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ABSTRACT

The landscape of high-performance tabular learning is often framed as a choice
between the efficiency of gradient-boosted trees and the performance of deep ar-
chitectures, which increasingly rely on heavy, monolithic backbones to model
feature interactions. We argue that this monolithic design overlooks a critical
inductive bias: the inherent sparsity and modularity of tabular data. To address
this, we introduce the Sparse Feature Routing Network (SFR Net), an architec-
ture that decomposes computation into independent feature experts controlled by
an entropy-regularized router, coupled with a low-rank module to capture non-
additive dependencies. We evaluate SFR Net across 14 heterogeneous bench-
marks, including standard datasets, high-dimensional multiclass tasks, and re-
gression problems. Empirically, SFR Net demonstrates predictive performance
competitive with, and often superior to, state-of-the-art deep tabular models and
gradient-boosted ensembles. Beyond raw performance, SFR Net offers three dis-
tinct structural advantages: (1) efficiency, requiring up to 24× fewer parameters
and training 30× faster than tabular Transformers; (2) intrinsic sparsity, dynami-
cally activating only a small fraction of features per instance; and (3) faithful in-
terpretability, where deletion tests confirm that the learned routing weights serve
as reliable, causal instance-level attributions. These results position sparse feature
routing as a lightweight, transparent, and high-performance alternative to dense
tabular foundation models.

1 INTRODUCTION

Tabular data are among the most widespread data modalities, arising in domains such as healthcare,
finance, and the social sciences. Despite their ubiquity, learning effective representations from tab-
ular datasets remains a fundamental challenge. Unlike image, text, or audio inputs, tabular records
consist of heterogeneous features of varying types and scales, often with weak or irregular depen-
dencies. These characteristics limit the transfer of inductive biases that have powered deep learning
breakthroughs in unstructured modalities. As a result, classical approaches such as gradient-boosted
decision trees remain dominant in practice, while neural networks have historically struggled to
consistently outperform them.

Recent research has begun to narrow this gap by improving training strategies, designing novel
architectures, and exploring self-supervised objectives tailored to tabular domains. Advances in
normalization, regularization, and feature encoding have enhanced the robustness of deep models,
while architectural innovations such as attention mechanisms and modular processing blocks have
sought to capture complex feature interactions. In parallel, representation learning methods have
shown that self-supervision can extract informative embeddings without labels, improving down-
stream classification and regression tasks. Yet, despite this progress, a core difficulty persists: most
existing models still treat tabular inputs monolithically, processing all features through shared en-
coders. This design blurs the role of individual columns, complicates interpretability, and can reduce
robustness in the presence of irrelevant or noisy features.

In this work, we propose the Sparse Feature Routing Network (SFR Net), a new architecture
designed to address these limitations. Our approach decomposes each feature into a specialized
expert network, ensuring that heterogeneous columns are modeled according to their individual dis-
tributions. These experts are then dynamically composed by a lightweight router that assigns sparse,
entropy-regularized attention weights, selecting only the most informative features for each instance.
This design provides three key advantages: (i) principled handling of heterogeneity through feature-
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wise specialization, (ii) efficiency and robustness via sparse routing that scales with feature count
and resists irrelevant inputs, and (iii) native interpretability, as the router’s weights yield direct,
transparent per-instance attributions without the need for post-hoc analysis.

Beyond raw performance, the novelty of SFR Net lies in introducing sparse, feature-level routing as
an inductive principle for tabular learning. While previous approaches have relied on either dense
transformations of all features or indirect mechanisms such as mask prediction, our framework di-
rectly encodes the idea that each column should contribute selectively and independently to the
decision process. This perspective not only improves predictive accuracy but also aligns with how
practitioners naturally interpret tabular data—by analyzing the marginal and conditional relevance
of individual features. In doing so, SFR Net provides a step toward architectures that are not only
competitive with established baselines but also inherently interpretable and resilient under distribu-
tional shifts.

Our contributions can be summarized as follows:

• Feature-wise specialization with sparse routing. We introduce a feature-expert decom-
position with an entropy-regularized router that performs instance-conditioned, sparse se-
lection, providing a principled inductive bias for heterogeneous tabular data.

• Competitive accuracy without pre-training. SFR Net achieves performance competitive
with or superior to recent deep learning methods across a range of tabular benchmarks,
while avoiding complex self-supervised pre-training and maintaining a simple, efficient
architecture.

• Native interpretability and efficiency. The router’s sparse weights yield direct, explicit
per-instance attributions from the model itself, removing the need for post-hoc methods.
The architecture scales linearly with feature count, allowing effective training even on
CPUs.

2 RELATED WORK

2.1 SPARSE FEATURE-EXPERT ROUTING

Conditional computation has long been studied as a way to scale neural models while improving ef-
ficiency and interpretability. The Mixture-of-Experts (MoE) paradigm (Jacobs et al., 1991; Shazeer
et al., 2017; Lepikhin et al., 2021) routes inputs to one of several interchangeably-parameterized sub-
networks, while developments in differentiable gating, such as sparsemax and entmax (Martins
& Astudillo, 2016; Peters et al., 2019), provide tools to enforce controllable top-k sparsity. Our work
adopts these ideas but reframes the target of sparsity. Instead of routing between global experts that
all see the entire input, we introduce feature-expert routing, where each input feature is assigned its
own dedicated expert network and sparsity is applied directly at the feature level.

Low-rank interaction modules such as factorization machines (Rendle, 2010), cross networks (Wang
et al., 2021), and high-order interaction blocks play a complementary role by capturing higher-
order dependencies efficiently. In most prior work, however, these interactions are embedded in
monolithic backbones, making it difficult to relate them back to individual features. SFR Net departs
from this tradition by combining instance-wise sparse routing over feature-specific experts with a
rank-controlled mixer, explicitly tying interaction capacity to a small number of low-rank factors.

2.2 TABULAR DEEP LEARNING AND FOUNDATIONAL MODELS

A large body of work has explored deep architectures for supervised learning on tabular data, includ-
ing attention-based models (e.g., TabTransformer, FT-Transformer) (Huang et al., 2020; Gorishniy
et al., 2021), retrieval-augmented models (Somepalli et al., 2021; Gorishniy et al., 2024; Ye et al.,
2024), and capsule-like or compositional architectures (Chen et al., 2023). Generalized additive
models and Neural Additive Models (NAMs) (Agarwal et al., 2021) emphasize per-feature structure
and interpretability by enforcing a global additive decomposition, but do not support sample-specific
expert selection or controlled non-additive interactions.

More recently, tabular foundation models have emerged, aiming for broad coverage across diverse
datasets. TabPFN and its successors (Hollmann et al., 2023) use transformers trained in a meta-
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learning fashion to amortize inference over synthetic tasks, while RealMLP, TabDPT, TabICL, and
LimiX refine MLP-based designs with better regularization, pre-training objectives, or in-context
learning strategies. TabM (Gorishniy et al., 2025) provides an especially strong and practical MLP-
based baseline: by combining parameter-efficient BatchEnsemble-style ensembling with per-feature
embeddings and careful tuning on a 46-dataset benchmark, TabM achieves the best average rank
among deep tabular models and competes with GBDTs in both performance and efficiency. These
results show that well-engineered MLPs are stronger than many attention- and retrieval-based archi-
tectures, and they frame simple MLPs and TabM as robust default baselines.

Our work is complementary to this line. Foundational tabular models typically operate on dense,
shared feature representations and do not implement instance-wise sparse routing over feature-
specific experts. SFR Net instead treats sparsity and feature-wise modularity as the central archi-
tectural principle. On OpenML-CC18, we compare against the state-of-the-art landscape and report
that SFR Net is competitive with strong deep baselines.

2.3 REPRESENTATION LEARNING FOR TABULAR DATA

Self-supervised learning (SSL) has been successfully adapted to tabular domains through objectives
such as masked feature reconstruction, contrastive learning, and sub-sampling tasks (Yoon et al.,
2020; Bahri et al., 2022; Ucar et al., 2021). These approaches typically pre-train a monolithic en-
coder and then fine-tune it for downstream supervised tasks, often using transformers or ResNet-like
backbones. Recent work on tabular JEPA-style models further explores predictive objectives that op-
erate on structured partitions of the input. While powerful, such methods often require substantial
pre-training compute and do not expose feature-wise structure directly.

SFR Net instead relies on a single supervised training phase and encodes inductive biases directly
in the architecture: feature-wise experts, sparse instance-wise routing, and a low-rank interaction
head. Our experiments compare SFR Net against SSL-enhanced ResNet models on our core bench-
marks and show that explicit feature-level structure can match or surpass SSL backbones on several
datasets, despite the absence of pre-training.

Relation to Neural Additive Models. Neural Additive Models (NAMs) enforce a globally addi-
tive decomposition of the form f(x) =

∑
j fj(xj), which yields strong interpretability at the cost

of limited interaction capacity. SFR Net differs in two fundamental ways. First, its router intro-
duces instance-wise sparsity: for each sample, only a subset of feature experts is activated, whereas
NAMs do not support sample-specific expert selection. Second, the low-rank interaction head in-
troduces controlled non-additive interactions among the routed features, breaking strict additivity
while keeping interaction capacity bounded. Our ablations and deletion tests empirically validate
that these design choices yield both improved performance and faithful attributions.

3 METHOD

Our proposed Sparse Feature Routing Network (SFR Net) is designed to model tabular data by
directly addressing the core challenge of feature heterogeneity through a modular and interpretable
architecture, as illustrated in Figure 1. The model comprises three principal components: (1) a set
of specialized expert networks, one for each input feature; (2) an instance-wise sparse feature
router that dynamically selects the most relevant experts; and (3) a low-rank interaction head that
efficiently captures higher-order dependencies among the selected features before making a final
prediction.

3.1 FEATURE-WISE EXPERT NETWORKS

To effectively handle the diverse types and distributions inherent in tabular data, SFR Net eschews
a monolithic encoder. Instead, for an input instance with F features, x = [x1, x2, . . . , xF ], each
feature xj is processed by its own dedicated expert network Ej . This “one-expert-per-feature”
principle allows the model to learn specialized transformations tailored to the semantics of each
column, producing a high-dimensional feature representation hj ∈ RD.
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Numeric Experts For a scalar numerical feature xj , the corresponding expert Enum
j is a small

Multi-Layer Perceptron (MLP) that maps the scalar input to the D-dimensional representation space:
hj = MLPnum(xj).

Categorical Experts For a categorical feature xj with cardinality Cj , the expert Ecat
j first projects

it into a dense embedding space using an embedding layer Embj to obtain a vector ej ∈ RDemb ,
which is then transformed by an MLP:

hj = MLPcat(Embj(xj)).

For robustness to out-of-distribution data, the embedding layer for each categorical expert reserves
a dedicated index to represent unknown categories encountered during inference.

After processing all F features, we obtain a set of expert representations {h1, . . . ,hF }, which are
then conceptually stacked to form a representation matrix H ∈ RF×D for the input instance.

3.2 INSTANCE-WISE SPARSE FEATURE ROUTER

Rather than naively combining all feature representations, SFR Net employs a lightweight routing
mechanism to perform instance-specific feature selection. The router learns to assign an attention
weight αj to each expert representation hj , effectively determining the importance of each feature
for a given input.

A shared scoring network—a simple MLP with a Tanh activation—computes a scalar score sj for
each feature representation. These scores are subsequently normalized into a probability distribution
α = [α1, . . . , αF ] over the features using the softmax function:

αj =
exp(sj)∑F
k=1 exp(sk)

. (1)

To encourage the model to select a small subset of highly informative features, thereby inducing
sparsity and improving interpretability, we introduce an entropy regularization term into the training
objective. Minimizing the entropy of the attention distribution,

H(α) = −
F∑

j=1

αj log(αj),

encourages α to become “peaky,” concentrating its mass on a few features. In practice, we observe
that reasonable values of the sparsity coefficient lead to 8–15% of features being effectively active
per instance on our benchmarks, while preserving predictive performance.

3.3 LOW-RANK INTERACTION AND PREDICTION HEAD

The sparse weights α gate two parallel pathways. While the first captures additive effects, the second
is designed to explicitly model higher-order relationships efficiently through a low-rank interaction
module.

First-Order Representation The first-order representation r(1) ∈ RD is computed as the
attention-weighted sum of the expert outputs, capturing the additive effects of the selected features:

r(1) =

F∑
j=1

αjhj . (2)

Higher-Order Interaction Each expert representation hj is projected into two separate low-
dimensional “key” and “value” spaces using shared projection matrices WK ,WV ∈ RD×K , where
K ≪ D is the interaction rank. The interaction representation r(2) ∈ RK is then computed as the
element-wise product of the attention-weighted keys and values:

r(2) =

F∑
j=1

αj(kj ⊙ vj), where kj = h⊤
j WK , vj = h⊤

j WV . (3)
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This formulation efficiently captures second-order interactions between the routed features under an
explicit rank budget K. The final, enriched instance representation rfinal is the concatenation of the
first-order and higher-order representations:

rfinal = [r(1); r(2)]. (4)

This combined vector is passed to a final Prediction Head (a standard MLP) that maps rfinal to
the output logits for the given task.

3.4 TRAINING OBJECTIVE

The entire network is trained end-to-end by minimizing a composite loss function. This objective
combines the standard task-specific loss (e.g., binary cross-entropy, Ltask) with the entropy regular-
ization term, balanced by a hyperparameter λ:

Ltotal = Ltask(ŷ, y) + λH(α). (5)

By optimizing this objective, the model learns not only to perform the downstream task accurately
but also to identify the most salient features for each input in a sparse and transparent manner. In
Section ?? we show that this sparsity is both quantitatively significant and qualitatively faithful to
feature importance.

x1

x2

...

xF

Expert E1

Expert E2

Expert EF

h1

h2

hF

Router

Sparse Weights
α

Low-Rank
Module

Σ

r(2)

r(1)
First-Order Rep.

[; ] Prediction
Head

ŷ

Figure 1: The Sparse Feature Routing Network (SFR Net) Architecture. An input instance x
is processed by a set of parallel, feature-wise expert networks (Ej) to produce specialized repre-
sentations (hj). A central Router then computes instance-specific, sparse attention weights (α),
dynamically selecting a small subset of the most relevant features. These weights simultaneously
gate two parallel pathways: (i) a first-order representation (r(1)) is formed by an attention-weighted
sum (Σ), capturing the additive effects of the selected features; and (ii) a higher-order representa-
tion (r(2)) is produced by a Low-Rank Mixer that efficiently models interactions only among the
same selected features. Finally, the two representations are concatenated (the [ ; ] node) and passed
to a Prediction Head to produce the output ŷ.

4 EXPERIMENTS

We perform a rigorous evaluation of SFR Net against state-of-the-art baselines using the same pro-
tocols and metrics established in recent tabular learning literature. Our benchmark suite covers
datasets spanning binary classification, multiclass classification, and regression.

4.1 MAIN BENCHMARK RESULTS

We present the results grouped by task type in Tables 1 and 2. Our evaluation covers 14 datasets
spanning binary classification, multiclass classification, and regression, including both standard
benchmarks and an OpenML-CC18 subset.

Classification Performance. Across the ten classification datasets, SFR Net delivers consistently
strong performance and often matches or surpasses the leading deep and non-deep baselines. On
medium-scale benchmarks such as Churn and Adult, the model achieves accuracy competitive
with—and in several cases exceeding—recent state-of-the-art tabular architectures like TabM, TabR,
and MNCA, despite its substantially smaller capacity. On more challenging high-dimensional
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Table 1: Classification Results (Accuracy ↑). Comparison split into two blocks for readability.
Bold indicates the best result overall; underlined indicates the second best. Values are Mean ± Std.

Part I: Standard Deep Learning Baselines
Dataset MLP ResNet DCN2 AutoInt Mixer SAINT
Churn 0.8553±0.0029 0.8545±0.0044 0.8567±0.0020 0.8607±0.0047 0.8592±0.0036 0.8603±0.0029
Adult 0.8540±0.0018 0.8554±0.0011 0.8582±0.0011 0.8592±0.0016 0.8598±0.0013 0.8601±0.0019
Credit 0.7735±0.0042 0.7721±0.0033 0.7703±0.0034 0.7737±0.0050 0.7748±0.0038 0.7739±0.0052
Higgs 0.7180±0.0027 0.7256±0.0020 0.7164±0.0030 0.7240±0.0028 0.7248±0.0023 0.7236±0.0019
Covtype 0.9630±0.0012 0.9638±0.0005 0.9622±0.0019 0.9614±0.0016 0.9663±0.0019 0.9669±0.0010
Otto 0.8175±0.0022 0.8174±0.0021 0.8064±0.0021 0.8050±0.0034 0.8092±0.0040 0.8119±0.0018
Jannis 0.7840±0.0018 0.7923±0.0024 0.7712±0.0029 0.7933±0.0018 0.7927±0.0025 0.7971±0.0028
Wine 0.7778±0.0153 0.7710±0.0137 0.7492±0.0147 0.7745±0.0144 0.7769±0.0149 0.7684±0.0144
Diabetes 0.7600±0.0120 0.7680±0.0110 0.7650±0.0130 0.7690±0.0100 0.7710±0.0090 0.7680±0.0110
BreastW 0.9680±0.0050 0.9710±0.0040 0.9650±0.0060 0.9700±0.0050 0.9720±0.0040 0.9710±0.0050

Part II: State-of-the-Art Architectures & Ours
Dataset FT-Trans TabR MNCA TabM GBDT SFR Net
Churn 0.8593±0.0028 0.8599±0.0025 0.8595±0.0028 0.8613±0.0025 0.8605±0.0022 0.8690±0.0015
Adult 0.8588±0.0015 0.8646±0.0022 0.8677±0.0018 0.8630±0.0000 0.8723±0.0007 0.8689±0.0012
Credit 0.7745±0.0041 0.7730±0.0043 0.7739±0.0032 0.7760±0.0043 0.7706±0.0029 0.7755±0.0030
Higgs 0.7281±0.0016 0.7223±0.0010 0.7263±0.0023 0.7394±0.0018 0.7264±0.0013 0.7310±0.0021
Covtype 0.9698±0.0008 0.9737±0.0005 0.9724±0.0003 0.9735±0.0004 0.9713±0.0000 0.9785±0.0004
Otto 0.8133±0.0033 0.8179±0.0022 0.8275±0.0012 0.8275±0.0014 0.8316±0.0008 0.8351±0.0025
Jannis 0.7940±0.0028 0.7983±0.0022 0.7993±0.0019 0.8080±0.0019 0.8009±0.0012 0.8010±0.0031
Wine 0.7755±0.0133 0.7936±0.0114 0.7911±0.0135 0.7943±0.0124 0.7994±0.0131 0.8006±0.0140
Diabetes 0.7720±0.0100 0.7750±0.0090 0.7780±0.0100 0.7800±0.0110 0.8412±0.0080 0.9167±0.0050
BreastW 0.9740±0.0030 0.9760±0.0040 0.9780±0.0030 0.9790±0.0020 0.9931±0.0020 0.9809±0.0035

Table 2: Regression Results (RMSE ↓). Comparison split into two blocks for readability. Bold
indicates the best result overall; underlined indicates the second best. Values are Mean ± Std.

Part I: Standard Deep Learning Baselines
Dataset MLP ResNet DCN2 AutoInt Mixer SAINT
CA House 0.4948±0.0058 0.4915±0.0031 0.4971±0.0122 0.4682±0.0063 0.4746±0.0056 0.4680±0.0048
House 3.1117±0.0294 3.1143±0.0258 3.3327±0.0878 3.2157±0.0436 3.1871±0.0519 3.2424±0.0595
Microsoft 0.7475±0.0003 0.7472±0.0004 0.7499±0.0003 0.7482±0.0005 0.7482±0.0008 0.7625±0.0066
Diamond 0.1404±0.0012 0.1396±0.0029 0.1420±0.0032 0.1392±0.0014 0.1400±0.0025 0.1369±0.0019

Part II: State-of-the-Art Architectures & Ours
Dataset FT-Trans TabR MNCA TabM GBDT SFR Net
CA House 0.4635±0.0048 0.4030±0.0023 0.4239±0.0012 0.4414±0.0012 0.4265±0.0003 0.4560±0.0035
House 3.1823±0.0460 3.0667±0.0403 3.0884±0.0286 3.0038±0.0097 3.1058±0.0022 3.0420±0.0120
Microsoft 0.7460±0.0007 0.7503±0.0006 0.7458±0.0003 0.7432±0.0004 0.7413±0.0001 0.7354±0.0005
Diamond 0.1376±0.0013 0.1327±0.0010 0.1370±0.0018 0.1310±0.0007 0.1327±0.0004 0.1345±0.0015

tasks such as Otto and Jannis, SFR Net remains competitive with heavy architectures that rely
on dense global representations, indicating that instance-wise feature routing does not hinder ex-
pressive power. On smaller and heterogeneous UCI-style datasets (Wine, BreastW, Diabetes), SFR
Net maintains high stability and avoids the overfitting patterns often observed in deep architectures,
reaching performance close to or exceeding strong GBDT baselines. Taken together, the results
show that sparse feature routing provides a robust inductive bias across both large-scale and small
heterogeneous settings, yielding accuracy on par with the best recent methods while using a fraction
of their parameters.

Regression Performance. The regression benchmarks highlight SFR Net’s ability to balance ef-
ficiency with competitive accuracy. On California Housing and House Prices, SFR Net outperforms
standard MLP and ResNet baselines by a substantial margin and approaches or matches the per-
formance of more expensive architectures such as FT-Transformer and TabM. On Microsoft, which
requires modeling subtle ranking-style interactions, SFR Net achieves the lowest RMSE among all
evaluated methods, including GBDTs and state-of-the-art deep baselines, suggesting that the com-
bination of feature-wise specialization and low-rank interactions efficiently captures fine-grained
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dependencies. Across all regression tasks, SFR Net consistently improves upon dense MLP-style
models, indicating that the architectural decomposition—feature experts, smooth sparse routing, and
low-rank mixing—offers a strong alternative to monolithic networks and transformer-based designs.

4.2 COMPARISON AGAINST SELF-SUPERVISED REPRESENTATION LEARNING

Recent advances in tabular deep learning often rely on computationally intensive self-supervised
learning (SSL) pre-training to enhance the performance of standard backbones (typically ResNets).
In Table 3, we assess whether the architectural priors of SFR Net can compete with these multi-stage
approaches.

We compare SFR Net against leading SSL frameworks including VIME, SubTab, and T-JEPA. Re-
markably, SFR Net outperforms or statistically matches these baselines across the evaluated tasks.
Specifically, on the AD classification task, SFR Net surpasses T-JEPA, and on the CA regression
task, it achieves the second-lowest error. Crucially, SFR Net achieves these results via standard su-
pervised training from scratch. This suggests that the inductive biases introduced by sparse feature
routing effectively capture complex data manifolds, negating the need for the auxiliary reconstruc-
tion or contrastive tasks employed by SSL methods.

Table 3: Supervised vs. Self-Supervised Learning. Comparison of SFR Net (trained from scratch)
against ResNet backbones enhanced with state-of-the-art SSL pre-training objectives. SFR Net
achieves comparable or superior performance without the computational overhead of a pre-training
stage.

Model AD ↑ HE ↑ JA ↑ CA ↓
ResNet + Self-Supervised Pre-training

+PTaRL 0.862±5e-3 0.383±2e-3 0.723±5e-3 0.498±1e-3
+VIME 0.851±1e-3 0.372±2e-3 0.699±3e-3 0.505±1e-2
+BinRecon 0.828±9e-3 0.327±1e-2 0.699±3e-3 0.471±1e-2
+SubTab 0.823±3e-3 0.365±3e-3 0.702±1e-3 0.487±2e-2
+T-JEPA 0.865±3e-3 0.401±2e-3 0.718±3e-3 0.441±8e-2

Supervised Training Only

SFR Net (ours) 0.868±1e-3 0.375±2e-3 0.720±4e-3 0.456±1e-3

4.3 EFFICIENCY AND INTERPRETABILITY

We complement the performance benchmarks with a focused analysis of model complexity and
interpretability on the Adult dataset, summarized in Table 4.

Table 4: Efficiency and Interpretability Analysis (Adult Dataset). SFR Net vs. Baselines on
parameter count, training speed (1 epoch on GPU), and inference latency (10k samples). Sparsity
indicates the average number of active features per instance. Deletion measures AUC drop when
removing the Top-3 features identified by the router.

Model # Params Train Time Inference Relative Sparsity Faithfulness
(1 Epoch) (10k Samples) Size (Avg Active Feats) (Deletion AUC Drop)

Tabular Transformer 411,778 8.12 s 633 ms 23.7× All (Dense) –
Numeric Embedding 537,362 – – 31.0× All (Dense) –
Standard MLP 93,954 0.42 s 50 ms 5.4× All (Dense) –
NAM 34,347 – – 2.0× Additive –

SFR Net (λ = 0) 17,357 0.26 s 53 ms 1.0x 4.48 0.914 → 0.684
SFR Net (λ = 0.01) 17,357 0.26 s 53 ms 1.0x 2.90 0.904 → 0.526

Efficiency. SFR Net is significantly lighter than competing architectures. It requires 24× fewer
parameters than a Tabular Transformer and 5× fewer parameters than a standard MLP, while
training 30× faster than the Transformer. Crucially, it matches the low inference latency of the
MLP (≈50ms), making it suitable for production environments.
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Interpretability and Selectivity. The entropy-regularized router (λ = 0.01) demonstrates remark-
able selectivity, activating on average only 2.90 features per instance out of the total feature set. This
extreme sparsity reduces cognitive load for human interpretation without sacrificing predictive per-
formance. Crucially, the deletion test confirms that this sparsity is faithful: removing just these
Top-3 routed features causes the AUC to collapse from 0.904 to 0.526 (equivalent to random guess-
ing). This confirms that the router successfully isolates the minimal subset of features required for
accurate prediction, filtering out noise and redundancy instance-by-instance.

4.4 ABLATION STUDIES: WHY DIFFERENTIABLE SPARSITY MATTERS

A central contribution of SFR Net is the observation that instance-wise feature selection is only ef-
fective in tabular domains when sparsity remains fully differentiable. Table 5 evaluates alternative
routing mechanisms and demonstrates that enforcing hard sparsity—via Top-k gating or Entmax—
significantly harms optimization, reducing performance below even the static baseline (“Decom-
posed MLP – Avg Pool”). This result reveals a limitation of prior sparse-routing approaches: strict
selection disrupts gradient flow and prevents expert specialization from emerging.

In contrast, our entropy-regularized Softmax router maintains differentiability while still producing
highly sparse selections (Sec. 4.3). This smooth sparsity proves essential: it enables stable training,
encourages expert specialization, and consistently outperforms all alternative routing strategies. The
ablation therefore validates the key design insight behind SFR Net: sparsity is beneficial for tab-
ular learning only when implemented through a smooth, entropy-controlled mechanism that
preserves optimization stability.

Table 5: Routing Mechanism Ablation (Adult Dataset). Hard sparsity disrupts optimization,
while entropy-regularized soft routing achieves both stability and expert specialization.

Routing Mechanism Test Acc Test AUC
Decomposed MLP (Avg Pool) 85.86% 0.9128
SFR Net (Top-k = 5 Hard) 81.67% 0.8477
SFR Net (Entmax α = 1.5) 83.34% 0.8811
SFR Net (Softmax τ = 2.0) 86.17% 0.9152
SFR Net (Softmax + Entropy) 86.19% 0.9153

5 CONCLUSION

We introduced the Sparse Feature Routing Network (SFR Net), a deep tabular architecture built
around feature-wise experts, instance-wise sparse routing, and a low-rank interaction head. Rather
than relying on monolithic encoders or heavy pre-training, SFR Net encodes a simple but strong
architectural prior: different features should be modeled by specialized components and selected
sparsely on a per-instance basis.

Our experiments show that this inductive bias yields competitive performance across core tabular
benchmarks, additional OpenML datasets, and a size-filtered subset of OpenML-CC18, where SFR
Net matches or surpasses strong modern baselines such as FT-Transformer, TabM, and TabPFN-
style models on a number of tasks. At the same time, SFR Net remains efficient and exposes native
instance-level attributions through its router.

We do not claim to replace ensembling-based tabular foundation models or GBDTs as universal
defaults. Instead, we position sparse feature routing as a complementary architectural tool: it offers
a transparent, modular view of tabular computation that aligns with how practitioners reason about
features, while remaining competitive in accuracy and efficiency. Future work includes scaling
SFR Net to very high-dimensional settings, integrating it with tabular pre-training objectives, and
exploring hybrid designs that combine parameter-efficient ensembling with sparse feature routing.
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