed.

Table 8: Ablation study with different prompt styles. H denotes with hierarchical reasoning style and Gen denotes
with generalization step.

Models/Prompt Style CoT CoT + H (No Gen) CoT + H (With Gen) Ours (Not XML) Ours (XML)
Qwen2.5-Math-7B 57.4 59.7 60.8 61.8 62.4
Llama3.1-8B 52.6 53.3 53.6 53.7 54.1
DeepSeek-Math-7B 46.8 49.6 50.2 50.6 51.6

F RESULTS OF HIERARCHICAL THOUGHT-BASED REASONING

In this section, we show more detailed hierarchical reasoning process produced by SUPERCORRECT-Qwen-7b on
three datasets, including GaoKao, MATH, GSM8K. For each dataset, we present two samples for demonstration.
To better present the hierarchical thought during the reasoning process, we denote detailed thought within each
step in blue, the high-level generalized thought in purple.

19

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

Under review as a conference paper at ICLR 2025

I GaoKao problem:
Given the function

f(x) =

{
x+ 1, x ≤ 0

2x, x > 0

what is the range of values of x that satisfies f(x) + f
(
x− 1

2

)
> 1?

Solution Description:
⟨Step 1:⟩
Determine the value of f(x) based on the value of x.
⟨key⟩
If x ≤ 0, then f(x) = x+ 1. If x > 0, then f(x) = 2x.
⟨/key⟩
⟨/Step 1:⟩
⟨Step 2:⟩
Determine the value of f

(
x− 1

2

)
based on the value of x.

⟨key⟩
If x − 1

2 ≤ 0 (i.e., x ≤ 1
2), then f

(
x− 1

2

)
=

(
x− 1

2

)
+ 1 = x + 1

2 . If x − 1
2 > 0 (i.e., x > 1

2), then
f
(
x− 1

2

)
= 2x−

1
2 .

⟨/key⟩
⟨/Step 2:⟩
⟨Step 3:⟩
Analyze the inequality f(x) + f

(
x− 1

2

)
> 1 in different intervals of x.

⟨key⟩
This crucial step involves breaking down different cases based on the value of x to apply the correct
piecewise definitions of the function.
⟨/key⟩
⟨/Step 3:⟩
⟨Step 4:⟩
Combine the solutions from all cases.
⟨key⟩
We find ranges from each case to generate a comprehensive final solution, ensuring we encompass all
possible intervals of x.
⟨/key⟩
⟨/Step 4:⟩
⟨Generalized⟩
To solve inequalities involving piecewise functions, follow these common steps:
1. Identify the different cases based on the definitions of the piecewise function.
2. Evaluate the function expressions for each case, including any shifted or transformed inputs.
3. Set up and solve the inequality within each interval determined by the cases.
4. Combine all valid solutions from each case to form the complete solution set.
This systematic approach ensures accurate and comprehensive solutions to similar problems involving
piecewise-defined functions and inequalities.
⟨/Generalized⟩
⟨Answer:⟩
x > − 1

4
⟨/Answer:⟩

20

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

Under review as a conference paper at ICLR 2025

II GaoKao Problem:
The secondary product rate of a certain product is 0.02. If you randomly select one from this product, it
has been placed back into the pool 100 times. LetX represent the number of secondary products collected,
then D(X) = ?

Solution Description:
⟨Step 1:⟩
Identify the probability of selecting a secondary product.
⟨key⟩
Understanding the probability p is crucial as it forms the basis for calculating the variance. In this case,
the secondary product rate is given as 0.02, which means there’s a 2% chance of selecting a secondary
product each time.
⟨/key⟩
⟨/Step 1:⟩

⟨Step 2:⟩
Determine the number of trials.
⟨key⟩
Recognizing the number of trials n is essential. Here, the product has been placed back into the pool 100
times, indicating that each selection is independent and the total number of trials is 100.
⟨/key⟩
⟨/Step 2:⟩

⟨Step 3:⟩
Calculate the expected value E(X) of the number of secondary products collected.
⟨key⟩
The expected value E(X) for a binomial distribution is calculated using the formula E(X) = n × p.
Substituting the given values:

E(X) = 100× 0.02 = 2

⟨/key⟩
⟨/Step 3:⟩

⟨Step 4:⟩
Calculate the variance D(X) of the number of secondary products collected.
⟨key⟩
The varianceD(X) for a binomial distribution is given byD(X) = n×p×(1−p). Plugging in the values:

D(X) = 100× 0.02× (1− 0.02) = 100× 0.02× 0.98 = 1.96

⟨/key⟩
⟨/Step 4:⟩

⟨Generalized:⟩
To solve similar problems involving the number of successes in a fixed number of independent trials with
a constant probability of success:
1. Identify the probability of success p and the number of trials n.
2. Calculate the expected value E(X) = n× p.
3. Determine the variance D(X) = n× p× (1− p).
This approach uses the properties of the binomial distribution, which is applicable when each trial has
two possible outcomes (success or failure) and the probability of success remains constant.
⟨/Generalized:⟩

⟨Answer:⟩
The variance D(X) of the number of secondary products collected is 1.96.
⟨/Answer:⟩

21

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

Under review as a conference paper at ICLR 2025

III MATH Problem:
What is the tens digit in the sum

7! + 8! + 9! + · · ·+ 2006!?

Solution Description:
⟨Step 1:⟩
Identify the problem: We need to find the tens digit in the sum 7! + 8! + 9! + · · ·+ 2006!.
⟨key⟩
Understanding the problem is crucial. We are looking for a specific digit in a large sum, which means we
need to focus on the contributions of each factorial to the tens place.
⟨/key⟩
⟨/Step 1:⟩
⟨Step 2:⟩
Recognize that for n ≥ 10, n! is divisible by 100.
⟨key⟩
This is a key insight because it means that 10!, 11!, 12!, . . . , 2006! do not affect the tens digit of the sum.
Only the factorials from 7! to 9! will influence the tens digit.
⟨/key⟩
⟨/Step 2:⟩
⟨Step 3:⟩
Calculate 7!, 8!, and 9!:

7! = 5040, 8! = 40320, 9! = 362880

⟨key⟩
Calculating factorials can be tedious, but it’s essential to ensure accuracy. Each factorial contributes to the
overall sum, and we need their last two digits to determine the tens digit of the total sum.
⟨/key⟩
⟨/Step 3:⟩
⟨Step 4:⟩
Extract the last two digits of each factorial:

7! ≡ 40 (mod 100), 8! ≡ 20 (mod 100), 9! ≡ 80 (mod 100)

⟨key⟩
Finding the last two digits involves taking the factorial modulo 100. This simplifies the problem by
focusing only on the relevant digits that affect the tens place.
⟨/key⟩
⟨/Step 4:⟩
⟨Step 5:⟩
Sum the last two digits:

40 + 20 + 80 = 140

⟨key⟩
Adding the last two digits together gives us the intermediate sum. It’s important to keep track of the total
to determine the final tens digit.
⟨/key⟩
⟨/Step 5:⟩
⟨Step 6:⟩
Determine the tens digit of the sum 140:

Tens digit = 4

⟨key⟩
The tens digit is the second digit from the right in a number. Here, it’s clear that the tens digit of 140 is 4,
which is the answer we seek.
⟨/key⟩
⟨/Step 6:⟩
⟨Generalized:⟩
To solve similar problems, follow these steps: 1. Identify the range of factorials and determine which ones
affect the desired digit. 2. Calculate the relevant factorials and extract the necessary digits. 3. Sum these
digits and focus on the specific place value required (e.g., tens, hundreds). 4. Extract the desired digit
from the final sum.
⟨Generalized:⟩
⟨Answer:⟩
The tens digit is 4 .
⟨/Answer:⟩

22

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

Under review as a conference paper at ICLR 2025

IV MATH Problem:
In how many ways can the letters of the word ”COPYRIGHT” be arranged?

Solution Description:
⟨Step 1:⟩
Identify the total number of letters in the word ”COPYRIGHT”.
⟨key⟩
The word ”COPYRIGHT” consists of 9 letters. It’s important to count all letters accurately to determine
the total arrangements.
⟨/key⟩
⟨/Step 1:⟩
⟨Step 2:⟩
Determine if any letters are repeated in the word.
⟨key⟩
In ”COPYRIGHT”, all letters are unique. Understanding whether letters are repeated is crucial because
repeated letters reduce the number of unique arrangements.
⟨/key⟩
⟨/Step 2:⟩
⟨Step 3:⟩
Apply the formula for permutations of unique objects.
⟨key⟩
Since all letters are unique, the number of arrangements is calculated using the factorial of the total number
of letters: 9!.
⟨/key⟩
⟨/Step 3:⟩
⟨Step 4:⟩
Calculate 9! to find the total number of arrangements.
⟨key⟩
9! = 9× 8× 7× 6× 5× 4× 3× 2× 1 = 362, 880. This step involves multiplying a series of numbers,
which can be calculated step-by-step to avoid errors.
⟨/key⟩
⟨/Step 4:⟩
⟨Generalized:⟩
To determine the number of arrangements of letters in a word, first count the total number of letters. If all
letters are unique, use the factorial of the total count. If there are repeated letters, adjust the formula by
dividing by the factorial of the count of each repeated letter.
⟨/Generalized:⟩
⟨Answer:⟩
The letters of the word ”COPYRIGHT” can be arranged in 362,880 different ways.
⟨/Answer:⟩

23

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

Under review as a conference paper at ICLR 2025

V GSM8K Problem:
Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons, which he
can sell for $1.5 each. It costs $3 a year to water and feed the tree. How many years will it take before he
starts earning money on the lemon tree?

Solution Description:
⟨Step 1:⟩
Calculate the revenue earned from selling lemons each year.
⟨key⟩
7 lemons * $1.5 per lemon = $10.5.
This step involves multiplying the number of lemons produced by the price per lemon. Understand the
importance of identifying fixed production numbers (in this case, 7 lemons) and their respective market
price ($1.5). The multiplication here gives us the total income from the lemons before accounting for
expenses.
⟨/key⟩
⟨/Step 1:⟩
⟨Step 2:⟩
Calculate the net earnings after deducting annual costs for watering and feeding the tree.
⟨key⟩
$10.5 - $3 = $7.5.
This step is about understanding how to subtract fixed expenses from total revenue to find net income.
It’s crucial to separate income from costs to ascertain true profit. The $3 cost for watering and feeding is
constant each year, impacting the net returns from the lemon sales.
⟨/key⟩
⟨/Step 2:⟩
⟨Step 3:⟩
Determine how many years it takes to cover the initial cost of planting the tree.
⟨key⟩
$90 / $7.5 = 12.
In this step, you’re figuring out how long it takes to break even on the initial investment of $90. This
involves dividing the total investment by the annual net earnings. Remember that this result indicates the
breakeven year, but does not count the year in which the profits actually start.
⟨/key⟩
⟨/Step 3:⟩
⟨Step 4:⟩
Identify the year when he starts earning profit from the lemon tree.
⟨key⟩
12 (years to break even) + 1 = 13.
This final calculation shifts the perspective from a breakeven analysis to profitability. Since he reaches
the breakeven point at the end of year 12, he only begins to profit in year 13. This step emphasizes the
importance of understanding financial timelines in cash flow analysis.
⟨/key⟩
⟨/Step 4:⟩
⟨Generalized:⟩
The solution involves calculating total income from sales, subtracting operating costs to find net earnings,
and determining the break-even point by dividing the initial investment by annual net earnings. Finally,
knowing when profit occurs adds critical insight into business investment analysis. For similar problems,
follow these steps: identify revenues, calculate net profits, find break-even time, and ascertain the timeline
for profitability.
⟨/Generalized⟩
⟨Answer:⟩
13
⟨/Answer⟩

24

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

Under review as a conference paper at ICLR 2025

VI GSM8K Problem:
Tommy is fundraising for his charity by selling brownies for $3 a slice and cheesecakes for $4 a slice. If
Tommy sells 43 brownies and 23 slices of cheesecake, how much money does Tommy raise?

Solution Description:
⟨Step 1:⟩
Calculate the total money raised from selling brownies.
⟨key⟩
To find the total money raised from brownies, we multiply the number of brownies sold by the price per
brownie. This is a straightforward multiplication problem.
Here, Tommy sold 43 brownies at $3 each.
The calculation is: 43× 3 = 129.
Understanding multiplication is crucial as it forms the basis for calculating total revenue from sales.
⟨/key⟩
⟨/Step 1:⟩
⟨Step 2:⟩
Calculate the total money raised from selling cheesecakes.
⟨key⟩
Similar to the previous step, we need to multiply the number of cheesecakes sold by the price per cheese-
cake.
Tommy sold 23 slices of cheesecake at $4 each.
The calculation is: 23× 4 = 92.
This step reinforces the concept of multiplication and helps in understanding how to calculate total sales
from different products.
⟨/key⟩
⟨/Step 2:⟩
⟨Step 3:⟩
Add the total money raised from both brownies and cheesecakes.
⟨key⟩
Now, we need to combine the total amounts raised from both products to find the overall total.
This involves simple addition: 129 (from brownies) + 92 (from cheesecakes) = 221.
This step is important as it teaches how to aggregate totals from different sources, a common task in fi-
nance and fundraising.
⟨/key⟩
⟨/Step 3:⟩
⟨Generalized⟩
To calculate the total funds raised from selling different items, follow these common steps:
1. Identify the number of items sold for each product.
2. Determine the price per item for each product.
3. Calculate the total revenue for each product by multiplying the number of items sold by the price per
item.
4. Sum all individual revenues to find the overall total funds raised.
This systematic approach ensures accurate calculation of total revenue from multiple sources, which is
essential in various financial and fundraising scenarios.
⟨/Generalized⟩
⟨Answer:⟩
Tommy raises $221.
⟨/Answer⟩

G IMPROVED SELF-CORRECTION RESULTS

In this section, we select three different self-correction results each from different datasets including MATH,
GaoKao, and GSM8K. It should be noted that we split the incorrect reasoning steps with error cause analysis and
teacher correction into two parts for better presentation. We denote the error cause in brown and we denoted the
origianl error answer in red, and the correction along with correct answer are denoted in green.

25

1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

Under review as a conference paper at ICLR 2025

I GSM8K Problem:
Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons, which he
can sell for $1.5 each. It costs $3 a year to water and feed the tree. How many years will it take before he
starts earning money on the lemon tree?

Correct reasoning process before error steps:
⟨Step 1:⟩
Calculate the total revenue from selling lemons each year.
⟨key⟩
To find the total revenue from selling lemons, multiply the number of lemons by the price per lemon. Here,
Carlos sells 7 lemons at $1.5 each. This step is straightforward but crucial as it sets the foundation for
understanding the income generated from the lemon tree.
⟨/key⟩
Total Revenue = 7 lemons * $1.5 per lemon = $10.5
⟨/Step 1:⟩
⟨Step 2:⟩
Calculate the total cost of feeding and watering the tree each year.
⟨key⟩
This step involves identifying the annual costs of maintaining the lemon tree. The cost of feeding and
watering is $3 per year. Understanding this cost helps in determining the net profit after accounting for all
expenses.
⟨/key⟩
Total Cost = $3
⟨/Step 2:⟩
⟨Step 3:⟩
Calculate the net profit per year.
⟨key⟩
Net profit is calculated by subtracting the total costs from the total revenue. This step shows how much
money Carlos earns each year after all expenses are accounted for.
⟨/key⟩
Net Profit = Total Revenue - Total Cost = $10.5 - $3 = $7.5
⟨/Step 3:⟩
⟨Step 4:⟩
Identify the initial cost of planting the tree.
⟨key⟩
The initial cost of planting the tree is a one-time expense of $90. This represents the initial investment that
needs to be recovered through profits over multiple years.
⟨/key⟩
Initial Cost = $90
⟨/Step 4:⟩

26

1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

I Self-Correction For GSM8K Problem:
Theses steps below are incorrect in the original reasoning steps

⟨Step 5:⟩
Calculate the number of years it will take to break even.
⟨key⟩
This step involves dividing the initial investment by the annual net profit to find out how many years it will
take for the net profit to cover the initial cost.
⟨/key⟩
Years to Break Even = Initial Cost / Net Profit = $90 / $7.5 = 12 years
⟨cause⟩
While this calculation correctly determines that Carlos will break even after 12 years, it does not answer
the question of when he starts earning money. The break-even point occurs at the end of the 12th year,
meaning he hasn’t earned a profit yet within those 12 years.
⟨/cause⟩
⟨/Step 5:⟩ ⟨Step 6:⟩
Determine when Carlos starts earning money from the lemon tree.
⟨key⟩
Since Carlos breaks even at the end of year 12, he will start earning profit from year 13 onwards.
⟨/key⟩
Year when profit starts = Years to Break Even + 1 = 12 + 1 = 13 years
⟨correction⟩
Therefore, Carlos will start earning money on the lemon tree in 13 years, not 12 years.
⟨/correction⟩
⟨/Step 6:⟩
⟨Answer:⟩
13
⟨/Answer:⟩

27

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

Under review as a conference paper at ICLR 2025

II MATH Problem:
How many different bracelets have 3 identical orange beads, 3 identical black beads, and 1 teal bead, if
rotating or flipping a bracelet does not change it?

Correct reasoning process before error steps:
⟨Step 1:⟩
Identify the total number of beads and their types.
⟨key⟩
Understanding the composition of the bracelet is crucial. Here, we have 3 identical orange beads, 3
identical black beads, and 1 teal bead, making a total of 7 beads.
⟨/key⟩
⟨/Step 1:⟩
⟨Step 2:⟩
Calculate the total number of arrangements without considering rotations or reflections.
⟨key⟩
Since the orange and black beads are identical within their groups, we use the formula for permutations of
a multiset:

7!

3!× 3!× 1!
.

This accounts for the indistinguishability of the identical beads.
⟨/key⟩
Total Arrangements =

7!

3!× 3!
= 140.

⟨/Step 2:⟩
⟨Step 3:⟩
Apply Burnside’s Lemma to account for rotational and reflectional symmetries.
⟨key⟩
Burnside’s Lemma is essential in counting distinct arrangements when symmetries (like rotations and
reflections) are considered. It requires evaluating the number of arrangements fixed by each symmetry
operation and averaging over the total number of symmetries.
⟨/key⟩
⟨/Step 3:⟩
⟨Step 4:⟩
Determine the number of arrangements fixed by each rotation.
⟨key⟩
- Identity rotation (0°): All 140 arrangements are fixed.
- Nontrivial rotations (rotations by 360◦

7 and its multiples): No arrangement is fixed because rotating
the bracelet changes the positions of the beads, and with the given bead counts, it’s impossible to have a
configuration that looks the same after such rotations.
⟨/key⟩
Number of fixed arrangements under rotations:
- Identity rotation: 140
- Other rotations: 0
⟨/Step 4:⟩

28

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

Under review as a conference paper at ICLR 2025

II Self-Correction For MATH Problem:
Theses steps below are incorrect in original reasoning steps.

⟨Step 5:⟩
Determine the number of arrangements fixed by each reflection.
⟨key⟩
For reflections, each reflection fixes one bead (the center of reflection) and swaps the remaining beads in
pairs. To have an arrangement fixed under reflection, the colors of the beads in each swapped pair must be
the same.
⟨/key⟩
⟨cause⟩
With 3 orange beads and 3 black beads (both odd counts), it’s impossible to pair all beads of the same
color. Each pair requires 2 beads of the same color, so we need even counts of each color. Therefore, no
arrangements are fixed under reflections because the color counts do not allow for all swapped pairs to be
identical in color.
⟨/cause⟩
Number of fixed arrangements under reflections: 0
⟨/Step 5:⟩
⟨Step 6:⟩
Apply Burnside’s Lemma to find the number of distinct bracelets. The original error answer is 20
⟨key⟩
According to Burnside’s Lemma, the number of distinct arrangements is the average number of arrange-
ments fixed by each symmetry operation. The total number of symmetries in a bracelet with 7 beads is 14
(7 rotations and 7 reflections).
⟨/key⟩
Calculation:

Number of distinct bracelets =
Total fixed arrangements
Number of symmetries

=
140

14
= 10.

⟨correction⟩
Therefore, the correct number of different bracelets is **10**, not 20. The error in the original calculation
was assuming that there were arrangements fixed under reflections, but due to the odd counts of identical
beads, no such fixed arrangements exist.
⟨/correction⟩
⟨/Step 6:⟩
⟨Answer:⟩
There are 10 different bracelets.
⟨/Answer:⟩

III GaoKao Problem:
Set point O as the origin, the vertical line x = a, and the two branches of the hyperbola C : x2

a2 − y2

b2 = 1
(where a > 0 and b > 0) intersect at points D and E. If the area of quadrilateral ODE is 8, then the
minimum value of the distance between the two branches of C is ()
A. 4
B. 8
C. 16
D. 32

Correct reasoning process before error steps: ⟨Step 1:⟩
Set point O as the origin and the vertical line x = a.
⟨/Step 1:⟩
⟨Step 2:⟩
Identify the two branches of the hyperbola C : x2

a2 − y2

b2 = 1, where a > 0 and b > 0.
⟨/Step 2:⟩

29

1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

Under review as a conference paper at ICLR 2025

III Self-Correction For GaoKao Problem:
Theses steps below are incorrect in original reasoning steps.

⟨Step 3:⟩
Determine the points D and E where the vertical line x = a intersects the hyperbola C.
⟨cause⟩
Substituting x = a into the hyperbola equation yields y = 0, resulting in only one intersection point (a, 0).
The assumption that there are two distinct points D(a, b) and E(a,−b) is incorrect.
⟨/cause⟩
⟨correction⟩
Substitute x = a into the hyperbola equation:

a2

a2
− y2

b2
= 1 =⇒ 1− y2

b2
= 1 =⇒ y2

b2
= 0 =⇒ y = 0

Therefore, the vertical line x = a intersects the hyperbola C only at the point D(a, 0). Point E does not
exist as there is only one intersection point.
⟨/correction⟩
⟨/Step 3:⟩
⟨Step 4:⟩
Calculate the area of quadrilateral ODE.
⟨cause⟩
Since there is only one intersection point D(a, 0), the quadrilateral ODE does not exist. The area calcu-
lation based on non-existent points E(a, b) and A(a,−b) is invalid.
⟨/cause⟩
⟨correction⟩
Reevaluate the problem statement. If the vertical line x = a intersects the hyperbola at only one point
D(a, 0), the area calculation of quadrilateral ODE is not applicable. It is likely that there is a misunder-
standing in the problem setup.
⟨/correction⟩
⟨/Step 4:⟩
⟨Step 5:⟩
Find the minimum value of the distance between the two branches of the hyperbola. The original error
answer is A = 4
⟨cause⟩
The reasoning that the distance between the two branches is 2a is incorrect. Additionally, the approach
to minimize 2a under the condition ab = 4 does not align with the correct geometric interpretation of the
hyperbola.
⟨/cause⟩
⟨correction⟩
The distance between the two branches of the hyperbolaC is determined by the minimum vertical distance
between corresponding points on the branches. To find this, consider the closest points on each branch:

Distance = 2b.

Given that the area condition was misapplied, we refer to the correct relationship from the Reference
Solution where the minimum distance is found using optimization techniques. The correct minimum
distance of the hyperbola C is 8.
⟨/correction⟩
⟨/Step 5:⟩
⟨Answer:⟩
The minimum value of the distance of the hyperbola C is 8.
⟨/Answer:⟩!

30

	Introduction
	Related Work
	Preliminary
	Method
	Supervised Fine-tuning with Hierarchical Thought Template
	Cross-model Collaborative DPO

	Experiments
	Experimental Setup
	Main Results
	Model Analysis

	Conclusion
	Additional Prompting Details
	Detailed Qualitative Analysis
	Comparison Between Step-DPO and Cross-model DPO
	Quality Evaluation for Teacher LLM Generated Content
	Evaluation of Inspector LLM
	Analysis on the Quality of Direct Generation

	More Ablation Studies
	Results of Hierarchical Thought-based Reasoning
	Improved Self-Correction Results

