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ABSTRACT

We introduce a novel task of generating realistic and diverse 3D hand trajectories
given a single image of an object, which could be involved in a hand-object in-
teraction scene or pictured by itself. When humans grasp an object, appropriate
trajectories naturally form in our minds to use it for specific tasks. Hand-object
interaction trajectory priors can greatly benefit applications in robotics, embodied
AI, augmented reality and related fields. However, synthesizing realistic and ap-
propriate hand trajectories given a single object or hand-object interaction image
is a highly ambiguous task, requiring to correctly identify the object of interest and
possibly even the correct interaction among many possible alternatives. To tackle
this challenging problem, we propose the SIGHT-Fusion system, consisting of a
curated pipeline for extracting visual features of hand-object interaction details
from egocentric videos involving object manipulation, and a diffusion-based con-
ditional motion generation model processing the extracted features. We train our
method given video data with corresponding hand trajectory annotations, without
supervision in the form of action labels. For the evaluation, we establish bench-
marks utilizing the first-person FPHAB and HOI4D datasets, testing our method
against various baselines and using multiple metrics. We also introduce task sim-
ulators for executing the generated hand trajectories and reporting task success
rates as an additional metric. Experiments show that our method generates more
appropriate and diverse hand trajectories than baselines and presents promising
generalization capability on unseen objects. The accuracy of the generated hand
trajectories is confirmed in a physics simulation setting, showcasing the authen-
ticity of the created sequences and their applicability in downstream uses.

1 INTRODUCTION

As our hand grasps an object, we immediately plan out potential maneuvers to manipulate it for our
intentions. Consider pouring some juice from a bottle into a cup – it can be as straightforward as ro-
tating your wrist. At a granular level, it requires a continuous adjustment of the hand translation and
orientation to transfer exactly the desired amount of liquid into the target receptacle. Humans’ hand
motion planning systems are remarkably robust in adapting to unseen objects, emulating movements
observed from others, and devising paths from visual cues alone. Robotic agents and AI systems
alike could benefit immensely from a similar ability to synthesize 3D hand trajectories from an image
depicting a hand-object interaction scenario, be it to anticipate human behavior, generate realistic
animations, or interact with the physical world. Following this realization, we wish to investigate
the generation of high-quality hand trajectories from visual representations of objects.

In this paper, we propose the new task of Single-Image Conditioned Generation of Hand Trajectories
(SIGHT). Given a single first-person image showing a hand interacting with an object, our goal is to
generate plausible and diverse 3D hand trajectories that meaningfully complete the action initiated
in the image. Additionally, we explore the generation of appropriate interaction trajectories from
standalone images of previously unseen objects without a hand manipulating the object.

0We will release our code, benchmark, and results to the public.
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Image-Conditioned Hand Trajectories

Figure 1: Task description. Given an input image showing an object, either being interacted with
by a hand or pictured by itself, we propose the novel SIGHT task, requiring the generation of task-
adequate, diverse, and realistic hand sequences mapping out possible trajectories of the hand when
interacting with the object as shown. The task has applications in robotics, character animation, and
human intent prediction, among others.

Previous studies on hand-object interactions concentrate on detecting and segmenting (Darkhalil
et al. (2022); Zhang et al. (2022a)) pairs of hands and objects interacting within images, or aim
to reconstruct the 3D models of objects and the hands interacting with them from images (Hasson
et al. (2019); Ye et al. (2022)) or videos (Fan et al. (2024); Ye et al. (2023a)), but do not generate
trajectories. Furthermore, the field of human motion generation has hitherto focused on whole-body
motion synthesis (Guo et al. (2022; 2020b); Tevet et al. (2022)), with little attention paid to syn-
thesizing realistic, task-appropriate and interactive hand motions. The conditional information in
previous whole-body motion synthesis work is restricted to either action labels or textual descrip-
tions of motions, inconveniently requiring manual text annotations or action descriptions alongside
the motion data. In contrast, our main focus is on generating dynamic 3D hand trajectories from a
single static image. We utilize an underexplored and more easily affordable form of conditioning
motion generation models to generate motions for an important yet neglected facet of human mo-
tion. Our aim is to reduce the amount of conditional information provided, restricting it solely to
the static hand-object interaction or standalone object portrayed in the input image. Diverging from
prior hand-object interaction tasks, the new proposed task, SIGHT, has a more generic but challeng-
ing setup, considering the multitude of possible hand-object interactions and the minimal guidance
information provided.

SIGHT comes with several challenges. When generating trajectories from first-person hand-object
interaction images, the initial step in addressing this task is to detect the interacting hand and object,
as images captured from a real-world first-person perspective often exhibit significant clutter in the
background. Moreover, generating future hand trajectories from images capturing static moments of
interaction involves disambiguating the intended action, with objects often having multiple possible
uses corresponding to different hand trajectories. The points of contact between the hand and the
object play a key role in differentiating between similar actions, although hand and object often
occlude each other in the images. Further, synthesizing sequences of hand trajectories necessitates
the generation of smooth, natural and anatomically plausible motions that lead to the successful
completion of the initiated actions for contacted objects. Finally, an interaction trajectory generation
system integrated into the real world must operate robustly even when presented with previously
unseen objects, complicating the inferral of object-appropriate trajectories.

We present SIGHT-Fusion to address these challenges. Our key insight is in the meaningful iden-
tification of the contacted object in presence of distracting information in the input image’s back-
ground so as to maximally disambiguate the conditioning of the motion generator. Further, we find
that egocentric videos of people interacting with diverse objects can serve as an effective source of
training data for reasoning about interaction trajectories fitting previously unseen object instances.
The effective use of visual hand-object interaction features enables our model to infer the underlying
intentions and generate realistic hand trajectories for the intended interactions depicted in a single
image. More specifically, we propose SIGHT-Fusion, a conditional motion generation diffusion
model that learns to generate realistic and diverse 3D hand trajectories. The extracted hand-object
interaction features are used as the conditional input. Through training, SIGHT-Fusion learns the
distribution of possible hand movements given a static interaction moment and acquires the ability
to distinguish between potential plausible motion sequences by leveraging fine-grained details con-
tained in the contact regions. Using a general-purpose vision foundation models for the extraction
of object features, SIGHT-Fusion effectively generalize to object instances not seen during training.
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We set up comprehensive baselines and metrics utilizing the FPHAB (Garcia-Hernando et al. (2018))
and HOI4D (Liu et al. (2022)) datasets for the newly proposed SIGHT task. Extensive experiments
show that SIGHT-Fusion is able to generate more natural and diverse hand trajectories than base-
lines. We also observe promising potentials for our learned system to generalize to unseen object
instances. We further introduce a task-oriented metric to execute the generated hand trajectories
in physical simulation and evaluate if they could lead to successful task execution. Results show
that our method is able to produce trajectories that can accomplish downstream tasks successfully.
Lastly, we empirically validate system designs including the usefulness of various feature types in
improving the quality of our result.

In summary, the contributions in this paper are as follows: 1) We introduce a novel task of generating
3D hand trajectories given a single image of an object, in the two settings of either being depicted
by itself or being interacted with by a human hand. 2) We set up comprehensive benchmarks for
the new task, including various baselines and metrics. We further propose a task success rate met-
ric for evaluation using physical simulation. 3) We develop SIGHT-Fusion to tackle the proposed
problem with a novel pipeline to extract hand-object interaction features from the single image input
and a conditional diffusion-based hand trajectory generative model. 4) Experiments show superior
performance compared with baselines and ablated versions of our system.

2 RELATED WORK

The field of learning hand-object interactions, particularly in first-person videos, has seen growing
interest. We briefly discuss existing methods for hand-object interaction segmentation, 3D hand
reconstruction, and motion generation.

Hand-Object interaction segmentation. Advancing the domain of interaction detection, Shan et
al. (Shan et al. (2020)) introduce a method based on Faster-RCNN (Ren et al. (2015)) to detect
hands and objects from RGB images, utilizing RoI features for predicting hand sides, bounding
boxes, and contact states. EgoHOS (Zhang et al. (2022a)), adopting a similar framework, enhances
the methodology by training on diverse first-person datasets and adding the capability to predict
the contact boundary between hands and objects. In a different approach, COHESIV (Shan et al.
(2021)) generates detailed pixel-wise features, enabling the segmentation of images into classes of
people, objects, and backgrounds. This segmentation process is augmented by a user-defined query
point on the visible hand, utilizing optical flow and regressed hand poses to improve accuracy.

Whole-Body motion generation. Recent work in motion generation has relied heavily on Vari-
ational Auto Encoders (VAE) and Diffusion models. Studies have explored conditional genera-
tion using text (Karunratanakul et al. (2023); Kim et al. (2023); Tevet et al. (2023); Zhang et al.
(2022b)), audio (Yi et al. (2023)), both (Dabral et al. (2023); Zhou & Wang (2022)) and categorical
actions (Zhao et al. (2023)). Tevet et al. (Tevet et al. (2023)) expand upon previous work (Kim et al.
(2023); Zhang et al. (2022b)) by introducing a classifier-free diffusion model MDM for text-driven
full-body human motion generation. Other works such as (Diomataris et al. (2024)) also generate
full-body human motions using c-VAEs. GMD (Karunratanakul et al. (2023)) further enhances it
by adding spatial constraints. Most works such as (Petrovich et al. (2022b)) use VAE’s to generate
diverse SMPL body shapes from texts, while others (Yi et al. (2023); Zhang et al. (2023)) use a
Vector Quantised VAE (VQ-VAE) to generate human poses from text and speech respectively. A
hybrid approach combining VAEs and diffusion models by (Chen et al. (2023)) de-noise conditional
latent vectors and decode them to produce human body poses.

Hand motion generation. A novel two-step method is introduced in Ye et al. (2023b) for synthe-
sizing hand-object interaction images from a single RGB image of an object using diffusion models.
This method, however, generates static snapshots rather than a continuous motion. Other works
such as HMP (Duran et al. (2023)) try to generate 3d hand poses even if the hand is occluded. All of
these approaches have the disadvantage that they generate snapshots rather than full motions which
is what has been done for full body movements. Bao et al. (2023) tries to predict hand movement
for a VR/AR setting however it only predicts the general motion and not the precise movement of
individual joints. AI often has problems with generating accurate and precise hands, which is often
used as a telltale sign to differentiate actual images from generated ones.
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Figure 2: Method description. Given the input image, we first use a hand-object interaction detec-
tion system to locate the interacted object and hand, after which we extract object and part features
from the image. The features are forwarded to a diffusion-based motion generator, which produces
task-appropriate and realistic hand trajectories.

Motion in simulator. Manipulation tasks using hands inside a physical environment is a challenging
as integrating forces such as gravity and current velocity of an object can render seemingly good
trajectories bad. When considering the task of pouring juice into a glass moving the juice bottle
with to much speed quickly leads to liquids spilling in all directions. Work in this area uses methods
such as RL learning (Rajeswaran et al. (2018)) to generate 3D realistic motions. Some prior works
explored using physical simulators to evaluate the stability of synthesized grasps (Yang et al. (2021);
Wang et al. (2024)), considering only a static scenario. However, to the best of our knowledge, there
have not been any papers where the authors try to evaluate the physical realism of their generated
trajectory with a physical simulator.

3 METHOD

In this section, we start by formulating the SIGHT task (Section 3.1). We then detail our feature
extraction method (Section 3.2), which is used to obtain conditioning inputs for training and syn-
thesizing hand trajectories with our motion generation model SIGHT-Fusion. Finally, we describe
our model design for generating accurate, diverse, and realistic hand trajectories (Section 3.3). Our
feature extraction method and model are visualized in Figure 2.

3.1 TASK DEFINITION

We consider two variations of our task: in our first setup, the input I to the hand motion generator
M is a first-person image showing a hand enacting a certain action on an interacted object, such
as opening or pouring out a bottle. In our second setup, I consists of a close-up image showing
an object without an interacting hand. For both cases, the expected output is a sequence of hand
poses H1:f = H1, . . . ,Hf , where f is a predefined number of frames. Each Hi corresponds to
a representation of a 3D human hand for a single timestep. Our work represents the Hi using
SMPL-X (Pavlakos et al. (2019)) and reasons about the right hand, in concordance with the almost
exclusively right-handed object interactions seen in most publically available video datasets.

3.2 EXTRACTING ACTION-INFORMATIVE FEATURES

Given an input image, the SIGHT task requires extracting highly informative visual features to guide
the motion synthesis. When generating hand trajectories from images depicting hand-object inter-
action scenarios, correctly identifying the object of interest in the input frame presents a challenge
due to background clutter and occlusion caused by the hand. The synthesis of a correct motion is
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even more difficult when generating trajectories from images of standalone objects not including
manipulating hands, as no interaction cues are given.

Object features. We first use VISOR-HOS (Darkhalil et al. (2022)) to detect interacted objects O
in the input images I, and then crop to the bounding box of O before extracting visual features. See
the Supp. Mat. for details about the training of VISOR-HOS. The visual object features are obtained
using CLIP (Radford et al. (2021)) to leverage the generalizability of foundation model features,
helping us reason about objects not seen during training.

Part features. Furthermore, we investigate providing the motion generator with additional con-
ditioning information in the form of features local to the contact point between the hand with the
object. We extract features from high-level CLIP 2D feature grids and use them as part features. Our
hypothesis is that part features help to disambiguate different actions that are associated to different
object parts. We begin by dilating the HOS hand mask and intersecting the dilated mask with the
HOS object mask. The resulting mask is then cropped to the region of O and resized to match the
dimension of the 2D CLIP feature grid. An average feature vector is computed by taking the mean
of all grid patches within the resized mask region. This vector is linearly projected to the input
dimension of our Transformer (Vaswani et al. (2017))-based motion generator and prepended to the
input motion sequence.

3.3 LEARNING TO GENERATE HAND TRAJECTORIES

Denoising diffusion models, originally proposed for image synthesis (Rombach et al. (2022); Sa-
haria et al. (2022)), have been successfully adapted to whole-body human motion generation (Tevet
et al. (2022); Karunratanakul et al. (2023); Yuan et al. (2023)). These models surpass traditional
methods based on GANs (Barsoum et al. (2018); Guo et al. (2020b)) and VAEs (Petrovich et al.
(2021; 2022a)) by delivering superior quality and diversity in generated motions. Given the shared
requirement of reasoning about temporal sequences of joints, we adapt the state-of-the-art Human
Motion Diffusion Model (MDM) (Tevet et al. (2022)) for the SIGHT task of 3D hand trajectory
generation. Originally, MDM synthesizes whole-body human motions from text inputs or learned
embeddings encoding action labels. The motion synthesis process for a sequence of N frames, rep-
resented by J joints with R features each, starts with a randomly sampled latent code xT ∼ N (0, I)
where xi ∈ RN×J×R ∀i ∈ {1, ..., N}, and uses a transformer G to iteratively diffuse the final
motion x0 in T steps.

We employ a Transformer encoder model to iteratively diffuse the synthesized motion, starting from
Gaussian noise. During each diffusion iteration, the Transformer receives as input the conditioning
information contained in the initial tokens, followed by tokens representing the motion sequence
from the previous diffusion step, or Gaussian noise for the initial step (see Figure 2). Our work does
not consider the prediction of manipulation trajectories for multiple objects being manipulated by
the actor simultaneously, as this is a highly specific setup with little publicly available data.

We repurpose MDM for hand trajectory generation by replacing the original whole-body kinematic
tree with the representation of the right hand used by OpenPose (Cao et al. (2017)) and SMPL-X
(Pavlakos et al. (2019)), yielding J = 17 joints. We also replace the original textual encoder used for
conditioning inputs with CLIP’s visual encoder. We maintain the 6-dimensional pose representation
used by MDM to encode motions, i.e. R = 6, as suggested by (Zhou et al. (2019)).

To train our motion generator, we adapt the simple position and velocity losses from Tevet et al.
(2022) while dropping the foot contact loss. Specifically, let c be the conditioning information, FK
be a forward kinematics function reconstructing 3D hand joints from 6D pose representations, r and
r̂ be the original and reconstructed 6D pose representations, and xi

t be the full pose representation at
diffusion step t ∈ {1, ..., T} for frame i ∈ {1, ..., N}. During every diffusion step t, we concatenate
the input conditioning information c with xt to form the input of G, which is trained to predict the
final motion sequence from this condition-augmented intermediate representation. Our optimized
loss term L hence consists of:

L = Lsimple + λposLpos + λvelocityLvelocity, (1)

where
Lsimple = Ex0∼q(x0|c),t∼[1,T ]

[
∥x0 − G(xt, t, c)∥22

]
,
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Lpos = ∥FK(r)− FK(r̂)∥22,

Lvelocity =
1

N − 1

N−1∑
i=1

∥(xi+1
0 − xi

0)− (x̂i+1
0 − x̂i

0)∥22.

4 EXPERIMENTS

We demonstrate the effectiveness and generality of our proposed SIGHT-Fusion on a diverse set of
in-the-wild egocentric videos. We first introduce the experimental setup in Section 4.1. Next, we
show the quantitative and qualitative evaluation results of the generated hand trajectories in Sec-
tion 4.2, and highlight the model’s ability to generalize to unseen objects in Section 4.4. Lastly, we
evaluate the generated hand trajectories in a physics simulator, demonstrating the physical realism
of the generated motion sequences (Section 4.6).

4.1 DATASETS

To establish a comprehensive evaluation for our newly introduced task, we adapt two first-person
video datasets for our benchmark. We also introduce new dataset splits to test adaptability to unseen
scene backgrounds and new object instances.

FPHAB (Garcia-Hernando et al. (2018)) The FPHAB dataset contains first-person videos captur-
ing 45 activities (defined as action-object pairs, e.g. stir cup), involving 26 objects. Each activity is
recorded multiple times by six different subjects, all using their right hands. Motion-captured hand
poses are provided together with the video data. Following the human motion generation literature,
we first merge all actions of the same verb, disregarding the corresponding objects (to be elaborated
in Sec. 4.2). We further eliminate videos without any object manipulation, such as those where a
simple handshake is performed. We note that most of the frames in FPHAB contain hand-object
interactions and pure object frames without occlusions are rare to find.

Preprocessing. Notably, the hands of all subjects in FPHAB exhibit significant occlusion due to
motion capture markers, which leads to a performance deterioration of the off-the-shelf hand-object
interaction detector used in our pipeline (Darkhalil et al. (2022)). To address this issue, we inpaint
away these markers using a video inpainting method (Li et al. (2022)) prior to processing the dataset.
Please refer to Supp. Mat. for detailed evaluation and visualizations.

Data split. We use the cross-subject split proposed in the original work, with subjects 1, 3 and 4
used for training, and the three others used for testing. As all actions, object categories and object
instances appear in both the training and test sets, this original FPHAB split poses a simple test
verifying the generalizability of models to novel views of object instances and actions already seen
in the training set. However, the high number of objects and the association of multiple actions with
the same object category make inferring the correct action to synthesize appropriate hand trajectories
particularly challenging for this dataset.

HOI4D (Liu et al. (2022)) The HOI4D dataset consists of first-person videos of hands interact-
ing with everyday objects from 16 categories. The number of object instances varies within each
category, ranging from 31 to 47, and the action tasks associated with these objects vary between 2
to 6 per category. Altogether, the dataset defines 31 action tasks. As many tasks are highly similar
to each other or only involve a displacement of the object, we merge/rename certain tasks and drop
others to extract 13 actions from the original 31 tasks. Details of this grouping are provided in the
Supp. Mat. As no public data split is available for HOI4D, we define our own splits with the aim of
testing several dimensions of the generalizability for methods addressing the SIGHT task.

Instance split. For each object category and each action, there exist videos of at least 2 different
object instances in HOI4D. This lends itself well to grouping the videos corresponding to different
object instances of the same category and showing the same action being enacted. We then split
each group into one subgroup with instances to use only for the training set, and another subgroup
with instances to use only for the test set. Our proposed instance split thus allows a meaningful
evaluation of cross-instance action knowledge transfer. Simultaneously, more advanced reasoning is
required for successful cross-instance transfer, as object instances in the test set may look different
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from those seen during training. Unlike in FPHAB, the videos in HOI4D do not start with the
manipulated object already in hand. We thus construct the test frames for the instance split by
cropping the first video frame to the yet ungrasped object of interest. Altogether, the instance split
allows us to evaluate the setting of generating 3D hand trajectories for an unseen object, without
interaction cues provided by the presence of a hand in the image. A detailed description of the
proposed instance split is provided in the Supp. Mat.

Location split. We further wish to investigate generalization ability for hand-object interaction
scenes explicitly featuring hands in view. Since the HOI4D videos feature objects recorded at dis-
tinctive locations associated with specific actions, the background becomes more visible in the input
image when expanding to a larger region to include the hand into the input image. We hence de-
sign the location split by dividing the HOI4D videos into training and test sets according to their
recording location, i.e. the environment. Doing so reduces the possibility of data leakage through
the image’s background. The location split hence provides an evaluation for the scenario of encoun-
tering both seen and novel objects in environments that are unseen during training.

In-contact frame selection. When constructing the test sets of our datasets in scenarios where the
object and hand are in contact, we use VISOR (Darkhalil et al. (2022)) to detect the frame where the
actor’s hand first contacts any object in each video. We then manually verify that the actor is indeed
contacting the desired object. If necessary, we select a later frame that shows actual contact with
the desired object. This manual adaptation is needed for only a few videos and is done to ensure the
reliability of the test data used for evaluating methods.

4.2 EVALUATION OF GENERATED HAND TRAJECTORIES

Evaluation metrics. Following the combination of metrics that are commonly used in the human
motion generation literature (Guo et al. (2020b); Tevet et al. (2022)), we measure a method’s success
on our task based on the accuracy, diversity, and fidelity to ground-truth of its generated trajectories.

• Accuracy (ACC): Given that each generated hand trajectory is supposed to depict a
specific action, we use the accuracy of an action classifier working on hand trajectories
to measure the accuracy of the trajectories produced by a motion generation method M.
This formulation encourages the development of methods adept at matching their output
trajectories to the hand-object interaction in the image given visual information alone, with
no explicit knowledge of the desired output action.

• Diversity (DIV): The diversity of M ’s outputs is calculated through the Fréchet Inception
distances (FIDs) (Heusel et al. (2017)) between action classifier features extracted from
generated (gen.) and ground-truth (GT) motion groups. The diversity of the generated
trajectories corresponds to the FID of one half of a trajectory group to the other half. It is
desirable in moderation: too little diversity corresponds to a method simply (re-)producing
a few learned trajectories, while too much results in the hand trajectories becoming erratic.
Hence, a diversity score close to that of the GT trajectories is desirable.

• Fidelity (FID): The fidelity of hand trajectories generated by M is calculated through the
Fréchet Inception distances, similar to the diversity metric. Lower FIDs between generated
and ground-truth sequences translate to a motion generation method producing trajectories
more similar in distribution to real reference trajectories.

Implementation details. For each run, consistent with the human motion generation literature (Guo
et al. (2022; 2020a); Tevet et al. (2022)), we select the checkpoint achieving the lowest FID metric on
the test set, so as to produce the trajectories most similar to the test set trajectories. Hyperparameters
are provided in Supp. Mat.

Baselines. We compare our method against several strong baselines. As the proposed SIGHT task
is novel and no existing approach is suitable for solving the task, we adapt state-of-the-art baselines
from the whole-body motion generation literature. We evaluate both image-conditioned and text-
conditioned setups. The image conditioning features are produced as described in Sec. 3.2. The text
conditioning is obtained by prompting LLaVa (Liu et al. (2023)), a state-of-the-art visual question
answering model, with the question “What is the hand in the image doing?” given the input image
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Figure 3: Examples of generated trajectories. We visualize hand trajectories generated by our P
method when conditioned on the given input images. We further visualize the inferred object regions
(blue), as well as part regions (cyan) from which part features are calculated.

"The hand is
holding a red book

and is about to
open it."

BaselineOurs

Figure 4: Comparison with text-based baseline. We visualize the input image, the inferred object
(blue) and part (cyan) regions, the corresponding trajectory generated by our P model in the upper
row, as well as the VLM prompt output and the corresponding generated trajectory in the lower row.
Contrary to the baseline, Our method directly leverages visual features and produces an adequate
trajectory by avoiding translation errors from the VLM (see Sec. 4.2).

cropped to the region of the manipulating hand and object. This text extraction helps mimic setups
where we do not have access to ground-truth action annotations, as otherwise the synthesis task
becomes trivial.

To evaluate the usefulness of our object and part features, we compare against an image-based
version of MDM processing uncropped frames, which we call MDM-I. We further compare against
the text-based version of MDM (MDM-T) and the text-based work of Guo et al. (2022), herein called
T2M-T. See Supp. Mat. for details.

4.3 COMPARISON WITH STATE-OF-THE-ART

The evaluation results in Table 1 validate our hypothesis that conditioning on the interacted object
leads to more appropriate trajectories, as evidenced by the increase in accuracy when visual features
are used as input. The VLM-based image-to-text translation process is noisy and results in an inferior
accuracy of the text-based methods, as also illustrated in the example comparison between T2M-T
and our method in Fig. 4. This highlights the usefulness of visual input features for motion synthesis.

Compared to the evaluated baselines, our method is able to achieve significantly better performance
in both accuracy and FID scores on the FPHAB dataset and accuracy on the HOI4D location split.
We further achieve compatible results for the diversity on the HOI4D location split. We observe that
image features lead to better trajectory generation evaluated on both accuracy and FID. Compared
to object features, part features lead to better accuracy on both datasets. Examples of trajectories
generated by our models are visualized in Figure 3. We encourage our readers to check the various
video examples of generated hand trajectories included in the Supp. Mat.

4.4 GENERALIZABILITY TO UNSEEN OBJECTS

To test how well our model generalizes across different object instances, we evaluate on the HOI4D
instance split and compare our model with the MDM-I baseline. Results in Table 2 show that our
method outperforms the baseline in terms of all three metrics. By using object-centered visual
features, we are able to generalize better to unseen object instances.
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Method FPHAB (subject) HOI4D (location)

ACC ↑ DIV → FID ↓ ACC ↑ DIV → FID ↓
Real 1.000 6.300 0.000 1.000 5.393 0.000
T2M-T, Guo et al. (2022) 0.124±0.011 6.258±0.070 0.809±0.078 0.730±0.022 5.348 ± 0.179 1.851±0.360
MDM-T, Tevet et al. (2022) 0.284±0.016 6.545±0.087 0.818±0.058 0.771±0.025 5.680±0.280 1.050±0.015
MDM-I, Tevet et al. (2022) 0.358±0.008 6.417±0.076 0.826±0.028 0.855±0.018 5.577±0.197 1.138±0.018
Ours, obj. 0.413±0.009 6.546±0.091 0.764±0.001 0.854±0.011 5.454±0.151 1.396±0.079
Ours, part 0.417±0.017 6.494±0.086 0.805±0.054 0.885±0.011 5.518±0.162 1.436±0.164

Table 1: Comparison with the state-of-the-art methods. We compare our model SIGHT-Fusion
with two other SOTA baselines and evaluate the generated hand trajectories on both FPHAB and
HOI4D datasets. Note that here we use the location split of the HOI4D dataset. → indicates that
values closer to “Real” are better. We observe that our method outperforms the baselines in both
ACC and FID metrics on the FPHAB dataset and achieves compatible results on the HOI4D location
split. The results show that image features lead to better-generated trajectories in terms of ACC and
FID and the use of part features yields better outcomes compared to object features. The best
performance is highlighted in bold, while the second-best performance is underlined.

4.5 DISAMBIGUATION OF ACTION BY PART FEATURES

To evaluate whether and how part features can help to disambiguate different actions and affordance,
we conduct an experiment considering objects from the FPHAB dataset with multiple possible ac-
tions. These objects include juice bottle, milk bottle and liquid soap, and all of them are presented
with the actions open, close, and pour in the dataset. Table 3 shows an increased accuracy (ACC)
when using part features as conditioning information to the motion generator. This confirms our
intuition that features from the object part help disambiguate the type of action to synthesize for
multi-action objects. Note that we consider the DIV and FID metrics less relevant here due to the
purpose of the experiment, yet report them for completeness.

Cond. HOI4D (instance)

ACC ↑ DIV → FID ↓
Real 1.000 5.814 0.000
MDM-I 0.734±0.011 5.547±0.156 1.380±0.081
Ours, obj. 0.909±0.006 5.780±0.120 0.624±0.050

Table 2: Generalizability to unseen objects.
We evaluate generalization ability to unseen ob-
ject instances on the HOI4D instance split and
compare our model with the SOTA baseline
MDM conditioned on image input. Our method
outperforms the compared baseline on all met-
rics.

Cond. FPHAB (subject)

ACC ↑ DIV → FID ↓
Real 1.0 6.181 0.00
Ours, obj. 0.359±0.016 6.226±0.147 2.938±0.149
Ours, part 0.450±0.022 6.064±0.114 3.386±0.226

Table 3: Disambiguation by part features. We
single out 3 objects with multiple affordances (juice
bottle, milk bottle, salt), and evaluate the perfor-
mance of our part P and object O models. The re-
sults show a clear increase in accuracy when using
part features and indicate that actions are strongly
related to object parts, and hence part features help
to disambiguate the particular action.

4.6 EVALUATION OF PHYSICAL PLAUSIBILITY IN SIMULATOR

As an additional evaluation of the physical realism and downstream usefulness of our generated
trajectories, we design environments simulating the actions found in FPHAB using the MuJoCo
simulator, introduced in Todorov et al. (2012).

Setup. We condition our P model on images from the FPHAB test set, then retarget the generated
human hand trajectories to a robotic hand according to Qin et al. (2021) to simulate corresponding
object interactions and evaluate their success rates when executing the intended action. Specifically,
we consider a total of four action-object combinations, referred to as tasks: pour liquid soap, put
salt, pour milk, and pour juice. All evaluations of the generated trajectories start with the hand
already grasping the object. The manipulated objects are initialized with several hundred particles
inside. See the Supp. Mat. for details regarding the grasp initialization and trajectory retargeting.
Visualizations of our environments are provided in Figure 5. Readers are further encouraged to
consult the Supp. Mat. for videos of retargeted trajectories being enacted in the simulator.
Hit rate. For the pour juice and pour milk tasks, we simulate 280 resp. 480 spherical particles inside
the opened juice/milk, and count how many particles landed inside a nearby cup out of all particles

9
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(a) pour liq. soap (b) put salt (c) pour milk (d) pour juice

Figure 5: Evaluating generated trajectories in a simulator. We follow Qin et al. (2021) to retarget
hand trajectories generated by our method to the robotic Adroit hand in the MuJoCo simulator. Af-
terwards, we evaluate the success rate of these trajectories in environments simulating the respective
actions and objects. Four of our example environments are visualized here for the pour liquid soap,
put salt, pour milk, and pour juice tasks.

that left the container while executing the retargeted trajectory. We call this metric the hit rate.
These two tasks require the hand to rotate the juice/milk in a controlled manner, as otherwise, the
liquid will immediately spill onto the floor. The receptacle (cup) slowly moves below the opening
of the container (milk/juice) to catch falling particles, just as a second hand would move it during
a pouring action. The pour soap and put salt tasks are similar in that a sponge resp. loaf of toast is
following the container to catch emerging particles (200 for both tasks initially) whenever the salt
resp. soap is shaken. Here, we again calculate the ratio of how many particles hit the receptacle out
of all particles that left the container.

Object Juice Milk Salt Soap

% hit, GT 78.1 64.1 48.0 64.7
% hit, MDM-I 61.6 58.6 54.1 60.5
% hit, MDM-T 52.2 56.3 62.8 55.1
% hit, ours 84.4 65.6 54.6 60.1

Table 4: Hit rates of generated trajectories. We retarget
the trajectories to a robotic hand and attempt to execute the
action in MuJoCo. The favorable hit rates validate the phys-
ical realism of our generated trajectories and of our model’s
inference capabilities given respective features.

Results. We report our P method’s
hit rates for the different tasks in
Table 4, and compare them to the
hit rates obtained when executing re-
targeted ground-truth trajectories, as
well as trajectories generated by the
MDM-I and MDM-T baselines. Our
method outperforms all settings for
the pour juice and pour milk tasks
and is approximately on par with the
best hit rate, obtained by MDM-I, on
the pour liquid soap task. We are
only outperformed on the pour salt
task by the MDM-T method. Note
that since the FPHAB dataset con-

tains manipulations with already empty objects, it is possible for generated trajectories to outperform
the ground-truth ones due to being better aligned with the shape of the objects. When designing the
objects in the simulator, we did not optimize for our method’s hit rate, and instead tried to imitate
the original object shape as closely as possible.

5 CONCLUSION

In this work, we introduce the novel task of generating natural and diverse hand trajectories con-
ditioned on single image inputs for hand-object interaction. Our work delves into the develop-
ment of methodologies for this challenging problem, presenting not only straightforward baselines,
but also examining advanced approaches by proposing the novel method SIGHT-Fusion. Various
hand-object interaction features are extracted from the single image input, and a diffusion-based
conditional hand trajectory generative model is trained without the need for supervision by action
labels. We set up comprehensive baselines and metrics on the FPHAB and HOI4D datasets, and
also propose novel physical simulation environments for additional evaluation. Experiments show
our superior performance over baseline methods and promising results in generalizing to unseen
objects. Ablation studies further assess and validate the effectiveness of our usage of part features
as conditional information during the motion synthesis. We hope that our work will invite greater
interest in the SIGHT task, and that our general-purpose pipeline will be of use in related problems
such as action anticipation and hand trajectory reconstruction.
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