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Abstract
We develop two density ratio estimation (DRE)
methods with robustness to outliers. These are
based on the divergence with a weight function
to weaken the adverse effects of outliers. One is
based on the Unnormalized Kullback-Leibler di-
vergence, called Weighted DRE, and its optimiza-
tion is a convex problem. The other is based on
the γ-divergence, called γ-DRE, which improves
a normalizing term problem of Weighted DRE.
Its optimization is a DC (Difference of Convex
functions) problem and needs more computation
than a convex problem. These methods have dou-
bly strong robustness, which means robustness
to the heavy contamination of both the reference
and target distributions. Numerical experiments
show that our proposals are more robust than the
previous methods.

1. Introduction
Density ratio estimation (DRE) is a statistical method to
directly estimate the ratio of two probability density func-
tions without estimating each function (Nguyen et al., 2007;
Sugiyama et al., 2012b). DRE is used in many applications,
including change detection (Kawahara & Sugiyama, 2009;
Liu et al., 2013), outlier detection (Hido et al., 2011), covari-
ate shift adaptation (Shimodaira, 2000; Zhang et al., 2023),
and two-sample test (Wornowizki & Fried, 2016; Kim et al.,
2021). Its parametric formulation is also called the differen-
tial graphical model (Liu et al., 2014; 2017a;b). Differential
graphical models are used in protein and genetic interaction
mapping (Ideker & Krogan, 2012) and brain imaging (Na
et al., 2020).

Density ratio estimation is not robust when the data exist in
a region where the density function values are small (Smola
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et al., 2009; Yamada et al., 2011). Consider a density ratio
r(x) = p(x)/q(x), where we call p(x) a reference distri-
bution and q(x) a target distribution. When the data exist
in a region where p(x) or q(x) is small, the density ratio
r(x) tends to be wrongly estimated. This situation occurs,
for example, when p(x) and q(x) have no common sup-
port, which is a usual case in the high-dimensional setting
(Rhodes et al., 2020; Kato & Teshima, 2021; Choi et al.,
2021; 2022; Srivastava et al., 2023).

Our interest is in the case where outliers contaminate the
main distributions (Maronna et al., 2006; Hampel et al.,
2011). Because outliers exist in a region where the density
functions of the main distribution are small, the outliers
have adverse effects on the estimation of the density ratio.

For density estimation, many robust methods have been pro-
posed, including the Huber loss (Huber, 1964), the trimming
estimator (Hadi & Luceno, 1997), the density power diver-
gence (Basu et al., 1998), and the γ-divergence (Fujisawa
& Eguchi, 2008). These robust estimation methods realized
real-world applications, including yeast gene expression
(Yang & Lozano, 2015) and gene function regulation (Hi-
rose et al., 2017).

For the outlier-robust density ratio estimation, only the lim-
ited research has been done as far as we know (Sugiyama
et al., 2012a). The most promising method is Trimmed DRE
(Liu et al., 2017c). This method assumes that outliers have
larger density ratio values than inliers. It also assumes that
only the reference dataset is contaminated while the target
dataset remains clean. Under these assumptions, Trimmed
DRE is shown to be robust experimentally and theoretically.

Although Trimmed DRE is shown to be robust, there are
some limitations to its robustness. The density ratio val-
ues of outliers do not necessarily have larger values than
inliers. That breaks the assumption that this method relies
on. Besides, Trimmed DRE is not robust to the contam-
ination of the target dataset, which restricts its usage in
real-world applications. For example, in the change point
detection in time series data, a sequence is divided into sub-
sequences and assigned to the reference and target datasets
sequentially (Liu et al., 2017a). Then, both the reference
and target datasets can include outliers. The robustness to
the reference contamination alone is insufficient for time
series applications.
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To overcome these limitations, we develop density ratio
estimation methods with doubly strong robustness, where
doubly means two types of contamination of the reference
and target datasets, and strong means independence from
the contamination ratio. We propose Weighted DRE and γ-
DRE, which realize doubly strong robustness. Both methods
employ a weight function which weakens the adverse effects
of outliers. Weighted DRE minimizes the Unnormalized
Kullback-Leibler (UKL) divergence, and the minimization
is a convex problem. γ-DRE minimizes the γ-divergence
to overcome a drawback of Weighted DRE in estimating
the normalizing term. Its minimization is a DC (Difference
of Convex functions) problem but needs more computation
than Weighted DRE. These methods firstly achieve doubly
strong robustness as far as we know.

This paper is organized as follows. Section 2 introduces the
conventional DRE method from the viewpoint of the density
ratio function and the discrepancy measure. In Section 3, we
propose two DRE methods with robustness, Weighted DRE
and γ-DRE, and theoretically show that they have doubly
strong robustness. In Section 4, numerical experiments
illustrate that the proposed methods are more robust than
the past ones.

2. Density Ratio Estimation
The density ratio is defined as the ratio of two density func-
tions. Let p(x) and q(x) be the strictly positive density
functions of the reference and target datasets, respectively,
for x ∈ Rd. The true density ratio can be written as
r(x) = p(x)/q(x) : Rd 7→ R. To estimate the density
ratio, we employ the density ratio function rβ(x), where β
is a parameter, and then measure the discrepancy between
the true density ratio r(x) and the density ratio function
rβ(x). The choice of the density ratio function and the
discrepancy measure realizes the various DRE methods.

2.1. Density Ratio Function

The formulation of the density ratio function is categorized
into three patterns: parametric models, non-parametric mod-
els, and deep models.

For the parametric models (Liu et al., 2014; 2017b), the
density ratio function is defined as

rθ,C(x) = Crθ(x) = C exp
(
θTh(x)

)
, (1)

where θ ∈ Rp is the difference parameter, C ∈ R is the
normalizing term, and h(x) : Rd 7→ Rp is the feature trans-
form function. A detailed discussion of this formulation
will be given in Appendix A. This parametric function is
useful for sparse estimation in high-dimensional settings
(Liu et al., 2017b).

For the non-parametric models, the density ratio function

can be defined by the linear model (Sugiyama et al., 2008;
Kanamori et al., 2009; 2012) as

rlmθ (x) = θTψ(x),

where θ ∈ Rb is a weight parameter and ψ(x) : Rd 7→ Rb

is a basis function. Another formulation is the log-linear
model (Tsuboi et al., 2009; Kanamori et al., 2010) defined
as

rllmθ,C(x) = C exp
(
θTψ(x)

)
.

The standard choice of the basis function is θTψ(x) =∑np

i=1 θiK(x,x
(p)
i ), where K(x,x′) is the Gaussian ker-

nel and x
(p)
i for i = 1, ..., np are the data points in the

reference dataset. These non-parametric models are useful
for complex distributions (Sugiyama et al., 2012a).

For the deep models, some density ratio methods using deep
neural nets have been proposed (Rhodes et al., 2020; Kato
& Teshima, 2021; Choi et al., 2021; 2022; Srivastava et al.,
2023). These methods are useful for high-dimensional and
unstructured data such as images.

2.2. Discrepancy Measure

Statistical divergences are reasonable choices to measure
the discrepancy between the true density ratio r(x) and the
density ratio function rβ(x). The most famous one is the
Bregman (BR) divergence (Bregman, 1967; Sugiyama et al.,
2012a; Kato & Teshima, 2021). Let f be a differentiable
and strictly convex function with the derivative ∂f . Then,
we quantify the discrepancy of r(x) and rβ(x) as

DBR(r, rβ)

=

∫
[f (r(x))− f (rβ(x))

− ∂f (rβ(x)) (r(x)− rβ(x))]q(x)dx

=

∫
[∂f (rβ(x)) rβ(x)− f (rβ(x))]q(x)dx

−
∫
∂f (rβ(x)) p(x)dx+ const.

The Bregman divergence is a general expression, and the
choice of f realizes various methods. For example, the UKL
(Unnormalized Kullback-Leibler) divergence (Nguyen et al.,
2007) and KLIEP (Kullback-Leibler Importance Estimation
Procedure) (Sugiyama et al., 2008) adopt f(t) = t log t− t,
LSIF (Least-Squares Importance Fitting) (Kanamori et al.,
2009) and KMM (Kernel Mean Matching) (Gretton et al.,
2009) adopt f(t) = (t − 1)2/2, and the BKL (Binary
Kullback-Leibler) divergence (Hastie et al., 2001) adopts
f(t) = t log t− (1 + t) log(1 + t).

Given two datasets, {x(p)
i }np

i=1 ∼i.i.d. p(x) for the reference
and {x(q)

i }nq

i=1 ∼i.i.d. q(x) for the target, the Bregman
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divergence without the constant term is approximated by

D̂BR(r, rβ)

=
1

nq

nq∑
i=1

{
∂f
(
rβ(x

(q)
i )
)
rβ(x

(q)
i )− f

(
rβ(x

(q)
i )
)}

− 1

np

np∑
i=1

∂f
(
rβ(x

(p)
i )
)
.

3. Robust Density Ratio Estimation
Our idea to achieve a robust estimation is to introduce a
weight function w(x) : Rd 7→ R+ to reduce the adverse
effects of outliers in the estimator (Maronna et al., 2006).
We propose Weighted DRE and γ-DRE to realize this idea.

3.1. Weighted DRE

3.1.1. FORMULATION

The Bregman divergence can include the weight function as
the base measure:

DBR(r, rβ;w)

=

∫
[∂f (rβ(x)) rβ(x)− f (rβ(x))]q(x)w(x)dx

−
∫
∂f (rβ(x)) p(x)w(x)dx+ const.

With the base measure w(x)dx, the Bregman divergence
still has the following properties: (i) DBR(r, rβ;w) ≥ 0,
(ii) DBR(r, rβ;w) = 0 ⇔ r = rβ.

Some combinations of the density ratio function rβ and the
convex function f can realize the robust estimation. Here,
we show an example of the parametric DRE with the UKL
divergence. When adopting the parametric density ratio
function (1) and f(t) = t log t − t, the formulation of the
UKL divergence can be given as

DUKL(r, rθ,C ;w)

=

∫
rθ,Cq(x)w(x)dx−

∫
log rθ,Cp(x)w(x)dx

= C

∫
exp

(
θTh(x)

)
q(x)w(x)dx

−
∫ (

θTh(x) + logC
)
p(x)w(x)dx+ const.

(2)

Because (2) is convex about C, the optimal normalizing
term is

C∗ =

∫
w(x)p(x)dx∫

exp(θTh(x))w(x)q(x)dx
. (3)

Then, the parameter θ is estimated by minimizing

DUKL(r, rθ;w) = DUKL(r, rθ,C∗ ;w)

= −
∫

θTh(x)w(x)p(x)dx

+

∫
w(x)p(x)dx

× log

∫
exp(θTh(x))w(x)q(x)dx+ const.

(4)

This UKL divergence is empirically approximated without
the constant term by two datasets {x(p)

i }np

i=1 and {x(q)
i }nq

i=1:

D̂UKL(r, rθ;w) = − 1

np

np∑
i=1

θTh(x
(p)
i )w(x

(p)
i )

+
1

np

np∑
i=1

w(x
(p)
i )× log

1

nq

nq∑
i=1

exp(θTh(x
(q)
i ))w(x

(q)
i ).

(5)

This objective function is convex about θ and can be mini-
mized via gradient descent. For sparse estimation, we can
add a regularization term, for example, λ1∥θ∥1 + λ2∥θ∥22
with the positive tuning parameters λ1 and λ2 (Zou & Hastie,
2005). The more efficient optimization method via the La-
grangian dual problem is discussed in Appendix B.1. We
call this estimation procedure Weighted DRE.

3.1.2. DOUBLY STRONG ROBUSTNESS

Let us consider the robustness of the estimator given by min-
imizing the UKL divergence (4). Suppose that the reference
and target datasets are contaminated by outliers, more pre-
cisely, drawn from the contaminated distributions (Huber,
2004; Maronna et al., 2006; Hampel et al., 2011) given by

p†(x) = (1− εp)p
∗(x) + εpδp(x),

q†(x) = (1− εq)q
∗(x) + εqδq(x),

respectively, where p∗(x) and q∗(x) are the true density
functions, δp(x) and δq(x) are the density functions of
outliers, and εp and εq (0 ≤ εp < 1, 0 ≤ εq < 1) are the
contamination ratios of outliers. The contaminated density
ratio is r†(x) = p†(x)/q†(x), and the true density ratio is
r∗(x) = p∗(x)/q∗(x).

The target parameter of the minimization problem (4) can
have a latent bias in the contaminated setting. Because we
only have the contaminated density functions p†(x) and
q†(x), the target parameter in the contaminated setting is

θ†
UKL = argmin

θ
DUKL(r

†, rθ;w).

This is different from the true target parameter

θ∗
UKL = argmin

θ
DUKL(r

∗, rθ;w).
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The robust statistics aims to make the latent bias θ†
UKL −

θ∗
UKL sufficiently small (Huber, 2004; Hampel et al., 2011).

To achieve the small bias, we assume that the weight func-
tion can ignore the outlier distributions.

Assumption 3.1. Suppose that θ exists in a compact convex
set Θ. Let

fq(x,θ) = exp(θTh(x))w(x)δq(x),

ν1 =

∫
w(x)δp(x)dx, ν2 =

∫
θTh(x)w(x)δp(x)dx,

ν3 =

∫
fq(x,θ)dx, ν4 =

∫
h(x)fq(x,θ)dx,

ν5 =

∫
h(x)h(x)T fq(x,θ)dx.

Let Aj be the index set of the elements of νj , and ν =
max{supθ∈Θ |νja|}j=1....,5;a∈Aj

. Then, ν is sufficiently
small.

Let us consider an example where Assumption 3.1 is satis-
fied.

Example 3.2. Let δa(x) be a Dirac delta function at a. Con-
sider the well-used outlier distributions: δp(x) = δ

x
(p)
o

(x)

and δq(x) = δ
x

(q)
o
(x) with outliers x(p)

o and x
(q)
o . Let

h(x) = (x1x1, x1x2, . . . , xdxd)
T ,

which is usually used in Gaussian distributions and Ising
models (Liu et al., 2017b). Let

w(x) = exp(−∥x∥44),

where ∥x∥44 = x41 + x42 + ... + x4d. If x(p)
o and x

(q)
o are

strong outliers, more precisely, if ∥x(p)
o ∥ and ∥x(q)

o ∥ are
sufficiently large, this example satisfies Assumption 3.1
because

ν1 = w(x(p)
o ), ν2 = θTh(x(p)

o )w(x(p)
o ),

ν3 = exp(θTh(x(q)
o ))w(x(q)

o ),

ν4 = h(x(q)
o )ν3, ν5 = h(x(q)

o )h(x(q)
o )T ν3.

Importantly, the weight function w(x) should converge
to zero more rapidly than the feature transform function
h(x) and the parametric density ratio function rθ(x) =
exp(θTh(x)). An example of the practical choice of the
weight function is discussed in Appendix C.

Under Assumption 3.1, the following theorem holds.

Theorem 3.3. Under Assumption 3.1, we have

DUKL(r
†, rθ;w)

= (1− εp) {DUKL(r
∗, rθ;w) + const +O(εrν)} ,

where

εr = max

{
εp

1− εp
,−εp log(1− εq)

1− εp
,

εq
1− εq

}
.

Furthermore, we assume that θ†
UKL and θ∗

UKL are unique
interior points in Θ. Then, we have

θ†
UKL − θ∗

UKL = O(εrν).

The outline of the proof is owing to (Fujisawa & Eguchi,
2008). The proof is given in Appendix D.1.

This theorem implies that the latent bias θ†
UKL − θ∗

UKL can
be sufficiently small even when the contamination ratios εp
and εq are not small. This property can be called strong
robustness, which is considered for one contaminated distri-
bution in the past papers (Fujisawa & Eguchi, 2008; Hirose
et al., 2017; Hung et al., 2018; Kawashima & Fujisawa,
2023). The above theorem shows doubly strong robustness
because there are two contaminated distributions.

3.2. γ-DRE

Although Weighted DRE seems reasonable, it has a slight
drawback in estimating the normalizing term C in (3). This
normalizing term consists of the reference and target dataset
and may not be precise due to randomness. The normalizing
term C is a nuisance parameter, and our interest is only
in estimating the difference parameter θ. In this section,
we propose another DRE method without estimating the
normalizing term C.

3.2.1. FORMULATION

The γ-divergence (Fujisawa & Eguchi, 2008) is a popular
method to estimate a density function robustly under heavily
contaminated conditions. Let f(x) and g(x) be strictly
positive functions, not necessarily density functions, and γ
be a positive constant. The γ-divergenceDγ(g, f) is written
as Dγ(g, f) = dγ(g, f) − dγ(g, g), where dγ(g, f) is the
γ-cross entropy:

dγ(g, f) =− 1

γ
log

∫
g(x)f(x)γdx

+
1

1 + γ
log

∫
f(x)1+γdx.

We propose γ-DRE, which minimizes the γ-cross entropy
(or the γ-divergence) between the true density ratio r(x) and
the parametric density ratio function rθ,C(x) = Crθ(x) =
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C exp(θTh(x)) with the base measure of w(x)q(x)dx:

dγ(r, rθ,C ;wq)

=− 1

γ
log

∫
rθ,C(x)

γw(x)p(x)dx

+
1

1 + γ
log

∫
rθ,C(x)

1+γw(x)q(x)dx

=− 1

γ
log

∫
exp(γθTh(x))w(x)p(x)dx

+
1

1 + γ
log

∫
exp((1 + γ)θTh(x))w(x)q(x)dx

=dγ(r, rθ;wq).

(6)

The γ-divergence with the base measure w(x)q(x)dx, that
is, Dγ(r, rθ;wq) = dγ(r, rθ;wq) − dγ(r, r;wq), satis-
fies the following: (i) Dγ(r, rθ;wq) ≥ Dγ(r, r;wq), (ii)
Dγ(r, rθ;wq) = 0 ⇔ rθ(x) = α r(x), where α > 0 is
a constant. The property (ii) is slightly different from the
conventional one, which implies that the normalizing term
C vanishes in (6).

The above objective function is empirically approximated
by two datasets {x(p)

i }np

i=1 and {x(q)
i }nq

i=1:

d̂γ(r, rθ;wq)

=− 1

γ
log

1

np

np∑
i=1

exp(γθTh(x
(p)
i ))w(x

(p)
i )

+
1

1 + γ
log

1

nq

nq∑
i=1

exp((1 + γ)θTh(x
(q)
i ))w(x

(q)
i )

≜− g1(θ) + g2(θ).

(7)

The minimization about θ in (7) is not a convex problem
but a DC (Difference of Convex functions) problem because
g1(θ) and g2(θ) are convex. This problem can be iteratively
solved by the dual problem of Fenchel-Rockafellar (Dinh &
Thi, 1997):

θ(k) = argmin
θ

g2(θ)− θT∂g1(θ
(k−1)), (8)

where k is an iteration number. At each iteration, the ob-
jective function in (8) is convex and can be minimized by
optimization methods, including gradient descent. The more
efficient algorithm in the high-dimensional setting will be
discussed in Appendix B.2.

3.2.2. DOUBLY STRONG ROBUSTNESS

γ-DRE also has doubly strong robustness. We assume a
similar property of the weight function to Assumption 3.1.

Assumption 3.4. Suppose that θ exists in a compact convex

set Θ. Let

fgm(x,θ) = exp((m+ γ)θTh(x))w(x)δg(x),

ν′1 =

∫
fp0(x,θ)dx, ν′2 =

∫
fq1(x,θ)dx,

ν′3 =

∫
h(x)fp0(x,θ)dx, ν′4 =

∫
h(x)fq1(x,θ)dx,

ν′5 =

∫
h(x)h(x)T fp0(x,θ)dx,

ν′6 =

∫
h(x)h(x)T fq1(x,θ)dx.

Let A′
j be the index set of the elements of ν′j , and ν′ =

max{supθ∈Θ |ν′ja|}j=1....,6;a∈A′
j
. Then, ν′ is sufficiently

small.

The same example as in Example 3.2 satisfies Assumption
3.4, if γ is set to a moderate value, for instance, γ ∈ (0, 1]
(Fujisawa & Eguchi, 2008).

Under Assumption 3.4, the following theorem holds.
Theorem 3.5. Under Assumption 3.4, we have

dγ(r
†, rθ;wq

†)

= dγ(r
∗, rθ;wq

∗) + const +O(ε′rν
′),

where

ε′r = max

{
εp

1− εp
,

εq
1− εq

}
.

Let

θ†
γ = argmin

θ
dγ(r

†, rθ;wq
†),

θ∗
γ = argmin

θ
dγ(r

∗, rθ;wq
∗).

Furthermore, we assume that θ†
γ and θ∗

γ are unique interior
points in Θ and the Hessian matrix of dγ(r∗, rθ;wq∗) at
θ = θ∗

γ is positive definite. Then, we have

θ†
γ − θ∗

γ = O(ε′rν
′).

The proof is given in Appendix D.2. γ-DRE also has doubly
strong robustness because Theorem 3.5 holds even when
the contamination ratio εp and εq are not small.

3.3. Related Works

The most promising robust DRE method is Trimmed DRE
(Liu et al., 2017c). It trims outliers by assuming that they
have larger values of the density ratio function than inliers.
The estimator of Trimmed DRE is given by optimizing the
weighted KL divergence, which reduces into a min-max
problem of a convex function:

max
θ

min
w∈[0,1]np ,<1,w>=νnp

np∑
i=1

wi log rθ,C◦(x
(p)
i ),
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where w ∈ Rnp is a weight parameter for the reference
dataset, ν ∈ (0, 1] is a trimming quantile, and C◦ =

nq/
∑nq

i=1 exp(θ
Th(x

(q)
i )). In estimating w given θ, wis

with the top 100(1 − ν) % of log rθ,C◦(x
(p)
i ) values be-

come 0, and the rest becomes 1/np. In estimating θ given
w, data with wi = 0 is removed from the maximization of
the empirical density ratio function. Thus, the parameter θ
is estimated with only inliers.

Although Trimmed DRE is shown to be robust, the assump-
tion it relies on does not hold in some situations. The
parametric density ratio function rθ(x) ∝ exp(θTh(x))
does not have large values for some outliers. For sim-
plicity, let us consider the cases where x,θ,βp,βq ∈ R,
θTh(x) = θx, θ = βp − βq, and the outlier is xo = c
(c > 0). We have the following three cases when c→ ∞:

(i) When βp > βq , rθ(xo) ∝ exp(|θ|c) → ∞.

(ii) When βp < βq , rθ(xo) ∝ exp(−|θ|c) → 0.

(iii) When βp = βq , rθ(xo) ∝ exp(0) → const.

These cases indicate that Trimmed DRE is not robust when
rθ(x) ↛ ∞ (c → ∞). A similar discussion can be given
when θTh(x) =

∑d
u,v=1 θu,vxuxv, a typical setting for

multivariate Gaussian distributions and Ising models (Liu
et al., 2017b).

Another limitation is that Trimmed DRE is robust when out-
liers contaminate only the reference dataset while keeping
the target dataset clean. The normalizing term C◦ is calcu-
lated by the target dataset without trimming. If the target
dataset is contaminated, the calculation of the normalizing
term will be unstable.

Our proposals, Weighted DRE and γ-DRE, overcome the
above shortages. These methods assume that outlier dis-
tributions are negligible in the sense of Assumption 3.1 or
Assumption 3.4 and are robust to the contamination of the
reference and target datasets. They also need no hyper-
parameter tuning depending on the true contamination ratio,
although Trimmed DRE needs to tune the trimming quantile
ν.

4. Numerical Experiments
4.1. Difference between Precision Matrices

We estimated the difference between the precision matrices
in normal distributions. Let x = (x1, x2)

T ∈ R2, and the
true density functions be denoted by p∗(x) = fλp

(x) and

q∗(x) = fλq
(x), where fλ(x) = N

(
0,

(
1 λ
λ 1

)−1
)

, for

the reference and target distributions, respectively. This
setting is similar to the previous research (Liu et al.,
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Figure 1. Estimation of the difference parameter θ1,2 between the
off-diagonal elements of the precision matrices in normal distri-
butions. Each column shows the settings of the contamination:
“clean”, “reference contamination”, “target contamination”, and
“double contamination”. Each row shows the ground truth and
the estimation methods: DRE, Trimmed DRE, Weighted DRE,
and γ-DRE. The x-axis and y-axis in each figure indicate the true
values of the off-diagonal elements of the reference and target
distributions, respectively.

2014; 2017c). The parameters λp and λq ranged from
−0.9 to 0.9. The outlier distribution was set to δ(x) =

N

((
100
100

)
,

(
1 0
0 1

))
. We prepared four settings of the

reference distribution p†(x) and the target distribution
q†(x):

• “clean”: p†(x) = p∗(x), q†(x) = q∗(x).

• “reference contamination”: p†(x) = 0.8p∗(x) +
0.2δ(x), q†(x) = q∗(x).

• “target contamination”: p†(x) = p∗(x), q†(x) =
0.8q∗(x) + 0.2δ(x).

• “double contamination”: p†(x) = 0.8p∗(x) +
0.2δ(x), q†(x) = 0.8q∗(x) + 0.2δ(x).

The dataset sizes were set to np = nq = 100.

We compared four methods (DRE, Trimmed DRE, Weighted
DRE, and γ-DRE). The density ratio function was
parametrized by θTh(x) =

∑2
u,v=1 θu,vxuxv . The ground

truth is given by θ1,2 = θ2,1 = λq−λp and θ1,1 = θ2,2 = 0
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Table 1. MSE of the estimated parameters in the “clean” setting (the standard deviations are in parentheses).

θ1,2 λp λq DRE TRIMMED DRE WEIGHTED DRE γ-DRE

0.0 0.0 0.0 0.0123 (0.01645) 0.0196 (0.0393) 0.0240 (0.0491) 0.0097 (0.0185)
0.4 0.0 0.4 0.0565 (0.06743) 0.0551 (0.0548) 0.0883 (0.0765) 0.0493 (0.0400)
0.8 -0.4 0.4 0.1535 (0.10345) 0.1428 (0.0966) 0.2349 (0.1351) 0.1387 (0.0850)
1.2 -0.8 0.4 0.3035 (0.61568) 0.2363 (0.2536) 0.5086 (0.2216) 0.2631 (0.1855)
1.6 -0.8 0.8 1.5608 (2.75867) 1.4278 (2.6771) 0.7467 (0.3520) 0.2931 (0.2971)

Table 2. MSE of the estimated parameters in the “double contamination” setting (the standard deviations are in parentheses).

θ1,2 λp λq DRE TRIMMED DRE WEIGHTED DRE γ-DRE

0.0 0.0 0.0 5.3757 (5.5380) 5.5567 (4.8591) 0.0299 (0.0455) 0.0131 (0.0165)
0.4 0.0 0.4 5.5245 (5.5945) 6.0835 (6.4211) 0.0840 (0.0845) 0.0689 (0.0704)
0.8 -0.4 0.4 8.3192 (7.8744) 9.0380 (7.0335) 0.2950 (0.1739) 0.1629 (0.0955)
1.2 -0.8 0.4 8.2561 (7.7996) 10.2449 (8.2807) 0.5750 (0.2867) 0.2175 (0.1636)
1.6 -0.8 0.8 8.4907 (8.8919) 9.3233 (8.7860) 0.9466 (0.5066) 0.3042 (0.2891)

because the true density ratio r∗(x) = p∗(x)/q∗(x) ∝
exp((λq − λp)x1x2). The weight function was set to
w(x) = exp

(
−∥x∥44/50

)
. The trimming quantile ν in

Trimmed DRE was set to the true contamination ratio. The
parameter γ in γ-DRE was set to 0.01. No regularization
term was added to the objective function.

Figure 1 shows that Weighted DRE and γ-DRE successfully
estimated the ground truth of θ1,2 in all the contaminated
settings. This was because the experimental setting satisfies
Assumption 3.1 and Assumption 3.4.

DRE failed to estimate the ground truth in the contami-
nated settings except for a part of the “target contamination”.
In the “target contamination” setting, DRE estimated the
ground truth robustly where θ1,2 < 0 in the lower right of
the figure. This was because the influence of the outliers van-
ished from the second term of the objective function in (5),
where exp(θTh(x

(q)
i )) = exp(

∑2
u,v=1 θu,vx

(q)
i,ux

(q)
i,v ) ≈ 0

with θ1,2 = θ2,1 < 0, θ1,1 = θ2,2 = 0, and x(q)i,1 , x
(q)
i,2 ≈

100. In the “reference contamination” and the “target con-
tamination” settings, the estimated values were heavily bi-
ased in the opposite direction because the reference and
target datasets had the opposite signs in the objective func-
tion (5). In the case of “double contamination”, the color
tendency was unclear because, for example, the estimated
values tended to be positive/negative when the generated
outliers were stronger on the reference/target than the other
one.

Trimmed DRE successfully estimated the ground truth in
the “reference contamination” setting where θ1,2 > 0 in the
upper left of the figure. In this region, the density ratio val-
ues of the outliers became large by exp(

∑2
u,v=1 θu,vxuxv),

where θ1,2 = θ2,1 > 0, θ1,1 = θ2,2 = 0, and x1, x2 ≈ 100.
Because the estimator of Trimmed DRE was designed to

be robust when outliers had larger density ratio values than
inliers, the estimator was robust in that region. In other
regions, the estimation performance was similar to that of
DRE. These results agree with the theoretical property dis-
cussed in Section 3.3.

We calculated the mean squared error (MSE) values of the
estimated values on some pairs of the true parameters λp
and λq. The experiments were repeated 100 times. More
details are given in Appendix E, including the extended
cases of the parameter pairs and the contamination settings.

Tables 1 and 2 show that Weighted DRE and γ-DRE
achieved robustness without compromising the precision of
the estimation. In the range of 0.0 ≤ θ1,2 ≤ 1.2 in Table
1 (the “clean” setting), the MSE values of Weighted DRE
and γ-DRE were comparable to those of DRE and Trimmed
DRE. Besides, at θ1,2 = 1.6, Weighted DRE and γ-DRE
had the significantly smaller MSE values than DRE and
Trimmed DRE. That might be because the weight function
excluded “weak outliers” sampled from the main body of
the density functions. In Table 2 (the “double contamination”
setting), the MSE values of Weighted DRE and γ-DRE were
significantly smaller than those of DRE and Trimmed DRE,
which shows the robustness of our proposals.

Tables 1 and 2 also show that γ-DRE estimated the ground
truth slightly better than Weighted DRE. The MSE values
of γ-DRE were smaller than those of Weighted DRE in all
the settings. γ-DRE did not estimate the normalizing term
(3), so the estimated values might have small errors.

4.2. Change Detection in Time Series Data

As an experiment with real-world data, we performed a
change detection in time series data. We used a human
activity dataset provided by the Human Activity Sensing
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Figure 2. Change detection of the human activity sensor data. The top figure shows the sequence of the three-dimensional data (x-, y-,
and z-axis). Each figure below the top shows all the estimated parameters of DRE, Trimmed DRE, Weighted DRE, and γ-DRE. The
vertical dashed lines are the ground truth of the change points with the category labels of the human activities. Bold dashed lines indicate
the changes from and to “skip” or “jog”.

Consortium (HASC) Challenge 2011, which was used in
the experiment of change detection with DRE (Liu et al.,
2013). This is a task to segment time series data measured
by acceleration sensors according to 6 categories: “stay”,
“walk”, “jog”, “skip”, “stair up”, and “stair down”. The
measured data has three dimensions (x-, y-, and z-axis).

In the change detection task in time series data, the original
sequence was divided and assigned to the reference and tar-
get datasets sequentially. The dataset sizes of the reference
and target datasets were set to np = nq = 100.

We compared four methods (DRE, Trimmed DRE, Weighted
DRE, and γ-DRE). The parametric function was designed
as θTh(x) =

∑3
u,v=1 θu,vxuxv. The weight function was

set to w(x) = exp
(
−∥x∥44/5

)
in Weighted DRE and γ-

DRE. We added the elastic net regularization term λ1∥θ∥1+
λ2∥θ∥22 with λ1 = λ2 = 0.5 to the objective function.
The trimming quantile ν was set to 0.9 in Trimmed DRE.
The tuning parameter γ was set to 0.01 in γ-DRE. All the
estimated parameters, θu,v for 1 ≤ u ≤ v ≤ 3, were used
as the anomaly levels instead of the density ratio values
because θu,v = 0 at no-change points.

Figure 2 shows that Weighted DRE and γ-DRE successfully
detected the change points without disturbance by outliers.
The top row of Figure 2 indicates that the changes from and

to “skip” or “jog” are large and other changes are small.
All the methods successfully detected these large change
points. DRE falsely detected the outliers at the time around
[10, 20] and [100, 110], and Trimmed DRE did so at the
time around [10, 12] and [100, 110]. Besides, they estimated
larger anomaly levels at the outliers than those at the true
change points. Weighted DRE and γ-DRE did not detect
these outliers. At the time around 80, Weighted DRE and γ-
DRE could not detect the change point, although DRE and
Trimmed DRE could. This was the change point between
“stair down” and “walk”, but there was no apparent change
in the original data. DRE and Trimmed DRE seemed to
detect the outlier, not the change point.

5. Conclusions
We have presented two density ratio estimation methods,
Weighted DRE and γ-DRE. Their estimators are robust
even when many outliers contaminate both the reference
and target datasets, which is called doubly strong robustness.
Theoretical analysis reveals that the weight function should
converge to zero more rapidly than the density ratio function.
Numerical experiments show that our proposals are more
robust than the previous methods for synthetic and real-
world datasets.
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This paper presents work whose goal is to advance the field
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A. Discussion of Parametric Density Ratio Function
We justify the formulation of the parametric density ratio function (1) in the case of an exponential family. If two
density functions belong to an exponential family, more precisely, p(x) = fβp(x) and q(x) = fβq (x), where fβ(x) =
exp

{
βTh(x) + b(x)− logA(β)

}
, where β ∈ Rp, h(x) : Rd 7→ Rp, b(x) : Rd 7→ R, and A(β) : Rp 7→ R, the true

density ratio can be written as

r(x) =
A(βq)

A(βp)
exp

{
(βp − βq)

T
h(x)

}
. (9)

In the formulation of the parametric density ratio function, we estimate the difference βp − βq directly without estimating
each parameter βp and βq (Liu et al., 2014; 2017a). To approximate the true density ratio r(x), the parametric density ratio
function rθ,C(x) : Rd 7→ R is introduced by

rθ,C(x) = C exp
(
θTh(x)

)
. (10)

By comparing (9) and (10), the optimal parameters θ◦ and C◦ are given by

θ◦ = βp − βq, C◦ =
A(βq)

A(βp)
.

We can easily show that θ◦ and C◦ are the minimizer of (2).

Notably, the parametric density ratio function rθ,C(x) can be applied to any density ratio, even when the density functions
p(x) and q(x) do not necessarily belong to an exponential family. In that case, θ◦ and C◦ cannot be written explicitly.

B. Efficient Optimization by Dual Problem
We show the primal-dual trick enables us the efficient calculation of the estimator of Weighted DRE and γ-DRE, which is
scalable to the high-dimensional data (Boyd & Vandenberghe, 2004; Liu et al., 2014). The core of this trick is to avoid
calculating the log-expectation term.

B.1. Dual Problem of Weighted DRE

By adding L1 and L2 norms to (5), the objective function of Weighted DRE, LUKL(θ), can be written as

LUKL(θ) = −θT ξ + κ log

nq∑
i=1

exp(θTh(x
(q)
i ))w(x

(q)
i ) + λ1∥θ∥1 + λ2∥θ∥22, (11)

where,

ξ =
1

np

np∑
i=1

h(x
(p)
i )w(x

(p)
i ) ∈ Rd, κ =

1

np

np∑
i=1

w(x
(p)
i ) ∈ R,

and λ1 and λ2 are regularization parameters for L1 and L2 norms, respectively.

The idea to convert this objective function (11) into the dual problem is to introduce the variable zi = θTh(x
(q)
i ) for

i = 1, ..., nq in the log-sum-exp term. This equation can be introduced into the original objective function (11) as the
constraints in the form of Lagrange multiplier. Here, we can convert the minimization of (11) into min-max problem:
minθ,z maxα LUKL(θ, z,α), where

LUKL(θ, z,α) = −θT ξ + κ log

nq∑
i=1

exp(zi)w(x
(q)
i ) + λ1∥θ∥1 + λ2∥θ∥22 − (z − ΦTθ)Tα, (12)

where Φ = (h(x
(q)
1 ), ..., h(x

(q)
nq )) ∈ Rd×nq , and α ∈ Rnq is a Lagrange multiplier. We can convert this Lagrange function

into the dual function by minimizing θ and z respectively:

LUKL(α) := min
θ,z

LUKL(θ, z,α)

= min
θ

[
θT (Φα− ξ) + λ1∥θ∥1 + λ2∥θ∥22

]
+min

z

[
κ log

nq∑
i=1

exp(zi)w(x
(q)
i )− zTα

]
.

(13)
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Firstly, let us consider the first term:
ψ1(θ) = −θTη + λ1∥θ∥1 + λ2∥θ∥22, (14)

where η = ξ − Φα. Since ψ1(θ) is convex, equating the differential ∇ψ1(θ) to zero gives us the minimizer:

θ̂j =
1

2λ2
sλ1

(ηj), for j = 1, ..., d, (15)

where sλ(x) is a soft threshold function: sλ(x) = sgn(x)(|x| − λ)+. By substituting the optimal θ̂ into (14),

min
θ
ψ1(θ) = − 1

4λ2

d∑
j=1

(|ηj | − λ1)
2
+. (16)

Secondly, let us consider the second term:

ψ2(z) = κ log

nq∑
i=1

exp(zi)w(x
(q)
i )− zTα. (17)

Since ψ2(z) is also convex, equating the differential to zero gives us the minimizer ẑ:

αi = κ
exp(ẑi)w(x

(q)
i )∑nq

i=1 exp(ẑi)w(x
(q)
i )

, for i = 1, ..., nq.

This equation gives us the constraints which α should satisfy: αi > 0 for i = 1, ..., nq and
∑nq

i=1 αi = κ. By substituting
the optimal ẑ into (17),

min
z
ψ2(z) = −

nq∑
i=1

αi

(
logαi − logw(x

(q)
i )
)
+ const. (18)

By substituting (16) and (18) into (13), we should solve the problem of maxα LUKL(α):

LUKL(α) = − 1

4λ2

d∑
j=1

(|ηj | − λ1)
2
+ −

nq∑
i=1

αi

(
logαi − logw(x

(q)
i )
)

subject to αi > 0, for i = 1, ..., nq,

nq∑
i=1

αi = κ.

This dual function LUKL(α) is concave and can be solved by optimizing methods, including gradient descent. After
convergence, we can convert the estimated dual parameter α̂ to the primal parameter θ̂ by (15). Because this formulation
changes the estimation problem of θ̂ ∈ Rp to that of α̂ ∈ Rnq , this primal-dual trick is useful in the high-dimensional
setting where p ≥ nq .

B.2. Dual Problem of γ-DRE

The optimization problem of γ-DRE is an iterative minimization of (8). Given the previous estimated parameter θ̂(k−1), the
objective function can be written as

Lγ(θ) = −θT ξ(k−1) +
1

1 + γ
log

nq∑
i=1

exp
(
(1 + γ)θTh

(
x
(q)
i

)
w
(
x
(q)
i

))
+ λ1∥θ∥1 + λ2∥θ∥22,

where

ξ(k−1) =

np∑
i=1

exp
(
γθ̂(k−1)Th

(
x
(p)
i

)
w
(
x
(p)
i

))
∑np

j=1 exp
(
γθ̂(k−1)Th

(
x
(p)
j

)
w
(
x
(p)
j

))h(x(p)
i

)
.

By replacing ξ by ξ(k−1) and κ by 1/(1 + γ) in (11), the same discussion in Appendix B.1 holds. Notably, this estimation
procedure should be iterated until the estimated parameter θ̂(k) converges.

12



Density Ratio Estimation with Doubly Strong Robustness

C. Choice of Weight Function
The weight function is expected to satisfy Assumptions 3.1 or 3.4. In practice, the weight function can be set as w(x) =
exp(−∥x−Med

MADN ∥44/τ), where Med is the median and MADN = Med({|xi−Med(D)|}ni=1)/0.675 is the normalized median
absolute deviation of the dataset D. This transformation can be interpreted as the robust version of the standardization. The
hyper-parameter τ should be selected such that usual samples have large weights and outliers have small weights. Because
the value of ∥x−Med

MADN ∥ increases as the dimension size increases, the appropriate value of τ can change. We adopted τ = 50
for the two-dimensional standard Gaussian in Section 4.1.

Here, we show how to choose the hyper-parameter τ for the one-dimensional standard Gaussian distribution. Figure 3 shows
that τ = 10 is appropriate compared with the probability density function of the standard Gaussian distribution. The weight
function with τ = 1 has too-narrow window, which will eliminate the usual samples. The weight function with τ = 100 has
too-wide window, which cannot eliminate the outlier samples.

−4 −3 −2 −1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0 pdf

tau=1

tau=10

tau=100

Figure 3. Comparison between the probability density function of the one-dimensional Gaussian distribution and the weight function
with the hyper-parameters of τ = 1, 10, 100.

D. Proof of Doubly Strong Robustness
D.1. Proof of Theorem 3.3

Lemma D.1. Let f(x) and fα(x) be C2-class real-valued functions on a compact convex set X . Let the Hessian matrices of
f(x) and fα(x) be denoted by J(x) and Jβ(x), respectively. Assume that J(x) is positive definite and Jβ(x) is continuous
about β. Suppose that ∥α∥ = O(ν) and ∥β∥ = O(ν) for a sufficiently small value ν. Assume

sup
x∈X

|fα(x)− f(x)| = O(ν), (19)

sup
x∈X

∥Jβ(x)− J(x)∥max = O(ν). (20)

Let x∗ and x∗
α be minimizers of f(x) and fα(x), respectively. Assume that x∗ and x∗

α are unique interior points in X .
Then, we have x∗

α − x∗ = O(ν).

Proof. Let the smallest eigenvalues of J(x) and Jβ(x) over the set X be denoted by a and aβ, respectively. Let c =
min{a,min0≤∥β∥≤ν0

aβ} with a sufficiently small fixed value ν0 > 0. From the positive definiteness of J(x) and (20), we
have c > 0. By Taylor expansion,

f(x) = f(x∗) +
1

2
(x− x∗)TJ(x̃)(x− x∗) ≥ f(x∗) +

c

2
∥x− x∗∥2,

fα(x) = fα(x
∗
α) +

1

2
(x− x∗

α)
TJβ(x̃α)(x− x∗

α) ≥ fα(x
∗
α) +

c

2
∥x− x∗

α∥2,

13
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where x̃ and x̃α are appropriate values. Using these inequalities, we have

f(x∗
α)− f(x∗) ≥ c

2
∥x∗

α − x∗∥2,

fα(x
∗)− fα(x

∗
α) ≥

c

2
∥x∗ − x∗

α∥2,

and

c∥x∗
α − x∗∥2 ≤ f(x∗

α)− f(x∗) + fα(x
∗)− fα(x

∗
α)

≤ |f(x∗
α)− fα(x

∗
α)|+ |fα(x∗)− f(x∗)| = O(ν),

where the last order holds from (19). The proof is complete.

Proof of Theorem 3.3. We have

DUKL(r
†, rθ;w)

=−
∫

θTh(x)w(x)p†(x)dx+

∫
w(x)p†(x)dx× log

∫
exp(θTh(x))w(x)q†(x)dx+ const

=− (1− εp)

∫
θTh(x)w(x)p∗(x)dx− εpν2

+

{
(1− εp)

∫
w(x)p∗(x)dx+ εpν1

}
× log

{
(1− εq)

∫
exp(θTh(x))w(x)q∗(x)dx+ εqν3

}
+ const

=(1− εp) {DUKL(r
∗, rθ;w) + const +O(εrν)} .

Let f(θ) = DUKL(r
∗, rθ;w) and fα(θ) = DUKL(r

†, rθ;w)/(1 − εp) + const with α = (νj)
3
j=1. These are C2-class

real-valued functions on a compact convex set Θ. The above shows (19). Let the Hessian matrices of f(θ) and fα(θ) be
denoted by J(θ) and Jβ(θ) with β = (νj)

5
j=1, respectively. Jβ(x) is continuous about β. We can easily show that J(θ) is

positive definite after simple calculation. The conditions ∥α∥ = O(ν) and ∥β∥ = O(ν) are satisfied from the definition
of ν. In a similar manner to the above, we can show (20). The minimizers θ†

UKL and θ∗
UKL are unique interior points in

Θ from the assumption of the theorem. Therefore, all the conditions assumed in Lemma D.1 are satisfied, and we have
θ†
UKL − θ∗

UKL = O(εrν).

D.2. Proof of Theorem 3.5

Proof. It follows that

dγ(r
†, rθ;w q

†)

=− 1

γ
log

∫
exp(γθTh(x))w(x)p†(x)dx+

1

1 + γ
log

∫
exp((1 + γ)θTh(x))w(x)q†(x)dx

=− 1

γ
log

{
(1− εp)

∫
exp(γθTh(x))w(x)p∗(x)dx+ εpν

′
1

}
+

1

1 + γ
log

{
(1− εq)

∫
exp((1 + γ)θTh(x))w(x)q∗(x)dx+ εqν

′
2

}
= dγ(r

∗, rθ;w q
∗) + const +O(ε′rν

′).

Let f(θ) = dγ(r
∗, rθ;w q

∗) and fα(θ) = dγ(r
†, rθ;w q

†) with α = (ν′j)
2
j=1. These are C2-class real-valued functions on

a compact convex set Θ. The above shows (19). Let the Hessian matrices of f(θ) and fα(θ) be denoted by J(θ) and Jβ(θ)
with β = (ν′j)

6
j=1, respectively. Jβ(x) is continuous about β. The conditions ∥α∥ = O(ν′) and ∥β∥ = O(ν′) are satisfied

from the definition of ν′. In a similar manner to the above, we can show (20). The minimizers θ†
γ and θ∗

γ are unique interior
points in Θ from the assumption of the theorem. If J(θ) is positive definite, then all the conditions assumed in Lemma D.1
are satisfied and we have θ†

γ − θ∗
γ = O(ε′rν

′). However, from the assumption of the theorem, we only have the condition
that J(θ) is positive definite at θ = θ∗

γ , not over Θ. We need to bridge the gap. From the continuity of J(θ) and (19), we
can take a restricted compact convex set Θ̃ ⊂ Θ such that J(θ) is positive definite over Θ̃ and θ†

γ ,θ
∗
γ ∈ Θ̃. Considering

Lemma D.1 on the restricted set Θ̃, we can have θ†
γ − θ∗

γ = O(ε′rν
′).
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E. MSE Values in Section 4.1
We calculated the MSE values between the estimated parameters and the ground truth. The experimental settings are
described in Section 4.1. The initial parameters of the iterative calculation were randomly generated from a normal
distribution for each experiment. The mean and the standard deviation of the squared errors were calculated.

Tables 3, 4, 5, and 6 show the MSE values in the “clean”, “reference contamination”, “target contamination”, and “double
contamination” settings, respectively. Table 3 shows that Weighted DRE and γ-DRE had comparable MSE values to DRE
and Trimmed DRE in the range of −1.2 ≤ θ1,2 ≤ 1.2. At θ1,2 = −1.6 and θ1,2 = 1.6, Weighted DRE and γ-DRE had
significantly smaller MSE values than DRE and Trimmed DRE. This seems to be because Weighted DRE and γ-DRE
eliminated the weak outliers. These tables also show that γ-DRE estimated the ground truth slightly better than Weighted
DRE in all the settings. γ-DRE need not estimate the normalizing term, so it could have the lower MSE values.

Table 3. MSE of the estimated parameters in the “clean” setting (the standard deviations are in parentheses).

θ1,2 λp λq DRE TRIMMED DRE WEIGHTED DRE γ-DRE

-1.6 0.8 -0.8 1.0746 (1.5161) 1.2785 (3.0056) 0.7038 (0.3516) 0.3288 (0.5279)
-1.2 0.4 -0.8 0.4389 (0.7856) 0.4844 (0.9658) 0.4534 (0.2723) 0.2797 (0.1731)
-0.8 0.4 -0.4 0.1523 (0.1136) 0.1419 (0.0974) 0.2377 (0.1564) 0.1373 (0.0755)
-0.4 0.4 0.0 0.0435 (0.0400) 0.0438 (0.0417) 0.0834 (0.0883) 0.0513 (0.0400)
0.0 0.0 0.0 0.0123 (0.0164) 0.0196 (0.0393) 0.0240 (0.0491) 0.0097 (0.0185)
0.4 0.0 0.4 0.0565 (0.0674) 0.0551 (0.0548) 0.0883 (0.0765) 0.0493 (0.0400)
0.8 -0.4 0.4 0.1535 (0.1034) 0.1428 (0.0966) 0.2349 (0.1351) 0.1387 (0.0850)
1.2 -0.8 0.4 0.3035 (0.6157) 0.2363 (0.2536) 0.5086 (0.2216) 0.2631 (0.1855)
1.6 -0.8 0.8 1.5608 (2.7587) 1.4278 (2.6771) 0.7467 (0.3520) 0.2931 (0.2971)

Table 4. MSE of the estimated parameters in the “reference contamination” setting (the standard deviations are in parentheses).

θ1,2 λp λq DRE TRIMMED DRE WEIGHTED DRE γ-DRE

-1.6 0.8 -0.8 3950298.5757 (22926.6509) 35323.5783 (5264.2799) 0.9017 (0.3773) 0.3218 (0.3032)
-1.2 0.4 -0.8 3950542.0491 (25067.6394) 34954.4141 (4712.6414) 0.5781 (0.2530) 0.2431 (0.1692)
-0.8 0.4 -0.4 3958872.0875 (23063.6142) 34460.0170 (7649.7992) 0.2463 (0.1283) 0.1531 (0.0870)
-0.4 0.4 0.0 3956367.0423 (24930.7475) 25795.7112 (16823.4622) 0.0902 (0.0926) 0.0436 (0.0340)
0.0 0.0 0.0 3959068.1508 (25197.0345) 21001.3299 (19309.3519) 0.0258 (0.0527) 0.0079 (0.0115)
0.4 0.0 0.4 3960324.3266 (24236.2236) 19655.8422 (19797.1869) 0.1094 (0.1430) 0.0548 (0.0427)
0.8 -0.4 0.4 3957741.4148 (23384.0926) 20133.8894 (19859.9808) 0.2834 (0.1815) 0.1421 (0.0773)
1.2 -0.8 0.4 3961153.3083 (25523.0181) 21343.8024 (20202.3100) 0.5734 (0.2484) 0.2712 (0.1711)
1.6 -0.8 0.8 3968357.1323 (24595.6865) 21251.8250 (20522.5385) 0.9429 (0.3470) 0.2951 (0.5538)

Table 5. MSE of the estimated parameters in the “target contamination” setting (the standard deviations are in parentheses).

θ1,2 λp λq DRE TRIMMED DRE WEIGHTED DRE γ-DRE

-1.6 0.8 -0.8 549087.3957 (499298.7574) 351177.4384 (319271.9316) 0.7067 (0.3616) 0.2708 (0.2885)
-1.2 0.4 -0.8 637923.7106 (480891.8776) 357119.1806 (318166.7869) 0.4389 (0.2751) 0.2971 (0.1992)
-0.8 0.4 -0.4 507397.3182 (500213.5196) 363576.7793 (317394.2769) 0.2191 (0.1321) 0.1538 (0.0952)
-0.4 0.4 0.0 499076.9452 (501614.2931) 306914.5394 (320727.8412) 0.0790 (0.0667) 0.0436 (0.0331)
0.0 0.0 0.0 585877.3689 (481541.5629) 327077.0420 (312615.8724) 0.0186 (0.0274) 0.0122 (0.0184)
0.4 0.0 0.4 564275.2849 (462204.3313) 392242.2477 (307921.5425) 0.0829 (0.0748) 0.0607 (0.0468)
0.8 -0.4 0.4 650588.5428 (358591.2366) 430804.4411 (250226.4449) 0.2494 (0.1304) 0.1332 (0.0845)
1.2 -0.8 0.4 870574.0795 (138590.6119) 539042.4358 (108722.4856) 0.5089 (0.2182) 0.2447 (0.1827)
1.6 -0.8 0.8 891624.2286 (141870.1246) 563625.7989 (96903.0755) 0.7265 (0.3316) 0.2620 (0.2594)
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Table 6. MSE of the estimated parameters in the “double contamination” setting (the standard deviations are in parentheses).

θ1,2 λp λq DRE TRIMMED DRE WEIGHTED DRE γ-DRE

-1.6 0.8 -0.8 4.9189 (5.4462) 3.5911 (3.7100) 0.9394 (0.3565) 0.2962 (0.4160)
-1.2 0.4 -0.8 47.3175 (443.5423) 3.2073 (3.6291) 0.5737 (0.2540) 0.2325 (0.1936)
-0.8 0.4 -0.4 4.3060 (4.4582) 4.4132 (4.3617) 0.2862 (0.1567) 0.1344 (0.0937)
-0.4 0.4 0.0 5.1599 (5.0391) 4.5406 (4.6529) 0.0962 (0.1021) 0.0463 (0.0391)
0.0 0.0 0.0 5.3757 (5.5380) 5.5567 (4.8591) 0.0299 (0.0455) 0.0131 (0.0165)
0.4 0.0 0.4 5.5245 (5.5945) 6.0835 (6.4211) 0.0840 (0.0845) 0.0689 (0.0704)
0.8 -0.4 0.4 8.3192 (7.8744) 9.0380 (7.0335) 0.2950 (0.1739) 0.1629 (0.0955)
1.2 -0.8 0.4 8.2561 (7.7996) 10.2449 (8.2807) 0.5750 (0.2867) 0.2175 (0.1636)
1.6 -0.8 0.8 8.4907 (8.8919) 9.3233 (8.7860) 0.9466 (0.5066) 0.3042 (0.2891)

F. Comparison between Stable and Robust DRE
Our problem setting is different from the previously discussed problem setting in (Yamada et al., 2011), which we call
stable estimation. The stable estimation tackles the situation where the two density functions have no common supports,
which is the usual case in the high-dimensional setting (Rhodes et al., 2020; Kato & Teshima, 2021; Choi et al., 2021; 2022;
Srivastava et al., 2023). The robust estimation aims to eliminate the disturbance effects by outliers. For example, when
considering the density ratio of the main and outlier distributions mixture, the stable DRE estimates the density ratio of the
mixtures, whereas the robust DRE only estimates that of the main distributions.

We compare the performance of RuLSIF (Relative unconstrained Least-Squares Importance Fitting) (Yamada et al., 2011),
one of the famous stable non-parametric DRE methods, and Weighted DRE in the case where the different outliers
contaminate the main distribution. We prepare three cases:

• Uncontaminated: p(x) = q(x) = N(0, 1).

• Same outliers: p(x) = q(x) = 0.8N(0, 1) + 0.2N(15, 1).

• Different outliers: p(x) = 0.8N(0, 1) + 0.2N(15, 1) and q(x) = 0.8N(0, 1) + 0.2N(10, 1).

In all the cases, the ground truth of the density ratio is r(x) = 1. The dataset sizes are np = nq = 100. We used a Python
code of RuLSIF provided on GitHub 1. The hyper-parameter α in RuLSIF is set as 0.95, achieving the high stability.

Figure 4 shows that RuLSIF fails to estimate the ground truth in the “Different outliers” setting, although Weighted DRE
can estimate it correctly. In the “Different outliers” setting, RuLSIF falsely detects the change of the outlier distributions,
that is, N(15, 1) in p(x) and N(10, 1) in q(x). Because this misspecification affects the estimation of the main distributions
N(0, 1), the estimated density ratio is different from the ground truth r(x) = 1.

1https://github.com/hoxo-m/densratio_py/

16

https://github.com/hoxo-m/densratio_py/


Density Ratio Estimation with Doubly Strong Robustness

0.0

0.5

1.0

1.5

R
u

L
S

IF

Uncontaminated Same outliers Different outliers

−5 0 5 10 15 20

0.0

0.5

1.0

1.5

W
ei

gh
te

d
D

R
E

−5 0 5 10 15 20 −5 0 5 10 15 20

Figure 4. Comparison of the performance between RuLSIF and Weighted DRE. The x-axis shows the data values of x, and the y-axis
shows the values of the density ratio or the density functions. The blue lines show the estimated density ratio values, and the gray dashed
lines show the density functions. For all figures, the true density ratio is r(x) = 1.
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