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ABSTRACT

The landscape of high-performance tabular learning is defined by a difficult com-
promise between the opaque ensembles of gradient-boosted trees and deep models
that rely on elaborate pre-training to adapt ill-suited, monolithic backbones. We
argue this compromise stems from a fundamental architectural mismatch. We
propose a more principled path forward with a decomposed architecture that per-
forms instance-wise selection over independent feature experts. Our model, the
Sparse Feature Routing Network (SFR Net), assigns a small expert to each feature
and uses a sparse router to dynamically compose expert results into an instance-
specific representation, while a low-rank module captures higher-order interac-
tions. This design yields native instance-level attributions and remains computa-
tionally efficient. A comprehensive empirical study validates these advantages.
Across diverse benchmarks, SFR Net consistently outperforms strong specialized
baselines, including Transformer-based models. Furthermore, it remains highly
competitive with powerful self-supervised learning methods, despite being trained
end-to-end without the pre-training step. Our ablation studies rigorously quantify
the contribution of each architectural module, proving that the performance gains
stem from the principled decomposition and dynamic routing, not brute-force ca-
pacity. These results position Sparse Feature Routing as a transparent, efficient,
and powerful foundation for deep tabular learning.

1 INTRODUCTION

Tabular data are among the most widespread data modalities, arising in domains such as healthcare,
finance, and the social sciences. Despite their ubiquity, learning effective representations from tab-
ular datasets remains a fundamental challenge. Unlike image, text, or audio inputs, tabular records
consist of heterogeneous features of varying types and scales, often with weak or irregular depen-
dencies. These characteristics limit the transfer of inductive biases that have powered deep learning
breakthroughs in unstructured modalities. As a result, classical approaches such as gradient-boosted
decision trees remain dominant in practice, while neural networks have historically struggled to
consistently outperform them.

Recent research has begun to narrow this gap by improving training strategies, designing novel
architectures, and exploring self-supervised objectives tailored to tabular domains. Advances in
normalization, regularization, and feature encoding have enhanced the robustness of deep models,
while architectural innovations such as attention mechanisms and modular processing blocks have
sought to capture complex feature interactions. In parallel, representation learning methods have
shown that self-supervision can extract informative embeddings without labels, improving down-
stream classification and regression tasks. Yet, despite this progress, a core difficulty persists: most
existing models still treat tabular inputs monolithically, processing all features through shared en-
coders. This design blurs the role of individual columns, complicates interpretability, and can reduce
robustness in the presence of irrelevant or noisy features.

In this work, we propose the Sparse Feature Routing Network (SFR Net), a new architecture
designed to address these limitations. Our approach decomposes each feature into a specialized
expert network, ensuring that heterogeneous columns are modeled according to their individual dis-
tributions. These experts are then dynamically composed by a lightweight router that assigns sparse,
entropy-regularized attention weights, selecting only the most informative features for each instance.
This design provides three key advantages: (i) principled handling of heterogeneity through feature-
wise specialization, (ii) efficiency and robustness via sparse routing that scales with feature count
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and resists irrelevant inputs, and (iii) native interpretability, as the router’s weights yield direct,
transparent per-instance attributions without the need for post-hoc analysis.

Beyond raw performance, the novelty of SFR Net lies in introducing sparse, feature-level routing as
an inductive principle for tabular learning. While previous approaches have relied on either dense
transformations of all features or indirect mechanisms such as mask prediction, our framework di-
rectly encodes the idea that each column should contribute selectively and independently to the
decision process. This perspective not only improves predictive accuracy but also aligns with how
practitioners naturally interpret tabular data—by analyzing the marginal and conditional relevance
of individual features. In doing so, SFR Net provides a step toward architectures that are not only
competitive with established baselines but also inherently interpretable and resilient under distribu-
tional shifts.

Our contributions can be summarized as follows:

• Feature-wise specialization with sparse routing. We introduce a feature-expert decom-
position with an entropy-regularized router that performs instance-conditioned, sparse se-
lection, providing a principled inductive bias for heterogeneous tabular data.

• Competitive accuracy without pre-training. SFR Net achieves performance competitive
with or superior to recent deep learning methods across a range of tabular benchmarks,
while avoiding complex self-supervised pre-training and maintaining a simple, efficient
architecture.

• Native interpretability and efficiency. The router’s sparse weights yield direct, explicit
per-instance attributions from the model itself, removing the need for post-hoc methods.
The architecture scales linearly with feature count, allowing effective training even on
CPUs.

2 RELATED WORK

2.1 SPARSE FEATURE-EXPERT ROUTING

Conditional computation has long been studied as a way to scale neural models while improving ef-
ficiency and interpretability. The Mixture-of-Experts (MoE) paradigm (Jacobs et al., 1991; Shazeer
et al., 2017; Lepikhin et al., 2021) introduced routing inputs to one of a set of large, interchange-
able subnetworks. Concurrently, developments in differentiable gating, such as sparsemax and
entmax (Martins & Astudillo, 2016; Peters et al., 2019), provided tools to enforce controllable
top-k sparsity in model components. Our work leverages these principles for differentiable selection
but reframes the target of sparsity. Instead of routing inputs to generic experts, we introduce feature-
expert routing, where each input feature is assigned its own dedicated expert network. Sparsity is
thus applied not to a pool of undifferentiated experts, but directly to the semantic columns of the
data itself. In parallel, low-rank interaction modules like factorization machines (Rendle, 2010) and
cross networks (Wang et al., 2021) efficiently capture higher-order dependencies, but do so within
monolithic backbones that obscure per-feature contributions. Our method departs from these tra-
ditions by creating a novel architecture where a router enforces instance-dependent sparsity over
feature-specific experts, and a rank-controlled mixer captures their higher-order interactions under
an explicit budget. This design directly models feature-level sparsity and low-rank interactions, a
combination of properties not jointly addressed by prior approaches.

2.2 REPRESENTATION LEARNING FOR TABULAR DATA

Within the tabular domain, deep learning models have sought to overcome the challenges of het-
erogeneous and unstructured feature sets. Transformer-based models such as TabTransformer
(Huang et al., 2020) and FT-Transformer (Gorishniy et al., 2021) rely on dense, all-to-all self-
attention, assuming that broad feature interactions are the dominant signal source, which may not
be efficient or optimal. At the other end of the spectrum, Generalized Additive Models like NAMs
(Agarwal et al., 2021) enforce a strict feature-wise decomposition, enhancing interpretability but
limiting interaction modeling to purely additive forms. TabNet (Arik & Pfister, 2021) represents
a critical predecessor, introducing instance-specific feature selection via sequential masking. How-
ever, its design employs a multi-step process where the feature selection (via an attentive trans-
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former) and the feature transformation are tightly intertwined at each step. In contrast, our approach
decouples this process: a single, global routing operation selects a sparse subset of feature-experts
which are then processed in parallel before their outputs are composed. This architectural choice
avoids sequential dependencies and provides a more direct, interpretable view of which features
are selected for a given instance. Other approaches, like TabCaps (Chen et al., 2023), import
part-whole reasoning at the cost of opaque latent capsules. On the self-supervised front, various
pre-training objectives (Yoon et al., 2020; Bahri et al., 2022; Ucar et al., 2021; Thimonier et al.,
2024) have been proposed to learn transferable representations, but often require costly pre-training
and rely on monolithic encoders that blur per-feature contributions. Our architecture, in contrast,
directly encodes a strong, feature-centric inductive bias without this overhead, achieving a unique
balance of performance, efficiency, and transparency.

3 METHOD

Our proposed Sparse Feature Routing Network (SFR Net) is designed to model tabular data by
directly addressing the core challenge of feature heterogeneity through a modular and interpretable
architecture, as illustrated in Figure 1. The model comprises three principal components: (1) a set
of specialized expert networks, one for each input feature; (2) an instance-wise sparse feature
router that dynamically selects the most relevant experts; and (3) a low-rank interaction head that
efficiently captures higher-order dependencies among the selected features before making a final
prediction.

3.1 FEATURE-WISE EXPERT NETWORKS

To effectively handle the diverse types and distributions inherent in tabular data, SFR Net eschews
a monolithic encoder. Instead, for an input instance with F features, x = [x1, x2, . . . , xF ], each
feature xj is processed by its own dedicated expert network Ej . This ”one-expert-per-feature”
principle allows the model to learn specialized transformations tailored to the semantics of each
column, producing a high-dimensional feature representation hj ∈ RD.

Numeric Experts For a scalar numerical feature xj , the corresponding expert Enum
j is a small

Multi-Layer Perceptron (MLP) that maps the scalar input to the D-dimensional representation space:
hj = MLPnum(xj).

Categorical Experts For a categorical feature xj with cardinality Cj , the expert Ecat
j first projects

it into a dense embedding space using an embedding layer Embj to obtain a vector ej ∈ RDemb ,
which is then transformed by an MLP: hj = MLPcat(Embj(xj)). For robustness to out-of-
distribution data, the embedding layer for each categorical expert reserves a dedicated index to
represent unknown categories encountered during inference.

After processing all F features, we obtain a set of expert representations {h1, . . . ,hF }, which are
then conceptually stacked to form a representation matrix H ∈ RF×D for the input instance.

3.2 INSTANCE-WISE SPARSE FEATURE ROUTER

Rather than naively combining all feature representations, SFR Net employs a lightweight routing
mechanism to perform instance-specific feature selection. The router learns to assign an attention
weight αj to each expert representation hj , effectively determining the importance of each feature
for a given input.

A shared scoring network—a simple MLP with a Tanh activation—computes a scalar score sj for
each feature representation. These scores are subsequently normalized into a probability distribution
α = [α1, . . . , αF ] over the features using the softmax function:

αj =
exp(sj)∑F
k=1 exp(sk)

. (1)

To encourage the model to select a small subset of highly informative features, thereby inducing
sparsity and improving interpretability, we introduce an entropy regularization term to the train-
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ing objective. Minimizing the entropy of the attention distribution, H(α) = −
∑F

j=1 αj log(αj),
encourages α to become ”peaky,” concentrating its mass on a few features.

3.3 LOW-RANK INTERACTION AND PREDICTION HEAD

The sparse weights α gate two parallel pathways. While the first captures additive effects, the second
is designed to explicitly model higher-order relationships efficiently through a low-rank interaction
module.

First-Order Representation The first-order representation r(1) ∈ RD is computed as the
attention-weighted sum of the expert outputs, capturing the additive effects of the selected features:

r(1) =

F∑
j=1

αjhj . (2)

Higher-Order Interaction Each expert representation hj is projected into two separate low-
dimensional ”key” and ”value” spaces using shared projection matrices WK ,WV ∈ RD×K , where
K ≪ D is the interaction rank. The interaction representation r(2) ∈ RK is then computed as the
element-wise product of the attention-weighted keys and values:

r(2) =

F∑
j=1

αj(kj ⊙ vj), where kj = hT
j WK and vj = hT

j WV . (3)

This formulation efficiently captures second-order interactions between the routed features under an
explicit rank budget K. The final, enriched instance representation rfinal is the concatenation of the
first-order and higher-order representations:

rfinal = [r(1); r(2)]. (4)

This combined vector is passed to a final Prediction Head (a standard MLP) that maps rfinal to
the output logits for the given task.

3.4 TRAINING OBJECTIVE

The entire network is trained end-to-end by minimizing a composite loss function. This objective
combines the standard task-specific loss (e.g., Binary Cross-Entropy, Ltask) with the entropy regu-
larization term from the router, balanced by a hyperparameter λ:

Ltotal = Ltask(ŷ, y) + λH(α). (5)

By optimizing this objective, the model learns not only to perform the downstream task accurately
but also to identify the most salient features for each input in a sparse and transparent manner.

4 EXPERIMENTS

We conduct a series of experiments to evaluate the performance of our proposed Sparse Feature
Routing Network (SFR Net). Our evaluation is designed to answer two key questions: (1) How does
SFR Net’s architecture perform against other specialized deep tabular models when trained from
scratch? (2) How does SFR Net, trained end-to-end, compare to powerful backbone models that
have been enhanced with computationally expensive Self-Supervised Learning (SSL) pre-training?

4.1 EXPERIMENTAL SETUP

Datasets Following previous work, we conduct experiments on four public benchmark datasets
with heterogeneous features: two for binary classification (AD, JA) and two for regression (HE,
CA). We use Accuracy (↑) for classification and Root Mean Squared Error (RMSE, ↓) for regres-
sion as performance metrics. For all experiments, we report the mean and standard deviation over
multiple runs with different random seeds to ensure the robustness and reliability of our findings.
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Figure 1: The Sparse Feature Routing Network (SFR Net) Architecture. An input instance x
is processed by a set of parallel, feature-wise expert networks (Ej) to produce specialized repre-
sentations (hj). A central Router then computes instance-specific, sparse attention weights (α),
dynamically selecting a small subset of the most relevant features. These weights simultaneously
gate two parallel pathways: (i) a first-order representation (r(1)) is formed by an attention-weighted
sum (Σ), capturing the additive effects of the selected features; and (ii) a higher-order representa-
tion (r(2)) is produced by a Low-Rank Mixer that efficiently models interactions only among the
same selected features. Finally, the two representations are concatenated (the [ ; ] node) and passed
to a Prediction Head to produce the output ŷ.

Baselines To assess the effectiveness of our approach, we compare SFR Net against three strong
groups of baselines. (1) Deep Tabular Architectures: This group includes a standard MLP as a
fundamental baseline, as well as specialized SOTA models designed for tabular data: DCNv2 and
AutoInt focus on explicit feature interactions, while FT-Transformer adapts the powerful
attention mechanism for tabular inputs. (2) Self-Supervised Learning Methods: To provide a
rigorous comparison against representation learning approaches, we include several state-of-the-art
SSL methods applied to a powerful ResNet backbone, establishing a very strong performance
ceiling. (3) Gradient Boosted Decision Trees (GBDTs): We include XGBoost and CatBoost
as they are often considered the de facto state-of-the-art in practice and represent a crucial point of
reference for any new tabular model.

4.2 RESULTS AND DISCUSSION

Comparison with Deep Tabular Architectures As displayed in Table 1, SFR Net’s performance
when trained from scratch establishes it as a state-of-the-art neural architecture for tabular data. SFR
Net is the top-performing neural network across all four datasets, often by a significant margin.
Interestingly, despite their design advantages for tabular data, recent attention-based models such as
FT-Transformer and TabNet did not surpass our proposed architecture. This outcome suggests
that SFR Net’s architectural inductive bias—combining dedicated feature experts with an explicit,
sparse routing mechanism that performs instance-wise feature selection—is a more effective ap-
proach for these tabular tasks than the dense, all-to-all attention of Transformers or the sequential
attention of TabNet. When compared to the GBDT models for reference, SFR Net significantly
narrows the performance gap that often exists between deep learning models and tree-based ensem-
bles, even matching the performance of XGBoost on the HE dataset. This establishes SFR Net as a
powerful standalone architecture.

Comparison with Self-Supervised Learning Methods As displayed in Table 2, we position SFR
Net against a more challenging set of baselines: powerful ResNet backbones enhanced with various
SSL pre-training techniques. The goal is to assess whether SFR Net’s built-in architectural priors
can compete with the learned representations from SSL. The results are highly compelling. Despite
being trained end-to-end without a separate, computationally expensive pre-training stage, SFR
Net remains highly competitive and even achieves the best performance on the AD dataset,
outperforming all SSL-enhanced ResNet models. Furthermore, it ranks as the second-best model on
both the JA and CA datasets. This demonstrates that SFR Net provides an effective and significantly
more efficient alternative to the pre-train-then-finetune paradigm. The strong performance suggests
that encoding explicit structural priors about feature-wise specialization and instance-wise sparsity
directly into the model can be as, or more, powerful than learning these priors implicitly through
unsupervised pre-training tasks.
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Table 1: Comparison of SFR Net with specialized deep tabular models. Best and second-best
results among neural networks are highlighted. SFR Net demonstrates superior performance over
strong baselines like FT-Transformer, which adapts the powerful attention mechanism for tabular
data. State-of-the-art GBDT models are included for reference.

Model AD ↑ HE ↑ JA ↑ CA ↓
Deep Tabular Architectures

MLP 0.827±1e-3 0.353±1e-3 0.672±1e-3 0.511±3e-3
DCNv2 0.829±4e-3 0.347±3e-3 0.662±3e-3 0.504±4e-3
AutoInt 0.823±1e-3 0.338±3e-3 0.653±6e-3 0.501±3e-3
FT-Trans 0.821±7e-3 0.363±2e-3 0.677±2e-3 0.473±5e-3

SFR Net (ours) 0.868±1e-3 0.375±2e-3 0.720±4e-3 0.456±1e-3

Gradient Boosted Decision Trees (for reference)

XGBoost 0.872±5e-4 0.375±1.2e-3 0.721±1e-3 0.433±2e-3
CatBoost 0.873±1e-3 0.381±1e-3 0.721±1e-3 0.430±7e-4

Table 2: SFR Net compared against strong Self-Supervised Learning (SSL) methods applied to
a ResNet backbone. Despite being trained end-to-end without a separate pre-training stage, SFR
Net remains highly competitive. It achieves the top rank on the AD dataset and is the second-best
performing model on JA and CA, demonstrating that its architecture provides an effective alternative
to representation learning via SSL.

Model AD ↑ HE ↑ JA ↑ CA ↓
Self-Supervised Learning Networks (on ResNet)

+PTaRL 0.862±5e-3 0.383±2e-3 0.723±5e-3 0.498±1e-3
+VIME 0.851±1e-3 0.372±2e-3 0.699±3e-3 0.505±1e-2
+BinRecon 0.828±9e-3 0.327±1e-2 0.699±3e-3 0.471±1e-2
+SubTab 0.823±3e-3 0.365±3e-3 0.702±1e-3 0.487±2e-2
+T-JEPA 0.865±3e-3 0.401±2e-3 0.718±3e-3 0.441±8e-2

SFR Net (ours) 0.868±1e-3 0.375±2e-3 0.720±4e-3 0.456±1e-3

4.3 ABLATION STUDIES

To dissect the architectural drivers of SFR Net’s performance, we conduct a crucial ablation study on
the Adult dataset. As shown in Table 3, we start with a strong, overparameterized monolithic MLP
and incrementally introduce SFR Net’s core components. This analysis reveals not only that our
final model is nearly 2× more parameter-efficient, but also that it achieves its superior performance
in significantly fewer training steps.

Table 3: Quantifying the impact of SFR Net’s components on the Adult dataset. Each row builds
upon the previous one, with performance gains shown as percent enhancement over the prior step.
Error reduction is calculated for AUC (1-AUC) and LogLoss.

Model Variant #Params LogLoss Reduction ↓ AUC Error Reduction ↑
(a) Monolithic MLP (Baseline) 27.4k (Baseline Performance 0.31 LogLoss, 0.908 AUC)

(b) Decomposed 13.9k 4.4% 5.4%
(c) Decomposed + Routing 13.9k 1.3% 1.0%

(d) SFR Net (Sparse Routing) 13.9k 0.3% 1.4%

The Foundational Leap from Monolithic Design. The first and most impactful step is moving
from a monolithic MLP (a) to a decomposed, feature-wise expert architecture (b). This foundational
shift, even when combined with a simple averaging of expert outputs, is remarkably effective. As
shown in Table 3, this change alone slashes the test log-loss by 4.4% and cuts the classification error
(1-AUC) by a massive 5.4%—all while using half the parameters of the monolithic baseline. This
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result strongly validates our core hypothesis: specializing model components to individual features
provides a superior and more efficient inductive bias for tabular data.

The Multiplier Effect of Learned Routing and Rapid Convergence. Building on this strong de-
composed base, we replace average pooling with our learned, instance-wise router. Even with dense
attention (c), the impact is immediate, further reducing the remaining classification error by another
1.1%. This demonstrates the power of dynamic, context-aware feature selection. Crucially, we also
observed that this performance gain is achieved with remarkable efficiency. The decomposed ar-
chitectures (b, c, and d) consistently reached optimal validation loss in significantly fewer training
epochs than the monolithic MLP, which required a longer training schedule and still converged to a
suboptimal solution. This highlights that SFR Net’s architecture not only performs better but also
learns more efficiently, a critical advantage in practical applications.

The Final Polish from Sparsity. Finally, applying our full model with sparsity-inducing regu-
larization (d) provides the final performance gain. While numerically the smallest step, its role
is critical: it acts as a powerful regularizer, forcing the model to commit to a minimal subset of
high-signal features. Cumulatively, our architectural choices provide a total test log-loss reduction
of nearly 6% and a total classification error reduction of 7.8% compared to a overparameterized
baseline, demonstrating the value of each component in the SFR Net design.

5 CONCLUSION

In this work, we introduced the Sparse Feature Routing Network (SFR Net), a novel paradigm for
deep tabular learning that challenges the prevailing use of monolithic encoders. SFR Net is built on
the principle of feature-wise specialization, employing dedicated experts for each feature that are
dynamically selected by an instance-wise, sparse router. Our experiments demonstrated that this
architectural prior is highly effective, with SFR Net consistently outperforming specialized deep
tabular baselines, including FT-Transformer and TabNet. Furthermore, we showed that SFR Net,
trained end-to-end, remains highly competitive with powerful ResNet backbones enhanced by SSL
pre-training, suggesting that encoding strong, problem-aligned inductive biases directly into the
architecture is a more efficient and equally powerful alternative to representation learning via SSL.
While our analysis focused on datasets with a moderate number of features, a promising direction
for future work is scaling this sparse, modular approach to high-dimensional data.
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