
Graph Counterfactual Explainable AI via Latent Space Traversal

Andreas Abildtrup Hansen∗1, Paraskevas Pegios1, Anna Calissano2, and Aasa Feragen1,3

1Technical University of Denmark, Kongens Lyngby, Denmark
2Imperial College London, London, England
3Pioneer Centre for AI, Copenhagen, Denmark

Abstract

Explaining the predictions of a deep neural network
is a nontrivial task, yet high-quality explanations for
predictions are often a prerequisite for practitioners
to trust these models. Counterfactual explanations
aim to explain predictions by finding the “nearest”
in-distribution alternative input whose prediction
changes in a pre-specified way. However, it remains
an open question how to define this nearest alter-
native input, whose solution depends on both the
domain (e.g. images, graphs, tabular data, etc.) and
the specific application considered. For graphs, this
problem is complicated i) by their discrete nature,
as opposed to the continuous nature of state-of-the-
art graph classifiers; and ii) by the node permu-
tation group acting on the graphs. We propose a
method to generate counterfactual explanations for
any differentiable black-box graph classifier, utiliz-
ing a case-specific permutation equivariant graph
variational autoencoder. We generate counterfactual
explanations in a continuous fashion by traversing
the latent space of the autoencoder across the clas-
sification boundary of the classifier, allowing for
seamless integration of discrete graph structure and
continuous graph attributes. We empirically vali-
date the approach on three graph datasets, showing
that our model is consistently high-performing and
more robust than the baselines.

1 Introduction

Sets of graphs arise in different applications,
e.g. brain connectivity [1–3], brain arterial net-
works [4], anatomical trees [5, 6], mobility networks
[7], and chemistry, and graph classifiers play im-
portant roles in our daily infrastructure, healthcare
quality, and national security. Their explainability
is crucial to ensure both safety and trust when using
AI for high-stakes applications.

However, explainable AI (XAI) for graph predic-
tors remains challenging due to the misalignment
between the discrete graph structure and the con-
tinuous nature of state-of-the-art graph- and XAI
models. Moreover, the action of the node permuta-
tion group challenges the interpretability of latent

∗Corresponding Author.

feature embeddings [8]. In this paper, we generate
counterfactual explanations for graph classifiers by
utilizing a permutation equivariant graph variational
autoencoder to build a semantic latent graph repre-
sentation. Guided by the classifier, we traverse this
latent space to obtain graphs that are semantically
similar to the input graph but whose prediction has
been altered in a predetermined way. This allows us
to answer questions such as “How do we most easily
alter a given chemical molecule to improve a specific
chemical property?” or “How should a given so-
cial network change to reduce its fraud risk score?”.
We evaluate our approach on three commonly used
datasets of molecular graphs.

1.1 Background

Counterfactual explanations for graph classifiers
take as input a graph and aim to return a mini-
mally altered version of the graph whose class label
has been altered. In other words, counterfactual
explanations answer the question: “What is the
easiest way to change the graph G to alter its classi-
fication”. For these explanations to be maximally
interpretable, in the sense that the factual and coun-
terfactual graph need to be aligned, the pipeline
should be permutation equivariant: If the ordering
of the input graph nodes is changed, we would like
the output graph nodes to be altered accordingly. In
this way, any natural alignment between the input
and output graphs is preserved.

Counterfactual Explanations highlight essen-
tial, yet in-sample, changes in input features that af-
fect the outcome of a predictive model, offering valu-
able insights into the model’s decisions. Several ap-
proaches exist for tabular [9, 10] and image data [11],
as well as graph data [12, 13]. Early works introduce
and address key aspects such as sparsity [14, 15],
actionability [16, 17], diversity [18, 19] and causal-
ity [20, 21]. Recent research focuses on maintaining
counterfactuals close to the data manifold, which is
usually approximated with generative models such
as autoencoders [22–24], flows [25, 26], and diffu-
sion models [27–29]. In the context of graphs, both
model-level [30, 31] and instance-level [32, 33] coun-
terfactual explanations have been proposed. Gener-
ating counterfactual explanations based on a VAE

Proceedings of the 6th Northern Lights Deep Learning Conference (NLDL), PMLR 265, 2025.
LM 2025 Andreas Abildtrup Hansen, Paraskevas Pegios, Anna Calissano, & Aasa Feragen. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

has previously been proposed by [33], where a coun-
terfactual prediction loss enables the decoder to gen-
erate counterfactual explanations. In this work, we
construct instance-level explanations using a permu-
tation equivariant graph variational autoencoder by
traversing the latent space appropriately, and with-
out explicitly introducing a loss for counterfactual
generation during training. Our work, combining the
power of a graph generative model and a semantic
latent space to generate counterfactual explanations,
is to the best of our knowledge, the first to have
explicitly trained a graph generative model to do so.

Equivariant graph generative models. Equiv-
ariance (see Section 2.2 for a rigorous definition)
under permutation is especially important in gener-
ative and graph-valued prediction tasks. However,
many existing graph generative models are not equiv-
ariant, as either the encoder is only invariant, or
the embedding on the latent space is performed at
a graph level and not at a population level [34–36].

To ensure global equivariance, we utilize the per-
mutation equivariant layers of Maron et al. [37] and
Pan and Kondor [38]. A permutation equivariant
layer can be parameterized using a fixed number
of basis elements [39], the number of which are in-
dependent of the size of the graphs. An example
model using such layers is Hy and Kondor [40], who
propose a multiresolution graph variational autoen-
coder, which is end-to-end permutation equivariant
but also rather heavy. We, therefore, choose a sim-
ple yet effective PEGVAE [8] with equivariant linear
layers [39], overcoming the problems associated with
the invariant encoder in alternative VAEs and thus
producing an efficient equivariant model.

2 Method

We design XAI counterfactual graphs using a varia-
tional autoencoder (VAE) to generate in-distribution
counterfactual graphs. The generative procedure is
built on the assumption that a meaningful latent
graph representation has been obtained. This repre-
sentation space can then be traversed by using the
loss of the graph classifier to steer the new graphs
toward a class of interest.

Below, we describe the individual components
used to build our counterfactual generators, before
joining them together in an equivariant framework
for counterfactual graph explanation. As graph
representations are affected by node ordering, our
pipeline is designed to be equivariant with respect
to node permutations by using a PEGVAE, and we
consider classifiers that are permutation invariant.
Fig. 1 shows the complete counterfactual pipeline.

2.1 Graph Representation

In the following, a graph G = (B,V,A,E) ∈ G is
represented using the following dense matrices:

• B ∈ {0, 1}n×2 is a boolean matrix indicating
the existence of nodes.

• V ∈ Rn×dV is a real-valued matrix that con-
tains the node attributes.

• A ∈ {0, 1}n×n is a Boolean matrix indicating
the existence of edges, the adjacency matrix.

• E ∈ Rn×n×dE is a real-valued matrix that con-
tains the edge features if they exist.

Note that in this representation, n is chosen to be
the same for all graphs, and graphs containing less
than n nodes are zero-padded. This ensures that
batching of graphs can be done during model train-
ing even if a dense graph representation is employed.
Furthermore, while our experiments only consider
categorical node and edge attributes, the framework
extends to continuous attributes.

2.2 Invariance and Equivariance to
Permutation

Having defined the graph representation, we define
how the permutation group Sn of order n acts on a
graph G ∈ G. Specifically for a permutation σ ∈ Sn

we denote the permutation matrix associated with
this element as Pσ. In this case, we will simply
define the group action as

σ ·G := (PσB,PσV,PσAP⊤
σ ,PσEP⊤

σ). (1)

That is, the rows and columns of A and E are
permuted, whereas only the rows of B and V are
permuted.
It is widely acknowledged that predictive graph

models should incorporate the notions of invariance
and equivariance [41]. In the case of classification,
a graph classifier should not depend on the node
ordering. The graph classification model C : G →
{0, 1} considered in this paper is therefore designed
to be invariant, that is, C(σ · G) = C(G) for any
G ∈ G and σ ∈ Sn.

Likewise, we design the autoencoder to be equivari-
ant to permutation. Thus, the encoder F : G → Rn

and decoder D : Rn → G should have the property,
that for any G ∈ G:

D(F(σ ·G)) = σ · Ḡ for all σ ∈ Sn. (2)

Where Ḡ denotes the reconstruction of G. For graph
autoencoders, equivariance is crucial: We need input
and output graphs to be aligned when computing the
loss during training. This also applies to assessing
counterfactual graph explanations.

Several ways of creating equivariant layers can be
considered, but for the networks in this paper, we
consider a specific basic building block consisting

2

z

Figure 1. Top: The classifier architecture and the PEGVAE. Bottom: The counterfactual graph generation.

of: A linear equivariant layer as specified by Maron
et al. [39] and a non-linearity consisting of node- and
edge-wise aggregations implemented as convolutions
with a kernel size of one and the ReLU activation
function. Batch normalization is applied before the
activation. We will refer to this construction as an
equivariant/invariant module depending on the ap-
plied equivariant/invariant linear layer. The linear
equivariant layers are constructed using the fact,
that any permutation equivariant linear function

L : Rnk×d → Rnl×d′
can be expressed using exactly

b(k + l)dd′ known basis elements, where b(·) repre-
sents the Bell number, i.e. the number of possible
partitions of a set of a certain size. Based on this
result, we can define equivariant linear layers at the
node and edge levels by forming a weighted linear
combination of the known basis elements. In the case
where k = l = 2, this amounts to b(4)dd′ = 15dd′

trainable weights. See for Hansen et al. [8], Maron et
al. [37], Pan and Kondor [38], and Thiede et al. [42]
for further uses of this type of layer.

2.3 PEGVAE

We design a PEGVAE similar to Hansen et al. [8].
We employ a standard Gaussian prior on the latent
space variable, i.e. p(z) = N (z | 0,1), and let
qϕ(z | G) denote the approximate posterior also
being Gaussian, and where ϕ refers to the parameters
of the encoder as is custom when dealing with VAEs.
Specifically, we factorize the likelihood pθ(G | z) as:

pθ(G | z) = pθB (B | z)pθV (V | z,B)

pθA(A | z,B,V)

pθE (E | z,B,V,A),

(3)

where θ = {θB , θV , θA, θE} refers to the parameters
of the decoder. Thus, when sampling a new graph
from p(G), we first sample the prior p(z), then p(B |
z), etc., until a graph has been obtained. This
factorization makes it easier to sample valid graphs
than if p(G | z) were modeled directly: We can
constrain edges to be sampled between nodes that

exist, and assign classes only to nodes and edges
that exist. We now minimize the negative evidence
lower bound (ELBO), which is given by, i.e.:

−ELBO =Ez∼qϕ(z|G)[− log pθ(G | z)]
+KL(qϕ(z | G) ∥ p(z)),

(4)

where KL(· ∥ ·) denotes the Kullback-Leibler
divergence. Here, the negative log-likelihood works
as a reconstruction loss, and the KL-loss works as
regularization. Since the prior is Gaussian with
mean zero, and thus has a symmetric density, the
node ordering will not affect the size of this term. In
practice, we tune the KL-loss with a hyperparameter
β ∈ [0, 1] [43] by optimizing,

Ez∼qϕ(z|G)[− log pθ(G | z)]+β·KL(qϕ(z | G) ∥ p(z)).

The exact architecture of the permutation equiv-
ariant VAE as well as any hyperparameters used
during training can be found in Appendix A.1.2.

2.4 Classifier Design

As the PEGVAE is permutation equivariant, the
graph classifier C : G → {0, 1} is designed to be
permutation invariant as the prediction should not
be affected by node ordering. Following Bronstein
et al. [41], this feature is obtained by composing a
number of equivariant layers followed by an invariant
global pooling layer. The output of this global pool-
ing layer can be viewed as a graph embedding, which
is passed to a fully connected neural network to ob-
tain probabilistic class predictions. The architecture
of the classifier, as well as the hyperparameters used
during training, can be found in Appendix A.1.1.

2.5 Generating Counterfactuals via
Latent Space Traversal

Given a factual graphGF we generate counterfactual
explanations for the class prediction. First, a latent
encoding zF of GF is found by evaluating F(GF).

3

Algorithm 1: CGCF

Input: GF and N ≥ 0
Output: GCF

z0 ← F(GF);
yD ← 1− yF ;
i← 1;
while i ≤ N do

GCF
i ← D(zi);

yi ← C(GCF
i);

if yi = yD then
mask← 0;

else
mask← 1;

end
zi+1 ← zi − ϵ · ∇L(zi, yD) ·mask;
i← i+ 1;

end

GCF ← GCF
N ;

return GCF

Secondly, a counterfactual graph GCF is generated
by iterative updates using gradient descent with a
learning rate of ϵ > 0, defined as:

zi+1 = zi − ϵ∇L(zi, yD), (5)

where z0 = zF , and D denotes the decoder, C de-
notes the classifier, and yD denotes the desired label
of the counterfactual. The loss function L is de-
fined as a cross entropy loss with L2-regularization
limiting the size of zi, i.e.:

L(zi, yD) = −
K∑

k=1

1{D=k}(yD) log(yi) + λ∥zi∥ (6)

for λ ≥ 0, and where yi = (C ◦ D)(zi). The updates
stop when either yi = yD, or when the maximum
number of iterations, which is set as a hyperparam-
eter, has been reached. This process results in an
estimated latent representation zCF with associated
counterfactual graph GCF = D(zCF) and associated
class prediction yCF = C(GCF). The counterfactual
graph is inferred from the distribution produced by
the decoder as described below.

Inferring Graph Reconstruction. A key part
of our pipeline for generating counterfactual expla-
nations is to iteratively update a latent code z by
passing it through a pipeline consisting of the pre-
trained decoder and a pre-trained, potentially un-
known classifier for each iteration. However, the
decoder is parameterizing pθ(G | z), and thus the
output of the decoder is a distribution and not in
the graph domain. Sampling from pθ(G | z) would
be a solution, but would not allow backpropagation.
To alleviate this problem we use a Gumbel-Softmax
distribution to approximate pθ(G | z) as outlined

by Jang et al. [44], enabling us to compute gradients
using a reparametrization trick.

Alternative approaches include sampling multiple
graphs from the likelihood passing each one through
the decoder, computing the loss of the classifier with
respect to the average prediction loss, or picking the
graph that maximizes the likelihood pθ(G | z).

Algorithmic Representation. Alg. 1 describes
how updates are iteratively made to generate coun-
terfactuals using CGCF. In general, the procedure
follows the description from Section 2.5. However,
from the algorithm, one can clearly see how updates
can be made to batches of counterfactuals by using
a mask. This ensures that after the desired label has
been achieved, then no more updates will be done to
the latent code. Also note, that to ensure that the
algorithm does terminate it runs for N ∈ N steps,
and not until the classifier assigns the desired label
to the generated graph. As a consequence of this the
procedure does not guarantee that a counterfactual
is obtained.

3 Experiments

3.1 Data

We evaluate our method using three molecular
graph datasets: NCI1 [45], Mutagenicity [46–48] and
AIDS [47, 49], where graph nodes represent atoms
and edges represent bonds. Each dataset poses a
binary classification task: Whether the molecule
is active against HIV or not (AIDS), whether it is
mutagenic or not (Mutagenicity), and whether the
molecule is anticancer (NCI1). We follow the graph
pre-processing and filtering of Huang et al. [50], in-
cluding only molecules with nodes occurring with a
frequency larger than 50 in the dataset to avoid im-
balance. Furthermore, as our architecture relies on a
dense graph representation, we only consider graphs
with fewer than 50 nodes (Mutagenicity, NCI1) and
30 nodes (AIDS). Each dataset is divided into train-
ing, validation, and test sets, with 10% allocated to
test and validation. Additional information can be
found in Tab. A.1 in Appendix A.

3.2 Evaluation Metrics

The counterfactuals quality of the counterfactuals
are evaluated as a trade-off between identity preser-
vation, i.e, the degree to which the generated coun-
terfactual graph resembles the factual graph, and
validity, i.e, whether the generated counterfactual is
indeed a valid candidate for the desired class.

Identity Preservation. Three identity preserva-
tion measures are used. Graph Edit Distance (GED),
measures the graph distance between factual and

4

Table 1. Validation Results

GED ↓ LED ↓ Cosine Similarity ↑ SIC ↑ Flip-Ratio ↑
Aids Random 63.4 ± 19.63 14.95 ± 2.62 -0.01 ± 0.41 0.83 ± 0.38 0.83

Graph of NN from Training 18.54 ± 9.95 8.31 ± 1.82 0.15 ± 0.38 0.4 ± 0.43 0.33
Decoded Mean of k-NN 47.66 ± 10.84 8.44 ± 1.95 -0.19 ± 0.14 0.99 ± 0.03 1.0
Classifier Guided CF 35.79 ± 14.01 7.11 ± 2.35 -0.08 ± 0.25 0.94 ± 0.15 0.98

Mutagenicity Random 65.28 ± 19.84 8.53 ± 0.84 0.03 ± 0.32 0.16 ± 0.37 0.52
Graph of NN from Training 28.1 ± 17.87 1.24 ± 0.45 0.59 ± 0.34 0.14 ± 0.25 0.44
Decoded Mean of k-NN 41.24 ± 18.93 1.05 ± 0.36 0.42 ± 0.39 0.09 ± 0.3 0.41
Classifier Guided CF 50.62 ± 21.41 3.63 ± 2.09 0.1 ± 0.46 0.42 ± 0.33 0.92

NCI1 Random 59.94 ± 17.01 41.04 ± 3.18 -0.01 ± 0.21 0.11 ± 0.43 0.49
Graph of NN from Training 40.51 ± 16.44 8.67 ± 3.29 0.58 ± 0.35 0.15 ± 0.25 0.58
Decoded Mean of k-NN 42.59 ± 15.82 8.0 ± 3.04 0.38 ± 0.3 0.13 ± 0.34 0.51
Classifier Guided CF 53.14 ± 23.01 13.19 ± 12.1 0.3 ± 0.44 0.34 ± 0.25 1.0

NCI1 AIDS MUTAGENICITY

Random Sampling from Prior Graph of NN from Training Decoded Mean of k-NN Classifier Guided CF

F
lip

-R
at

io
V

al
id

it
y

Identity Preservation

S
IC

LED GEDCS LED

Identity Preservation
CS GED

Identity Preservation
LED CS GED

F
lip

-R
at

io
S

IC

F
lip

-R
at

io
S

IC
Figure 2. Trade-off between metrics for Identity Preservation and Validity.

counterfactual graphs. Latent Euclidean Distance
(LED) refers to the Euclidean distance between the
latent representation of two graphs. Cosine Similar-
ity (CS) is computed between the graph embeddings
extracted from the classifier.

Validity. Two validity measures are used. Flip-
Ratio (FR) refers to the number proportion of gener-
ated counterfactual explanations, which are assigned
the desired class by the classifier. On top of that, we
measure the Signed Increase in Confidence (SIC),
referring to the increase or decrease classifier’s confi-
dence for the desired class. Specifically, we compute
pdCF

− pdF
, where pdCF

, pdF
∈ [0, 1] are classifier’s

output, that the generated factual and counterfac-
tual graphs belong to the desired class.

3.3 Baselines

We include several baseline counterfactual methods.
First, counterfactual explanations can be generated
naively by decoding random samples from p(z). We
refer to this method as Random. That is, we first
sample from the prior p(z) and subsequently from
pθ(G | z). This serves as a näıve baseline, as nothing
promotes the generation of a counterfactual.
The Graph of NN from Training counterfac-

tual uses a factual latent code zF and a desired label
yD to pick the closest latent code of graphs in the
training dataset with the desired label. We then let

the original training set graph be the counterfactual
explanation. This method is guaranteed to generate
a valid graph of the desired class. However, the clas-
sifier may not classify this correctly, and thus the
explanatory power of these graphs may be limited.

A more realistic counterfactual method is given
by Decoded Mean of k-NN. Here, given a factual
latent code zF and a desired label yD, we pick the k
closest latent codes of graphs in the training dataset
with the desired label. These latent codes are then
averaged and decoded using the VAE. For this work,
we pick k = 10. We expect this method to generate
counterfactual explanations well within the decision
boundary of the classifier.

As this work is preliminary, and since we investi-
gate whether it is viable to generate counterfactual
explanations based on traversal of a latent space of
a VAE without having to explicitly train it for gen-
erating counterfactual explanations, all the methods
used for comparison are based on the generating
counterfactuals from the latent space of the same
VAE. We will refer to the method outlined in Sec-
tion 2.5 as Classifier Guided Counterfactuals
(CGCF). Source code for running each baseline
will be publicly available at https://github.com/
abildtrup/latent-graph-counterfactuals.

5

https://github.com/abildtrup/latent-graph-counterfactuals
https://github.com/abildtrup/latent-graph-counterfactuals

3.4 Results

Tab. 1 shows a variety of identity preservation and
validity metrics for counterfactual quality, computed
on the test set. A good counterfactual has high va-
lidity, while still maintaining a high degree of iden-
tity preservation of the original input. Note that
the classifier-guided counterfactuals consistently out-
perform the baselines measured via flip-ratio, only
occasionally surpassed by the Decoded Mean of k-
NN on AIDS. Unsurprisingly, the best-performing
method in terms of identity preservation is often just
the Graph of NN from Training method. However,
we also see, that this method consistently performs
poorly in terms of validity, underscoring the fact
that a trade-off is present, and the evaluation of the
method based on the table alone is not sufficient.

Fig. 2 depicts the trade-off between identity preser-
vation (columns) and validity (rows) for each dataset.
The curve is constructed by computing the aver-
age validity score from all samples with an identity
preservation score below a certain threshold, given
by the x-axis. Note that we only compute the av-
erage after having made 10 observations with the
validity below the threshold given by the x-axis be-
fore we compute an average to remove noise. In the
case of the Flip-Ratio this can be interpreted as an
estimate for the probability of the counterfactual
graph having successfully flipped the class of its
factual graph, given that the level of identity preser-
vation is below a certain threshold. We observe that
the classifier-guided counterfactuals achieve trade-
offs competitive with all baselines, and outperform
on NCI1 and Mutagenicity. One should note, that to
make the interpretation of the plots the same (high
values being desirable, and low values being undesire-
able) we consider the negative cosine similarity. The
histograms of Fig. 2 show the distribution of identity
preservation scores of the generated counterfactuals
for each score.

4 Discussion

Classifier Guided CF is robust on all datasets.
On AIDS, the Decoded Mean of k-NN and CGCF

achieve good validity scores, as well as good trade-
offs between identity preservation and validity. How-
ever, only the CGCF proves to be robust across all
datasets considered here. It is worth noting that this
may be because the AIDS dataset contains graphs
with fewer nodes (30) than Mutagenicity (50) and
NCI1 (50). As the dimensionality of our VAE latent
space matches the number of nodes, this could ex-
plain the decrease in performance. Also note that
even though the Graph of NN from Training method
is guaranteed to generate a counterfactual of the de-
sired class, the validity for this method is in general
very low, as it will often generate a graph that will

be misclassified by the classifier. See Appendix A.3
for an illustration of this phenomenon.

Generating counterfactual explanations based
on latent space exploration removes the need
for defining graph distance explicitly. When
producing counterfactual explanations, we generally
want to find a counterfactual graph

GCF = argmin
G

dist(G,GF)

such that C(GF) ̸= C(G) = yD for some notion of
graph distance d and some desired label yD. This
ensures that the counterfactual graph is similar to
the original (factual) graph. However, the choice
of graph distance will always be open and likely
depends heavily on the application at hand. When
counterfactual graphs are generated based on latent
space traversal, we do not have to define an explicit
metric on the graph space. Our method relies on
the distance between latent graph representations,
making it widely usable across different cases.

The method enables the construction of an
arbitrary number of possible explanations.
Our method is probabilistic and models the like-
lihood pθ(G | z). Thus, we can easily sample an
unlimited amount of counterfactual explanations
given some factual graphs.

Limitations. Generating counterfactuals based
on a pre-trained VAE means that the quality of the
method relies heavily on the quality of the generative
model. For instance, if a latent counterfactual is
obtained on the classification boundary in the latent
space far away from any latent training point, then
the sampled counterfactual may not be reasonable.
In this work, we focus on exploring instance-level
explanations. Extending our method to model-level
explanations by exploring general patterns that arise
when moving toward the counterfactual class will
be a subject of future work.

5 Conclusion

We proposed to generate counterfactual explanations
for graph classification using the latent representa-
tion space of a permutation-equivariant VAE. We
find it a promising direction of research to utilize a
preexisting generative model, such as a VAE, to gen-
erate valid counterfactual explanations for graphs
without having to define explicit graph metrics. As
shown by our experiments, the classifier-guided coun-
terfactual explanations provide a robust trade-off
between identity preservation and validity.

6

Acknowledgements

This work was supported in part by the Independent
Research Fund Denmark (grant no. 1032-00349B),
by the Novo Nordisk Foundation through the Center
for Basic Machine Learning Research in Life Science
(grant no. NNF20OC0062606), the Pioneer Cen-
tre for AI, DNRF grant nr P1, the DIREC project
EXPLAIN-ME (9142-00001B), and by the ERC Ad-
vanced grant 786854 on Geometric Statistics.

References

[1] S. L. Simpson, R. G. Lyday, S. Hayasaka, A. P.
Marsh, and P. J. Laurienti. “A permutation
testing framework to compare groups of brain
networks”. en. In: Front. Comput. Neurosci. 7
(Nov. 2013), p. 171.

[2] D. Durante, D. B. Dunson, and J. T. Vogel-
stein. “Nonparametric Bayes modeling of pop-
ulations of networks”. en. In: J. Am. Stat.
Assoc. 112.520 (Oct. 2017), pp. 1516–1530.

[3] A. Calissano, T. Papadopoulo, X. Pennec, and
S. Deslauriers-Gauthier. “Graph alignment ex-
ploiting the spatial organization improves the
similarity of brain networks”. In: Human Brain
Mapping 45.1 (2024), e26554.

[4] X. Guo, A. B. Bal, T. Needham, and A. Sri-
vastava. “Statistical shape analysis of brain
arterial networks (BAN)”. In: The Annals of
Applied Statistics 16.2 (2022), pp. 1130–1150.
doi: 10 . 1214 / 21 - AOAS1536. url: https :
//doi.org/10.1214/21-AOAS1536.

[5] H. Wang and J. S. Marron. “Object oriented
data analysis: Sets of trees”. In: The Annals
of Statistics 35.5 (2007), pp. 1849–1873. doi:
10.1214/009053607000000217. url: https:
//doi.org/10.1214/009053607000000217.

[6] A. Feragen, M. Owen, J. Petersen, M. M. W.
Wille, L. H. Thomsen, A. Dirksen, and M. de
Bruijne. “Tree-space statistics and approxi-
mations for large-scale analysis of anatomical
trees”. en. In: Inf. Process. Med. Imaging 23
(2013), pp. 74–85.

[7] C. von Ferber, T. Holovatch, Y. Holovatch,
and V. Palchykov. “Public transport networks:
empirical analysis and modeling”. en. In: Eur.
Phys. J. B 68.2 (Mar. 2009), pp. 261–275.

[8] A. A. Hansen, A. Calissano, and A. Feragen.
“Interpreting Equivariant Representations”. In:
arXiv preprint arXiv:2401.12588 (2024).

[9] M. Pawelczyk, K. Broelemann, and G. Kas-
neci. “Learning model-agnostic counterfactual
explanations for tabular data”. In: Proceedings
of The Web Conference 2020. New York, NY,
USA: ACM, Apr. 2020.

[10] P. Rodriguez, M. Caccia, A. Lacoste, L. Zam-
paro, I. Laradji, L. Charlin, and D. Vazquez.
“Beyond Trivial Counterfactual Explanations
with Diverse Valuable Explanations”. In:
2021 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, Oct. 2021,
pp. 1036–1045.

[11] S. Verma, V. Boonsanong, M. Hoang, K. E.
Hines, J. P. Dickerson, and C. Shah. “Counter-
factual explanations and algorithmic recourses
for machine learning: A review”. In: arXiv
preprint arXiv:2010.10596 (2020).

[12] M. Kosan, S. Verma, B. Armgaan, K. Pahwa,
A. Singh, S. Medya, and S. Ranu. “GnnX-
Bench: Unravelling the Utility of Perturbation-
based GNN Explainers through In-depth
Benchmarking”. In: The Twelfth International
Conference on Learning Representations. 2023.

[13] M. A. Prado-Romero, B. Prenkaj, G. Stilo,
and F. Giannotti. “A survey on graph coun-
terfactual explanations: definitions, methods,
evaluation, and research challenges”. In: ACM
Computing Surveys (2023).

[14] R. Guidotti, A. Monreale, S. Ruggieri, D. Pe-
dreschi, F. Turini, and F. Giannotti. “Local
rule-based explanations of black box decision
systems”. In: arXiv preprint arXiv:1805.10820
(2018).

[15] S. Dandl, C. Molnar, M. Binder, and B. Bis-
chl. “Multi-objective counterfactual explana-
tions”. In: International Conference on Par-
allel Problem Solving from Nature. Springer.
2020, pp. 448–469.

[16] B. Ustun, A. Spangher, and Y. Liu. “Action-
able recourse in linear classification”. In: Pro-
ceedings of the conference on fairness, account-
ability, and transparency. 2019, pp. 10–19.

[17] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez,
T. De Bie, and P. Flach. “FACE: feasible and
actionable counterfactual explanations”. In:
Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society. 2020, pp. 344–350.

[18] C. Russell. “Efficient search for diverse coher-
ent explanations”. In: Proceedings of the con-
ference on fairness, accountability, and trans-
parency. 2019, pp. 20–28.

[19] R. K. Mothilal, A. Sharma, and C. Tan. “Ex-
plaining machine learning classifiers through
diverse counterfactual explanations”. In: Pro-
ceedings of the 2020 conference on fairness, ac-
countability, and transparency. 2020, pp. 607–
617.

[20] D. Mahajan, C. Tan, and A. Sharma. “Pre-
serving causal constraints in counterfactual
explanations for machine learning classifiers”.
In: arXiv preprint arXiv:1912.03277 (2019).

7

https://doi.org/10.1214/21-AOAS1536
https://doi.org/10.1214/21-AOAS1536
https://doi.org/10.1214/21-AOAS1536
https://doi.org/10.1214/009053607000000217
https://doi.org/10.1214/009053607000000217
https://doi.org/10.1214/009053607000000217

[21] A.-H. Karimi, J. Von Kügelgen, B. Schölkopf,
and I. Valera. “Algorithmic recourse under
imperfect causal knowledge: a probabilistic
approach”. In: Advances in neural information
processing systems 33 (2020), pp. 265–277.

[22] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C.
Tu, P. Ting, K. Shanmugam, and P. Das.
“Explanations based on the missing: Towards
contrastive explanations with pertinent neg-
atives”. In: Advances in neural information
processing systems 31 (2018).

[23] S. Joshi, O. Koyejo, W. Vijitbenjaronk, B.
Kim, and J. Ghosh. “Towards realistic indi-
vidual recourse and actionable explanations in
black-box decision making systems”. In: arXiv
preprint arXiv:1907.09615 (2019).

[24] P. Pegios, A. Feragen, A. A. Hansen, and
G. Arvanitidis. “Counterfactual Explanations
via Riemannian Latent Space Traversal”. In:
arXiv preprint arXiv:2411.02259 (2024).

[25] A.-K. Dombrowski, J. E. Gerken, and P.
Kessel. “Diffeomorphic explanations with nor-
malizing flows”. In: ICML Workshop on In-
vertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models. 2021.

[26] T. D. Duong, Q. Li, and G. Xu. “CeFlow:
A Robust and Efficient Counterfactual Ex-
planation Framework for Tabular Data Using
Normalizing Flows”. In: Pacific-Asia Confer-
ence on Knowledge Discovery and Data Min-
ing. Springer. 2023, pp. 133–144.

[27] G. Jeanneret, L. Simon, and F. Jurie. “Diffu-
sion models for counterfactual explanations”.
In: Proceedings of the Asian Conference on
Computer Vision. 2022, pp. 858–876.

[28] P. Pegios, M. Lin, N. Weng, M. B. S. Svendsen,
Z. Bashir, S. Bigdeli, A. N. Christensen, M.
Tolsgaard, and A. Feragen. “Diffusion-based
Iterative Counterfactual Explanations for Fe-
tal Ultrasound Image Quality Assessment”. In:
arXiv preprint arXiv:2403.08700 (2024).

[29] N. Weng, P. Pegios, E. Petersen, A. Feragen,
and S. Bigdeli. “Fast diffusion-based counter-
factuals for shortcut removal and generation”.
In: European Conference on Computer Vision.
Springer. 2025, pp. 338–357.

[30] J. Chen, S. Wu, A. Gupta, and R. Ying.
“D4Explainer: In-distribution Explanations
of Graph Neural Network via Discrete
Denoising Diffusion”. In: Advances in Neural
Information Processing Systems. Ed. by A.
Oh, T. Neumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine. Vol. 36. Curran
Associates, Inc., 2023, pp. 78964–78986.
url: https : / / proceedings . neurips .

cc / paper _ files / paper / 2023 / file /

f978c8f3b5f399cae464e85f72e28503 -

Paper-Conference.pdf.

[31] Z. Huang, M. Kosan, S. Medya, S. Ranu, and
A. Singh. “Global counterfactual explainer for
graph neural networks”. In: Proceedings of the
Sixteenth ACM International Conference on
Web Search and Data Mining. 2023, pp. 141–
149.

[32] M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang,
P. C.-H. Lam, and Y. Zhang. “Robust coun-
terfactual explanations on graph neural net-
works”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 5644–5655.

[33] J. Ma, R. Guo, S. Mishra, A. Zhang, and J. Li.
“Clear: Generative counterfactual explanations
on graphs”. In: Advances in neural informa-
tion processing systems 35 (2022), pp. 25895–
25907.

[34] D. P. Kingma and M. Welling. “Auto-
Encoding Variational Bayes”. In: (Dec. 2013).
arXiv: 1312.6114v10 [stat.ML].

[35] T. N. Kipf and M. Welling. “Variational Graph
Auto-Encoders”. In: (Nov. 2016). arXiv: 1611.
07308 [stat.ML].

[36] M. Simonovsky and N. Komodakis. “Graph-
VAE: Towards Generation of Small Graphs
Using Variational Autoencoders”. In: Artifi-
cial Neural Networks and Machine Learning –
ICANN 2018. Springer International Publish-
ing, 2018, pp. 412–422.

[37] H. Maron, E. Fetaya, N. Segol, and Y. Lipman.
“On the universality of invariant networks”. In:
International conference on machine learning.
PMLR. 2019, pp. 4363–4371.

[38] H. Pan and R. Kondor. “Permutation Equivari-
ant Layers for Higher Order Interactions”. In:
International Conference on Artificial Intelli-
gence and Statistics. PMLR. 2022, pp. 5987–
6001.

[39] H. Maron, H. Ben-Hamu, N. Shamir, and Y.
Lipman. “Invariant and Equivariant Graph
Networks”. In: International Conference on
Learning Representations. 2018.

[40] T. S. Hy and R. Kondor. “Multiresolution
Graph Variational Autoencoder”. In: arXiv
preprint arXiv:2106.00967 (2021).

[41] M. M. Bronstein, J. Bruna, T. Cohen, and P.
Veličković. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges”. In:
(Apr. 2021). arXiv: 2104.13478 [cs.LG].

8

https://proceedings.neurips.cc/paper_files/paper/2023/file/f978c8f3b5f399cae464e85f72e28503-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f978c8f3b5f399cae464e85f72e28503-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f978c8f3b5f399cae464e85f72e28503-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f978c8f3b5f399cae464e85f72e28503-Paper-Conference.pdf
https://arxiv.org/abs/1312.6114v10
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/2104.13478

[42] E. H. Thiede, T. Hy, and R. Kondor. “The gen-
eral theory of permutation equivarant neural
networks and higher order graph variational
encoders”. In: CoRR abs/2004.03990 (2020).
arXiv: 2004.03990. url: https://arxiv.
org/abs/2004.03990.

[43] I. Higgins, L. Matthey, A. Pal, C. P. Burgess,
X. Glorot, et al. “beta-vae: Learning basic
visual concepts with a constrained variational
framework”. In: ICLR (Poster) (2017).

[44] E. Jang, S. Gu, and B. Poole. “Categorical
Reparameterization with Gumbel-Softmax”.
In: arXiv [stat.ML] (Nov. 2016).

[45] N. Wale, I. A. Watson, and G. Karypis.
“Comparison of descriptor spaces for chem-
ical compound retrieval and classification”.
In: Knowledge and Information Systems 14
(2008), pp. 347–375.

[46] J. Kazius, R. McGuire, and R. Bursi. “Deriva-
tion and validation of toxicophores for muta-
genicity prediction”. In: Journal of medicinal
chemistry 48.1 (2005), pp. 312–320.

[47] K. Riesen and H. Bunke. “IAM graph database
repository for graph based pattern recognition
and machine learning”. In: Structural, Syntac-
tic, and Statistical Pattern Recognition: Joint
IAPR International Workshop, SSPR & SPR
2008, Orlando, USA, December 4-6, 2008. Pro-
ceedings. Springer. 2008, pp. 287–297.

[48] S. Ivanov, S. Sviridov, and E. Burnaev. “Un-
derstanding isomorphism bias in graph data
sets”. In: arXiv preprint arXiv:1910.12091
(2019).

[49] C. Morris, N. M. Kriege, F. Bause, K. Kersting,
P. Mutzel, and M. Neumann. “TUDataset: A
collection of benchmark datasets for learning
with graphs”. In: ICML 2020 Workshop on
Graph Representation Learning and Beyond
(GRL+ 2020). 2020. arXiv: 2007.08663. url:
www.graphlearning.io.

[50] Z. Huang, M. Kosan, S. Medya, S. Ranu, and
A. Singh. “Global Counterfactual Explainer
for Graph Neural Networks”. In: Proceedings
of the Sixteenth ACM International Confer-
ence on Web Search and Data Mining. WSDM
’23. Association for Computing Machinery, Feb.
2023, pp. 141–149.

A Appendix

A.1 Evaluation of auxiliary models.

The success of our suggested method for generating
counterfactual explanations is highly dependent on
the quality of the models considered. The classifier

and the VAE considered in this work are both de-
signed to be permutation invariant and equivariant
respectively.

A.1.1 Classifier

The classifier used for all datasets consists of four
equivariant modules (as described in Section 2.2)
producing node embedding. These are then fol-
lows be an invariant max-pooling operation ensur-
ing the model as a whole is invariant. The embed-
dings obtained after this operation are the graph-
embeddings. Each module has 20 channels. These
graph-embeddings are then passed through a fully
connected neural network with 200 neurons. Note,
that the first module only considers the B and V
matrices, and the output is appended to the A and
E matrices for subsequent processing. The classifier
was trained for 100 epochs using a learning rate
of 0.001, and a batch-size of 64. In Tab. A.2 the
AUROC computed on the test-set is reported for all
classifiers.

A.1.2 Permutation equivariant VAE

The permutation equivariant VAE is designed using
modules similar to the ones used in the classifier.
The encoder consists of 4 equivariant modules (as
described in Section 2.2) each of which deals with
20 channels. Again, the first module only considers
the B and V matrices. The last layer is divided
into two parts which outputs the mean and the log
variance of the approximate posterior respectively.
The decoder is comprised of four separate decoders;
one for B,V,A and E respectively. The decoders
B and V consists of one equivariant module each,
where the decoders for A and E consists of two
modules. In Tab. A.2 the losses relevant for the
VAE are reported. All values are computed on the
test-set.

For the PEGVAE trained on the Aids dataset a
learning rate of 0.001 was used, along a learning rate
scheduler configured to halfing the learning rate if
the validation loss had not improved for 150 epochs.
In total training ran for 2000 epochs. For the trade-
off between the KL-loss and the reconstruction loss
β = 0.1 was chosen. Additionally, to avoid posterior
collapse, the β was increased gradually during a
burn-in period. For the NCI1 and Mutagenicity
datasets a similar training setup was employed with
the sole change that we set β = 0.5.

Table A.1. Dataset statistics after pre-processing.

Dataset #Graphs Maximum #Nodes #Node Attributes #Edge Attributes

AIDS 1635 30 9 3
MUTAGENICITY 3935 50 10 3

NCI1 3678 50 10 ✗

9

https://arxiv.org/abs/2004.03990
https://arxiv.org/abs/2004.03990
https://arxiv.org/abs/2004.03990
https://arxiv.org/abs/2007.08663
www.graphlearning.io

Table A.2. Performance of auxiliary models.

KL - PEGVAE Reconstruction Error - PEGVAE ELBO - PEGVAE AUROC - Classifier

AIDS 31.21 48.04 79.91 0.99
Mutagenicity 40.82 166.52 207.35 0.82

NCI1 34.19 192.88 226.48 0.79

Figure A.1. Illustration of how generating counter-
factual explanations based on the nearest neighbor can
produce low validity.

A.2 Hyperparameter Selection for
Genration of Counterfactuals

For the Classifier Guided CF method optimization
was done using an Adam optimizer with a learning
rate of 0.05 for 1 000 iterations and λ = 1 used
for regularization. The hyperparameter τ used for
the Gumbel-Softmax was also set to 1. This pa-
rameter determines how close an approximation the
Gumbel-Softmax is to the desired discrete, categor-
ical distribution as opposed to a uniform distribu-
tion assigning equal probability mass to all classes.
For the Decoded Mean of k-NN method, we choose
k = 10.

A.3 Illustration of Nearest Neighbor
Graph Counterfactual with Low
Validity

In figure A.1 we illustrate intuitively how producing
counterfactual explanations based on the Graph of
NN from Training method can produce low validity
scores even though, the counterfactuals produced
are guaranteed to be from the opposite class. In
the depicted examples graphs are considered divided
into two classes: Triangles and squares, and these
two classes are almost perfectly separated by the
classification boundary, with only one square being
classified as a triangle. However, since the repre-
sentation which we have obtained through the VAE
to a large degree clusters latent codes of the same
type, this single misclassified graph will be chosen

as the nearest neighbor for several of the triangles,
which in turn will also be misclassified. As such a
single misclassified graph can have a disproportion-
ate impact on the validity score. Note that this is
a thought up example and serves only to illustrate
the low performance on validity for this method.

10

	Introduction
	Background

	Method
	Graph Representation
	Invariance and Equivariance to Permutation
	PEGVAE
	Classifier Design
	Generating Counterfactuals via Latent Space Traversal

	Experiments
	Data
	Evaluation Metrics
	Baselines
	Results

	Discussion
	Conclusion
	Appendix
	Evaluation of auxiliary models.
	Classifier
	Permutation equivariant VAE

	Hyperparameter Selection for Genration of Counterfactuals
	Illustration of Nearest Neighbor Graph Counterfactual with Low Validity

